linux/kernel/trace/rv/monitors/sleep/sleep.h
Nam Cao f74f8bb246 rv: Add rtapp_sleep monitor
Add a monitor for checking that real-time tasks do not go to sleep in a
manner that may cause undesirable latency.

Also change
	RV depends on TRACING
to
	RV select TRACING
to avoid the following recursive dependency:

 error: recursive dependency detected!
	symbol TRACING is selected by PREEMPTIRQ_TRACEPOINTS
	symbol PREEMPTIRQ_TRACEPOINTS depends on TRACE_IRQFLAGS
	symbol TRACE_IRQFLAGS is selected by RV_MON_SLEEP
	symbol RV_MON_SLEEP depends on RV
	symbol RV depends on TRACING

Cc: John Ogness <john.ogness@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/75bc5bcc741d153aa279c95faf778dff35c5c8ad.1752088709.git.namcao@linutronix.de
Reviewed-by: Gabriele Monaco <gmonaco@redhat.com>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2025-07-09 15:27:01 -04:00

258 lines
6.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* C implementation of Buchi automaton, automatically generated by
* tools/verification/rvgen from the linear temporal logic specification.
* For further information, see kernel documentation:
* Documentation/trace/rv/linear_temporal_logic.rst
*/
#include <linux/rv.h>
#define MONITOR_NAME sleep
enum ltl_atom {
LTL_ABORT_SLEEP,
LTL_BLOCK_ON_RT_MUTEX,
LTL_CLOCK_NANOSLEEP,
LTL_FUTEX_LOCK_PI,
LTL_FUTEX_WAIT,
LTL_KERNEL_THREAD,
LTL_KTHREAD_SHOULD_STOP,
LTL_NANOSLEEP_CLOCK_MONOTONIC,
LTL_NANOSLEEP_CLOCK_TAI,
LTL_NANOSLEEP_TIMER_ABSTIME,
LTL_RT,
LTL_SLEEP,
LTL_TASK_IS_MIGRATION,
LTL_TASK_IS_RCU,
LTL_WAKE,
LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
LTL_WOKEN_BY_HARDIRQ,
LTL_WOKEN_BY_NMI,
LTL_NUM_ATOM
};
static_assert(LTL_NUM_ATOM <= RV_MAX_LTL_ATOM);
static const char *ltl_atom_str(enum ltl_atom atom)
{
static const char *const names[] = {
"ab_sl",
"bl_on_rt_mu",
"cl_na",
"fu_lo_pi",
"fu_wa",
"ker_th",
"kth_sh_st",
"na_cl_mo",
"na_cl_ta",
"na_ti_ab",
"rt",
"sl",
"ta_mi",
"ta_rc",
"wak",
"wo_eq_hi_pr",
"wo_ha",
"wo_nm",
};
return names[atom];
}
enum ltl_buchi_state {
S0,
S1,
S2,
S3,
S4,
S5,
S6,
S7,
RV_NUM_BA_STATES
};
static_assert(RV_NUM_BA_STATES <= RV_MAX_BA_STATES);
static void ltl_start(struct task_struct *task, struct ltl_monitor *mon)
{
bool task_is_migration = test_bit(LTL_TASK_IS_MIGRATION, mon->atoms);
bool task_is_rcu = test_bit(LTL_TASK_IS_RCU, mon->atoms);
bool val40 = task_is_rcu || task_is_migration;
bool futex_lock_pi = test_bit(LTL_FUTEX_LOCK_PI, mon->atoms);
bool val41 = futex_lock_pi || val40;
bool block_on_rt_mutex = test_bit(LTL_BLOCK_ON_RT_MUTEX, mon->atoms);
bool val5 = block_on_rt_mutex || val41;
bool kthread_should_stop = test_bit(LTL_KTHREAD_SHOULD_STOP, mon->atoms);
bool abort_sleep = test_bit(LTL_ABORT_SLEEP, mon->atoms);
bool val32 = abort_sleep || kthread_should_stop;
bool woken_by_nmi = test_bit(LTL_WOKEN_BY_NMI, mon->atoms);
bool val33 = woken_by_nmi || val32;
bool woken_by_hardirq = test_bit(LTL_WOKEN_BY_HARDIRQ, mon->atoms);
bool val34 = woken_by_hardirq || val33;
bool woken_by_equal_or_higher_prio = test_bit(LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
mon->atoms);
bool val14 = woken_by_equal_or_higher_prio || val34;
bool wake = test_bit(LTL_WAKE, mon->atoms);
bool val13 = !wake;
bool kernel_thread = test_bit(LTL_KERNEL_THREAD, mon->atoms);
bool nanosleep_clock_tai = test_bit(LTL_NANOSLEEP_CLOCK_TAI, mon->atoms);
bool nanosleep_clock_monotonic = test_bit(LTL_NANOSLEEP_CLOCK_MONOTONIC, mon->atoms);
bool val24 = nanosleep_clock_monotonic || nanosleep_clock_tai;
bool nanosleep_timer_abstime = test_bit(LTL_NANOSLEEP_TIMER_ABSTIME, mon->atoms);
bool val25 = nanosleep_timer_abstime && val24;
bool clock_nanosleep = test_bit(LTL_CLOCK_NANOSLEEP, mon->atoms);
bool val18 = clock_nanosleep && val25;
bool futex_wait = test_bit(LTL_FUTEX_WAIT, mon->atoms);
bool val9 = futex_wait || val18;
bool val11 = val9 || kernel_thread;
bool sleep = test_bit(LTL_SLEEP, mon->atoms);
bool val2 = !sleep;
bool rt = test_bit(LTL_RT, mon->atoms);
bool val1 = !rt;
bool val3 = val1 || val2;
if (val3)
__set_bit(S0, mon->states);
if (val11 && val13)
__set_bit(S1, mon->states);
if (val11 && val14)
__set_bit(S4, mon->states);
if (val5)
__set_bit(S5, mon->states);
}
static void
ltl_possible_next_states(struct ltl_monitor *mon, unsigned int state, unsigned long *next)
{
bool task_is_migration = test_bit(LTL_TASK_IS_MIGRATION, mon->atoms);
bool task_is_rcu = test_bit(LTL_TASK_IS_RCU, mon->atoms);
bool val40 = task_is_rcu || task_is_migration;
bool futex_lock_pi = test_bit(LTL_FUTEX_LOCK_PI, mon->atoms);
bool val41 = futex_lock_pi || val40;
bool block_on_rt_mutex = test_bit(LTL_BLOCK_ON_RT_MUTEX, mon->atoms);
bool val5 = block_on_rt_mutex || val41;
bool kthread_should_stop = test_bit(LTL_KTHREAD_SHOULD_STOP, mon->atoms);
bool abort_sleep = test_bit(LTL_ABORT_SLEEP, mon->atoms);
bool val32 = abort_sleep || kthread_should_stop;
bool woken_by_nmi = test_bit(LTL_WOKEN_BY_NMI, mon->atoms);
bool val33 = woken_by_nmi || val32;
bool woken_by_hardirq = test_bit(LTL_WOKEN_BY_HARDIRQ, mon->atoms);
bool val34 = woken_by_hardirq || val33;
bool woken_by_equal_or_higher_prio = test_bit(LTL_WOKEN_BY_EQUAL_OR_HIGHER_PRIO,
mon->atoms);
bool val14 = woken_by_equal_or_higher_prio || val34;
bool wake = test_bit(LTL_WAKE, mon->atoms);
bool val13 = !wake;
bool kernel_thread = test_bit(LTL_KERNEL_THREAD, mon->atoms);
bool nanosleep_clock_tai = test_bit(LTL_NANOSLEEP_CLOCK_TAI, mon->atoms);
bool nanosleep_clock_monotonic = test_bit(LTL_NANOSLEEP_CLOCK_MONOTONIC, mon->atoms);
bool val24 = nanosleep_clock_monotonic || nanosleep_clock_tai;
bool nanosleep_timer_abstime = test_bit(LTL_NANOSLEEP_TIMER_ABSTIME, mon->atoms);
bool val25 = nanosleep_timer_abstime && val24;
bool clock_nanosleep = test_bit(LTL_CLOCK_NANOSLEEP, mon->atoms);
bool val18 = clock_nanosleep && val25;
bool futex_wait = test_bit(LTL_FUTEX_WAIT, mon->atoms);
bool val9 = futex_wait || val18;
bool val11 = val9 || kernel_thread;
bool sleep = test_bit(LTL_SLEEP, mon->atoms);
bool val2 = !sleep;
bool rt = test_bit(LTL_RT, mon->atoms);
bool val1 = !rt;
bool val3 = val1 || val2;
switch (state) {
case S0:
if (val3)
__set_bit(S0, next);
if (val11 && val13)
__set_bit(S1, next);
if (val11 && val14)
__set_bit(S4, next);
if (val5)
__set_bit(S5, next);
break;
case S1:
if (val11 && val13)
__set_bit(S1, next);
if (val13 && val3)
__set_bit(S2, next);
if (val14 && val3)
__set_bit(S3, next);
if (val11 && val14)
__set_bit(S4, next);
if (val13 && val5)
__set_bit(S6, next);
if (val14 && val5)
__set_bit(S7, next);
break;
case S2:
if (val11 && val13)
__set_bit(S1, next);
if (val13 && val3)
__set_bit(S2, next);
if (val14 && val3)
__set_bit(S3, next);
if (val11 && val14)
__set_bit(S4, next);
if (val13 && val5)
__set_bit(S6, next);
if (val14 && val5)
__set_bit(S7, next);
break;
case S3:
if (val3)
__set_bit(S0, next);
if (val11 && val13)
__set_bit(S1, next);
if (val11 && val14)
__set_bit(S4, next);
if (val5)
__set_bit(S5, next);
break;
case S4:
if (val3)
__set_bit(S0, next);
if (val11 && val13)
__set_bit(S1, next);
if (val11 && val14)
__set_bit(S4, next);
if (val5)
__set_bit(S5, next);
break;
case S5:
if (val3)
__set_bit(S0, next);
if (val11 && val13)
__set_bit(S1, next);
if (val11 && val14)
__set_bit(S4, next);
if (val5)
__set_bit(S5, next);
break;
case S6:
if (val11 && val13)
__set_bit(S1, next);
if (val13 && val3)
__set_bit(S2, next);
if (val14 && val3)
__set_bit(S3, next);
if (val11 && val14)
__set_bit(S4, next);
if (val13 && val5)
__set_bit(S6, next);
if (val14 && val5)
__set_bit(S7, next);
break;
case S7:
if (val3)
__set_bit(S0, next);
if (val11 && val13)
__set_bit(S1, next);
if (val11 && val14)
__set_bit(S4, next);
if (val5)
__set_bit(S5, next);
break;
}
}