linux/drivers/pci/controller/pcie-rockchip-ep.c
Geraldo Nascimento cbbfe9f683 PCI: rockchip: Use standard PCIe definitions
Current code uses custom-defined register offsets and bitfields for the
standard PCIe registers. This creates duplication as the PCI header already
defines them. So, switch to using the standard PCIe definitions and drop
the custom ones.

Suggested-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Geraldo Nascimento <geraldogabriel@gmail.com>
[mani: commit message rewording]
Signed-off-by: Manivannan Sadhasivam <mani@kernel.org>
[bhelgaas: include bitfield.h]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://patch.msgid.link/e81700ef4b49f584bc8834bfb07b6d8995fc1f42.1751322015.git.geraldogabriel@gmail.com
2025-07-07 17:19:12 -05:00

912 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Rockchip AXI PCIe endpoint controller driver
*
* Copyright (c) 2018 Rockchip, Inc.
*
* Author: Shawn Lin <shawn.lin@rock-chips.com>
* Simon Xue <xxm@rock-chips.com>
*/
#include <linux/configfs.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/pci-epc.h>
#include <linux/platform_device.h>
#include <linux/pci-epf.h>
#include <linux/sizes.h>
#include <linux/workqueue.h>
#include "pcie-rockchip.h"
/**
* struct rockchip_pcie_ep - private data for PCIe endpoint controller driver
* @rockchip: Rockchip PCIe controller
* @epc: PCI EPC device
* @max_regions: maximum number of regions supported by hardware
* @ob_region_map: bitmask of mapped outbound regions
* @ob_addr: base addresses in the AXI bus where the outbound regions start
* @irq_phys_addr: base address on the AXI bus where the MSI/INTX IRQ
* dedicated outbound regions is mapped.
* @irq_cpu_addr: base address in the CPU space where a write access triggers
* the sending of a memory write (MSI) / normal message (INTX
* IRQ) TLP through the PCIe bus.
* @irq_pci_addr: used to save the current mapping of the MSI/INTX IRQ
* dedicated outbound region.
* @irq_pci_fn: the latest PCI function that has updated the mapping of
* the MSI/INTX IRQ dedicated outbound region.
* @irq_pending: bitmask of asserted INTX IRQs.
* @perst_irq: IRQ used for the PERST# signal.
* @perst_asserted: True if the PERST# signal was asserted.
* @link_up: True if the PCI link is up.
* @link_training: Work item to execute PCI link training.
*/
struct rockchip_pcie_ep {
struct rockchip_pcie rockchip;
struct pci_epc *epc;
u32 max_regions;
unsigned long ob_region_map;
phys_addr_t *ob_addr;
phys_addr_t irq_phys_addr;
void __iomem *irq_cpu_addr;
u64 irq_pci_addr;
u8 irq_pci_fn;
u8 irq_pending;
int perst_irq;
bool perst_asserted;
bool link_up;
struct delayed_work link_training;
};
static void rockchip_pcie_clear_ep_ob_atu(struct rockchip_pcie *rockchip,
u32 region)
{
rockchip_pcie_write(rockchip, 0,
ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR0(region));
rockchip_pcie_write(rockchip, 0,
ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR1(region));
rockchip_pcie_write(rockchip, 0,
ROCKCHIP_PCIE_AT_OB_REGION_DESC0(region));
rockchip_pcie_write(rockchip, 0,
ROCKCHIP_PCIE_AT_OB_REGION_DESC1(region));
}
static int rockchip_pcie_ep_ob_atu_num_bits(struct rockchip_pcie *rockchip,
u64 pci_addr, size_t size)
{
int num_pass_bits = fls64(pci_addr ^ (pci_addr + size - 1));
return clamp(num_pass_bits,
ROCKCHIP_PCIE_AT_MIN_NUM_BITS,
ROCKCHIP_PCIE_AT_MAX_NUM_BITS);
}
static void rockchip_pcie_prog_ep_ob_atu(struct rockchip_pcie *rockchip, u8 fn,
u32 r, u64 cpu_addr, u64 pci_addr,
size_t size)
{
int num_pass_bits;
u32 addr0, addr1, desc0;
num_pass_bits = rockchip_pcie_ep_ob_atu_num_bits(rockchip,
pci_addr, size);
addr0 = ((num_pass_bits - 1) & PCIE_CORE_OB_REGION_ADDR0_NUM_BITS) |
(lower_32_bits(pci_addr) & PCIE_CORE_OB_REGION_ADDR0_LO_ADDR);
addr1 = upper_32_bits(pci_addr);
desc0 = ROCKCHIP_PCIE_AT_OB_REGION_DESC0_DEVFN(fn) | AXI_WRAPPER_MEM_WRITE;
/* PCI bus address region */
rockchip_pcie_write(rockchip, addr0,
ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR0(r));
rockchip_pcie_write(rockchip, addr1,
ROCKCHIP_PCIE_AT_OB_REGION_PCI_ADDR1(r));
rockchip_pcie_write(rockchip, desc0,
ROCKCHIP_PCIE_AT_OB_REGION_DESC0(r));
rockchip_pcie_write(rockchip, 0,
ROCKCHIP_PCIE_AT_OB_REGION_DESC1(r));
}
static int rockchip_pcie_ep_write_header(struct pci_epc *epc, u8 fn, u8 vfn,
struct pci_epf_header *hdr)
{
u32 reg;
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
/* All functions share the same vendor ID with function 0 */
if (fn == 0) {
rockchip_pcie_write(rockchip,
hdr->vendorid | hdr->subsys_vendor_id << 16,
PCIE_CORE_CONFIG_VENDOR);
}
reg = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_DID_VID);
reg = (reg & 0xFFFF) | (hdr->deviceid << 16);
rockchip_pcie_write(rockchip, reg, PCIE_EP_CONFIG_DID_VID);
rockchip_pcie_write(rockchip,
hdr->revid |
hdr->progif_code << 8 |
hdr->subclass_code << 16 |
hdr->baseclass_code << 24,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) + PCI_REVISION_ID);
rockchip_pcie_write(rockchip, hdr->cache_line_size,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
PCI_CACHE_LINE_SIZE);
rockchip_pcie_write(rockchip, hdr->subsys_id << 16,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
PCI_SUBSYSTEM_VENDOR_ID);
rockchip_pcie_write(rockchip, hdr->interrupt_pin << 8,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
PCI_INTERRUPT_LINE);
return 0;
}
static int rockchip_pcie_ep_set_bar(struct pci_epc *epc, u8 fn, u8 vfn,
struct pci_epf_bar *epf_bar)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
dma_addr_t bar_phys = epf_bar->phys_addr;
enum pci_barno bar = epf_bar->barno;
int flags = epf_bar->flags;
u32 addr0, addr1, reg, cfg, b, aperture, ctrl;
u64 sz;
/* BAR size is 2^(aperture + 7) */
sz = max_t(size_t, epf_bar->size, MIN_EP_APERTURE);
/*
* roundup_pow_of_two() returns an unsigned long, which is not suited
* for 64bit values.
*/
sz = 1ULL << fls64(sz - 1);
aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */
if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_IO_32BITS;
} else {
bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH);
bool is_64bits = !!(flags & PCI_BASE_ADDRESS_MEM_TYPE_64);
if (is_64bits && (bar & 1))
return -EINVAL;
if (is_64bits && is_prefetch)
ctrl =
ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_PREFETCH_MEM_64BITS;
else if (is_prefetch)
ctrl =
ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_PREFETCH_MEM_32BITS;
else if (is_64bits)
ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_MEM_64BITS;
else
ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_MEM_32BITS;
}
if (bar < BAR_4) {
reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG0(fn);
b = bar;
} else {
reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG1(fn);
b = bar - BAR_4;
}
addr0 = lower_32_bits(bar_phys);
addr1 = upper_32_bits(bar_phys);
cfg = rockchip_pcie_read(rockchip, reg);
cfg &= ~(ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
cfg |= (ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) |
ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl));
rockchip_pcie_write(rockchip, cfg, reg);
rockchip_pcie_write(rockchip, addr0,
ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar));
rockchip_pcie_write(rockchip, addr1,
ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar));
return 0;
}
static void rockchip_pcie_ep_clear_bar(struct pci_epc *epc, u8 fn, u8 vfn,
struct pci_epf_bar *epf_bar)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
u32 reg, cfg, b, ctrl;
enum pci_barno bar = epf_bar->barno;
if (bar < BAR_4) {
reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG0(fn);
b = bar;
} else {
reg = ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG1(fn);
b = bar - BAR_4;
}
ctrl = ROCKCHIP_PCIE_CORE_BAR_CFG_CTRL_DISABLED;
cfg = rockchip_pcie_read(rockchip, reg);
cfg &= ~(ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
cfg |= ROCKCHIP_PCIE_CORE_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl);
rockchip_pcie_write(rockchip, cfg, reg);
rockchip_pcie_write(rockchip, 0x0,
ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar));
rockchip_pcie_write(rockchip, 0x0,
ROCKCHIP_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar));
}
static inline u32 rockchip_ob_region(phys_addr_t addr)
{
return (addr >> ilog2(SZ_1M)) & 0x1f;
}
static u64 rockchip_pcie_ep_align_addr(struct pci_epc *epc, u64 pci_addr,
size_t *pci_size, size_t *addr_offset)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
size_t size = *pci_size;
u64 offset, mask;
int num_bits;
num_bits = rockchip_pcie_ep_ob_atu_num_bits(&ep->rockchip,
pci_addr, size);
mask = (1ULL << num_bits) - 1;
offset = pci_addr & mask;
if (size + offset > SZ_1M)
size = SZ_1M - offset;
*pci_size = ALIGN(offset + size, ROCKCHIP_PCIE_AT_SIZE_ALIGN);
*addr_offset = offset;
return pci_addr & ~mask;
}
static int rockchip_pcie_ep_map_addr(struct pci_epc *epc, u8 fn, u8 vfn,
phys_addr_t addr, u64 pci_addr,
size_t size)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *pcie = &ep->rockchip;
u32 r = rockchip_ob_region(addr);
if (test_bit(r, &ep->ob_region_map))
return -EBUSY;
rockchip_pcie_prog_ep_ob_atu(pcie, fn, r, addr, pci_addr, size);
set_bit(r, &ep->ob_region_map);
ep->ob_addr[r] = addr;
return 0;
}
static void rockchip_pcie_ep_unmap_addr(struct pci_epc *epc, u8 fn, u8 vfn,
phys_addr_t addr)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
u32 r = rockchip_ob_region(addr);
if (addr != ep->ob_addr[r] || !test_bit(r, &ep->ob_region_map))
return;
rockchip_pcie_clear_ep_ob_atu(rockchip, r);
ep->ob_addr[r] = 0;
clear_bit(r, &ep->ob_region_map);
}
static int rockchip_pcie_ep_set_msi(struct pci_epc *epc, u8 fn, u8 vfn,
u8 nr_irqs)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
u8 mmc = order_base_2(nr_irqs);
u32 flags;
flags = rockchip_pcie_read(rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
flags &= ~ROCKCHIP_PCIE_EP_MSI_CTRL_MMC_MASK;
flags |=
(mmc << ROCKCHIP_PCIE_EP_MSI_CTRL_MMC_OFFSET) |
(PCI_MSI_FLAGS_64BIT << ROCKCHIP_PCIE_EP_MSI_FLAGS_OFFSET);
flags &= ~ROCKCHIP_PCIE_EP_MSI_CTRL_MASK_MSI_CAP;
rockchip_pcie_write(rockchip, flags,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
return 0;
}
static int rockchip_pcie_ep_get_msi(struct pci_epc *epc, u8 fn, u8 vfn)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
u32 flags;
flags = rockchip_pcie_read(rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
if (!(flags & ROCKCHIP_PCIE_EP_MSI_CTRL_ME))
return -EINVAL;
return 1 << ((flags & ROCKCHIP_PCIE_EP_MSI_CTRL_MME_MASK) >>
ROCKCHIP_PCIE_EP_MSI_CTRL_MME_OFFSET);
}
static void rockchip_pcie_ep_assert_intx(struct rockchip_pcie_ep *ep, u8 fn,
u8 intx, bool do_assert)
{
struct rockchip_pcie *rockchip = &ep->rockchip;
intx &= 3;
if (do_assert) {
ep->irq_pending |= BIT(intx);
rockchip_pcie_write(rockchip,
PCIE_CLIENT_INT_IN_ASSERT |
PCIE_CLIENT_INT_PEND_ST_PEND,
PCIE_CLIENT_LEGACY_INT_CTRL);
} else {
ep->irq_pending &= ~BIT(intx);
rockchip_pcie_write(rockchip,
PCIE_CLIENT_INT_IN_DEASSERT |
PCIE_CLIENT_INT_PEND_ST_NORMAL,
PCIE_CLIENT_LEGACY_INT_CTRL);
}
}
static int rockchip_pcie_ep_send_intx_irq(struct rockchip_pcie_ep *ep, u8 fn,
u8 intx)
{
u16 cmd;
cmd = rockchip_pcie_read(&ep->rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_CMD_STATUS);
if (cmd & PCI_COMMAND_INTX_DISABLE)
return -EINVAL;
/*
* Should add some delay between toggling INTx per TRM vaguely saying
* it depends on some cycles of the AHB bus clock to function it. So
* add sufficient 1ms here.
*/
rockchip_pcie_ep_assert_intx(ep, fn, intx, true);
mdelay(1);
rockchip_pcie_ep_assert_intx(ep, fn, intx, false);
return 0;
}
static int rockchip_pcie_ep_send_msi_irq(struct rockchip_pcie_ep *ep, u8 fn,
u8 interrupt_num)
{
struct rockchip_pcie *rockchip = &ep->rockchip;
u32 flags, mme, data, data_mask;
size_t irq_pci_size, offset;
u64 irq_pci_addr;
u8 msi_count;
u64 pci_addr;
/* Check MSI enable bit */
flags = rockchip_pcie_read(&ep->rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
if (!(flags & ROCKCHIP_PCIE_EP_MSI_CTRL_ME))
return -EINVAL;
/* Get MSI numbers from MME */
mme = ((flags & ROCKCHIP_PCIE_EP_MSI_CTRL_MME_MASK) >>
ROCKCHIP_PCIE_EP_MSI_CTRL_MME_OFFSET);
msi_count = 1 << mme;
if (!interrupt_num || interrupt_num > msi_count)
return -EINVAL;
/* Set MSI private data */
data_mask = msi_count - 1;
data = rockchip_pcie_read(rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG +
PCI_MSI_DATA_64);
data = (data & ~data_mask) | ((interrupt_num - 1) & data_mask);
/* Get MSI PCI address */
pci_addr = rockchip_pcie_read(rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG +
PCI_MSI_ADDRESS_HI);
pci_addr <<= 32;
pci_addr |= rockchip_pcie_read(rockchip,
ROCKCHIP_PCIE_EP_FUNC_BASE(fn) +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG +
PCI_MSI_ADDRESS_LO);
/* Set the outbound region if needed. */
irq_pci_size = ~PCIE_ADDR_MASK + 1;
irq_pci_addr = rockchip_pcie_ep_align_addr(ep->epc,
pci_addr & PCIE_ADDR_MASK,
&irq_pci_size, &offset);
if (unlikely(ep->irq_pci_addr != irq_pci_addr ||
ep->irq_pci_fn != fn)) {
rockchip_pcie_prog_ep_ob_atu(rockchip, fn,
rockchip_ob_region(ep->irq_phys_addr),
ep->irq_phys_addr,
irq_pci_addr, irq_pci_size);
ep->irq_pci_addr = irq_pci_addr;
ep->irq_pci_fn = fn;
}
writew(data, ep->irq_cpu_addr + offset + (pci_addr & ~PCIE_ADDR_MASK));
return 0;
}
static int rockchip_pcie_ep_raise_irq(struct pci_epc *epc, u8 fn, u8 vfn,
unsigned int type, u16 interrupt_num)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
switch (type) {
case PCI_IRQ_INTX:
return rockchip_pcie_ep_send_intx_irq(ep, fn, 0);
case PCI_IRQ_MSI:
return rockchip_pcie_ep_send_msi_irq(ep, fn, interrupt_num);
default:
return -EINVAL;
}
}
static int rockchip_pcie_ep_start(struct pci_epc *epc)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
struct pci_epf *epf;
u32 cfg;
cfg = BIT(0);
list_for_each_entry(epf, &epc->pci_epf, list)
cfg |= BIT(epf->func_no);
rockchip_pcie_write(rockchip, cfg, PCIE_CORE_PHY_FUNC_CFG);
if (rockchip->perst_gpio)
enable_irq(ep->perst_irq);
/* Enable configuration and start link training */
rockchip_pcie_write(rockchip,
PCIE_CLIENT_LINK_TRAIN_ENABLE |
PCIE_CLIENT_CONF_ENABLE,
PCIE_CLIENT_CONFIG);
if (!rockchip->perst_gpio)
schedule_delayed_work(&ep->link_training, 0);
return 0;
}
static void rockchip_pcie_ep_stop(struct pci_epc *epc)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
if (rockchip->perst_gpio) {
ep->perst_asserted = true;
disable_irq(ep->perst_irq);
}
cancel_delayed_work_sync(&ep->link_training);
/* Stop link training and disable configuration */
rockchip_pcie_write(rockchip,
PCIE_CLIENT_CONF_DISABLE |
PCIE_CLIENT_LINK_TRAIN_DISABLE,
PCIE_CLIENT_CONFIG);
}
static void rockchip_pcie_ep_retrain_link(struct rockchip_pcie *rockchip)
{
u32 status;
status = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_BASE + PCI_EXP_LNKCTL);
status |= PCI_EXP_LNKCTL_RL;
rockchip_pcie_write(rockchip, status, PCIE_EP_CONFIG_BASE + PCI_EXP_LNKCTL);
}
static bool rockchip_pcie_ep_link_up(struct rockchip_pcie *rockchip)
{
u32 val = rockchip_pcie_read(rockchip, PCIE_CLIENT_BASIC_STATUS1);
return PCIE_LINK_UP(val);
}
static void rockchip_pcie_ep_link_training(struct work_struct *work)
{
struct rockchip_pcie_ep *ep =
container_of(work, struct rockchip_pcie_ep, link_training.work);
struct rockchip_pcie *rockchip = &ep->rockchip;
struct device *dev = rockchip->dev;
u32 val;
int ret;
/* Enable Gen1 training and wait for its completion */
ret = readl_poll_timeout(rockchip->apb_base + PCIE_CORE_CTRL,
val, PCIE_LINK_TRAINING_DONE(val), 50,
LINK_TRAIN_TIMEOUT);
if (ret)
goto again;
/* Make sure that the link is up */
ret = readl_poll_timeout(rockchip->apb_base + PCIE_CLIENT_BASIC_STATUS1,
val, PCIE_LINK_UP(val), 50,
LINK_TRAIN_TIMEOUT);
if (ret)
goto again;
/*
* Check the current speed: if gen2 speed was requested and we are not
* at gen2 speed yet, retrain again for gen2.
*/
val = rockchip_pcie_read(rockchip, PCIE_CORE_CTRL);
if (!PCIE_LINK_IS_GEN2(val) && rockchip->link_gen == 2) {
/* Enable retrain for gen2 */
rockchip_pcie_ep_retrain_link(rockchip);
readl_poll_timeout(rockchip->apb_base + PCIE_CORE_CTRL,
val, PCIE_LINK_IS_GEN2(val), 50,
LINK_TRAIN_TIMEOUT);
}
/* Check again that the link is up */
if (!rockchip_pcie_ep_link_up(rockchip))
goto again;
/*
* If PERST# was asserted while polling the link, do not notify
* the function.
*/
if (ep->perst_asserted)
return;
val = rockchip_pcie_read(rockchip, PCIE_CLIENT_BASIC_STATUS0);
dev_info(dev,
"link up (negotiated speed: %sGT/s, width: x%lu)\n",
(val & PCIE_CLIENT_NEG_LINK_SPEED) ? "5" : "2.5",
((val & PCIE_CLIENT_NEG_LINK_WIDTH_MASK) >>
PCIE_CLIENT_NEG_LINK_WIDTH_SHIFT) << 1);
/* Notify the function */
pci_epc_linkup(ep->epc);
ep->link_up = true;
return;
again:
schedule_delayed_work(&ep->link_training, msecs_to_jiffies(5));
}
static void rockchip_pcie_ep_perst_assert(struct rockchip_pcie_ep *ep)
{
struct rockchip_pcie *rockchip = &ep->rockchip;
dev_dbg(rockchip->dev, "PERST# asserted, link down\n");
if (ep->perst_asserted)
return;
ep->perst_asserted = true;
cancel_delayed_work_sync(&ep->link_training);
if (ep->link_up) {
pci_epc_linkdown(ep->epc);
ep->link_up = false;
}
}
static void rockchip_pcie_ep_perst_deassert(struct rockchip_pcie_ep *ep)
{
struct rockchip_pcie *rockchip = &ep->rockchip;
dev_dbg(rockchip->dev, "PERST# de-asserted, starting link training\n");
if (!ep->perst_asserted)
return;
ep->perst_asserted = false;
/* Enable link re-training */
rockchip_pcie_ep_retrain_link(rockchip);
/* Start link training */
schedule_delayed_work(&ep->link_training, 0);
}
static irqreturn_t rockchip_pcie_ep_perst_irq_thread(int irq, void *data)
{
struct pci_epc *epc = data;
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
u32 perst = gpiod_get_value(rockchip->perst_gpio);
if (perst)
rockchip_pcie_ep_perst_assert(ep);
else
rockchip_pcie_ep_perst_deassert(ep);
irq_set_irq_type(ep->perst_irq,
(perst ? IRQF_TRIGGER_HIGH : IRQF_TRIGGER_LOW));
return IRQ_HANDLED;
}
static int rockchip_pcie_ep_setup_irq(struct pci_epc *epc)
{
struct rockchip_pcie_ep *ep = epc_get_drvdata(epc);
struct rockchip_pcie *rockchip = &ep->rockchip;
struct device *dev = rockchip->dev;
int ret;
if (!rockchip->perst_gpio)
return 0;
/* PCIe reset interrupt */
ep->perst_irq = gpiod_to_irq(rockchip->perst_gpio);
if (ep->perst_irq < 0) {
dev_err(dev,
"failed to get IRQ for PERST# GPIO: %d\n",
ep->perst_irq);
return ep->perst_irq;
}
/*
* The perst_gpio is active low, so when it is inactive on start, it
* is high and will trigger the perst_irq handler. So treat this initial
* IRQ as a dummy one by faking the host asserting PERST#.
*/
ep->perst_asserted = true;
irq_set_status_flags(ep->perst_irq, IRQ_NOAUTOEN);
ret = devm_request_threaded_irq(dev, ep->perst_irq, NULL,
rockchip_pcie_ep_perst_irq_thread,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"pcie-ep-perst", epc);
if (ret) {
dev_err(dev,
"failed to request IRQ for PERST# GPIO: %d\n",
ret);
return ret;
}
return 0;
}
static const struct pci_epc_features rockchip_pcie_epc_features = {
.linkup_notifier = true,
.msi_capable = true,
.msix_capable = false,
.intx_capable = true,
.align = ROCKCHIP_PCIE_AT_SIZE_ALIGN,
};
static const struct pci_epc_features*
rockchip_pcie_ep_get_features(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
{
return &rockchip_pcie_epc_features;
}
static const struct pci_epc_ops rockchip_pcie_epc_ops = {
.write_header = rockchip_pcie_ep_write_header,
.set_bar = rockchip_pcie_ep_set_bar,
.clear_bar = rockchip_pcie_ep_clear_bar,
.align_addr = rockchip_pcie_ep_align_addr,
.map_addr = rockchip_pcie_ep_map_addr,
.unmap_addr = rockchip_pcie_ep_unmap_addr,
.set_msi = rockchip_pcie_ep_set_msi,
.get_msi = rockchip_pcie_ep_get_msi,
.raise_irq = rockchip_pcie_ep_raise_irq,
.start = rockchip_pcie_ep_start,
.stop = rockchip_pcie_ep_stop,
.get_features = rockchip_pcie_ep_get_features,
};
static int rockchip_pcie_ep_get_resources(struct rockchip_pcie *rockchip,
struct rockchip_pcie_ep *ep)
{
struct device *dev = rockchip->dev;
int err;
err = rockchip_pcie_parse_dt(rockchip);
if (err)
return err;
err = rockchip_pcie_get_phys(rockchip);
if (err)
return err;
err = of_property_read_u32(dev->of_node,
"rockchip,max-outbound-regions",
&ep->max_regions);
if (err < 0 || ep->max_regions > MAX_REGION_LIMIT)
ep->max_regions = MAX_REGION_LIMIT;
ep->ob_region_map = 0;
err = of_property_read_u8(dev->of_node, "max-functions",
&ep->epc->max_functions);
if (err < 0)
ep->epc->max_functions = 1;
return 0;
}
static const struct of_device_id rockchip_pcie_ep_of_match[] = {
{ .compatible = "rockchip,rk3399-pcie-ep"},
{},
};
static int rockchip_pcie_ep_init_ob_mem(struct rockchip_pcie_ep *ep)
{
struct rockchip_pcie *rockchip = &ep->rockchip;
struct device *dev = rockchip->dev;
struct pci_epc_mem_window *windows = NULL;
int err, i;
ep->ob_addr = devm_kcalloc(dev, ep->max_regions, sizeof(*ep->ob_addr),
GFP_KERNEL);
if (!ep->ob_addr)
return -ENOMEM;
windows = devm_kcalloc(dev, ep->max_regions,
sizeof(struct pci_epc_mem_window), GFP_KERNEL);
if (!windows)
return -ENOMEM;
for (i = 0; i < ep->max_regions; i++) {
windows[i].phys_base = rockchip->mem_res->start + (SZ_1M * i);
windows[i].size = SZ_1M;
windows[i].page_size = SZ_1M;
}
err = pci_epc_multi_mem_init(ep->epc, windows, ep->max_regions);
devm_kfree(dev, windows);
if (err < 0) {
dev_err(dev, "failed to initialize the memory space\n");
return err;
}
ep->irq_cpu_addr = pci_epc_mem_alloc_addr(ep->epc, &ep->irq_phys_addr,
SZ_1M);
if (!ep->irq_cpu_addr) {
dev_err(dev, "failed to reserve memory space for MSI\n");
err = -ENOMEM;
goto err_epc_mem_exit;
}
ep->irq_pci_addr = ROCKCHIP_PCIE_EP_DUMMY_IRQ_ADDR;
return 0;
err_epc_mem_exit:
pci_epc_mem_exit(ep->epc);
return err;
}
static void rockchip_pcie_ep_exit_ob_mem(struct rockchip_pcie_ep *ep)
{
pci_epc_mem_exit(ep->epc);
}
static void rockchip_pcie_ep_hide_broken_msix_cap(struct rockchip_pcie *rockchip)
{
u32 cfg_msi, cfg_msix_cp;
/*
* MSI-X is not supported but the controller still advertises the MSI-X
* capability by default, which can lead to the Root Complex side
* allocating MSI-X vectors which cannot be used. Avoid this by skipping
* the MSI-X capability entry in the PCIe capabilities linked-list: get
* the next pointer from the MSI-X entry and set that in the MSI
* capability entry (which is the previous entry). This way the MSI-X
* entry is skipped (left out of the linked-list) and not advertised.
*/
cfg_msi = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_BASE +
ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
cfg_msi &= ~ROCKCHIP_PCIE_EP_MSI_CP1_MASK;
cfg_msix_cp = rockchip_pcie_read(rockchip, PCIE_EP_CONFIG_BASE +
ROCKCHIP_PCIE_EP_MSIX_CAP_REG) &
ROCKCHIP_PCIE_EP_MSIX_CAP_CP_MASK;
cfg_msi |= cfg_msix_cp;
rockchip_pcie_write(rockchip, cfg_msi,
PCIE_EP_CONFIG_BASE + ROCKCHIP_PCIE_EP_MSI_CTRL_REG);
}
static int rockchip_pcie_ep_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_pcie_ep *ep;
struct rockchip_pcie *rockchip;
struct pci_epc *epc;
int err;
ep = devm_kzalloc(dev, sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
rockchip = &ep->rockchip;
rockchip->is_rc = false;
rockchip->dev = dev;
INIT_DELAYED_WORK(&ep->link_training, rockchip_pcie_ep_link_training);
epc = devm_pci_epc_create(dev, &rockchip_pcie_epc_ops);
if (IS_ERR(epc)) {
dev_err(dev, "failed to create EPC device\n");
return PTR_ERR(epc);
}
ep->epc = epc;
epc_set_drvdata(epc, ep);
err = rockchip_pcie_ep_get_resources(rockchip, ep);
if (err)
return err;
err = rockchip_pcie_ep_init_ob_mem(ep);
if (err)
return err;
err = rockchip_pcie_enable_clocks(rockchip);
if (err)
goto err_exit_ob_mem;
err = rockchip_pcie_init_port(rockchip);
if (err)
goto err_disable_clocks;
rockchip_pcie_ep_hide_broken_msix_cap(rockchip);
/* Only enable function 0 by default */
rockchip_pcie_write(rockchip, BIT(0), PCIE_CORE_PHY_FUNC_CFG);
pci_epc_init_notify(epc);
err = rockchip_pcie_ep_setup_irq(epc);
if (err < 0)
goto err_uninit_port;
return 0;
err_uninit_port:
rockchip_pcie_deinit_phys(rockchip);
err_disable_clocks:
rockchip_pcie_disable_clocks(rockchip);
err_exit_ob_mem:
rockchip_pcie_ep_exit_ob_mem(ep);
return err;
}
static struct platform_driver rockchip_pcie_ep_driver = {
.driver = {
.name = "rockchip-pcie-ep",
.of_match_table = rockchip_pcie_ep_of_match,
},
.probe = rockchip_pcie_ep_probe,
};
builtin_platform_driver(rockchip_pcie_ep_driver);