linux/fs/hugetlbfs/inode.c
Linus Torvalds beace86e61 Summary of significant series in this pull request:
- The 4 patch series "mm: ksm: prevent KSM from breaking merging of new
   VMAs" from Lorenzo Stoakes addresses an issue with KSM's
   PR_SET_MEMORY_MERGE mode: newly mapped VMAs were not eligible for
   merging with existing adjacent VMAs.
 
 - The 4 patch series "mm/damon: introduce DAMON_STAT for simple and
   practical access monitoring" from SeongJae Park adds a new kernel module
   which simplifies the setup and usage of DAMON in production
   environments.
 
 - The 6 patch series "stop passing a writeback_control to swap/shmem
   writeout" from Christoph Hellwig is a cleanup to the writeback code
   which removes a couple of pointers from struct writeback_control.
 
 - The 7 patch series "drivers/base/node.c: optimization and cleanups"
   from Donet Tom contains largely uncorrelated cleanups to the NUMA node
   setup and management code.
 
 - The 4 patch series "mm: userfaultfd: assorted fixes and cleanups" from
   Tal Zussman does some maintenance work on the userfaultfd code.
 
 - The 5 patch series "Readahead tweaks for larger folios" from Ryan
   Roberts implements some tuneups for pagecache readahead when it is
   reading into order>0 folios.
 
 - The 4 patch series "selftests/mm: Tweaks to the cow test" from Mark
   Brown provides some cleanups and consistency improvements to the
   selftests code.
 
 - The 4 patch series "Optimize mremap() for large folios" from Dev Jain
   does that.  A 37% reduction in execution time was measured in a
   memset+mremap+munmap microbenchmark.
 
 - The 5 patch series "Remove zero_user()" from Matthew Wilcox expunges
   zero_user() in favor of the more modern memzero_page().
 
 - The 3 patch series "mm/huge_memory: vmf_insert_folio_*() and
   vmf_insert_pfn_pud() fixes" from David Hildenbrand addresses some warts
   which David noticed in the huge page code.  These were not known to be
   causing any issues at this time.
 
 - The 3 patch series "mm/damon: use alloc_migrate_target() for
   DAMOS_MIGRATE_{HOT,COLD" from SeongJae Park provides some cleanup and
   consolidation work in DAMON.
 
 - The 3 patch series "use vm_flags_t consistently" from Lorenzo Stoakes
   uses vm_flags_t in places where we were inappropriately using other
   types.
 
 - The 3 patch series "mm/memfd: Reserve hugetlb folios before
   allocation" from Vivek Kasireddy increases the reliability of large page
   allocation in the memfd code.
 
 - The 14 patch series "mm: Remove pXX_devmap page table bit and pfn_t
   type" from Alistair Popple removes several now-unneeded PFN_* flags.
 
 - The 5 patch series "mm/damon: decouple sysfs from core" from SeongJae
   Park implememnts some cleanup and maintainability work in the DAMON
   sysfs layer.
 
 - The 5 patch series "madvise cleanup" from Lorenzo Stoakes does quite a
   lot of cleanup/maintenance work in the madvise() code.
 
 - The 4 patch series "madvise anon_name cleanups" from Vlastimil Babka
   provides additional cleanups on top or Lorenzo's effort.
 
 - The 11 patch series "Implement numa node notifier" from Oscar Salvador
   creates a standalone notifier for NUMA node memory state changes.
   Previously these were lumped under the more general memory on/offline
   notifier.
 
 - The 6 patch series "Make MIGRATE_ISOLATE a standalone bit" from Zi Yan
   cleans up the pageblock isolation code and fixes a potential issue which
   doesn't seem to cause any problems in practice.
 
 - The 5 patch series "selftests/damon: add python and drgn based DAMON
   sysfs functionality tests" from SeongJae Park adds additional drgn- and
   python-based DAMON selftests which are more comprehensive than the
   existing selftest suite.
 
 - The 5 patch series "Misc rework on hugetlb faulting path" from Oscar
   Salvador fixes a rather obscure deadlock in the hugetlb fault code and
   follows that fix with a series of cleanups.
 
 - The 3 patch series "cma: factor out allocation logic from
   __cma_declare_contiguous_nid" from Mike Rapoport rationalizes and cleans
   up the highmem-specific code in the CMA allocator.
 
 - The 28 patch series "mm/migration: rework movable_ops page migration
   (part 1)" from David Hildenbrand provides cleanups and
   future-preparedness to the migration code.
 
 - The 2 patch series "mm/damon: add trace events for auto-tuned
   monitoring intervals and DAMOS quota" from SeongJae Park adds some
   tracepoints to some DAMON auto-tuning code.
 
 - The 6 patch series "mm/damon: fix misc bugs in DAMON modules" from
   SeongJae Park does that.
 
 - The 6 patch series "mm/damon: misc cleanups" from SeongJae Park also
   does what it claims.
 
 - The 4 patch series "mm: folio_pte_batch() improvements" from David
   Hildenbrand cleans up the large folio PTE batching code.
 
 - The 13 patch series "mm/damon/vaddr: Allow interleaving in
   migrate_{hot,cold} actions" from SeongJae Park facilitates dynamic
   alteration of DAMON's inter-node allocation policy.
 
 - The 3 patch series "Remove unmap_and_put_page()" from Vishal Moola
   provides a couple of page->folio conversions.
 
 - The 4 patch series "mm: per-node proactive reclaim" from Davidlohr
   Bueso implements a per-node control of proactive reclaim - beyond the
   current memcg-based implementation.
 
 - The 14 patch series "mm/damon: remove damon_callback" from SeongJae
   Park replaces the damon_callback interface with a more general and
   powerful damon_call()+damos_walk() interface.
 
 - The 10 patch series "mm/mremap: permit mremap() move of multiple VMAs"
   from Lorenzo Stoakes implements a number of mremap cleanups (of course)
   in preparation for adding new mremap() functionality: newly permit the
   remapping of multiple VMAs when the user is specifying MREMAP_FIXED.  It
   still excludes some specialized situations where this cannot be
   performed reliably.
 
 - The 3 patch series "drop hugetlb_free_pgd_range()" from Anthony Yznaga
   switches some sparc hugetlb code over to the generic version and removes
   the thus-unneeded hugetlb_free_pgd_range().
 
 - The 4 patch series "mm/damon/sysfs: support periodic and automated
   stats update" from SeongJae Park augments the present
   userspace-requested update of DAMON sysfs monitoring files.  Automatic
   update is now provided, along with a tunable to control the update
   interval.
 
 - The 4 patch series "Some randome fixes and cleanups to swapfile" from
   Kemeng Shi does what is claims.
 
 - The 4 patch series "mm: introduce snapshot_page" from Luiz Capitulino
   and David Hildenbrand provides (and uses) a means by which debug-style
   functions can grab a copy of a pageframe and inspect it locklessly
   without tripping over the races inherent in operating on the live
   pageframe directly.
 
 - The 6 patch series "use per-vma locks for /proc/pid/maps reads" from
   Suren Baghdasaryan addresses the large contention issues which can be
   triggered by reads from that procfs file.  Latencies are reduced by more
   than half in some situations.  The series also introduces several new
   selftests for the /proc/pid/maps interface.
 
 - The 6 patch series "__folio_split() clean up" from Zi Yan cleans up
   __folio_split()!
 
 - The 7 patch series "Optimize mprotect() for large folios" from Dev
   Jain provides some quite large (>3x) speedups to mprotect() when dealing
   with large folios.
 
 - The 2 patch series "selftests/mm: reuse FORCE_READ to replace "asm
   volatile("" : "+r" (XXX));" and some cleanup" from wang lian does some
   cleanup work in the selftests code.
 
 - The 3 patch series "tools/testing: expand mremap testing" from Lorenzo
   Stoakes extends the mremap() selftest in several ways, including adding
   more checking of Lorenzo's recently added "permit mremap() move of
   multiple VMAs" feature.
 
 - The 22 patch series "selftests/damon/sysfs.py: test all parameters"
   from SeongJae Park extends the DAMON sysfs interface selftest so that it
   tests all possible user-requested parameters.  Rather than the present
   minimal subset.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaIqcCgAKCRDdBJ7gKXxA
 jkVBAQCCn9DR1QP0CRk961ot0cKzOgioSc0aA03DPb2KXRt2kQEAzDAz0ARurFhL
 8BzbvI0c+4tntHLXvIlrC33n9KWAOQM=
 =XsFy
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2025-07-30-15-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "As usual, many cleanups. The below blurbiage describes 42 patchsets.
  21 of those are partially or fully cleanup work. "cleans up",
  "cleanup", "maintainability", "rationalizes", etc.

  I never knew the MM code was so dirty.

  "mm: ksm: prevent KSM from breaking merging of new VMAs" (Lorenzo Stoakes)
     addresses an issue with KSM's PR_SET_MEMORY_MERGE mode: newly
     mapped VMAs were not eligible for merging with existing adjacent
     VMAs.

  "mm/damon: introduce DAMON_STAT for simple and practical access monitoring" (SeongJae Park)
     adds a new kernel module which simplifies the setup and usage of
     DAMON in production environments.

  "stop passing a writeback_control to swap/shmem writeout" (Christoph Hellwig)
     is a cleanup to the writeback code which removes a couple of
     pointers from struct writeback_control.

  "drivers/base/node.c: optimization and cleanups" (Donet Tom)
     contains largely uncorrelated cleanups to the NUMA node setup and
     management code.

  "mm: userfaultfd: assorted fixes and cleanups" (Tal Zussman)
     does some maintenance work on the userfaultfd code.

  "Readahead tweaks for larger folios" (Ryan Roberts)
     implements some tuneups for pagecache readahead when it is reading
     into order>0 folios.

  "selftests/mm: Tweaks to the cow test" (Mark Brown)
     provides some cleanups and consistency improvements to the
     selftests code.

  "Optimize mremap() for large folios" (Dev Jain)
     does that. A 37% reduction in execution time was measured in a
     memset+mremap+munmap microbenchmark.

  "Remove zero_user()" (Matthew Wilcox)
     expunges zero_user() in favor of the more modern memzero_page().

  "mm/huge_memory: vmf_insert_folio_*() and vmf_insert_pfn_pud() fixes" (David Hildenbrand)
     addresses some warts which David noticed in the huge page code.
     These were not known to be causing any issues at this time.

  "mm/damon: use alloc_migrate_target() for DAMOS_MIGRATE_{HOT,COLD" (SeongJae Park)
     provides some cleanup and consolidation work in DAMON.

  "use vm_flags_t consistently" (Lorenzo Stoakes)
     uses vm_flags_t in places where we were inappropriately using other
     types.

  "mm/memfd: Reserve hugetlb folios before allocation" (Vivek Kasireddy)
     increases the reliability of large page allocation in the memfd
     code.

  "mm: Remove pXX_devmap page table bit and pfn_t type" (Alistair Popple)
     removes several now-unneeded PFN_* flags.

  "mm/damon: decouple sysfs from core" (SeongJae Park)
     implememnts some cleanup and maintainability work in the DAMON
     sysfs layer.

  "madvise cleanup" (Lorenzo Stoakes)
     does quite a lot of cleanup/maintenance work in the madvise() code.

  "madvise anon_name cleanups" (Vlastimil Babka)
     provides additional cleanups on top or Lorenzo's effort.

  "Implement numa node notifier" (Oscar Salvador)
     creates a standalone notifier for NUMA node memory state changes.
     Previously these were lumped under the more general memory
     on/offline notifier.

  "Make MIGRATE_ISOLATE a standalone bit" (Zi Yan)
     cleans up the pageblock isolation code and fixes a potential issue
     which doesn't seem to cause any problems in practice.

  "selftests/damon: add python and drgn based DAMON sysfs functionality tests" (SeongJae Park)
     adds additional drgn- and python-based DAMON selftests which are
     more comprehensive than the existing selftest suite.

  "Misc rework on hugetlb faulting path" (Oscar Salvador)
     fixes a rather obscure deadlock in the hugetlb fault code and
     follows that fix with a series of cleanups.

  "cma: factor out allocation logic from __cma_declare_contiguous_nid" (Mike Rapoport)
     rationalizes and cleans up the highmem-specific code in the CMA
     allocator.

  "mm/migration: rework movable_ops page migration (part 1)" (David Hildenbrand)
     provides cleanups and future-preparedness to the migration code.

  "mm/damon: add trace events for auto-tuned monitoring intervals and DAMOS quota" (SeongJae Park)
     adds some tracepoints to some DAMON auto-tuning code.

  "mm/damon: fix misc bugs in DAMON modules" (SeongJae Park)
     does that.

  "mm/damon: misc cleanups" (SeongJae Park)
     also does what it claims.

  "mm: folio_pte_batch() improvements" (David Hildenbrand)
     cleans up the large folio PTE batching code.

  "mm/damon/vaddr: Allow interleaving in migrate_{hot,cold} actions" (SeongJae Park)
     facilitates dynamic alteration of DAMON's inter-node allocation
     policy.

  "Remove unmap_and_put_page()" (Vishal Moola)
     provides a couple of page->folio conversions.

  "mm: per-node proactive reclaim" (Davidlohr Bueso)
     implements a per-node control of proactive reclaim - beyond the
     current memcg-based implementation.

  "mm/damon: remove damon_callback" (SeongJae Park)
     replaces the damon_callback interface with a more general and
     powerful damon_call()+damos_walk() interface.

  "mm/mremap: permit mremap() move of multiple VMAs" (Lorenzo Stoakes)
     implements a number of mremap cleanups (of course) in preparation
     for adding new mremap() functionality: newly permit the remapping
     of multiple VMAs when the user is specifying MREMAP_FIXED. It still
     excludes some specialized situations where this cannot be performed
     reliably.

  "drop hugetlb_free_pgd_range()" (Anthony Yznaga)
     switches some sparc hugetlb code over to the generic version and
     removes the thus-unneeded hugetlb_free_pgd_range().

  "mm/damon/sysfs: support periodic and automated stats update" (SeongJae Park)
     augments the present userspace-requested update of DAMON sysfs
     monitoring files. Automatic update is now provided, along with a
     tunable to control the update interval.

  "Some randome fixes and cleanups to swapfile" (Kemeng Shi)
     does what is claims.

  "mm: introduce snapshot_page" (Luiz Capitulino and David Hildenbrand)
     provides (and uses) a means by which debug-style functions can grab
     a copy of a pageframe and inspect it locklessly without tripping
     over the races inherent in operating on the live pageframe
     directly.

  "use per-vma locks for /proc/pid/maps reads" (Suren Baghdasaryan)
     addresses the large contention issues which can be triggered by
     reads from that procfs file. Latencies are reduced by more than
     half in some situations. The series also introduces several new
     selftests for the /proc/pid/maps interface.

  "__folio_split() clean up" (Zi Yan)
     cleans up __folio_split()!

  "Optimize mprotect() for large folios" (Dev Jain)
     provides some quite large (>3x) speedups to mprotect() when dealing
     with large folios.

  "selftests/mm: reuse FORCE_READ to replace "asm volatile("" : "+r" (XXX));" and some cleanup" (wang lian)
     does some cleanup work in the selftests code.

  "tools/testing: expand mremap testing" (Lorenzo Stoakes)
     extends the mremap() selftest in several ways, including adding
     more checking of Lorenzo's recently added "permit mremap() move of
     multiple VMAs" feature.

  "selftests/damon/sysfs.py: test all parameters" (SeongJae Park)
     extends the DAMON sysfs interface selftest so that it tests all
     possible user-requested parameters. Rather than the present minimal
     subset"

* tag 'mm-stable-2025-07-30-15-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (370 commits)
  MAINTAINERS: add missing headers to mempory policy & migration section
  MAINTAINERS: add missing file to cgroup section
  MAINTAINERS: add MM MISC section, add missing files to MISC and CORE
  MAINTAINERS: add missing zsmalloc file
  MAINTAINERS: add missing files to page alloc section
  MAINTAINERS: add missing shrinker files
  MAINTAINERS: move memremap.[ch] to hotplug section
  MAINTAINERS: add missing mm_slot.h file THP section
  MAINTAINERS: add missing interval_tree.c to memory mapping section
  MAINTAINERS: add missing percpu-internal.h file to per-cpu section
  mm/page_alloc: remove trace_mm_alloc_contig_migrate_range_info()
  selftests/damon: introduce _common.sh to host shared function
  selftests/damon/sysfs.py: test runtime reduction of DAMON parameters
  selftests/damon/sysfs.py: test non-default parameters runtime commit
  selftests/damon/sysfs.py: generalize DAMON context commit assertion
  selftests/damon/sysfs.py: generalize monitoring attributes commit assertion
  selftests/damon/sysfs.py: generalize DAMOS schemes commit assertion
  selftests/damon/sysfs.py: test DAMOS filters commitment
  selftests/damon/sysfs.py: generalize DAMOS scheme commit assertion
  selftests/damon/sysfs.py: test DAMOS destinations commitment
  ...
2025-07-31 14:57:54 -07:00

1654 lines
43 KiB
C

/*
* hugetlbpage-backed filesystem. Based on ramfs.
*
* Nadia Yvette Chambers, 2002
*
* Copyright (C) 2002 Linus Torvalds.
* License: GPL
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/thread_info.h>
#include <asm/current.h>
#include <linux/falloc.h>
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/writeback.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/capability.h>
#include <linux/ctype.h>
#include <linux/backing-dev.h>
#include <linux/hugetlb.h>
#include <linux/pagevec.h>
#include <linux/fs_parser.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/dnotify.h>
#include <linux/statfs.h>
#include <linux/security.h>
#include <linux/magic.h>
#include <linux/migrate.h>
#include <linux/uio.h>
#include <linux/uaccess.h>
#include <linux/sched/mm.h>
#define CREATE_TRACE_POINTS
#include <trace/events/hugetlbfs.h>
static const struct address_space_operations hugetlbfs_aops;
static const struct file_operations hugetlbfs_file_operations;
static const struct inode_operations hugetlbfs_dir_inode_operations;
static const struct inode_operations hugetlbfs_inode_operations;
enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
struct hugetlbfs_fs_context {
struct hstate *hstate;
unsigned long long max_size_opt;
unsigned long long min_size_opt;
long max_hpages;
long nr_inodes;
long min_hpages;
enum hugetlbfs_size_type max_val_type;
enum hugetlbfs_size_type min_val_type;
kuid_t uid;
kgid_t gid;
umode_t mode;
};
int sysctl_hugetlb_shm_group;
enum hugetlb_param {
Opt_gid,
Opt_min_size,
Opt_mode,
Opt_nr_inodes,
Opt_pagesize,
Opt_size,
Opt_uid,
};
static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
fsparam_gid ("gid", Opt_gid),
fsparam_string("min_size", Opt_min_size),
fsparam_u32oct("mode", Opt_mode),
fsparam_string("nr_inodes", Opt_nr_inodes),
fsparam_string("pagesize", Opt_pagesize),
fsparam_string("size", Opt_size),
fsparam_uid ("uid", Opt_uid),
{}
};
/*
* Mask used when checking the page offset value passed in via system
* calls. This value will be converted to a loff_t which is signed.
* Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
* value. The extra bit (- 1 in the shift value) is to take the sign
* bit into account.
*/
#define PGOFF_LOFFT_MAX \
(((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
loff_t len, vma_len;
int ret;
struct hstate *h = hstate_file(file);
vm_flags_t vm_flags;
/*
* vma address alignment (but not the pgoff alignment) has
* already been checked by prepare_hugepage_range. If you add
* any error returns here, do so after setting VM_HUGETLB, so
* is_vm_hugetlb_page tests below unmap_region go the right
* way when do_mmap unwinds (may be important on powerpc
* and ia64).
*/
vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
vma->vm_ops = &hugetlb_vm_ops;
/*
* page based offset in vm_pgoff could be sufficiently large to
* overflow a loff_t when converted to byte offset. This can
* only happen on architectures where sizeof(loff_t) ==
* sizeof(unsigned long). So, only check in those instances.
*/
if (sizeof(unsigned long) == sizeof(loff_t)) {
if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
return -EINVAL;
}
/* must be huge page aligned */
if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
return -EINVAL;
vma_len = (loff_t)(vma->vm_end - vma->vm_start);
len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
/* check for overflow */
if (len < vma_len)
return -EINVAL;
inode_lock(inode);
file_accessed(file);
ret = -ENOMEM;
vm_flags = vma->vm_flags;
/*
* for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
* reserving here. Note: only for SHM hugetlbfs file, the inode
* flag S_PRIVATE is set.
*/
if (inode->i_flags & S_PRIVATE)
vm_flags |= VM_NORESERVE;
if (hugetlb_reserve_pages(inode,
vma->vm_pgoff >> huge_page_order(h),
len >> huge_page_shift(h), vma,
vm_flags) < 0)
goto out;
ret = 0;
if (vma->vm_flags & VM_WRITE && inode->i_size < len)
i_size_write(inode, len);
out:
inode_unlock(inode);
return ret;
}
/*
* Called under mmap_write_lock(mm).
*/
unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
unsigned long addr0 = 0;
struct hstate *h = hstate_file(file);
if (len & ~huge_page_mask(h))
return -EINVAL;
if ((flags & MAP_FIXED) && (addr & ~huge_page_mask(h)))
return -EINVAL;
if (addr)
addr0 = ALIGN(addr, huge_page_size(h));
return mm_get_unmapped_area_vmflags(current->mm, file, addr0, len, pgoff,
flags, 0);
}
/*
* Someone wants to read @bytes from a HWPOISON hugetlb @folio from @offset.
* Returns the maximum number of bytes one can read without touching the 1st raw
* HWPOISON page.
*
* The implementation borrows the iteration logic from copy_page_to_iter*.
*/
static size_t adjust_range_hwpoison(struct folio *folio, size_t offset,
size_t bytes)
{
struct page *page;
size_t n = 0;
size_t res = 0;
/* First page to start the loop. */
page = folio_page(folio, offset / PAGE_SIZE);
offset %= PAGE_SIZE;
while (1) {
if (is_raw_hwpoison_page_in_hugepage(page))
break;
/* Safe to read n bytes without touching HWPOISON subpage. */
n = min(bytes, (size_t)PAGE_SIZE - offset);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page = nth_page(page, 1);
offset = 0;
}
}
return res;
}
/*
* Support for read() - Find the page attached to f_mapping and copy out the
* data. This provides functionality similar to filemap_read().
*/
static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct hstate *h = hstate_file(file);
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
unsigned long index = iocb->ki_pos >> huge_page_shift(h);
unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
unsigned long end_index;
loff_t isize;
ssize_t retval = 0;
while (iov_iter_count(to)) {
struct folio *folio;
size_t nr, copied, want;
/* nr is the maximum number of bytes to copy from this page */
nr = huge_page_size(h);
isize = i_size_read(inode);
if (!isize)
break;
end_index = (isize - 1) >> huge_page_shift(h);
if (index > end_index)
break;
if (index == end_index) {
nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
if (nr <= offset)
break;
}
nr = nr - offset;
/* Find the folio */
folio = filemap_lock_hugetlb_folio(h, mapping, index);
if (IS_ERR(folio)) {
/*
* We have a HOLE, zero out the user-buffer for the
* length of the hole or request.
*/
copied = iov_iter_zero(nr, to);
} else {
folio_unlock(folio);
if (!folio_test_hwpoison(folio))
want = nr;
else {
/*
* Adjust how many bytes safe to read without
* touching the 1st raw HWPOISON page after
* offset.
*/
want = adjust_range_hwpoison(folio, offset, nr);
if (want == 0) {
folio_put(folio);
retval = -EIO;
break;
}
}
/*
* We have the folio, copy it to user space buffer.
*/
copied = copy_folio_to_iter(folio, offset, want, to);
folio_put(folio);
}
offset += copied;
retval += copied;
if (copied != nr && iov_iter_count(to)) {
if (!retval)
retval = -EFAULT;
break;
}
index += offset >> huge_page_shift(h);
offset &= ~huge_page_mask(h);
}
iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
return retval;
}
static int hugetlbfs_write_begin(const struct kiocb *iocb,
struct address_space *mapping,
loff_t pos, unsigned len,
struct folio **foliop, void **fsdata)
{
return -EINVAL;
}
static int hugetlbfs_write_end(const struct kiocb *iocb,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct folio *folio, void *fsdata)
{
BUG();
return -EINVAL;
}
static void hugetlb_delete_from_page_cache(struct folio *folio)
{
folio_clear_dirty(folio);
folio_clear_uptodate(folio);
filemap_remove_folio(folio);
}
/*
* Called with i_mmap_rwsem held for inode based vma maps. This makes
* sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
* mutex for the page in the mapping. So, we can not race with page being
* faulted into the vma.
*/
static bool hugetlb_vma_maps_pfn(struct vm_area_struct *vma,
unsigned long addr, unsigned long pfn)
{
pte_t *ptep, pte;
ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
if (!ptep)
return false;
pte = huge_ptep_get(vma->vm_mm, addr, ptep);
if (huge_pte_none(pte) || !pte_present(pte))
return false;
if (pte_pfn(pte) == pfn)
return true;
return false;
}
/*
* Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
* No, because the interval tree returns us only those vmas
* which overlap the truncated area starting at pgoff,
* and no vma on a 32-bit arch can span beyond the 4GB.
*/
static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
{
unsigned long offset = 0;
if (vma->vm_pgoff < start)
offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
return vma->vm_start + offset;
}
static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
{
unsigned long t_end;
if (!end)
return vma->vm_end;
t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
if (t_end > vma->vm_end)
t_end = vma->vm_end;
return t_end;
}
/*
* Called with hugetlb fault mutex held. Therefore, no more mappings to
* this folio can be created while executing the routine.
*/
static void hugetlb_unmap_file_folio(struct hstate *h,
struct address_space *mapping,
struct folio *folio, pgoff_t index)
{
struct rb_root_cached *root = &mapping->i_mmap;
struct hugetlb_vma_lock *vma_lock;
unsigned long pfn = folio_pfn(folio);
struct vm_area_struct *vma;
unsigned long v_start;
unsigned long v_end;
pgoff_t start, end;
start = index * pages_per_huge_page(h);
end = (index + 1) * pages_per_huge_page(h);
i_mmap_lock_write(mapping);
retry:
vma_lock = NULL;
vma_interval_tree_foreach(vma, root, start, end - 1) {
v_start = vma_offset_start(vma, start);
v_end = vma_offset_end(vma, end);
if (!hugetlb_vma_maps_pfn(vma, v_start, pfn))
continue;
if (!hugetlb_vma_trylock_write(vma)) {
vma_lock = vma->vm_private_data;
/*
* If we can not get vma lock, we need to drop
* immap_sema and take locks in order. First,
* take a ref on the vma_lock structure so that
* we can be guaranteed it will not go away when
* dropping immap_sema.
*/
kref_get(&vma_lock->refs);
break;
}
unmap_hugepage_range(vma, v_start, v_end, NULL,
ZAP_FLAG_DROP_MARKER);
hugetlb_vma_unlock_write(vma);
}
i_mmap_unlock_write(mapping);
if (vma_lock) {
/*
* Wait on vma_lock. We know it is still valid as we have
* a reference. We must 'open code' vma locking as we do
* not know if vma_lock is still attached to vma.
*/
down_write(&vma_lock->rw_sema);
i_mmap_lock_write(mapping);
vma = vma_lock->vma;
if (!vma) {
/*
* If lock is no longer attached to vma, then just
* unlock, drop our reference and retry looking for
* other vmas.
*/
up_write(&vma_lock->rw_sema);
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
goto retry;
}
/*
* vma_lock is still attached to vma. Check to see if vma
* still maps page and if so, unmap.
*/
v_start = vma_offset_start(vma, start);
v_end = vma_offset_end(vma, end);
if (hugetlb_vma_maps_pfn(vma, v_start, pfn))
unmap_hugepage_range(vma, v_start, v_end, NULL,
ZAP_FLAG_DROP_MARKER);
kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
hugetlb_vma_unlock_write(vma);
goto retry;
}
}
static void
hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
zap_flags_t zap_flags)
{
struct vm_area_struct *vma;
/*
* end == 0 indicates that the entire range after start should be
* unmapped. Note, end is exclusive, whereas the interval tree takes
* an inclusive "last".
*/
vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
unsigned long v_start;
unsigned long v_end;
if (!hugetlb_vma_trylock_write(vma))
continue;
v_start = vma_offset_start(vma, start);
v_end = vma_offset_end(vma, end);
unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
/*
* Note that vma lock only exists for shared/non-private
* vmas. Therefore, lock is not held when calling
* unmap_hugepage_range for private vmas.
*/
hugetlb_vma_unlock_write(vma);
}
}
/*
* Called with hugetlb fault mutex held.
* Returns true if page was actually removed, false otherwise.
*/
static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
struct address_space *mapping,
struct folio *folio, pgoff_t index,
bool truncate_op)
{
bool ret = false;
/*
* If folio is mapped, it was faulted in after being
* unmapped in caller. Unmap (again) while holding
* the fault mutex. The mutex will prevent faults
* until we finish removing the folio.
*/
if (unlikely(folio_mapped(folio)))
hugetlb_unmap_file_folio(h, mapping, folio, index);
folio_lock(folio);
/*
* We must remove the folio from page cache before removing
* the region/ reserve map (hugetlb_unreserve_pages). In
* rare out of memory conditions, removal of the region/reserve
* map could fail. Correspondingly, the subpool and global
* reserve usage count can need to be adjusted.
*/
VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
hugetlb_delete_from_page_cache(folio);
ret = true;
if (!truncate_op) {
if (unlikely(hugetlb_unreserve_pages(inode, index,
index + 1, 1)))
hugetlb_fix_reserve_counts(inode);
}
folio_unlock(folio);
return ret;
}
/*
* remove_inode_hugepages handles two distinct cases: truncation and hole
* punch. There are subtle differences in operation for each case.
*
* truncation is indicated by end of range being LLONG_MAX
* In this case, we first scan the range and release found pages.
* After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
* maps and global counts. Page faults can race with truncation.
* During faults, hugetlb_no_page() checks i_size before page allocation,
* and again after obtaining page table lock. It will 'back out'
* allocations in the truncated range.
* hole punch is indicated if end is not LLONG_MAX
* In the hole punch case we scan the range and release found pages.
* Only when releasing a page is the associated region/reserve map
* deleted. The region/reserve map for ranges without associated
* pages are not modified. Page faults can race with hole punch.
* This is indicated if we find a mapped page.
* Note: If the passed end of range value is beyond the end of file, but
* not LLONG_MAX this routine still performs a hole punch operation.
*/
static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
loff_t lend)
{
struct hstate *h = hstate_inode(inode);
struct address_space *mapping = &inode->i_data;
const pgoff_t end = lend >> PAGE_SHIFT;
struct folio_batch fbatch;
pgoff_t next, index;
int i, freed = 0;
bool truncate_op = (lend == LLONG_MAX);
folio_batch_init(&fbatch);
next = lstart >> PAGE_SHIFT;
while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
for (i = 0; i < folio_batch_count(&fbatch); ++i) {
struct folio *folio = fbatch.folios[i];
u32 hash = 0;
index = folio->index >> huge_page_order(h);
hash = hugetlb_fault_mutex_hash(mapping, index);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/*
* Remove folio that was part of folio_batch.
*/
if (remove_inode_single_folio(h, inode, mapping, folio,
index, truncate_op))
freed++;
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
}
folio_batch_release(&fbatch);
cond_resched();
}
if (truncate_op)
(void)hugetlb_unreserve_pages(inode,
lstart >> huge_page_shift(h),
LONG_MAX, freed);
}
static void hugetlbfs_evict_inode(struct inode *inode)
{
struct resv_map *resv_map;
trace_hugetlbfs_evict_inode(inode);
remove_inode_hugepages(inode, 0, LLONG_MAX);
/*
* Get the resv_map from the address space embedded in the inode.
* This is the address space which points to any resv_map allocated
* at inode creation time. If this is a device special inode,
* i_mapping may not point to the original address space.
*/
resv_map = (struct resv_map *)(&inode->i_data)->i_private_data;
/* Only regular and link inodes have associated reserve maps */
if (resv_map)
resv_map_release(&resv_map->refs);
clear_inode(inode);
}
static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
{
pgoff_t pgoff;
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
BUG_ON(offset & ~huge_page_mask(h));
pgoff = offset >> PAGE_SHIFT;
i_size_write(inode, offset);
i_mmap_lock_write(mapping);
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
ZAP_FLAG_DROP_MARKER);
i_mmap_unlock_write(mapping);
remove_inode_hugepages(inode, offset, LLONG_MAX);
}
static void hugetlbfs_zero_partial_page(struct hstate *h,
struct address_space *mapping,
loff_t start,
loff_t end)
{
pgoff_t idx = start >> huge_page_shift(h);
struct folio *folio;
folio = filemap_lock_hugetlb_folio(h, mapping, idx);
if (IS_ERR(folio))
return;
start = start & ~huge_page_mask(h);
end = end & ~huge_page_mask(h);
if (!end)
end = huge_page_size(h);
folio_zero_segment(folio, (size_t)start, (size_t)end);
folio_unlock(folio);
folio_put(folio);
}
static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
{
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
loff_t hpage_size = huge_page_size(h);
loff_t hole_start, hole_end;
/*
* hole_start and hole_end indicate the full pages within the hole.
*/
hole_start = round_up(offset, hpage_size);
hole_end = round_down(offset + len, hpage_size);
inode_lock(inode);
/* protected by i_rwsem */
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
inode_unlock(inode);
return -EPERM;
}
i_mmap_lock_write(mapping);
/* If range starts before first full page, zero partial page. */
if (offset < hole_start)
hugetlbfs_zero_partial_page(h, mapping,
offset, min(offset + len, hole_start));
/* Unmap users of full pages in the hole. */
if (hole_end > hole_start) {
if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
hugetlb_vmdelete_list(&mapping->i_mmap,
hole_start >> PAGE_SHIFT,
hole_end >> PAGE_SHIFT, 0);
}
/* If range extends beyond last full page, zero partial page. */
if ((offset + len) > hole_end && (offset + len) > hole_start)
hugetlbfs_zero_partial_page(h, mapping,
hole_end, offset + len);
i_mmap_unlock_write(mapping);
/* Remove full pages from the file. */
if (hole_end > hole_start)
remove_inode_hugepages(inode, hole_start, hole_end);
inode_unlock(inode);
return 0;
}
static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
struct address_space *mapping = inode->i_mapping;
struct hstate *h = hstate_inode(inode);
struct vm_area_struct pseudo_vma;
struct mm_struct *mm = current->mm;
loff_t hpage_size = huge_page_size(h);
unsigned long hpage_shift = huge_page_shift(h);
pgoff_t start, index, end;
int error;
u32 hash;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_PUNCH_HOLE) {
error = hugetlbfs_punch_hole(inode, offset, len);
goto out_nolock;
}
/*
* Default preallocate case.
* For this range, start is rounded down and end is rounded up
* as well as being converted to page offsets.
*/
start = offset >> hpage_shift;
end = (offset + len + hpage_size - 1) >> hpage_shift;
inode_lock(inode);
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
error = inode_newsize_ok(inode, offset + len);
if (error)
goto out;
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
error = -EPERM;
goto out;
}
/*
* Initialize a pseudo vma as this is required by the huge page
* allocation routines.
*/
vma_init(&pseudo_vma, mm);
vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
pseudo_vma.vm_file = file;
for (index = start; index < end; index++) {
/*
* This is supposed to be the vaddr where the page is being
* faulted in, but we have no vaddr here.
*/
struct folio *folio;
unsigned long addr;
cond_resched();
/*
* fallocate(2) manpage permits EINTR; we may have been
* interrupted because we are using up too much memory.
*/
if (signal_pending(current)) {
error = -EINTR;
break;
}
/* addr is the offset within the file (zero based) */
addr = index * hpage_size;
/* mutex taken here, fault path and hole punch */
hash = hugetlb_fault_mutex_hash(mapping, index);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/* See if already present in mapping to avoid alloc/free */
folio = filemap_get_folio(mapping, index << huge_page_order(h));
if (!IS_ERR(folio)) {
folio_put(folio);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
continue;
}
/*
* Allocate folio without setting the avoid_reserve argument.
* There certainly are no reserves associated with the
* pseudo_vma. However, there could be shared mappings with
* reserves for the file at the inode level. If we fallocate
* folios in these areas, we need to consume the reserves
* to keep reservation accounting consistent.
*/
folio = alloc_hugetlb_folio(&pseudo_vma, addr, false);
if (IS_ERR(folio)) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
error = PTR_ERR(folio);
goto out;
}
folio_zero_user(folio, addr);
__folio_mark_uptodate(folio);
error = hugetlb_add_to_page_cache(folio, mapping, index);
if (unlikely(error)) {
restore_reserve_on_error(h, &pseudo_vma, addr, folio);
folio_put(folio);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
goto out;
}
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
folio_set_hugetlb_migratable(folio);
/*
* folio_unlock because locked by hugetlb_add_to_page_cache()
* folio_put() due to reference from alloc_hugetlb_folio()
*/
folio_unlock(folio);
folio_put(folio);
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
i_size_write(inode, offset + len);
inode_set_ctime_current(inode);
out:
inode_unlock(inode);
out_nolock:
trace_hugetlbfs_fallocate(inode, mode, offset, len, error);
return error;
}
static int hugetlbfs_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct hstate *h = hstate_inode(inode);
int error;
unsigned int ia_valid = attr->ia_valid;
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
error = setattr_prepare(idmap, dentry, attr);
if (error)
return error;
trace_hugetlbfs_setattr(inode, dentry, attr);
if (ia_valid & ATTR_SIZE) {
loff_t oldsize = inode->i_size;
loff_t newsize = attr->ia_size;
if (newsize & ~huge_page_mask(h))
return -EINVAL;
/* protected by i_rwsem */
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
return -EPERM;
hugetlb_vmtruncate(inode, newsize);
}
setattr_copy(idmap, inode, attr);
mark_inode_dirty(inode);
return 0;
}
static struct inode *hugetlbfs_get_root(struct super_block *sb,
struct hugetlbfs_fs_context *ctx)
{
struct inode *inode;
inode = new_inode(sb);
if (inode) {
inode->i_ino = get_next_ino();
inode->i_mode = S_IFDIR | ctx->mode;
inode->i_uid = ctx->uid;
inode->i_gid = ctx->gid;
simple_inode_init_ts(inode);
inode->i_op = &hugetlbfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
lockdep_annotate_inode_mutex_key(inode);
}
return inode;
}
/*
* Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
* be taken from reclaim -- unlike regular filesystems. This needs an
* annotation because huge_pmd_share() does an allocation under hugetlb's
* i_mmap_rwsem.
*/
static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
static struct inode *hugetlbfs_get_inode(struct super_block *sb,
struct mnt_idmap *idmap,
struct inode *dir,
umode_t mode, dev_t dev)
{
struct inode *inode;
struct resv_map *resv_map = NULL;
/*
* Reserve maps are only needed for inodes that can have associated
* page allocations.
*/
if (S_ISREG(mode) || S_ISLNK(mode)) {
resv_map = resv_map_alloc();
if (!resv_map)
return NULL;
}
inode = new_inode(sb);
if (inode) {
struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
inode->i_ino = get_next_ino();
inode_init_owner(idmap, inode, dir, mode);
lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
&hugetlbfs_i_mmap_rwsem_key);
inode->i_mapping->a_ops = &hugetlbfs_aops;
simple_inode_init_ts(inode);
inode->i_mapping->i_private_data = resv_map;
info->seals = F_SEAL_SEAL;
switch (mode & S_IFMT) {
default:
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_op = &hugetlbfs_inode_operations;
inode->i_fop = &hugetlbfs_file_operations;
break;
case S_IFDIR:
inode->i_op = &hugetlbfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
break;
case S_IFLNK:
inode->i_op = &page_symlink_inode_operations;
inode_nohighmem(inode);
break;
}
lockdep_annotate_inode_mutex_key(inode);
trace_hugetlbfs_alloc_inode(inode, dir, mode);
} else {
if (resv_map)
kref_put(&resv_map->refs, resv_map_release);
}
return inode;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, dev);
if (!inode)
return -ENOSPC;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
d_instantiate(dentry, inode);
dget(dentry);/* Extra count - pin the dentry in core */
return 0;
}
static struct dentry *hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
int retval = hugetlbfs_mknod(idmap, dir, dentry,
mode | S_IFDIR, 0);
if (!retval)
inc_nlink(dir);
return ERR_PTR(retval);
}
static int hugetlbfs_create(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry,
umode_t mode, bool excl)
{
return hugetlbfs_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
}
static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
struct inode *dir, struct file *file,
umode_t mode)
{
struct inode *inode;
inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode | S_IFREG, 0);
if (!inode)
return -ENOSPC;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
d_tmpfile(file, inode);
return finish_open_simple(file, 0);
}
static int hugetlbfs_symlink(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry,
const char *symname)
{
const umode_t mode = S_IFLNK|S_IRWXUGO;
struct inode *inode;
int error = -ENOSPC;
inode = hugetlbfs_get_inode(dir->i_sb, idmap, dir, mode, 0);
if (inode) {
int l = strlen(symname)+1;
error = page_symlink(inode, symname, l);
if (!error) {
d_instantiate(dentry, inode);
dget(dentry);
} else
iput(inode);
}
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
return error;
}
#ifdef CONFIG_MIGRATION
static int hugetlbfs_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src,
enum migrate_mode mode)
{
int rc;
rc = migrate_huge_page_move_mapping(mapping, dst, src);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
if (hugetlb_folio_subpool(src)) {
hugetlb_set_folio_subpool(dst,
hugetlb_folio_subpool(src));
hugetlb_set_folio_subpool(src, NULL);
}
folio_migrate_flags(dst, src);
return MIGRATEPAGE_SUCCESS;
}
#else
#define hugetlbfs_migrate_folio NULL
#endif
static int hugetlbfs_error_remove_folio(struct address_space *mapping,
struct folio *folio)
{
return 0;
}
/*
* Display the mount options in /proc/mounts.
*/
static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
struct hugepage_subpool *spool = sbinfo->spool;
unsigned long hpage_size = huge_page_size(sbinfo->hstate);
unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
char mod;
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
seq_printf(m, ",uid=%u",
from_kuid_munged(&init_user_ns, sbinfo->uid));
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
seq_printf(m, ",gid=%u",
from_kgid_munged(&init_user_ns, sbinfo->gid));
if (sbinfo->mode != 0755)
seq_printf(m, ",mode=%o", sbinfo->mode);
if (sbinfo->max_inodes != -1)
seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
hpage_size /= 1024;
mod = 'K';
if (hpage_size >= 1024) {
hpage_size /= 1024;
mod = 'M';
}
seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
if (spool) {
if (spool->max_hpages != -1)
seq_printf(m, ",size=%llu",
(unsigned long long)spool->max_hpages << hpage_shift);
if (spool->min_hpages != -1)
seq_printf(m, ",min_size=%llu",
(unsigned long long)spool->min_hpages << hpage_shift);
}
return 0;
}
static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
struct hstate *h = hstate_inode(d_inode(dentry));
u64 id = huge_encode_dev(dentry->d_sb->s_dev);
buf->f_fsid = u64_to_fsid(id);
buf->f_type = HUGETLBFS_MAGIC;
buf->f_bsize = huge_page_size(h);
if (sbinfo) {
spin_lock(&sbinfo->stat_lock);
/* If no limits set, just report 0 or -1 for max/free/used
* blocks, like simple_statfs() */
if (sbinfo->spool) {
long free_pages;
spin_lock_irq(&sbinfo->spool->lock);
buf->f_blocks = sbinfo->spool->max_hpages;
free_pages = sbinfo->spool->max_hpages
- sbinfo->spool->used_hpages;
buf->f_bavail = buf->f_bfree = free_pages;
spin_unlock_irq(&sbinfo->spool->lock);
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_inodes;
}
spin_unlock(&sbinfo->stat_lock);
}
buf->f_namelen = NAME_MAX;
return 0;
}
static void hugetlbfs_put_super(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
if (sbi) {
sb->s_fs_info = NULL;
if (sbi->spool)
hugepage_put_subpool(sbi->spool);
kfree(sbi);
}
}
static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
if (unlikely(!sbinfo->free_inodes)) {
spin_unlock(&sbinfo->stat_lock);
return 0;
}
sbinfo->free_inodes--;
spin_unlock(&sbinfo->stat_lock);
}
return 1;
}
static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
{
if (sbinfo->free_inodes >= 0) {
spin_lock(&sbinfo->stat_lock);
sbinfo->free_inodes++;
spin_unlock(&sbinfo->stat_lock);
}
}
static struct kmem_cache *hugetlbfs_inode_cachep;
static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
{
struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
struct hugetlbfs_inode_info *p;
if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
return NULL;
p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
if (unlikely(!p)) {
hugetlbfs_inc_free_inodes(sbinfo);
return NULL;
}
return &p->vfs_inode;
}
static void hugetlbfs_free_inode(struct inode *inode)
{
trace_hugetlbfs_free_inode(inode);
kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
}
static void hugetlbfs_destroy_inode(struct inode *inode)
{
hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
}
static const struct address_space_operations hugetlbfs_aops = {
.write_begin = hugetlbfs_write_begin,
.write_end = hugetlbfs_write_end,
.dirty_folio = noop_dirty_folio,
.migrate_folio = hugetlbfs_migrate_folio,
.error_remove_folio = hugetlbfs_error_remove_folio,
};
static void init_once(void *foo)
{
struct hugetlbfs_inode_info *ei = foo;
inode_init_once(&ei->vfs_inode);
}
static const struct file_operations hugetlbfs_file_operations = {
.read_iter = hugetlbfs_read_iter,
.mmap = hugetlbfs_file_mmap,
.fsync = noop_fsync,
.get_unmapped_area = hugetlb_get_unmapped_area,
.llseek = default_llseek,
.fallocate = hugetlbfs_fallocate,
.fop_flags = FOP_HUGE_PAGES,
};
static const struct inode_operations hugetlbfs_dir_inode_operations = {
.create = hugetlbfs_create,
.lookup = simple_lookup,
.link = simple_link,
.unlink = simple_unlink,
.symlink = hugetlbfs_symlink,
.mkdir = hugetlbfs_mkdir,
.rmdir = simple_rmdir,
.mknod = hugetlbfs_mknod,
.rename = simple_rename,
.setattr = hugetlbfs_setattr,
.tmpfile = hugetlbfs_tmpfile,
};
static const struct inode_operations hugetlbfs_inode_operations = {
.setattr = hugetlbfs_setattr,
};
static const struct super_operations hugetlbfs_ops = {
.alloc_inode = hugetlbfs_alloc_inode,
.free_inode = hugetlbfs_free_inode,
.destroy_inode = hugetlbfs_destroy_inode,
.evict_inode = hugetlbfs_evict_inode,
.statfs = hugetlbfs_statfs,
.put_super = hugetlbfs_put_super,
.show_options = hugetlbfs_show_options,
};
/*
* Convert size option passed from command line to number of huge pages
* in the pool specified by hstate. Size option could be in bytes
* (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
*/
static long
hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
enum hugetlbfs_size_type val_type)
{
if (val_type == NO_SIZE)
return -1;
if (val_type == SIZE_PERCENT) {
size_opt <<= huge_page_shift(h);
size_opt *= h->max_huge_pages;
do_div(size_opt, 100);
}
size_opt >>= huge_page_shift(h);
return size_opt;
}
/*
* Parse one mount parameter.
*/
static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
struct hugetlbfs_fs_context *ctx = fc->fs_private;
struct fs_parse_result result;
struct hstate *h;
char *rest;
unsigned long ps;
int opt;
opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_uid:
ctx->uid = result.uid;
return 0;
case Opt_gid:
ctx->gid = result.gid;
return 0;
case Opt_mode:
ctx->mode = result.uint_32 & 01777U;
return 0;
case Opt_size:
/* memparse() will accept a K/M/G without a digit */
if (!param->string || !isdigit(param->string[0]))
goto bad_val;
ctx->max_size_opt = memparse(param->string, &rest);
ctx->max_val_type = SIZE_STD;
if (*rest == '%')
ctx->max_val_type = SIZE_PERCENT;
return 0;
case Opt_nr_inodes:
/* memparse() will accept a K/M/G without a digit */
if (!param->string || !isdigit(param->string[0]))
goto bad_val;
ctx->nr_inodes = memparse(param->string, &rest);
return 0;
case Opt_pagesize:
ps = memparse(param->string, &rest);
h = size_to_hstate(ps);
if (!h) {
pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
return -EINVAL;
}
ctx->hstate = h;
return 0;
case Opt_min_size:
/* memparse() will accept a K/M/G without a digit */
if (!param->string || !isdigit(param->string[0]))
goto bad_val;
ctx->min_size_opt = memparse(param->string, &rest);
ctx->min_val_type = SIZE_STD;
if (*rest == '%')
ctx->min_val_type = SIZE_PERCENT;
return 0;
default:
return -EINVAL;
}
bad_val:
return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
param->string, param->key);
}
/*
* Validate the parsed options.
*/
static int hugetlbfs_validate(struct fs_context *fc)
{
struct hugetlbfs_fs_context *ctx = fc->fs_private;
/*
* Use huge page pool size (in hstate) to convert the size
* options to number of huge pages. If NO_SIZE, -1 is returned.
*/
ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
ctx->max_size_opt,
ctx->max_val_type);
ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
ctx->min_size_opt,
ctx->min_val_type);
/*
* If max_size was specified, then min_size must be smaller
*/
if (ctx->max_val_type > NO_SIZE &&
ctx->min_hpages > ctx->max_hpages) {
pr_err("Minimum size can not be greater than maximum size\n");
return -EINVAL;
}
return 0;
}
static int
hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct hugetlbfs_fs_context *ctx = fc->fs_private;
struct hugetlbfs_sb_info *sbinfo;
sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
if (!sbinfo)
return -ENOMEM;
sb->s_fs_info = sbinfo;
spin_lock_init(&sbinfo->stat_lock);
sbinfo->hstate = ctx->hstate;
sbinfo->max_inodes = ctx->nr_inodes;
sbinfo->free_inodes = ctx->nr_inodes;
sbinfo->spool = NULL;
sbinfo->uid = ctx->uid;
sbinfo->gid = ctx->gid;
sbinfo->mode = ctx->mode;
/*
* Allocate and initialize subpool if maximum or minimum size is
* specified. Any needed reservations (for minimum size) are taken
* when the subpool is created.
*/
if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
sbinfo->spool = hugepage_new_subpool(ctx->hstate,
ctx->max_hpages,
ctx->min_hpages);
if (!sbinfo->spool)
goto out_free;
}
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = huge_page_size(ctx->hstate);
sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
sb->s_magic = HUGETLBFS_MAGIC;
sb->s_op = &hugetlbfs_ops;
sb->s_d_flags = DCACHE_DONTCACHE;
sb->s_time_gran = 1;
/*
* Due to the special and limited functionality of hugetlbfs, it does
* not work well as a stacking filesystem.
*/
sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
if (!sb->s_root)
goto out_free;
return 0;
out_free:
kfree(sbinfo->spool);
kfree(sbinfo);
return -ENOMEM;
}
static int hugetlbfs_get_tree(struct fs_context *fc)
{
int err = hugetlbfs_validate(fc);
if (err)
return err;
return get_tree_nodev(fc, hugetlbfs_fill_super);
}
static void hugetlbfs_fs_context_free(struct fs_context *fc)
{
kfree(fc->fs_private);
}
static const struct fs_context_operations hugetlbfs_fs_context_ops = {
.free = hugetlbfs_fs_context_free,
.parse_param = hugetlbfs_parse_param,
.get_tree = hugetlbfs_get_tree,
};
static int hugetlbfs_init_fs_context(struct fs_context *fc)
{
struct hugetlbfs_fs_context *ctx;
ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->max_hpages = -1; /* No limit on size by default */
ctx->nr_inodes = -1; /* No limit on number of inodes by default */
ctx->uid = current_fsuid();
ctx->gid = current_fsgid();
ctx->mode = 0755;
ctx->hstate = &default_hstate;
ctx->min_hpages = -1; /* No default minimum size */
ctx->max_val_type = NO_SIZE;
ctx->min_val_type = NO_SIZE;
fc->fs_private = ctx;
fc->ops = &hugetlbfs_fs_context_ops;
return 0;
}
static struct file_system_type hugetlbfs_fs_type = {
.name = "hugetlbfs",
.init_fs_context = hugetlbfs_init_fs_context,
.parameters = hugetlb_fs_parameters,
.kill_sb = kill_litter_super,
.fs_flags = FS_ALLOW_IDMAP,
};
static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
static int can_do_hugetlb_shm(void)
{
kgid_t shm_group;
shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
}
static int get_hstate_idx(int page_size_log)
{
struct hstate *h = hstate_sizelog(page_size_log);
if (!h)
return -1;
return hstate_index(h);
}
/*
* Note that size should be aligned to proper hugepage size in caller side,
* otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
*/
struct file *hugetlb_file_setup(const char *name, size_t size,
vm_flags_t acctflag, int creat_flags,
int page_size_log)
{
struct inode *inode;
struct vfsmount *mnt;
int hstate_idx;
struct file *file;
hstate_idx = get_hstate_idx(page_size_log);
if (hstate_idx < 0)
return ERR_PTR(-ENODEV);
mnt = hugetlbfs_vfsmount[hstate_idx];
if (!mnt)
return ERR_PTR(-ENOENT);
if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
struct ucounts *ucounts = current_ucounts();
if (user_shm_lock(size, ucounts)) {
pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
current->comm, current->pid);
user_shm_unlock(size, ucounts);
}
return ERR_PTR(-EPERM);
}
file = ERR_PTR(-ENOSPC);
/* hugetlbfs_vfsmount[] mounts do not use idmapped mounts. */
inode = hugetlbfs_get_inode(mnt->mnt_sb, &nop_mnt_idmap, NULL,
S_IFREG | S_IRWXUGO, 0);
if (!inode)
goto out;
if (creat_flags == HUGETLB_SHMFS_INODE)
inode->i_flags |= S_PRIVATE;
inode->i_size = size;
clear_nlink(inode);
if (hugetlb_reserve_pages(inode, 0,
size >> huge_page_shift(hstate_inode(inode)), NULL,
acctflag) < 0)
file = ERR_PTR(-ENOMEM);
else
file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
&hugetlbfs_file_operations);
if (!IS_ERR(file))
return file;
iput(inode);
out:
return file;
}
static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
{
struct fs_context *fc;
struct vfsmount *mnt;
fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
if (IS_ERR(fc)) {
mnt = ERR_CAST(fc);
} else {
struct hugetlbfs_fs_context *ctx = fc->fs_private;
ctx->hstate = h;
mnt = fc_mount_longterm(fc);
put_fs_context(fc);
}
if (IS_ERR(mnt))
pr_err("Cannot mount internal hugetlbfs for page size %luK",
huge_page_size(h) / SZ_1K);
return mnt;
}
static int __init init_hugetlbfs_fs(void)
{
struct vfsmount *mnt;
struct hstate *h;
int error;
int i;
if (!hugepages_supported()) {
pr_info("disabling because there are no supported hugepage sizes\n");
return -ENOTSUPP;
}
error = -ENOMEM;
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
sizeof(struct hugetlbfs_inode_info),
0, SLAB_ACCOUNT, init_once);
if (hugetlbfs_inode_cachep == NULL)
goto out;
error = register_filesystem(&hugetlbfs_fs_type);
if (error)
goto out_free;
/* default hstate mount is required */
mnt = mount_one_hugetlbfs(&default_hstate);
if (IS_ERR(mnt)) {
error = PTR_ERR(mnt);
goto out_unreg;
}
hugetlbfs_vfsmount[default_hstate_idx] = mnt;
/* other hstates are optional */
i = 0;
for_each_hstate(h) {
if (i == default_hstate_idx) {
i++;
continue;
}
mnt = mount_one_hugetlbfs(h);
if (IS_ERR(mnt))
hugetlbfs_vfsmount[i] = NULL;
else
hugetlbfs_vfsmount[i] = mnt;
i++;
}
return 0;
out_unreg:
(void)unregister_filesystem(&hugetlbfs_fs_type);
out_free:
kmem_cache_destroy(hugetlbfs_inode_cachep);
out:
return error;
}
fs_initcall(init_hugetlbfs_fs)