linux/kernel/trace/fprobe.c
Linus Torvalds b7dbc2e813 Probes updates for v6.17:
- Stack usage reduction for probe events:
    - Allocate string buffers from the heap for uprobe, eprobe, kprobe,
      and fprobe events to avoid stack overflow.
    - Allocate traceprobe_parse_context from the heap to prevent
      potential stack overflow.
    - Fix a typo in the above commit.
 
  - New features for eprobe and tprobe events:
    - Add support for arrays in eprobes.
    - Support multiple tprobes on the same tracepoint.
 
  - Improve efficiency:
    - Register fprobe-events only when it is enabled to reduce overhead.
    - Register tracepoints for tprobe events only when enabled to
      resolve a lock dependency.
 
  - Code Cleanup:
    - Add kerneldoc for traceprobe_parse_event_name() and __get_insn_slot().
    - Sort #include alphabetically in the probes code.
    - Remove the unused 'mod' field from the tprobe-event.
    - Clean up the entry-arg storing code in probe-events.
 
  - Selftest update
    - Enable fprobe events before checking enable_functions in selftests.
 -----BEGIN PGP SIGNATURE-----
 
 iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmiJ2DQbHG1hc2FtaS5o
 aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bSfkH/06Zn5I55rU85FKSBQll
 FN4hipmef/9Nd13skDwpEuFyzLPNS4P1up/UBUuyDQUTlO74+t2zSFO2dpcNrWmu
 sPTenQ+6h82H3K591WTIC23VzF54syIbFLXEj8iMBALT3wyU4Nn0bs4DCbnTo5HX
 R3NVo77rk6wxNJoKYOtT6ALf/lHonuNlGF+KTUGWP8UbWsIY3fIp0RWWy572M0bt
 +YBE8D8RIVrw+ZY+vNKn1LdZdWlR1ton518XDf1gV9isTCfKErcd/6HJKwuj5q2v
 qMgwiaKK+Gne/ylAKmWLEg2oNDo7kpyfW+612oiECitgZkqxOXhyYYfWgRt1lFNp
 Wb8=
 =E+Z6
 -----END PGP SIGNATURE-----

Merge tag 'probes-v6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull probes updates from Masami Hiramatsu:
 "Stack usage reduction for probe events:
   - Allocate string buffers from the heap for uprobe, eprobe, kprobe,
     and fprobe events to avoid stack overflow
   - Allocate traceprobe_parse_context from the heap to prevent
     potential stack overflow
   - Fix a typo in the above commit

  New features for eprobe and tprobe events:
   - Add support for arrays in eprobes
   - Support multiple tprobes on the same tracepoint

  Improve efficiency:
   - Register fprobe-events only when it is enabled to reduce overhead
   - Register tracepoints for tprobe events only when enabled to resolve
     a lock dependency

  Code Cleanup:
   - Add kerneldoc for traceprobe_parse_event_name() and
     __get_insn_slot()
   - Sort #include alphabetically in the probes code
   - Remove the unused 'mod' field from the tprobe-event
   - Clean up the entry-arg storing code in probe-events

  Selftest update
   - Enable fprobe events before checking enable_functions in selftests"

* tag 'probes-v6.17' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing: trace_fprobe: Fix typo of the semicolon
  tracing: Have eprobes handle arrays
  tracing: probes: Add a kerneldoc for traceprobe_parse_event_name()
  tracing: uprobe-event: Allocate string buffers from heap
  tracing: eprobe-event: Allocate string buffers from heap
  tracing: kprobe-event: Allocate string buffers from heap
  tracing: fprobe-event: Allocate string buffers from heap
  tracing: probe: Allocate traceprobe_parse_context from heap
  tracing: probes: Sort #include alphabetically
  kprobes: Add missing kerneldoc for __get_insn_slot
  tracing: tprobe-events: Register tracepoint when enable tprobe event
  selftests: tracing: Enable fprobe events before checking enable_functions
  tracing: fprobe-events: Register fprobe-events only when it is enabled
  tracing: tprobe-events: Support multiple tprobes on the same tracepoint
  tracing: tprobe-events: Remove mod field from tprobe-event
  tracing: probe-events: Cleanup entry-arg storing code
2025-07-30 15:38:01 -07:00

827 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fprobe - Simple ftrace probe wrapper for function entry.
*/
#define pr_fmt(fmt) "fprobe: " fmt
#include <linux/err.h>
#include <linux/fprobe.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <asm/fprobe.h>
#include "trace.h"
#define FPROBE_IP_HASH_BITS 8
#define FPROBE_IP_TABLE_SIZE (1 << FPROBE_IP_HASH_BITS)
#define FPROBE_HASH_BITS 6
#define FPROBE_TABLE_SIZE (1 << FPROBE_HASH_BITS)
#define SIZE_IN_LONG(x) ((x + sizeof(long) - 1) >> (sizeof(long) == 8 ? 3 : 2))
/*
* fprobe_table: hold 'fprobe_hlist::hlist' for checking the fprobe still
* exists. The key is the address of fprobe instance.
* fprobe_ip_table: hold 'fprobe_hlist::array[*]' for searching the fprobe
* instance related to the funciton address. The key is the ftrace IP
* address.
*
* When unregistering the fprobe, fprobe_hlist::fp and fprobe_hlist::array[*].fp
* are set NULL and delete those from both hash tables (by hlist_del_rcu).
* After an RCU grace period, the fprobe_hlist itself will be released.
*
* fprobe_table and fprobe_ip_table can be accessed from either
* - Normal hlist traversal and RCU add/del under 'fprobe_mutex' is held.
* - RCU hlist traversal under disabling preempt
*/
static struct hlist_head fprobe_table[FPROBE_TABLE_SIZE];
static struct hlist_head fprobe_ip_table[FPROBE_IP_TABLE_SIZE];
static DEFINE_MUTEX(fprobe_mutex);
/*
* Find first fprobe in the hlist. It will be iterated twice in the entry
* probe, once for correcting the total required size, the second time is
* calling back the user handlers.
* Thus the hlist in the fprobe_table must be sorted and new probe needs to
* be added *before* the first fprobe.
*/
static struct fprobe_hlist_node *find_first_fprobe_node(unsigned long ip)
{
struct fprobe_hlist_node *node;
struct hlist_head *head;
head = &fprobe_ip_table[hash_ptr((void *)ip, FPROBE_IP_HASH_BITS)];
hlist_for_each_entry_rcu(node, head, hlist,
lockdep_is_held(&fprobe_mutex)) {
if (node->addr == ip)
return node;
}
return NULL;
}
NOKPROBE_SYMBOL(find_first_fprobe_node);
/* Node insertion and deletion requires the fprobe_mutex */
static void insert_fprobe_node(struct fprobe_hlist_node *node)
{
unsigned long ip = node->addr;
struct fprobe_hlist_node *next;
struct hlist_head *head;
lockdep_assert_held(&fprobe_mutex);
next = find_first_fprobe_node(ip);
if (next) {
hlist_add_before_rcu(&node->hlist, &next->hlist);
return;
}
head = &fprobe_ip_table[hash_ptr((void *)ip, FPROBE_IP_HASH_BITS)];
hlist_add_head_rcu(&node->hlist, head);
}
/* Return true if there are synonims */
static bool delete_fprobe_node(struct fprobe_hlist_node *node)
{
lockdep_assert_held(&fprobe_mutex);
/* Avoid double deleting */
if (READ_ONCE(node->fp) != NULL) {
WRITE_ONCE(node->fp, NULL);
hlist_del_rcu(&node->hlist);
}
return !!find_first_fprobe_node(node->addr);
}
/* Check existence of the fprobe */
static bool is_fprobe_still_exist(struct fprobe *fp)
{
struct hlist_head *head;
struct fprobe_hlist *fph;
head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)];
hlist_for_each_entry_rcu(fph, head, hlist,
lockdep_is_held(&fprobe_mutex)) {
if (fph->fp == fp)
return true;
}
return false;
}
NOKPROBE_SYMBOL(is_fprobe_still_exist);
static int add_fprobe_hash(struct fprobe *fp)
{
struct fprobe_hlist *fph = fp->hlist_array;
struct hlist_head *head;
lockdep_assert_held(&fprobe_mutex);
if (WARN_ON_ONCE(!fph))
return -EINVAL;
if (is_fprobe_still_exist(fp))
return -EEXIST;
head = &fprobe_table[hash_ptr(fp, FPROBE_HASH_BITS)];
hlist_add_head_rcu(&fp->hlist_array->hlist, head);
return 0;
}
static int del_fprobe_hash(struct fprobe *fp)
{
struct fprobe_hlist *fph = fp->hlist_array;
lockdep_assert_held(&fprobe_mutex);
if (WARN_ON_ONCE(!fph))
return -EINVAL;
if (!is_fprobe_still_exist(fp))
return -ENOENT;
fph->fp = NULL;
hlist_del_rcu(&fph->hlist);
return 0;
}
#ifdef ARCH_DEFINE_ENCODE_FPROBE_HEADER
/* The arch should encode fprobe_header info into one unsigned long */
#define FPROBE_HEADER_SIZE_IN_LONG 1
static inline bool write_fprobe_header(unsigned long *stack,
struct fprobe *fp, unsigned int size_words)
{
if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD ||
!arch_fprobe_header_encodable(fp)))
return false;
*stack = arch_encode_fprobe_header(fp, size_words);
return true;
}
static inline void read_fprobe_header(unsigned long *stack,
struct fprobe **fp, unsigned int *size_words)
{
*fp = arch_decode_fprobe_header_fp(*stack);
*size_words = arch_decode_fprobe_header_size(*stack);
}
#else
/* Generic fprobe_header */
struct __fprobe_header {
struct fprobe *fp;
unsigned long size_words;
} __packed;
#define FPROBE_HEADER_SIZE_IN_LONG SIZE_IN_LONG(sizeof(struct __fprobe_header))
static inline bool write_fprobe_header(unsigned long *stack,
struct fprobe *fp, unsigned int size_words)
{
struct __fprobe_header *fph = (struct __fprobe_header *)stack;
if (WARN_ON_ONCE(size_words > MAX_FPROBE_DATA_SIZE_WORD))
return false;
fph->fp = fp;
fph->size_words = size_words;
return true;
}
static inline void read_fprobe_header(unsigned long *stack,
struct fprobe **fp, unsigned int *size_words)
{
struct __fprobe_header *fph = (struct __fprobe_header *)stack;
*fp = fph->fp;
*size_words = fph->size_words;
}
#endif
/*
* fprobe shadow stack management:
* Since fprobe shares a single fgraph_ops, it needs to share the stack entry
* among the probes on the same function exit. Note that a new probe can be
* registered before a target function is returning, we can not use the hash
* table to find the corresponding probes. Thus the probe address is stored on
* the shadow stack with its entry data size.
*
*/
static inline int __fprobe_handler(unsigned long ip, unsigned long parent_ip,
struct fprobe *fp, struct ftrace_regs *fregs,
void *data)
{
if (!fp->entry_handler)
return 0;
return fp->entry_handler(fp, ip, parent_ip, fregs, data);
}
static inline int __fprobe_kprobe_handler(unsigned long ip, unsigned long parent_ip,
struct fprobe *fp, struct ftrace_regs *fregs,
void *data)
{
int ret;
/*
* This user handler is shared with other kprobes and is not expected to be
* called recursively. So if any other kprobe handler is running, this will
* exit as kprobe does. See the section 'Share the callbacks with kprobes'
* in Documentation/trace/fprobe.rst for more information.
*/
if (unlikely(kprobe_running())) {
fp->nmissed++;
return 0;
}
kprobe_busy_begin();
ret = __fprobe_handler(ip, parent_ip, fp, fregs, data);
kprobe_busy_end();
return ret;
}
static int fprobe_entry(struct ftrace_graph_ent *trace, struct fgraph_ops *gops,
struct ftrace_regs *fregs)
{
struct fprobe_hlist_node *node, *first;
unsigned long *fgraph_data = NULL;
unsigned long func = trace->func;
unsigned long ret_ip;
int reserved_words;
struct fprobe *fp;
int used, ret;
if (WARN_ON_ONCE(!fregs))
return 0;
first = node = find_first_fprobe_node(func);
if (unlikely(!first))
return 0;
reserved_words = 0;
hlist_for_each_entry_from_rcu(node, hlist) {
if (node->addr != func)
break;
fp = READ_ONCE(node->fp);
if (!fp || !fp->exit_handler)
continue;
/*
* Since fprobe can be enabled until the next loop, we ignore the
* fprobe's disabled flag in this loop.
*/
reserved_words +=
FPROBE_HEADER_SIZE_IN_LONG + SIZE_IN_LONG(fp->entry_data_size);
}
node = first;
if (reserved_words) {
fgraph_data = fgraph_reserve_data(gops->idx, reserved_words * sizeof(long));
if (unlikely(!fgraph_data)) {
hlist_for_each_entry_from_rcu(node, hlist) {
if (node->addr != func)
break;
fp = READ_ONCE(node->fp);
if (fp && !fprobe_disabled(fp))
fp->nmissed++;
}
return 0;
}
}
/*
* TODO: recursion detection has been done in the fgraph. Thus we need
* to add a callback to increment missed counter.
*/
ret_ip = ftrace_regs_get_return_address(fregs);
used = 0;
hlist_for_each_entry_from_rcu(node, hlist) {
int data_size;
void *data;
if (node->addr != func)
break;
fp = READ_ONCE(node->fp);
if (!fp || fprobe_disabled(fp))
continue;
data_size = fp->entry_data_size;
if (data_size && fp->exit_handler)
data = fgraph_data + used + FPROBE_HEADER_SIZE_IN_LONG;
else
data = NULL;
if (fprobe_shared_with_kprobes(fp))
ret = __fprobe_kprobe_handler(func, ret_ip, fp, fregs, data);
else
ret = __fprobe_handler(func, ret_ip, fp, fregs, data);
/* If entry_handler returns !0, nmissed is not counted but skips exit_handler. */
if (!ret && fp->exit_handler) {
int size_words = SIZE_IN_LONG(data_size);
if (write_fprobe_header(&fgraph_data[used], fp, size_words))
used += FPROBE_HEADER_SIZE_IN_LONG + size_words;
}
}
if (used < reserved_words)
memset(fgraph_data + used, 0, reserved_words - used);
/* If any exit_handler is set, data must be used. */
return used != 0;
}
NOKPROBE_SYMBOL(fprobe_entry);
static void fprobe_return(struct ftrace_graph_ret *trace,
struct fgraph_ops *gops,
struct ftrace_regs *fregs)
{
unsigned long *fgraph_data = NULL;
unsigned long ret_ip;
struct fprobe *fp;
int size, curr;
int size_words;
fgraph_data = (unsigned long *)fgraph_retrieve_data(gops->idx, &size);
if (WARN_ON_ONCE(!fgraph_data))
return;
size_words = SIZE_IN_LONG(size);
ret_ip = ftrace_regs_get_instruction_pointer(fregs);
preempt_disable_notrace();
curr = 0;
while (size_words > curr) {
read_fprobe_header(&fgraph_data[curr], &fp, &size);
if (!fp)
break;
curr += FPROBE_HEADER_SIZE_IN_LONG;
if (is_fprobe_still_exist(fp) && !fprobe_disabled(fp)) {
if (WARN_ON_ONCE(curr + size > size_words))
break;
fp->exit_handler(fp, trace->func, ret_ip, fregs,
size ? fgraph_data + curr : NULL);
}
curr += size;
}
preempt_enable_notrace();
}
NOKPROBE_SYMBOL(fprobe_return);
static struct fgraph_ops fprobe_graph_ops = {
.entryfunc = fprobe_entry,
.retfunc = fprobe_return,
};
static int fprobe_graph_active;
/* Add @addrs to the ftrace filter and register fgraph if needed. */
static int fprobe_graph_add_ips(unsigned long *addrs, int num)
{
int ret;
lockdep_assert_held(&fprobe_mutex);
ret = ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 0, 0);
if (ret)
return ret;
if (!fprobe_graph_active) {
ret = register_ftrace_graph(&fprobe_graph_ops);
if (WARN_ON_ONCE(ret)) {
ftrace_free_filter(&fprobe_graph_ops.ops);
return ret;
}
}
fprobe_graph_active++;
return 0;
}
/* Remove @addrs from the ftrace filter and unregister fgraph if possible. */
static void fprobe_graph_remove_ips(unsigned long *addrs, int num)
{
lockdep_assert_held(&fprobe_mutex);
fprobe_graph_active--;
/* Q: should we unregister it ? */
if (!fprobe_graph_active)
unregister_ftrace_graph(&fprobe_graph_ops);
if (num)
ftrace_set_filter_ips(&fprobe_graph_ops.ops, addrs, num, 1, 0);
}
#ifdef CONFIG_MODULES
#define FPROBE_IPS_BATCH_INIT 8
/* instruction pointer address list */
struct fprobe_addr_list {
int index;
int size;
unsigned long *addrs;
};
static int fprobe_addr_list_add(struct fprobe_addr_list *alist, unsigned long addr)
{
unsigned long *addrs;
if (alist->index >= alist->size)
return -ENOMEM;
alist->addrs[alist->index++] = addr;
if (alist->index < alist->size)
return 0;
/* Expand the address list */
addrs = kcalloc(alist->size * 2, sizeof(*addrs), GFP_KERNEL);
if (!addrs)
return -ENOMEM;
memcpy(addrs, alist->addrs, alist->size * sizeof(*addrs));
alist->size *= 2;
kfree(alist->addrs);
alist->addrs = addrs;
return 0;
}
static void fprobe_remove_node_in_module(struct module *mod, struct hlist_head *head,
struct fprobe_addr_list *alist)
{
struct fprobe_hlist_node *node;
int ret = 0;
hlist_for_each_entry_rcu(node, head, hlist,
lockdep_is_held(&fprobe_mutex)) {
if (!within_module(node->addr, mod))
continue;
if (delete_fprobe_node(node))
continue;
/*
* If failed to update alist, just continue to update hlist.
* Therefore, at list user handler will not hit anymore.
*/
if (!ret)
ret = fprobe_addr_list_add(alist, node->addr);
}
}
/* Handle module unloading to manage fprobe_ip_table. */
static int fprobe_module_callback(struct notifier_block *nb,
unsigned long val, void *data)
{
struct fprobe_addr_list alist = {.size = FPROBE_IPS_BATCH_INIT};
struct module *mod = data;
int i;
if (val != MODULE_STATE_GOING)
return NOTIFY_DONE;
alist.addrs = kcalloc(alist.size, sizeof(*alist.addrs), GFP_KERNEL);
/* If failed to alloc memory, we can not remove ips from hash. */
if (!alist.addrs)
return NOTIFY_DONE;
mutex_lock(&fprobe_mutex);
for (i = 0; i < FPROBE_IP_TABLE_SIZE; i++)
fprobe_remove_node_in_module(mod, &fprobe_ip_table[i], &alist);
if (alist.index < alist.size && alist.index > 0)
ftrace_set_filter_ips(&fprobe_graph_ops.ops,
alist.addrs, alist.index, 1, 0);
mutex_unlock(&fprobe_mutex);
kfree(alist.addrs);
return NOTIFY_DONE;
}
static struct notifier_block fprobe_module_nb = {
.notifier_call = fprobe_module_callback,
.priority = 0,
};
static int __init init_fprobe_module(void)
{
return register_module_notifier(&fprobe_module_nb);
}
early_initcall(init_fprobe_module);
#endif
static int symbols_cmp(const void *a, const void *b)
{
const char **str_a = (const char **) a;
const char **str_b = (const char **) b;
return strcmp(*str_a, *str_b);
}
/* Convert ftrace location address from symbols */
static unsigned long *get_ftrace_locations(const char **syms, int num)
{
unsigned long *addrs;
/* Convert symbols to symbol address */
addrs = kcalloc(num, sizeof(*addrs), GFP_KERNEL);
if (!addrs)
return ERR_PTR(-ENOMEM);
/* ftrace_lookup_symbols expects sorted symbols */
sort(syms, num, sizeof(*syms), symbols_cmp, NULL);
if (!ftrace_lookup_symbols(syms, num, addrs))
return addrs;
kfree(addrs);
return ERR_PTR(-ENOENT);
}
struct filter_match_data {
const char *filter;
const char *notfilter;
size_t index;
size_t size;
unsigned long *addrs;
struct module **mods;
};
static int filter_match_callback(void *data, const char *name, unsigned long addr)
{
struct filter_match_data *match = data;
if (!glob_match(match->filter, name) ||
(match->notfilter && glob_match(match->notfilter, name)))
return 0;
if (!ftrace_location(addr))
return 0;
if (match->addrs) {
struct module *mod = __module_text_address(addr);
if (mod && !try_module_get(mod))
return 0;
match->mods[match->index] = mod;
match->addrs[match->index] = addr;
}
match->index++;
return match->index == match->size;
}
/*
* Make IP list from the filter/no-filter glob patterns.
* Return the number of matched symbols, or errno.
* If @addrs == NULL, this just counts the number of matched symbols. If @addrs
* is passed with an array, we need to pass the an @mods array of the same size
* to increment the module refcount for each symbol.
* This means we also need to call `module_put` for each element of @mods after
* using the @addrs.
*/
static int get_ips_from_filter(const char *filter, const char *notfilter,
unsigned long *addrs, struct module **mods,
size_t size)
{
struct filter_match_data match = { .filter = filter, .notfilter = notfilter,
.index = 0, .size = size, .addrs = addrs, .mods = mods};
int ret;
if (addrs && !mods)
return -EINVAL;
ret = kallsyms_on_each_symbol(filter_match_callback, &match);
if (ret < 0)
return ret;
if (IS_ENABLED(CONFIG_MODULES)) {
ret = module_kallsyms_on_each_symbol(NULL, filter_match_callback, &match);
if (ret < 0)
return ret;
}
return match.index ?: -ENOENT;
}
static void fprobe_fail_cleanup(struct fprobe *fp)
{
kfree(fp->hlist_array);
fp->hlist_array = NULL;
}
/* Initialize the fprobe data structure. */
static int fprobe_init(struct fprobe *fp, unsigned long *addrs, int num)
{
struct fprobe_hlist *hlist_array;
unsigned long addr;
int size, i;
if (!fp || !addrs || num <= 0)
return -EINVAL;
size = ALIGN(fp->entry_data_size, sizeof(long));
if (size > MAX_FPROBE_DATA_SIZE)
return -E2BIG;
fp->entry_data_size = size;
hlist_array = kzalloc(struct_size(hlist_array, array, num), GFP_KERNEL);
if (!hlist_array)
return -ENOMEM;
fp->nmissed = 0;
hlist_array->size = num;
fp->hlist_array = hlist_array;
hlist_array->fp = fp;
for (i = 0; i < num; i++) {
hlist_array->array[i].fp = fp;
addr = ftrace_location(addrs[i]);
if (!addr) {
fprobe_fail_cleanup(fp);
return -ENOENT;
}
hlist_array->array[i].addr = addr;
}
return 0;
}
#define FPROBE_IPS_MAX INT_MAX
int fprobe_count_ips_from_filter(const char *filter, const char *notfilter)
{
return get_ips_from_filter(filter, notfilter, NULL, NULL, FPROBE_IPS_MAX);
}
/**
* register_fprobe() - Register fprobe to ftrace by pattern.
* @fp: A fprobe data structure to be registered.
* @filter: A wildcard pattern of probed symbols.
* @notfilter: A wildcard pattern of NOT probed symbols.
*
* Register @fp to ftrace for enabling the probe on the symbols matched to @filter.
* If @notfilter is not NULL, the symbols matched the @notfilter are not probed.
*
* Return 0 if @fp is registered successfully, -errno if not.
*/
int register_fprobe(struct fprobe *fp, const char *filter, const char *notfilter)
{
unsigned long *addrs __free(kfree) = NULL;
struct module **mods __free(kfree) = NULL;
int ret, num;
if (!fp || !filter)
return -EINVAL;
num = get_ips_from_filter(filter, notfilter, NULL, NULL, FPROBE_IPS_MAX);
if (num < 0)
return num;
addrs = kcalloc(num, sizeof(*addrs), GFP_KERNEL);
if (!addrs)
return -ENOMEM;
mods = kcalloc(num, sizeof(*mods), GFP_KERNEL);
if (!mods)
return -ENOMEM;
ret = get_ips_from_filter(filter, notfilter, addrs, mods, num);
if (ret < 0)
return ret;
ret = register_fprobe_ips(fp, addrs, ret);
for (int i = 0; i < num; i++) {
if (mods[i])
module_put(mods[i]);
}
return ret;
}
EXPORT_SYMBOL_GPL(register_fprobe);
/**
* register_fprobe_ips() - Register fprobe to ftrace by address.
* @fp: A fprobe data structure to be registered.
* @addrs: An array of target function address.
* @num: The number of entries of @addrs.
*
* Register @fp to ftrace for enabling the probe on the address given by @addrs.
* The @addrs must be the addresses of ftrace location address, which may be
* the symbol address + arch-dependent offset.
* If you unsure what this mean, please use other registration functions.
*
* Return 0 if @fp is registered successfully, -errno if not.
*/
int register_fprobe_ips(struct fprobe *fp, unsigned long *addrs, int num)
{
struct fprobe_hlist *hlist_array;
int ret, i;
ret = fprobe_init(fp, addrs, num);
if (ret)
return ret;
mutex_lock(&fprobe_mutex);
hlist_array = fp->hlist_array;
ret = fprobe_graph_add_ips(addrs, num);
if (!ret) {
add_fprobe_hash(fp);
for (i = 0; i < hlist_array->size; i++)
insert_fprobe_node(&hlist_array->array[i]);
}
mutex_unlock(&fprobe_mutex);
if (ret)
fprobe_fail_cleanup(fp);
return ret;
}
EXPORT_SYMBOL_GPL(register_fprobe_ips);
/**
* register_fprobe_syms() - Register fprobe to ftrace by symbols.
* @fp: A fprobe data structure to be registered.
* @syms: An array of target symbols.
* @num: The number of entries of @syms.
*
* Register @fp to the symbols given by @syms array. This will be useful if
* you are sure the symbols exist in the kernel.
*
* Return 0 if @fp is registered successfully, -errno if not.
*/
int register_fprobe_syms(struct fprobe *fp, const char **syms, int num)
{
unsigned long *addrs;
int ret;
if (!fp || !syms || num <= 0)
return -EINVAL;
addrs = get_ftrace_locations(syms, num);
if (IS_ERR(addrs))
return PTR_ERR(addrs);
ret = register_fprobe_ips(fp, addrs, num);
kfree(addrs);
return ret;
}
EXPORT_SYMBOL_GPL(register_fprobe_syms);
bool fprobe_is_registered(struct fprobe *fp)
{
if (!fp || !fp->hlist_array)
return false;
return true;
}
/**
* unregister_fprobe() - Unregister fprobe.
* @fp: A fprobe data structure to be unregistered.
*
* Unregister fprobe (and remove ftrace hooks from the function entries).
*
* Return 0 if @fp is unregistered successfully, -errno if not.
*/
int unregister_fprobe(struct fprobe *fp)
{
struct fprobe_hlist *hlist_array;
unsigned long *addrs = NULL;
int ret = 0, i, count;
mutex_lock(&fprobe_mutex);
if (!fp || !is_fprobe_still_exist(fp)) {
ret = -EINVAL;
goto out;
}
hlist_array = fp->hlist_array;
addrs = kcalloc(hlist_array->size, sizeof(unsigned long), GFP_KERNEL);
if (!addrs) {
ret = -ENOMEM; /* TODO: Fallback to one-by-one loop */
goto out;
}
/* Remove non-synonim ips from table and hash */
count = 0;
for (i = 0; i < hlist_array->size; i++) {
if (!delete_fprobe_node(&hlist_array->array[i]))
addrs[count++] = hlist_array->array[i].addr;
}
del_fprobe_hash(fp);
fprobe_graph_remove_ips(addrs, count);
kfree_rcu(hlist_array, rcu);
fp->hlist_array = NULL;
out:
mutex_unlock(&fprobe_mutex);
kfree(addrs);
return ret;
}
EXPORT_SYMBOL_GPL(unregister_fprobe);