linux/drivers/remoteproc/ti_k3_common.c
Thomas Weißschuh b0dc512ab7 remoteproc: Don't use %pK through printk
In the past %pK was preferable to %p as it would not leak raw pointer
values into the kernel log.
Since commit ad67b74d24 ("printk: hash addresses printed with %p")
the regular %p has been improved to avoid this issue.
Furthermore, restricted pointers ("%pK") were never meant to be used
through printk(). They can still unintentionally leak raw pointers or
acquire sleeping locks in atomic contexts.

Switch to the regular pointer formatting which is safer and
easier to reason about.
There are still a few users of %pK left, but these use it through seq_file,
for which its usage is safe.

Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Link: https://lore.kernel.org/r/20250611-restricted-pointers-remoteproc-v1-1-f059097ba663@linutronix.de
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
2025-06-17 08:03:24 -05:00

552 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI K3 Remote Processor(s) driver common code
*
* Refactored out of ti_k3_r5_remoteproc.c, ti_k3_dsp_remoteproc.c and
* ti_k3_m4_remoteproc.c.
*
* ti_k3_r5_remoteproc.c:
* Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*
* ti_k3_dsp_remoteproc.c:
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*
* ti_k3_m4_remoteproc.c:
* Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/
* Hari Nagalla <hnagalla@ti.com>
*/
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"
#include "ti_k3_common.h"
/**
* k3_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by the K3 mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicate different events. Those values are deliberately very
* large so they don't coincide with virtqueue indices.
*/
void k3_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct k3_rproc *kproc = container_of(client, struct k3_rproc, client);
struct device *dev = kproc->rproc->dev.parent;
struct rproc *rproc = kproc->rproc;
u32 msg = (u32)(uintptr_t)(data);
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, but error recovery is not
* supported. So, just log this for now
*/
dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", rproc->name);
break;
default:
/* silently handle all other valid messages */
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
EXPORT_SYMBOL_GPL(k3_rproc_mbox_callback);
/*
* Kick the remote processor to notify about pending unprocessed messages.
* The vqid usage is not used and is inconsequential, as the kick is performed
* through a simulated GPIO (a bit in an IPC interrupt-triggering register),
* the remote processor is expected to process both its Tx and Rx virtqueues.
*/
void k3_rproc_kick(struct rproc *rproc, int vqid)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
u32 msg = (u32)vqid;
int ret;
/*
* Send the index of the triggered virtqueue in the mailbox payload.
* NOTE: msg is cast to uintptr_t to prevent compiler warnings when
* void* is 64bit. It is safely cast back to u32 in the mailbox driver.
*/
ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
}
EXPORT_SYMBOL_GPL(k3_rproc_kick);
/* Put the remote processor into reset */
int k3_rproc_reset(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
if (kproc->data->uses_lreset) {
ret = reset_control_assert(kproc->reset);
if (ret)
dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
} else {
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
}
return ret;
}
EXPORT_SYMBOL_GPL(k3_rproc_reset);
/* Release the remote processor from reset */
int k3_rproc_release(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
if (kproc->data->uses_lreset) {
ret = reset_control_deassert(kproc->reset);
if (ret) {
dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id))
dev_warn(dev, "module-reset assert back failed\n");
}
} else {
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
}
return ret;
}
EXPORT_SYMBOL_GPL(k3_rproc_release);
int k3_rproc_request_mbox(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct mbox_client *client = &kproc->client;
struct device *dev = kproc->dev;
int ret;
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = k3_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
kproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(kproc->mbox))
return dev_err_probe(dev, PTR_ERR(kproc->mbox),
"mbox_request_channel failed\n");
/*
* Ping the remote processor, this is only for sanity-sake for now;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
mbox_free_channel(kproc->mbox);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_request_mbox);
/*
* The K3 DSP and M4 cores have a local reset that affects only the CPU, and a
* generic module reset that powers on the device and allows the internal
* memories to be accessed while the local reset is asserted. This function is
* used to release the global reset on remote cores to allow loading into the
* internal RAMs. The .prepare() ops is invoked by remoteproc core before any
* firmware loading, and is followed by the .start() ops after loading to
* actually let the remote cores to run.
*/
int k3_rproc_prepare(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
/* If the core is running already no need to deassert the module reset */
if (rproc->state == RPROC_DETACHED)
return 0;
/*
* Ensure the local reset is asserted so the core doesn't
* execute bogus code when the module reset is released.
*/
if (kproc->data->uses_lreset) {
ret = k3_rproc_reset(kproc);
if (ret)
return ret;
ret = reset_control_status(kproc->reset);
if (ret <= 0) {
dev_err(dev, "local reset still not asserted\n");
return ret;
}
}
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_prepare);
/*
* This function implements the .unprepare() ops and performs the complimentary
* operations to that of the .prepare() ops. The function is used to assert the
* global reset on applicable K3 DSP and M4 cores. This completes the second
* portion of powering down the remote core. The cores themselves are only
* halted in the .stop() callback through the local reset, and the .unprepare()
* ops is invoked by the remoteproc core after the remoteproc is stopped to
* balance the global reset.
*/
int k3_rproc_unprepare(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
/* If the core is going to be detached do not assert the module reset */
if (rproc->state == RPROC_DETACHED)
return 0;
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "module-reset assert failed\n");
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_unprepare);
/*
* Power up the remote processor.
*
* This function will be invoked only after the firmware for this rproc
* was loaded, parsed successfully, and all of its resource requirements
* were met. This callback is invoked only in remoteproc mode.
*/
int k3_rproc_start(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
return k3_rproc_release(kproc);
}
EXPORT_SYMBOL_GPL(k3_rproc_start);
/*
* Stop the remote processor.
*
* This function puts the remote processor into reset, and finishes processing
* of any pending messages. This callback is invoked only in remoteproc mode.
*/
int k3_rproc_stop(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
return k3_rproc_reset(kproc);
}
EXPORT_SYMBOL_GPL(k3_rproc_stop);
/*
* Attach to a running remote processor (IPC-only mode)
*
* The rproc attach callback is a NOP. The remote processor is already booted,
* and all required resources have been acquired during probe routine, so there
* is no need to issue any TI-SCI commands to boot the remote cores in IPC-only
* mode. This callback is invoked only in IPC-only mode and exists because
* rproc_validate() checks for its existence.
*/
int k3_rproc_attach(struct rproc *rproc) { return 0; }
EXPORT_SYMBOL_GPL(k3_rproc_attach);
/*
* Detach from a running remote processor (IPC-only mode)
*
* The rproc detach callback is a NOP. The remote processor is not stopped and
* will be left in booted state in IPC-only mode. This callback is invoked only
* in IPC-only mode and exists for sanity sake
*/
int k3_rproc_detach(struct rproc *rproc) { return 0; }
EXPORT_SYMBOL_GPL(k3_rproc_detach);
/*
* This function implements the .get_loaded_rsc_table() callback and is used
* to provide the resource table for a booted remote processor in IPC-only
* mode. The remote processor firmwares follow a design-by-contract approach
* and are expected to have the resource table at the base of the DDR region
* reserved for firmware usage. This provides flexibility for the remote
* processor to be booted by different bootloaders that may or may not have the
* ability to publish the resource table address and size through a DT
* property.
*/
struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
size_t *rsc_table_sz)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
if (!kproc->rmem[0].cpu_addr) {
dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
return ERR_PTR(-ENOMEM);
}
/*
* NOTE: The resource table size is currently hard-coded to a maximum
* of 256 bytes. The most common resource table usage for K3 firmwares
* is to only have the vdev resource entry and an optional trace entry.
* The exact size could be computed based on resource table address, but
* the hard-coded value suffices to support the IPC-only mode.
*/
*rsc_table_sz = 256;
return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
}
EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table);
/*
* Custom function to translate a remote processor device address (internal
* RAMs only) to a kernel virtual address. The remote processors can access
* their RAMs at either an internal address visible only from a remote
* processor, or at the SoC-level bus address. Both these addresses need to be
* looked through for translation. The translated addresses can be used either
* by the remoteproc core for loading (when using kernel remoteproc loader), or
* by any rpmsg bus drivers.
*/
void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct k3_rproc *kproc = rproc->priv;
void __iomem *va = NULL;
phys_addr_t bus_addr;
u32 dev_addr, offset;
size_t size;
int i;
if (len == 0)
return NULL;
for (i = 0; i < kproc->num_mems; i++) {
bus_addr = kproc->mem[i].bus_addr;
dev_addr = kproc->mem[i].dev_addr;
size = kproc->mem[i].size;
/* handle rproc-view addresses */
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
/* handle SoC-view addresses */
if (da >= bus_addr && (da + len) <= (bus_addr + size)) {
offset = da - bus_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
}
/* handle static DDR reserved memory regions */
for (i = 0; i < kproc->num_rmems; i++) {
dev_addr = kproc->rmem[i].dev_addr;
size = kproc->rmem[i].size;
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->rmem[i].cpu_addr + offset;
return (__force void *)va;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(k3_rproc_da_to_va);
int k3_rproc_of_get_memories(struct platform_device *pdev,
struct k3_rproc *kproc)
{
const struct k3_rproc_dev_data *data = kproc->data;
struct device *dev = &pdev->dev;
struct resource *res;
int num_mems = 0;
int i;
num_mems = data->num_mems;
kproc->mem = devm_kcalloc(kproc->dev, num_mems,
sizeof(*kproc->mem), GFP_KERNEL);
if (!kproc->mem)
return -ENOMEM;
for (i = 0; i < num_mems; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
data->mems[i].name);
if (!res) {
dev_err(dev, "found no memory resource for %s\n",
data->mems[i].name);
return -EINVAL;
}
if (!devm_request_mem_region(dev, res->start,
resource_size(res),
dev_name(dev))) {
dev_err(dev, "could not request %s region for resource\n",
data->mems[i].name);
return -EBUSY;
}
kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
resource_size(res));
if (!kproc->mem[i].cpu_addr) {
dev_err(dev, "failed to map %s memory\n",
data->mems[i].name);
return -ENOMEM;
}
kproc->mem[i].bus_addr = res->start;
kproc->mem[i].dev_addr = data->mems[i].dev_addr;
kproc->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
data->mems[i].name, &kproc->mem[i].bus_addr,
kproc->mem[i].size, kproc->mem[i].cpu_addr,
kproc->mem[i].dev_addr);
}
kproc->num_mems = num_mems;
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories);
void k3_mem_release(void *data)
{
struct device *dev = data;
of_reserved_mem_device_release(dev);
}
EXPORT_SYMBOL_GPL(k3_mem_release);
int k3_reserved_mem_init(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
struct device_node *np = dev->of_node;
struct device_node *rmem_np;
struct reserved_mem *rmem;
int num_rmems;
int ret, i;
num_rmems = of_property_count_elems_of_size(np, "memory-region",
sizeof(phandle));
if (num_rmems < 0) {
dev_err(dev, "device does not reserved memory regions (%d)\n",
num_rmems);
return -EINVAL;
}
if (num_rmems < 2) {
dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
num_rmems);
return -EINVAL;
}
/* use reserved memory region 0 for vring DMA allocations */
ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
if (ret) {
dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
return ret;
}
ret = devm_add_action_or_reset(dev, k3_mem_release, dev);
if (ret)
return ret;
num_rmems--;
kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
if (!kproc->rmem)
return -ENOMEM;
/* use remaining reserved memory regions for static carveouts */
for (i = 0; i < num_rmems; i++) {
rmem_np = of_parse_phandle(np, "memory-region", i + 1);
if (!rmem_np)
return -EINVAL;
rmem = of_reserved_mem_lookup(rmem_np);
of_node_put(rmem_np);
if (!rmem)
return -EINVAL;
kproc->rmem[i].bus_addr = rmem->base;
/* 64-bit address regions currently not supported */
kproc->rmem[i].dev_addr = (u32)rmem->base;
kproc->rmem[i].size = rmem->size;
kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
if (!kproc->rmem[i].cpu_addr) {
dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
i + 1, &rmem->base, &rmem->size);
return -ENOMEM;
}
dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %p da 0x%x\n",
i + 1, &kproc->rmem[i].bus_addr,
kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
kproc->rmem[i].dev_addr);
}
kproc->num_rmems = num_rmems;
return 0;
}
EXPORT_SYMBOL_GPL(k3_reserved_mem_init);
void k3_release_tsp(void *data)
{
struct ti_sci_proc *tsp = data;
ti_sci_proc_release(tsp);
}
EXPORT_SYMBOL_GPL(k3_release_tsp);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TI K3 common Remoteproc code");