mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-15 09:35:19 +00:00

-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCaINCiQAKCRCRxhvAZXjc
orltAQDq3y1anYETz5/FD6P2gXY1W5hXdSm3EHHeacQ1JjTXvgEA2g1lWO7J4anf
oOVE8aSvMow/FOjivLZBYmI65pkYJAE=
=oDKB
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.17-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull pidfs updates from Christian Brauner:
- persistent info
Persist exit and coredump information independent of whether anyone
currently holds a pidfd for the struct pid.
The current scheme allocated pidfs dentries on-demand repeatedly.
This scheme is reaching it's limits as it makes it impossible to pin
information that needs to be available after the task has exited or
coredumped and that should not be lost simply because the pidfd got
closed temporarily. The next opener should still see the stashed
information.
This is also a prerequisite for supporting extended attributes on
pidfds to allow attaching meta information to them.
If someone opens a pidfd for a struct pid a pidfs dentry is allocated
and stashed in pid->stashed. Once the last pidfd for the struct pid
is closed the pidfs dentry is released and removed from pid->stashed.
So if 10 callers create a pidfs dentry for the same struct pid
sequentially, i.e., each closing the pidfd before the other creates a
new one then a new pidfs dentry is allocated every time.
Because multiple tasks acquiring and releasing a pidfd for the same
struct pid can race with each another a task may still find a valid
pidfs entry from the previous task in pid->stashed and reuse it. Or
it might find a dead dentry in there and fail to reuse it and so
stashes a new pidfs dentry. Multiple tasks may race to stash a new
pidfs dentry but only one will succeed, the other ones will put their
dentry.
The current scheme aims to ensure that a pidfs dentry for a struct
pid can only be created if the task is still alive or if a pidfs
dentry already existed before the task was reaped and so exit
information has been was stashed in the pidfs inode.
That's great except that it's buggy. If a pidfs dentry is stashed in
pid->stashed after pidfs_exit() but before __unhash_process() is
called we will return a pidfd for a reaped task without exit
information being available.
The pidfds_pid_valid() check does not guard against this race as it
doens't sync at all with pidfs_exit(). The pid_has_task() check might
be successful simply because we're before __unhash_process() but
after pidfs_exit().
Introduce a new scheme where the lifetime of information associated
with a pidfs entry (coredump and exit information) isn't bound to the
lifetime of the pidfs inode but the struct pid itself.
The first time a pidfs dentry is allocated for a struct pid a struct
pidfs_attr will be allocated which will be used to store exit and
coredump information.
If all pidfs for the pidfs dentry are closed the dentry and inode can
be cleaned up but the struct pidfs_attr will stick until the struct
pid itself is freed. This will ensure minimal memory usage while
persisting relevant information.
The new scheme has various advantages. First, it allows to close the
race where we end up handing out a pidfd for a reaped task for which
no exit information is available. Second, it minimizes memory usage.
Third, it allows to remove complex lifetime tracking via dentries
when registering a struct pid with pidfs. There's no need to get or
put a reference. Instead, the lifetime of exit and coredump
information associated with a struct pid is bound to the lifetime of
struct pid itself.
- extended attributes
Now that we have a way to persist information for pidfs dentries we
can start supporting extended attributes on pidfds. This will allow
userspace to attach meta information to tasks.
One natural extension would be to introduce a custom pidfs.* extended
attribute space and allow for the inheritance of extended attributes
across fork() and exec().
The first simple scheme will allow privileged userspace to set
trusted extended attributes on pidfs inodes.
- Allow autonomous pidfs file handles
Various filesystems such as pidfs and drm support opening file
handles without having to require a file descriptor to identify the
filesystem. The filesystem are global single instances and can be
trivially identified solely on the information encoded in the file
handle.
This makes it possible to not have to keep or acquire a sentinal file
descriptor just to pass it to open_by_handle_at() to identify the
filesystem. That's especially useful when such sentinel file
descriptor cannot or should not be acquired.
For pidfs this means a file handle can function as full replacement
for storing a pid in a file. Instead a file handle can be stored and
reopened purely based on the file handle.
Such autonomous file handles can be opened with or without specifying
a a file descriptor. If no proper file descriptor is used the
FD_PIDFS_ROOT sentinel must be passed. This allows us to define
further special negative fd sentinels in the future.
Userspace can trivially test for support by trying to open the file
handle with an invalid file descriptor.
- Allow pidfds for reaped tasks with SCM_PIDFD messages
This is a logical continuation of the earlier work to create pidfds
for reaped tasks through the SO_PEERPIDFD socket option merged in
923ea4d448
("Merge patch series "net, pidfs: enable handing out
pidfds for reaped sk->sk_peer_pid"").
- Two minor fixes:
* Fold fs_struct->{lock,seq} into a seqlock
* Don't bother with path_{get,put}() in unix_open_file()
* tag 'vfs-6.17-rc1.pidfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (37 commits)
don't bother with path_get()/path_put() in unix_open_file()
fold fs_struct->{lock,seq} into a seqlock
selftests: net: extend SCM_PIDFD test to cover stale pidfds
af_unix: enable handing out pidfds for reaped tasks in SCM_PIDFD
af_unix: stash pidfs dentry when needed
af_unix/scm: fix whitespace errors
af_unix: introduce and use scm_replace_pid() helper
af_unix: introduce unix_skb_to_scm helper
af_unix: rework unix_maybe_add_creds() to allow sleep
selftests/pidfd: decode pidfd file handles withou having to specify an fd
fhandle, pidfs: support open_by_handle_at() purely based on file handle
uapi/fcntl: add FD_PIDFS_ROOT
uapi/fcntl: add FD_INVALID
fcntl/pidfd: redefine PIDFD_SELF_THREAD_GROUP
uapi/fcntl: mark range as reserved
fhandle: reflow get_path_anchor()
pidfs: add pidfs_root_path() helper
fhandle: rename to get_path_anchor()
fhandle: hoist copy_from_user() above get_path_from_fd()
fhandle: raise FILEID_IS_DIR in handle_type
...
1083 lines
28 KiB
C
1083 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/exportfs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/pidfs.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/pseudo_fs.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/seq_file.h>
|
|
#include <uapi/linux/pidfd.h>
|
|
#include <linux/ipc_namespace.h>
|
|
#include <linux/time_namespace.h>
|
|
#include <linux/utsname.h>
|
|
#include <net/net_namespace.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/xattr.h>
|
|
|
|
#include "internal.h"
|
|
#include "mount.h"
|
|
|
|
#define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
|
|
|
|
static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
|
|
static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
|
|
|
|
static struct path pidfs_root_path = {};
|
|
|
|
void pidfs_get_root(struct path *path)
|
|
{
|
|
*path = pidfs_root_path;
|
|
path_get(path);
|
|
}
|
|
|
|
/*
|
|
* Stashes information that userspace needs to access even after the
|
|
* process has been reaped.
|
|
*/
|
|
struct pidfs_exit_info {
|
|
__u64 cgroupid;
|
|
__s32 exit_code;
|
|
__u32 coredump_mask;
|
|
};
|
|
|
|
struct pidfs_attr {
|
|
struct simple_xattrs *xattrs;
|
|
struct pidfs_exit_info __pei;
|
|
struct pidfs_exit_info *exit_info;
|
|
};
|
|
|
|
static struct rb_root pidfs_ino_tree = RB_ROOT;
|
|
|
|
#if BITS_PER_LONG == 32
|
|
static inline unsigned long pidfs_ino(u64 ino)
|
|
{
|
|
return lower_32_bits(ino);
|
|
}
|
|
|
|
/* On 32 bit the generation number are the upper 32 bits. */
|
|
static inline u32 pidfs_gen(u64 ino)
|
|
{
|
|
return upper_32_bits(ino);
|
|
}
|
|
|
|
#else
|
|
|
|
/* On 64 bit simply return ino. */
|
|
static inline unsigned long pidfs_ino(u64 ino)
|
|
{
|
|
return ino;
|
|
}
|
|
|
|
/* On 64 bit the generation number is 0. */
|
|
static inline u32 pidfs_gen(u64 ino)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
|
|
{
|
|
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
|
|
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
|
|
u64 pid_ino_a = pid_a->ino;
|
|
u64 pid_ino_b = pid_b->ino;
|
|
|
|
if (pid_ino_a < pid_ino_b)
|
|
return -1;
|
|
if (pid_ino_a > pid_ino_b)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void pidfs_add_pid(struct pid *pid)
|
|
{
|
|
static u64 pidfs_ino_nr = 2;
|
|
|
|
/*
|
|
* On 64 bit nothing special happens. The 64bit number assigned
|
|
* to struct pid is the inode number.
|
|
*
|
|
* On 32 bit the 64 bit number assigned to struct pid is split
|
|
* into two 32 bit numbers. The lower 32 bits are used as the
|
|
* inode number and the upper 32 bits are used as the inode
|
|
* generation number.
|
|
*
|
|
* On 32 bit pidfs_ino() will return the lower 32 bit. When
|
|
* pidfs_ino() returns zero a wrap around happened. When a
|
|
* wraparound happens the 64 bit number will be incremented by 2
|
|
* so inode numbering starts at 2 again.
|
|
*
|
|
* On 64 bit comparing two pidfds is as simple as comparing
|
|
* inode numbers.
|
|
*
|
|
* When a wraparound happens on 32 bit multiple pidfds with the
|
|
* same inode number are likely to exist (This isn't a problem
|
|
* since before pidfs pidfds used the anonymous inode meaning
|
|
* all pidfds had the same inode number.). Userspace can
|
|
* reconstruct the 64 bit identifier by retrieving both the
|
|
* inode number and the inode generation number to compare or
|
|
* use file handles.
|
|
*/
|
|
if (pidfs_ino(pidfs_ino_nr) == 0)
|
|
pidfs_ino_nr += 2;
|
|
|
|
pid->ino = pidfs_ino_nr;
|
|
pid->stashed = NULL;
|
|
pid->attr = NULL;
|
|
pidfs_ino_nr++;
|
|
|
|
write_seqcount_begin(&pidmap_lock_seq);
|
|
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
|
|
write_seqcount_end(&pidmap_lock_seq);
|
|
}
|
|
|
|
void pidfs_remove_pid(struct pid *pid)
|
|
{
|
|
write_seqcount_begin(&pidmap_lock_seq);
|
|
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
|
|
write_seqcount_end(&pidmap_lock_seq);
|
|
}
|
|
|
|
void pidfs_free_pid(struct pid *pid)
|
|
{
|
|
struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
|
|
struct simple_xattrs *xattrs __free(kfree) = NULL;
|
|
|
|
/*
|
|
* Any dentry must've been wiped from the pid by now.
|
|
* Otherwise there's a reference count bug.
|
|
*/
|
|
VFS_WARN_ON_ONCE(pid->stashed);
|
|
|
|
/*
|
|
* This if an error occurred during e.g., task creation that
|
|
* causes us to never go through the exit path.
|
|
*/
|
|
if (unlikely(!attr))
|
|
return;
|
|
|
|
/* This never had a pidfd created. */
|
|
if (IS_ERR(attr))
|
|
return;
|
|
|
|
xattrs = no_free_ptr(attr->xattrs);
|
|
if (xattrs)
|
|
simple_xattrs_free(xattrs, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/**
|
|
* pidfd_show_fdinfo - print information about a pidfd
|
|
* @m: proc fdinfo file
|
|
* @f: file referencing a pidfd
|
|
*
|
|
* Pid:
|
|
* This function will print the pid that a given pidfd refers to in the
|
|
* pid namespace of the procfs instance.
|
|
* If the pid namespace of the process is not a descendant of the pid
|
|
* namespace of the procfs instance 0 will be shown as its pid. This is
|
|
* similar to calling getppid() on a process whose parent is outside of
|
|
* its pid namespace.
|
|
*
|
|
* NSpid:
|
|
* If pid namespaces are supported then this function will also print
|
|
* the pid of a given pidfd refers to for all descendant pid namespaces
|
|
* starting from the current pid namespace of the instance, i.e. the
|
|
* Pid field and the first entry in the NSpid field will be identical.
|
|
* If the pid namespace of the process is not a descendant of the pid
|
|
* namespace of the procfs instance 0 will be shown as its first NSpid
|
|
* entry and no others will be shown.
|
|
* Note that this differs from the Pid and NSpid fields in
|
|
* /proc/<pid>/status where Pid and NSpid are always shown relative to
|
|
* the pid namespace of the procfs instance. The difference becomes
|
|
* obvious when sending around a pidfd between pid namespaces from a
|
|
* different branch of the tree, i.e. where no ancestral relation is
|
|
* present between the pid namespaces:
|
|
* - create two new pid namespaces ns1 and ns2 in the initial pid
|
|
* namespace (also take care to create new mount namespaces in the
|
|
* new pid namespace and mount procfs)
|
|
* - create a process with a pidfd in ns1
|
|
* - send pidfd from ns1 to ns2
|
|
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
|
|
* have exactly one entry, which is 0
|
|
*/
|
|
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
|
|
{
|
|
struct pid *pid = pidfd_pid(f);
|
|
struct pid_namespace *ns;
|
|
pid_t nr = -1;
|
|
|
|
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
|
|
ns = proc_pid_ns(file_inode(m->file)->i_sb);
|
|
nr = pid_nr_ns(pid, ns);
|
|
}
|
|
|
|
seq_put_decimal_ll(m, "Pid:\t", nr);
|
|
|
|
#ifdef CONFIG_PID_NS
|
|
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
|
|
if (nr > 0) {
|
|
int i;
|
|
|
|
/* If nr is non-zero it means that 'pid' is valid and that
|
|
* ns, i.e. the pid namespace associated with the procfs
|
|
* instance, is in the pid namespace hierarchy of pid.
|
|
* Start at one below the already printed level.
|
|
*/
|
|
for (i = ns->level + 1; i <= pid->level; i++)
|
|
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
|
|
}
|
|
#endif
|
|
seq_putc(m, '\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Poll support for process exit notification.
|
|
*/
|
|
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
|
|
{
|
|
struct pid *pid = pidfd_pid(file);
|
|
struct task_struct *task;
|
|
__poll_t poll_flags = 0;
|
|
|
|
poll_wait(file, &pid->wait_pidfd, pts);
|
|
/*
|
|
* Don't wake waiters if the thread-group leader exited
|
|
* prematurely. They either get notified when the last subthread
|
|
* exits or not at all if one of the remaining subthreads execs
|
|
* and assumes the struct pid of the old thread-group leader.
|
|
*/
|
|
guard(rcu)();
|
|
task = pid_task(pid, PIDTYPE_PID);
|
|
if (!task)
|
|
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
|
|
else if (task->exit_state && !delay_group_leader(task))
|
|
poll_flags = EPOLLIN | EPOLLRDNORM;
|
|
|
|
return poll_flags;
|
|
}
|
|
|
|
static inline bool pid_in_current_pidns(const struct pid *pid)
|
|
{
|
|
const struct pid_namespace *ns = task_active_pid_ns(current);
|
|
|
|
if (ns->level <= pid->level)
|
|
return pid->numbers[ns->level].ns == ns;
|
|
|
|
return false;
|
|
}
|
|
|
|
static __u32 pidfs_coredump_mask(unsigned long mm_flags)
|
|
{
|
|
switch (__get_dumpable(mm_flags)) {
|
|
case SUID_DUMP_USER:
|
|
return PIDFD_COREDUMP_USER;
|
|
case SUID_DUMP_ROOT:
|
|
return PIDFD_COREDUMP_ROOT;
|
|
case SUID_DUMP_DISABLE:
|
|
return PIDFD_COREDUMP_SKIP;
|
|
default:
|
|
WARN_ON_ONCE(true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
|
|
struct pid *pid = pidfd_pid(file);
|
|
size_t usize = _IOC_SIZE(cmd);
|
|
struct pidfd_info kinfo = {};
|
|
struct pidfs_exit_info *exit_info;
|
|
struct user_namespace *user_ns;
|
|
struct task_struct *task;
|
|
struct pidfs_attr *attr;
|
|
const struct cred *c;
|
|
__u64 mask;
|
|
|
|
if (!uinfo)
|
|
return -EINVAL;
|
|
if (usize < PIDFD_INFO_SIZE_VER0)
|
|
return -EINVAL; /* First version, no smaller struct possible */
|
|
|
|
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Restrict information retrieval to tasks within the caller's pid
|
|
* namespace hierarchy.
|
|
*/
|
|
if (!pid_in_current_pidns(pid))
|
|
return -ESRCH;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
if (mask & PIDFD_INFO_EXIT) {
|
|
exit_info = READ_ONCE(attr->exit_info);
|
|
if (exit_info) {
|
|
kinfo.mask |= PIDFD_INFO_EXIT;
|
|
#ifdef CONFIG_CGROUPS
|
|
kinfo.cgroupid = exit_info->cgroupid;
|
|
kinfo.mask |= PIDFD_INFO_CGROUPID;
|
|
#endif
|
|
kinfo.exit_code = exit_info->exit_code;
|
|
}
|
|
}
|
|
|
|
if (mask & PIDFD_INFO_COREDUMP) {
|
|
kinfo.mask |= PIDFD_INFO_COREDUMP;
|
|
kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
|
|
}
|
|
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
if (!task) {
|
|
/*
|
|
* If the task has already been reaped, only exit
|
|
* information is available
|
|
*/
|
|
if (!(mask & PIDFD_INFO_EXIT))
|
|
return -ESRCH;
|
|
|
|
goto copy_out;
|
|
}
|
|
|
|
c = get_task_cred(task);
|
|
if (!c)
|
|
return -ESRCH;
|
|
|
|
if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
|
|
task_lock(task);
|
|
if (task->mm)
|
|
kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
|
|
task_unlock(task);
|
|
}
|
|
|
|
/* Unconditionally return identifiers and credentials, the rest only on request */
|
|
|
|
user_ns = current_user_ns();
|
|
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
|
|
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
|
|
kinfo.euid = from_kuid_munged(user_ns, c->euid);
|
|
kinfo.egid = from_kgid_munged(user_ns, c->egid);
|
|
kinfo.suid = from_kuid_munged(user_ns, c->suid);
|
|
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
|
|
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
|
|
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
|
|
kinfo.mask |= PIDFD_INFO_CREDS;
|
|
put_cred(c);
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
if (!kinfo.cgroupid) {
|
|
struct cgroup *cgrp;
|
|
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(task);
|
|
kinfo.cgroupid = cgroup_id(cgrp);
|
|
kinfo.mask |= PIDFD_INFO_CGROUPID;
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Copy pid/tgid last, to reduce the chances the information might be
|
|
* stale. Note that it is not possible to ensure it will be valid as the
|
|
* task might return as soon as the copy_to_user finishes, but that's ok
|
|
* and userspace expects that might happen and can act accordingly, so
|
|
* this is just best-effort. What we can do however is checking that all
|
|
* the fields are set correctly, or return ESRCH to avoid providing
|
|
* incomplete information. */
|
|
|
|
kinfo.ppid = task_ppid_nr_ns(task, NULL);
|
|
kinfo.tgid = task_tgid_vnr(task);
|
|
kinfo.pid = task_pid_vnr(task);
|
|
kinfo.mask |= PIDFD_INFO_PID;
|
|
|
|
if (kinfo.pid == 0 || kinfo.tgid == 0)
|
|
return -ESRCH;
|
|
|
|
copy_out:
|
|
/*
|
|
* If userspace and the kernel have the same struct size it can just
|
|
* be copied. If userspace provides an older struct, only the bits that
|
|
* userspace knows about will be copied. If userspace provides a new
|
|
* struct, only the bits that the kernel knows about will be copied.
|
|
*/
|
|
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
|
|
}
|
|
|
|
static bool pidfs_ioctl_valid(unsigned int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case FS_IOC_GETVERSION:
|
|
case PIDFD_GET_CGROUP_NAMESPACE:
|
|
case PIDFD_GET_IPC_NAMESPACE:
|
|
case PIDFD_GET_MNT_NAMESPACE:
|
|
case PIDFD_GET_NET_NAMESPACE:
|
|
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
|
|
case PIDFD_GET_TIME_NAMESPACE:
|
|
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
|
|
case PIDFD_GET_UTS_NAMESPACE:
|
|
case PIDFD_GET_USER_NAMESPACE:
|
|
case PIDFD_GET_PID_NAMESPACE:
|
|
return true;
|
|
}
|
|
|
|
/* Extensible ioctls require some more careful checks. */
|
|
switch (_IOC_NR(cmd)) {
|
|
case _IOC_NR(PIDFD_GET_INFO):
|
|
/*
|
|
* Try to prevent performing a pidfd ioctl when someone
|
|
* erronously mistook the file descriptor for a pidfd.
|
|
* This is not perfect but will catch most cases.
|
|
*/
|
|
return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct task_struct *task __free(put_task) = NULL;
|
|
struct nsproxy *nsp __free(put_nsproxy) = NULL;
|
|
struct ns_common *ns_common = NULL;
|
|
struct pid_namespace *pid_ns;
|
|
|
|
if (!pidfs_ioctl_valid(cmd))
|
|
return -ENOIOCTLCMD;
|
|
|
|
if (cmd == FS_IOC_GETVERSION) {
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
__u32 __user *argp = (__u32 __user *)arg;
|
|
return put_user(file_inode(file)->i_generation, argp);
|
|
}
|
|
|
|
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
|
|
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
|
|
return pidfd_info(file, cmd, arg);
|
|
|
|
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
|
|
if (!task)
|
|
return -ESRCH;
|
|
|
|
if (arg)
|
|
return -EINVAL;
|
|
|
|
scoped_guard(task_lock, task) {
|
|
nsp = task->nsproxy;
|
|
if (nsp)
|
|
get_nsproxy(nsp);
|
|
}
|
|
if (!nsp)
|
|
return -ESRCH; /* just pretend it didn't exist */
|
|
|
|
/*
|
|
* We're trying to open a file descriptor to the namespace so perform a
|
|
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
|
|
*/
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
|
|
return -EACCES;
|
|
|
|
switch (cmd) {
|
|
/* Namespaces that hang of nsproxy. */
|
|
case PIDFD_GET_CGROUP_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_CGROUPS)) {
|
|
get_cgroup_ns(nsp->cgroup_ns);
|
|
ns_common = to_ns_common(nsp->cgroup_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_IPC_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_IPC_NS)) {
|
|
get_ipc_ns(nsp->ipc_ns);
|
|
ns_common = to_ns_common(nsp->ipc_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_MNT_NAMESPACE:
|
|
get_mnt_ns(nsp->mnt_ns);
|
|
ns_common = to_ns_common(nsp->mnt_ns);
|
|
break;
|
|
case PIDFD_GET_NET_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_NET_NS)) {
|
|
ns_common = to_ns_common(nsp->net_ns);
|
|
get_net_ns(ns_common);
|
|
}
|
|
break;
|
|
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_PID_NS)) {
|
|
get_pid_ns(nsp->pid_ns_for_children);
|
|
ns_common = to_ns_common(nsp->pid_ns_for_children);
|
|
}
|
|
break;
|
|
case PIDFD_GET_TIME_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_TIME_NS)) {
|
|
get_time_ns(nsp->time_ns);
|
|
ns_common = to_ns_common(nsp->time_ns);
|
|
}
|
|
break;
|
|
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_TIME_NS)) {
|
|
get_time_ns(nsp->time_ns_for_children);
|
|
ns_common = to_ns_common(nsp->time_ns_for_children);
|
|
}
|
|
break;
|
|
case PIDFD_GET_UTS_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_UTS_NS)) {
|
|
get_uts_ns(nsp->uts_ns);
|
|
ns_common = to_ns_common(nsp->uts_ns);
|
|
}
|
|
break;
|
|
/* Namespaces that don't hang of nsproxy. */
|
|
case PIDFD_GET_USER_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_USER_NS)) {
|
|
rcu_read_lock();
|
|
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
|
|
rcu_read_unlock();
|
|
}
|
|
break;
|
|
case PIDFD_GET_PID_NAMESPACE:
|
|
if (IS_ENABLED(CONFIG_PID_NS)) {
|
|
rcu_read_lock();
|
|
pid_ns = task_active_pid_ns(task);
|
|
if (pid_ns)
|
|
ns_common = to_ns_common(get_pid_ns(pid_ns));
|
|
rcu_read_unlock();
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
if (!ns_common)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* open_namespace() unconditionally consumes the reference */
|
|
return open_namespace(ns_common);
|
|
}
|
|
|
|
static const struct file_operations pidfs_file_operations = {
|
|
.poll = pidfd_poll,
|
|
#ifdef CONFIG_PROC_FS
|
|
.show_fdinfo = pidfd_show_fdinfo,
|
|
#endif
|
|
.unlocked_ioctl = pidfd_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
};
|
|
|
|
struct pid *pidfd_pid(const struct file *file)
|
|
{
|
|
if (file->f_op != &pidfs_file_operations)
|
|
return ERR_PTR(-EBADF);
|
|
return file_inode(file)->i_private;
|
|
}
|
|
|
|
/*
|
|
* We're called from release_task(). We know there's at least one
|
|
* reference to struct pid being held that won't be released until the
|
|
* task has been reaped which cannot happen until we're out of
|
|
* release_task().
|
|
*
|
|
* If this struct pid has at least once been referred to by a pidfd then
|
|
* pid->attr will be allocated. If not we mark the struct pid as dead so
|
|
* anyone who is trying to register it with pidfs will fail to do so.
|
|
* Otherwise we would hand out pidfs for reaped tasks without having
|
|
* exit information available.
|
|
*
|
|
* Worst case is that we've filled in the info and the pid gets freed
|
|
* right away in free_pid() when no one holds a pidfd anymore. Since
|
|
* pidfs_exit() currently is placed after exit_task_work() we know that
|
|
* it cannot be us aka the exiting task holding a pidfd to itself.
|
|
*/
|
|
void pidfs_exit(struct task_struct *tsk)
|
|
{
|
|
struct pid *pid = task_pid(tsk);
|
|
struct pidfs_attr *attr;
|
|
struct pidfs_exit_info *exit_info;
|
|
#ifdef CONFIG_CGROUPS
|
|
struct cgroup *cgrp;
|
|
#endif
|
|
|
|
might_sleep();
|
|
|
|
guard(spinlock_irq)(&pid->wait_pidfd.lock);
|
|
attr = pid->attr;
|
|
if (!attr) {
|
|
/*
|
|
* No one ever held a pidfd for this struct pid.
|
|
* Mark it as dead so no one can add a pidfs
|
|
* entry anymore. We're about to be reaped and
|
|
* so no exit information would be available.
|
|
*/
|
|
pid->attr = PIDFS_PID_DEAD;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If @pid->attr is set someone might still legitimately hold a
|
|
* pidfd to @pid or someone might concurrently still be getting
|
|
* a reference to an already stashed dentry from @pid->stashed.
|
|
* So defer cleaning @pid->attr until the last reference to @pid
|
|
* is put
|
|
*/
|
|
|
|
exit_info = &attr->__pei;
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(tsk);
|
|
exit_info->cgroupid = cgroup_id(cgrp);
|
|
rcu_read_unlock();
|
|
#endif
|
|
exit_info->exit_code = tsk->exit_code;
|
|
|
|
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
|
|
smp_store_release(&attr->exit_info, &attr->__pei);
|
|
}
|
|
|
|
#ifdef CONFIG_COREDUMP
|
|
void pidfs_coredump(const struct coredump_params *cprm)
|
|
{
|
|
struct pid *pid = cprm->pid;
|
|
struct pidfs_exit_info *exit_info;
|
|
struct pidfs_attr *attr;
|
|
__u32 coredump_mask = 0;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
|
|
VFS_WARN_ON_ONCE(!attr);
|
|
VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
|
|
|
|
exit_info = &attr->__pei;
|
|
/* Note how we were coredumped. */
|
|
coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
|
|
/* Note that we actually did coredump. */
|
|
coredump_mask |= PIDFD_COREDUMPED;
|
|
/* If coredumping is set to skip we should never end up here. */
|
|
VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
|
|
smp_store_release(&exit_info->coredump_mask, coredump_mask);
|
|
}
|
|
#endif
|
|
|
|
static struct vfsmount *pidfs_mnt __ro_after_init;
|
|
|
|
/*
|
|
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
|
|
* implemented. Let's reject it completely until we have a clean
|
|
* permission concept for pidfds.
|
|
*/
|
|
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
|
|
struct iattr *attr)
|
|
{
|
|
return anon_inode_setattr(idmap, dentry, attr);
|
|
}
|
|
|
|
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
|
|
struct kstat *stat, u32 request_mask,
|
|
unsigned int query_flags)
|
|
{
|
|
return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
|
|
}
|
|
|
|
static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
struct simple_xattrs *xattrs;
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs)
|
|
return 0;
|
|
|
|
return simple_xattr_list(inode, xattrs, buf, size);
|
|
}
|
|
|
|
static const struct inode_operations pidfs_inode_operations = {
|
|
.getattr = pidfs_getattr,
|
|
.setattr = pidfs_setattr,
|
|
.listxattr = pidfs_listxattr,
|
|
};
|
|
|
|
static void pidfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
|
|
clear_inode(inode);
|
|
put_pid(pid);
|
|
}
|
|
|
|
static const struct super_operations pidfs_sops = {
|
|
.drop_inode = generic_delete_inode,
|
|
.evict_inode = pidfs_evict_inode,
|
|
.statfs = simple_statfs,
|
|
};
|
|
|
|
/*
|
|
* 'lsof' has knowledge of out historical anon_inode use, and expects
|
|
* the pidfs dentry name to start with 'anon_inode'.
|
|
*/
|
|
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
|
|
{
|
|
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
|
|
}
|
|
|
|
const struct dentry_operations pidfs_dentry_operations = {
|
|
.d_dname = pidfs_dname,
|
|
.d_prune = stashed_dentry_prune,
|
|
};
|
|
|
|
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
|
|
struct inode *parent)
|
|
{
|
|
const struct pid *pid = inode->i_private;
|
|
|
|
if (*max_len < 2) {
|
|
*max_len = 2;
|
|
return FILEID_INVALID;
|
|
}
|
|
|
|
*max_len = 2;
|
|
*(u64 *)fh = pid->ino;
|
|
return FILEID_KERNFS;
|
|
}
|
|
|
|
static int pidfs_ino_find(const void *key, const struct rb_node *node)
|
|
{
|
|
const u64 pid_ino = *(u64 *)key;
|
|
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
|
|
|
|
if (pid_ino < pid->ino)
|
|
return -1;
|
|
if (pid_ino > pid->ino)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Find a struct pid based on the inode number. */
|
|
static struct pid *pidfs_ino_get_pid(u64 ino)
|
|
{
|
|
struct pid *pid;
|
|
struct rb_node *node;
|
|
unsigned int seq;
|
|
|
|
guard(rcu)();
|
|
do {
|
|
seq = read_seqcount_begin(&pidmap_lock_seq);
|
|
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
|
|
if (node)
|
|
break;
|
|
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
pid = rb_entry(node, struct pid, pidfs_node);
|
|
|
|
/* Within our pid namespace hierarchy? */
|
|
if (pid_vnr(pid) == 0)
|
|
return NULL;
|
|
|
|
return get_pid(pid);
|
|
}
|
|
|
|
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
|
|
struct fid *fid, int fh_len,
|
|
int fh_type)
|
|
{
|
|
int ret;
|
|
u64 pid_ino;
|
|
struct path path;
|
|
struct pid *pid;
|
|
|
|
if (fh_len < 2)
|
|
return NULL;
|
|
|
|
switch (fh_type) {
|
|
case FILEID_KERNFS:
|
|
pid_ino = *(u64 *)fid;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
pid = pidfs_ino_get_pid(pid_ino);
|
|
if (!pid)
|
|
return NULL;
|
|
|
|
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
VFS_WARN_ON_ONCE(!pid->attr);
|
|
|
|
mntput(path.mnt);
|
|
return path.dentry;
|
|
}
|
|
|
|
/*
|
|
* Make sure that we reject any nonsensical flags that users pass via
|
|
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
|
|
* PIDFD_NONBLOCK as O_NONBLOCK.
|
|
*/
|
|
#define VALID_FILE_HANDLE_OPEN_FLAGS \
|
|
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
|
|
|
|
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
|
|
unsigned int oflags)
|
|
{
|
|
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* pidfd_ino_get_pid() will verify that the struct pid is part
|
|
* of the caller's pid namespace hierarchy. No further
|
|
* permission checks are needed.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
|
|
{
|
|
/*
|
|
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
|
|
* O_RDWR as pidfds always are.
|
|
*/
|
|
oflags &= ~O_LARGEFILE;
|
|
return dentry_open(path, oflags | O_RDWR, current_cred());
|
|
}
|
|
|
|
static const struct export_operations pidfs_export_operations = {
|
|
.encode_fh = pidfs_encode_fh,
|
|
.fh_to_dentry = pidfs_fh_to_dentry,
|
|
.open = pidfs_export_open,
|
|
.permission = pidfs_export_permission,
|
|
};
|
|
|
|
static int pidfs_init_inode(struct inode *inode, void *data)
|
|
{
|
|
const struct pid *pid = data;
|
|
|
|
inode->i_private = data;
|
|
inode->i_flags |= S_PRIVATE | S_ANON_INODE;
|
|
/* We allow to set xattrs. */
|
|
inode->i_flags &= ~S_IMMUTABLE;
|
|
inode->i_mode |= S_IRWXU;
|
|
inode->i_op = &pidfs_inode_operations;
|
|
inode->i_fop = &pidfs_file_operations;
|
|
inode->i_ino = pidfs_ino(pid->ino);
|
|
inode->i_generation = pidfs_gen(pid->ino);
|
|
return 0;
|
|
}
|
|
|
|
static void pidfs_put_data(void *data)
|
|
{
|
|
struct pid *pid = data;
|
|
put_pid(pid);
|
|
}
|
|
|
|
/**
|
|
* pidfs_register_pid - register a struct pid in pidfs
|
|
* @pid: pid to pin
|
|
*
|
|
* Register a struct pid in pidfs.
|
|
*
|
|
* Return: On success zero, on error a negative error code is returned.
|
|
*/
|
|
int pidfs_register_pid(struct pid *pid)
|
|
{
|
|
struct pidfs_attr *new_attr __free(kfree) = NULL;
|
|
struct pidfs_attr *attr;
|
|
|
|
might_sleep();
|
|
|
|
if (!pid)
|
|
return 0;
|
|
|
|
attr = READ_ONCE(pid->attr);
|
|
if (unlikely(attr == PIDFS_PID_DEAD))
|
|
return PTR_ERR(PIDFS_PID_DEAD);
|
|
if (attr)
|
|
return 0;
|
|
|
|
new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
|
|
if (!new_attr)
|
|
return -ENOMEM;
|
|
|
|
/* Synchronize with pidfs_exit(). */
|
|
guard(spinlock_irq)(&pid->wait_pidfd.lock);
|
|
|
|
attr = pid->attr;
|
|
if (unlikely(attr == PIDFS_PID_DEAD))
|
|
return PTR_ERR(PIDFS_PID_DEAD);
|
|
if (unlikely(attr))
|
|
return 0;
|
|
|
|
pid->attr = no_free_ptr(new_attr);
|
|
return 0;
|
|
}
|
|
|
|
static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
|
|
struct dentry *dentry)
|
|
{
|
|
int ret;
|
|
struct pid *pid = d_inode(dentry)->i_private;
|
|
|
|
VFS_WARN_ON_ONCE(stashed != &pid->stashed);
|
|
|
|
ret = pidfs_register_pid(pid);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return stash_dentry(stashed, dentry);
|
|
}
|
|
|
|
static const struct stashed_operations pidfs_stashed_ops = {
|
|
.stash_dentry = pidfs_stash_dentry,
|
|
.init_inode = pidfs_init_inode,
|
|
.put_data = pidfs_put_data,
|
|
};
|
|
|
|
static int pidfs_xattr_get(const struct xattr_handler *handler,
|
|
struct dentry *unused, struct inode *inode,
|
|
const char *suffix, void *value, size_t size)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
const char *name;
|
|
struct simple_xattrs *xattrs;
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs)
|
|
return 0;
|
|
|
|
name = xattr_full_name(handler, suffix);
|
|
return simple_xattr_get(xattrs, name, value, size);
|
|
}
|
|
|
|
static int pidfs_xattr_set(const struct xattr_handler *handler,
|
|
struct mnt_idmap *idmap, struct dentry *unused,
|
|
struct inode *inode, const char *suffix,
|
|
const void *value, size_t size, int flags)
|
|
{
|
|
struct pid *pid = inode->i_private;
|
|
struct pidfs_attr *attr = pid->attr;
|
|
const char *name;
|
|
struct simple_xattrs *xattrs;
|
|
struct simple_xattr *old_xattr;
|
|
|
|
/* Ensure we're the only one to set @attr->xattrs. */
|
|
WARN_ON_ONCE(!inode_is_locked(inode));
|
|
|
|
xattrs = READ_ONCE(attr->xattrs);
|
|
if (!xattrs) {
|
|
xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
|
|
if (!xattrs)
|
|
return -ENOMEM;
|
|
|
|
simple_xattrs_init(xattrs);
|
|
smp_store_release(&pid->attr->xattrs, xattrs);
|
|
}
|
|
|
|
name = xattr_full_name(handler, suffix);
|
|
old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
|
|
if (IS_ERR(old_xattr))
|
|
return PTR_ERR(old_xattr);
|
|
|
|
simple_xattr_free(old_xattr);
|
|
return 0;
|
|
}
|
|
|
|
static const struct xattr_handler pidfs_trusted_xattr_handler = {
|
|
.prefix = XATTR_TRUSTED_PREFIX,
|
|
.get = pidfs_xattr_get,
|
|
.set = pidfs_xattr_set,
|
|
};
|
|
|
|
static const struct xattr_handler *const pidfs_xattr_handlers[] = {
|
|
&pidfs_trusted_xattr_handler,
|
|
NULL
|
|
};
|
|
|
|
static int pidfs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct pseudo_fs_context *ctx;
|
|
|
|
ctx = init_pseudo(fc, PID_FS_MAGIC);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
fc->s_iflags |= SB_I_NOEXEC;
|
|
fc->s_iflags |= SB_I_NODEV;
|
|
ctx->ops = &pidfs_sops;
|
|
ctx->eops = &pidfs_export_operations;
|
|
ctx->dops = &pidfs_dentry_operations;
|
|
ctx->xattr = pidfs_xattr_handlers;
|
|
fc->s_fs_info = (void *)&pidfs_stashed_ops;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type pidfs_type = {
|
|
.name = "pidfs",
|
|
.init_fs_context = pidfs_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
|
|
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
|
|
{
|
|
struct file *pidfd_file;
|
|
struct path path __free(path_put) = {};
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure that PIDFD_STALE can be passed as a flag without
|
|
* overloading other uapi pidfd flags.
|
|
*/
|
|
BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
|
|
BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
|
|
|
|
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
VFS_WARN_ON_ONCE(!pid->attr);
|
|
|
|
flags &= ~PIDFD_STALE;
|
|
flags |= O_RDWR;
|
|
pidfd_file = dentry_open(&path, flags, current_cred());
|
|
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
|
|
if (!IS_ERR(pidfd_file))
|
|
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
|
|
|
|
return pidfd_file;
|
|
}
|
|
|
|
void __init pidfs_init(void)
|
|
{
|
|
pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
|
|
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_ACCOUNT | SLAB_PANIC), NULL);
|
|
|
|
pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
|
|
sizeof(struct simple_xattrs), 0,
|
|
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
|
|
SLAB_ACCOUNT | SLAB_PANIC), NULL);
|
|
|
|
pidfs_mnt = kern_mount(&pidfs_type);
|
|
if (IS_ERR(pidfs_mnt))
|
|
panic("Failed to mount pidfs pseudo filesystem");
|
|
|
|
pidfs_root_path.mnt = pidfs_mnt;
|
|
pidfs_root_path.dentry = pidfs_mnt->mnt_root;
|
|
}
|