mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-15 15:09:17 +00:00

Expose the auxiliary clock data so it can be read from the vDSO. Architectures not using the generic vDSO time framework, namely SPARC64, are not supported. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20250701-vdso-auxclock-v1-11-df7d9f87b9b8@linutronix.de
216 lines
5.9 KiB
C
216 lines
5.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2019 ARM Ltd.
|
|
*
|
|
* Generic implementation of update_vsyscall and update_vsyscall_tz.
|
|
*
|
|
* Based on the x86 specific implementation.
|
|
*/
|
|
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <vdso/datapage.h>
|
|
#include <vdso/helpers.h>
|
|
#include <vdso/vsyscall.h>
|
|
|
|
#include "timekeeping_internal.h"
|
|
|
|
static inline void fill_clock_configuration(struct vdso_clock *vc, const struct tk_read_base *base)
|
|
{
|
|
vc->cycle_last = base->cycle_last;
|
|
#ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT
|
|
vc->max_cycles = base->clock->max_cycles;
|
|
#endif
|
|
vc->mask = base->mask;
|
|
vc->mult = base->mult;
|
|
vc->shift = base->shift;
|
|
}
|
|
|
|
static inline void update_vdso_time_data(struct vdso_time_data *vdata, struct timekeeper *tk)
|
|
{
|
|
struct vdso_clock *vc = vdata->clock_data;
|
|
struct vdso_timestamp *vdso_ts;
|
|
u64 nsec, sec;
|
|
|
|
fill_clock_configuration(&vc[CS_HRES_COARSE], &tk->tkr_mono);
|
|
fill_clock_configuration(&vc[CS_RAW], &tk->tkr_raw);
|
|
|
|
/* CLOCK_MONOTONIC */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC];
|
|
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
|
|
|
|
nsec = tk->tkr_mono.xtime_nsec;
|
|
nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
|
|
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
|
|
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
|
|
vdso_ts->sec++;
|
|
}
|
|
vdso_ts->nsec = nsec;
|
|
|
|
/* Copy MONOTONIC time for BOOTTIME */
|
|
sec = vdso_ts->sec;
|
|
/* Add the boot offset */
|
|
sec += tk->monotonic_to_boot.tv_sec;
|
|
nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift;
|
|
|
|
/* CLOCK_BOOTTIME */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME];
|
|
vdso_ts->sec = sec;
|
|
|
|
while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
|
|
nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift);
|
|
vdso_ts->sec++;
|
|
}
|
|
vdso_ts->nsec = nsec;
|
|
|
|
/* CLOCK_MONOTONIC_RAW */
|
|
vdso_ts = &vc[CS_RAW].basetime[CLOCK_MONOTONIC_RAW];
|
|
vdso_ts->sec = tk->raw_sec;
|
|
vdso_ts->nsec = tk->tkr_raw.xtime_nsec;
|
|
|
|
/* CLOCK_TAI */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_TAI];
|
|
vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset;
|
|
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
|
|
}
|
|
|
|
void update_vsyscall(struct timekeeper *tk)
|
|
{
|
|
struct vdso_time_data *vdata = vdso_k_time_data;
|
|
struct vdso_clock *vc = vdata->clock_data;
|
|
struct vdso_timestamp *vdso_ts;
|
|
s32 clock_mode;
|
|
u64 nsec;
|
|
|
|
/* copy vsyscall data */
|
|
vdso_write_begin(vdata);
|
|
|
|
clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
|
|
vc[CS_HRES_COARSE].clock_mode = clock_mode;
|
|
vc[CS_RAW].clock_mode = clock_mode;
|
|
|
|
/* CLOCK_REALTIME also required for time() */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME];
|
|
vdso_ts->sec = tk->xtime_sec;
|
|
vdso_ts->nsec = tk->tkr_mono.xtime_nsec;
|
|
|
|
/* CLOCK_REALTIME_COARSE */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE];
|
|
vdso_ts->sec = tk->xtime_sec;
|
|
vdso_ts->nsec = tk->coarse_nsec;
|
|
|
|
/* CLOCK_MONOTONIC_COARSE */
|
|
vdso_ts = &vc[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE];
|
|
vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
|
|
nsec = tk->coarse_nsec;
|
|
nsec = nsec + tk->wall_to_monotonic.tv_nsec;
|
|
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec);
|
|
|
|
/*
|
|
* Read without the seqlock held by clock_getres().
|
|
*/
|
|
WRITE_ONCE(vdata->hrtimer_res, hrtimer_resolution);
|
|
|
|
/*
|
|
* If the current clocksource is not VDSO capable, then spare the
|
|
* update of the high resolution parts.
|
|
*/
|
|
if (clock_mode != VDSO_CLOCKMODE_NONE)
|
|
update_vdso_time_data(vdata, tk);
|
|
|
|
__arch_update_vdso_clock(&vc[CS_HRES_COARSE]);
|
|
__arch_update_vdso_clock(&vc[CS_RAW]);
|
|
|
|
vdso_write_end(vdata);
|
|
|
|
__arch_sync_vdso_time_data(vdata);
|
|
}
|
|
|
|
void update_vsyscall_tz(void)
|
|
{
|
|
struct vdso_time_data *vdata = vdso_k_time_data;
|
|
|
|
vdata->tz_minuteswest = sys_tz.tz_minuteswest;
|
|
vdata->tz_dsttime = sys_tz.tz_dsttime;
|
|
|
|
__arch_sync_vdso_time_data(vdata);
|
|
}
|
|
|
|
#ifdef CONFIG_POSIX_AUX_CLOCKS
|
|
void vdso_time_update_aux(struct timekeeper *tk)
|
|
{
|
|
struct vdso_time_data *vdata = vdso_k_time_data;
|
|
struct vdso_timestamp *vdso_ts;
|
|
struct vdso_clock *vc;
|
|
s32 clock_mode;
|
|
u64 nsec;
|
|
|
|
vc = &vdata->aux_clock_data[tk->id - TIMEKEEPER_AUX_FIRST];
|
|
vdso_ts = &vc->basetime[VDSO_BASE_AUX];
|
|
clock_mode = tk->tkr_mono.clock->vdso_clock_mode;
|
|
if (!tk->clock_valid)
|
|
clock_mode = VDSO_CLOCKMODE_NONE;
|
|
|
|
/* copy vsyscall data */
|
|
vdso_write_begin_clock(vc);
|
|
|
|
vc->clock_mode = clock_mode;
|
|
|
|
if (clock_mode != VDSO_CLOCKMODE_NONE) {
|
|
fill_clock_configuration(vc, &tk->tkr_mono);
|
|
|
|
vdso_ts->sec = tk->xtime_sec;
|
|
|
|
nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
|
|
nsec += tk->offs_aux;
|
|
vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &nsec);
|
|
nsec = nsec << tk->tkr_mono.shift;
|
|
vdso_ts->nsec = nsec;
|
|
}
|
|
|
|
__arch_update_vdso_clock(vc);
|
|
|
|
vdso_write_end_clock(vc);
|
|
|
|
__arch_sync_vdso_time_data(vdata);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* vdso_update_begin - Start of a VDSO update section
|
|
*
|
|
* Allows architecture code to safely update the architecture specific VDSO
|
|
* data. Disables interrupts, acquires timekeeper lock to serialize against
|
|
* concurrent updates from timekeeping and invalidates the VDSO data
|
|
* sequence counter to prevent concurrent readers from accessing
|
|
* inconsistent data.
|
|
*
|
|
* Returns: Saved interrupt flags which need to be handed in to
|
|
* vdso_update_end().
|
|
*/
|
|
unsigned long vdso_update_begin(void)
|
|
{
|
|
struct vdso_time_data *vdata = vdso_k_time_data;
|
|
unsigned long flags = timekeeper_lock_irqsave();
|
|
|
|
vdso_write_begin(vdata);
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* vdso_update_end - End of a VDSO update section
|
|
* @flags: Interrupt flags as returned from vdso_update_begin()
|
|
*
|
|
* Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data
|
|
* synchronization if the architecture requires it, drops timekeeper lock
|
|
* and restores interrupt flags.
|
|
*/
|
|
void vdso_update_end(unsigned long flags)
|
|
{
|
|
struct vdso_time_data *vdata = vdso_k_time_data;
|
|
|
|
vdso_write_end(vdata);
|
|
__arch_sync_vdso_time_data(vdata);
|
|
timekeeper_unlock_irqrestore(flags);
|
|
}
|