linux/drivers/net/phy/microchip_rds_ptp.c
Jacob Keller d9f3e9ecc4 net: ptp: introduce .supported_perout_flags to ptp_clock_info
The PTP_PEROUT_REQUEST2 ioctl has gained support for flags specifying
specific output behavior including PTP_PEROUT_ONE_SHOT,
PTP_PEROUT_DUTY_CYCLE, PTP_PEROUT_PHASE.

Driver authors are notorious for not checking the flags of the request.
This results in misinterpreting the request, generating an output signal
that does not match the requested value. It is anticipated that even more
flags will be added in the future, resulting in even more broken requests.

Expecting these issues to be caught during review or playing whack-a-mole
after the fact is not a great solution.

Instead, introduce the supported_perout_flags field in the ptp_clock_info
structure. Update the core character device logic to explicitly reject any
request which has a flag not on this list.

This ensures that drivers must 'opt in' to the flags they support. Drivers
which don't set the .supported_perout_flags field will not need to check
that unsupported flags aren't passed, as the core takes care of this.

Update the drivers which do support flags to set this new field.

Note the following driver files set n_per_out to a non-zero value but did
not check the flags at all:

 • drivers/ptp/ptp_clockmatrix.c
 • drivers/ptp/ptp_idt82p33.c
 • drivers/ptp/ptp_fc3.c
 • drivers/net/ethernet/ti/am65-cpts.c
 • drivers/net/ethernet/aquantia/atlantic/aq_ptp.c
 • drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.c
 • drivers/net/dsa/sja1105/sja1105_ptp.c
 • drivers/net/ethernet/freescale/dpaa2/dpaa2-ptp.c
 • drivers/net/ethernet/mscc/ocelot_vsc7514.c
 • drivers/net/ethernet/intel/i40e/i40e_ptp.c

Reviewed-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Kory Maincent <kory.maincent@bootlin.com>
Link: https://patch.msgid.link/20250414-jk-supported-perout-flags-v2-2-f6b17d15475c@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-04-15 20:20:58 -07:00

1307 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2024 Microchip Technology
#include "microchip_rds_ptp.h"
static int mchp_rds_phy_read_mmd(struct mchp_rds_ptp_clock *clock,
u32 offset, enum mchp_rds_ptp_base base)
{
struct phy_device *phydev = clock->phydev;
u32 addr;
addr = (offset + ((base == MCHP_RDS_PTP_PORT) ? BASE_PORT(clock) :
BASE_CLK(clock)));
return phy_read_mmd(phydev, PTP_MMD(clock), addr);
}
static int mchp_rds_phy_write_mmd(struct mchp_rds_ptp_clock *clock,
u32 offset, enum mchp_rds_ptp_base base,
u16 val)
{
struct phy_device *phydev = clock->phydev;
u32 addr;
addr = (offset + ((base == MCHP_RDS_PTP_PORT) ? BASE_PORT(clock) :
BASE_CLK(clock)));
return phy_write_mmd(phydev, PTP_MMD(clock), addr, val);
}
static int mchp_rds_phy_modify_mmd(struct mchp_rds_ptp_clock *clock,
u32 offset, enum mchp_rds_ptp_base base,
u16 mask, u16 val)
{
struct phy_device *phydev = clock->phydev;
u32 addr;
addr = (offset + ((base == MCHP_RDS_PTP_PORT) ? BASE_PORT(clock) :
BASE_CLK(clock)));
return phy_modify_mmd(phydev, PTP_MMD(clock), addr, mask, val);
}
static int mchp_rds_phy_set_bits_mmd(struct mchp_rds_ptp_clock *clock,
u32 offset, enum mchp_rds_ptp_base base,
u16 val)
{
struct phy_device *phydev = clock->phydev;
u32 addr;
addr = (offset + ((base == MCHP_RDS_PTP_PORT) ? BASE_PORT(clock) :
BASE_CLK(clock)));
return phy_set_bits_mmd(phydev, PTP_MMD(clock), addr, val);
}
static int mchp_get_pulsewidth(struct phy_device *phydev,
struct ptp_perout_request *perout_request,
int *pulse_width)
{
struct timespec64 ts_period;
s64 ts_on_nsec, period_nsec;
struct timespec64 ts_on;
static const s64 sup_on_necs[] = {
100, /* 100ns */
500, /* 500ns */
1000, /* 1us */
5000, /* 5us */
10000, /* 10us */
50000, /* 50us */
100000, /* 100us */
500000, /* 500us */
1000000, /* 1ms */
5000000, /* 5ms */
10000000, /* 10ms */
50000000, /* 50ms */
100000000, /* 100ms */
200000000, /* 200ms */
};
ts_period.tv_sec = perout_request->period.sec;
ts_period.tv_nsec = perout_request->period.nsec;
ts_on.tv_sec = perout_request->on.sec;
ts_on.tv_nsec = perout_request->on.nsec;
ts_on_nsec = timespec64_to_ns(&ts_on);
period_nsec = timespec64_to_ns(&ts_period);
if (period_nsec < 200) {
phydev_warn(phydev, "perout period small, minimum is 200ns\n");
return -EOPNOTSUPP;
}
for (int i = 0; i < ARRAY_SIZE(sup_on_necs); i++) {
if (ts_on_nsec <= sup_on_necs[i]) {
*pulse_width = i;
break;
}
}
phydev_info(phydev, "pulse width is %d\n", *pulse_width);
return 0;
}
static int mchp_general_event_config(struct mchp_rds_ptp_clock *clock,
int pulse_width)
{
int general_config;
general_config = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_GEN_CFG,
MCHP_RDS_PTP_CLOCK);
if (general_config < 0)
return general_config;
general_config &= ~MCHP_RDS_PTP_GEN_CFG_LTC_EVT_MASK;
general_config |= MCHP_RDS_PTP_GEN_CFG_LTC_EVT_SET(pulse_width);
general_config &= ~MCHP_RDS_PTP_GEN_CFG_RELOAD_ADD;
general_config |= MCHP_RDS_PTP_GEN_CFG_POLARITY;
return mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_GEN_CFG,
MCHP_RDS_PTP_CLOCK, general_config);
}
static int mchp_set_clock_reload(struct mchp_rds_ptp_clock *clock,
s64 period_sec, u32 period_nsec)
{
int rc;
rc = mchp_rds_phy_write_mmd(clock,
MCHP_RDS_PTP_CLK_TRGT_RELOAD_SEC_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(period_sec));
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock,
MCHP_RDS_PTP_CLK_TRGT_RELOAD_SEC_HI,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(period_sec));
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock,
MCHP_RDS_PTP_CLK_TRGT_RELOAD_NS_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(period_nsec));
if (rc < 0)
return rc;
return mchp_rds_phy_write_mmd(clock,
MCHP_RDS_PTP_CLK_TRGT_RELOAD_NS_HI,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(period_nsec) & 0x3fff);
}
static int mchp_set_clock_target(struct mchp_rds_ptp_clock *clock,
s64 start_sec, u32 start_nsec)
{
int rc;
/* Set the start time */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CLK_TRGT_SEC_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(start_sec));
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CLK_TRGT_SEC_HI,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(start_sec));
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CLK_TRGT_NS_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(start_nsec));
if (rc < 0)
return rc;
return mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CLK_TRGT_NS_HI,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(start_nsec) & 0x3fff);
}
static int mchp_rds_ptp_perout_off(struct mchp_rds_ptp_clock *clock)
{
u16 general_config;
int rc;
/* Set target to too far in the future, effectively disabling it */
rc = mchp_set_clock_target(clock, 0xFFFFFFFF, 0);
if (rc < 0)
return rc;
general_config = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_GEN_CFG,
MCHP_RDS_PTP_CLOCK);
general_config |= MCHP_RDS_PTP_GEN_CFG_RELOAD_ADD;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_GEN_CFG,
MCHP_RDS_PTP_CLOCK, general_config);
if (rc < 0)
return rc;
clock->mchp_rds_ptp_event = -1;
return 0;
}
static bool mchp_get_event(struct mchp_rds_ptp_clock *clock, int pin)
{
if (clock->mchp_rds_ptp_event < 0 && pin == clock->event_pin) {
clock->mchp_rds_ptp_event = pin;
return true;
}
return false;
}
static int mchp_rds_ptp_perout(struct ptp_clock_info *ptpci,
struct ptp_perout_request *perout, int on)
{
struct mchp_rds_ptp_clock *clock = container_of(ptpci,
struct mchp_rds_ptp_clock,
caps);
struct phy_device *phydev = clock->phydev;
int ret, event_pin, pulsewidth;
event_pin = ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
perout->index);
if (event_pin != clock->event_pin)
return -EINVAL;
if (!on) {
ret = mchp_rds_ptp_perout_off(clock);
return ret;
}
if (!mchp_get_event(clock, event_pin))
return -EINVAL;
ret = mchp_get_pulsewidth(phydev, perout, &pulsewidth);
if (ret < 0)
return ret;
/* Configure to pulse every period */
ret = mchp_general_event_config(clock, pulsewidth);
if (ret < 0)
return ret;
ret = mchp_set_clock_target(clock, perout->start.sec,
perout->start.nsec);
if (ret < 0)
return ret;
return mchp_set_clock_reload(clock, perout->period.sec,
perout->period.nsec);
}
static int mchp_rds_ptpci_enable(struct ptp_clock_info *ptpci,
struct ptp_clock_request *request, int on)
{
switch (request->type) {
case PTP_CLK_REQ_PEROUT:
return mchp_rds_ptp_perout(ptpci, &request->perout, on);
default:
return -EINVAL;
}
}
static int mchp_rds_ptpci_verify(struct ptp_clock_info *ptpci, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
struct mchp_rds_ptp_clock *clock = container_of(ptpci,
struct mchp_rds_ptp_clock,
caps);
if (!(pin == clock->event_pin && chan == 0))
return -1;
switch (func) {
case PTP_PF_NONE:
case PTP_PF_PEROUT:
break;
default:
return -1;
}
return 0;
}
static int mchp_rds_ptp_flush_fifo(struct mchp_rds_ptp_clock *clock,
enum mchp_rds_ptp_fifo_dir dir)
{
int rc;
if (dir == MCHP_RDS_PTP_EGRESS_FIFO)
skb_queue_purge(&clock->tx_queue);
else
skb_queue_purge(&clock->rx_queue);
for (int i = 0; i < MCHP_RDS_PTP_FIFO_SIZE; ++i) {
rc = mchp_rds_phy_read_mmd(clock,
dir == MCHP_RDS_PTP_EGRESS_FIFO ?
MCHP_RDS_PTP_TX_MSG_HDR2 :
MCHP_RDS_PTP_RX_MSG_HDR2,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return rc;
}
return mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_INT_STS,
MCHP_RDS_PTP_PORT);
}
static int mchp_rds_ptp_config_intr(struct mchp_rds_ptp_clock *clock,
bool enable)
{
/* Enable or disable ptp interrupts */
return mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_INT_EN,
MCHP_RDS_PTP_PORT,
enable ? MCHP_RDS_PTP_INT_ALL_MSK : 0);
}
static void mchp_rds_ptp_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct mchp_rds_ptp_clock *clock = container_of(mii_ts,
struct mchp_rds_ptp_clock,
mii_ts);
switch (clock->hwts_tx_type) {
case HWTSTAMP_TX_ONESTEP_SYNC:
if (ptp_msg_is_sync(skb, type)) {
kfree_skb(skb);
return;
}
fallthrough;
case HWTSTAMP_TX_ON:
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&clock->tx_queue, skb);
break;
case HWTSTAMP_TX_OFF:
default:
kfree_skb(skb);
break;
}
}
static bool mchp_rds_ptp_get_sig_rx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
int type;
skb_push(skb, ETH_HLEN);
type = ptp_classify_raw(skb);
if (type == PTP_CLASS_NONE)
return false;
ptp_header = ptp_parse_header(skb, type);
if (!ptp_header)
return false;
skb_pull_inline(skb, ETH_HLEN);
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
return true;
}
static bool mchp_rds_ptp_match_skb(struct mchp_rds_ptp_clock *clock,
struct mchp_rds_ptp_rx_ts *rx_ts)
{
struct skb_shared_hwtstamps *shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
bool rc = false;
u16 skb_sig;
spin_lock_irqsave(&clock->rx_queue.lock, flags);
skb_queue_walk_safe(&clock->rx_queue, skb, skb_tmp) {
if (!mchp_rds_ptp_get_sig_rx(skb, &skb_sig))
continue;
if (skb_sig != rx_ts->seq_id)
continue;
__skb_unlink(skb, &clock->rx_queue);
rc = true;
break;
}
spin_unlock_irqrestore(&clock->rx_queue.lock, flags);
if (rc) {
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
netif_rx(skb);
}
return rc;
}
static void mchp_rds_ptp_match_rx_ts(struct mchp_rds_ptp_clock *clock,
struct mchp_rds_ptp_rx_ts *rx_ts)
{
unsigned long flags;
/* If we failed to match the skb add it to the queue for when
* the frame will come
*/
if (!mchp_rds_ptp_match_skb(clock, rx_ts)) {
spin_lock_irqsave(&clock->rx_ts_lock, flags);
list_add(&rx_ts->list, &clock->rx_ts_list);
spin_unlock_irqrestore(&clock->rx_ts_lock, flags);
} else {
kfree(rx_ts);
}
}
static void mchp_rds_ptp_match_rx_skb(struct mchp_rds_ptp_clock *clock,
struct sk_buff *skb)
{
struct mchp_rds_ptp_rx_ts *rx_ts, *tmp, *rx_ts_var = NULL;
struct skb_shared_hwtstamps *shhwtstamps;
unsigned long flags;
u16 skb_sig;
if (!mchp_rds_ptp_get_sig_rx(skb, &skb_sig))
return;
/* Iterate over all RX timestamps and match it with the received skbs */
spin_lock_irqsave(&clock->rx_ts_lock, flags);
list_for_each_entry_safe(rx_ts, tmp, &clock->rx_ts_list, list) {
/* Check if we found the signature we were looking for. */
if (skb_sig != rx_ts->seq_id)
continue;
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
netif_rx(skb);
rx_ts_var = rx_ts;
break;
}
spin_unlock_irqrestore(&clock->rx_ts_lock, flags);
if (rx_ts_var) {
list_del(&rx_ts_var->list);
kfree(rx_ts_var);
} else {
skb_queue_tail(&clock->rx_queue, skb);
}
}
static bool mchp_rds_ptp_rxtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct mchp_rds_ptp_clock *clock = container_of(mii_ts,
struct mchp_rds_ptp_clock,
mii_ts);
if (clock->rx_filter == HWTSTAMP_FILTER_NONE ||
type == PTP_CLASS_NONE)
return false;
if ((type & clock->version) == 0 || (type & clock->layer) == 0)
return false;
/* Here if match occurs skb is sent to application, If not skb is added
* to queue and sending skb to application will get handled when
* interrupt occurs i.e., it get handles in interrupt handler. By
* any means skb will reach the application so we should not return
* false here if skb doesn't matches.
*/
mchp_rds_ptp_match_rx_skb(clock, skb);
return true;
}
static int mchp_rds_ptp_hwtstamp(struct mii_timestamper *mii_ts,
struct kernel_hwtstamp_config *config,
struct netlink_ext_ack *extack)
{
struct mchp_rds_ptp_clock *clock =
container_of(mii_ts, struct mchp_rds_ptp_clock,
mii_ts);
struct mchp_rds_ptp_rx_ts *rx_ts, *tmp;
int txcfg = 0, rxcfg = 0;
unsigned long flags;
int rc;
clock->hwts_tx_type = config->tx_type;
clock->rx_filter = config->rx_filter;
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
clock->layer = 0;
clock->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
clock->layer = PTP_CLASS_L4;
clock->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
clock->layer = PTP_CLASS_L2;
clock->version = PTP_CLASS_V2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
clock->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
clock->version = PTP_CLASS_V2;
break;
default:
return -ERANGE;
}
/* Setup parsing of the frames and enable the timestamping for ptp
* frames
*/
if (clock->layer & PTP_CLASS_L2) {
rxcfg = MCHP_RDS_PTP_PARSE_CONFIG_LAYER2_EN;
txcfg = MCHP_RDS_PTP_PARSE_CONFIG_LAYER2_EN;
}
if (clock->layer & PTP_CLASS_L4) {
rxcfg |= MCHP_RDS_PTP_PARSE_CONFIG_IPV4_EN |
MCHP_RDS_PTP_PARSE_CONFIG_IPV6_EN;
txcfg |= MCHP_RDS_PTP_PARSE_CONFIG_IPV4_EN |
MCHP_RDS_PTP_PARSE_CONFIG_IPV6_EN;
}
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_PARSE_CONFIG,
MCHP_RDS_PTP_PORT, rxcfg);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_PARSE_CONFIG,
MCHP_RDS_PTP_PORT, txcfg);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_TIMESTAMP_EN,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_TIMESTAMP_EN_ALL);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_TIMESTAMP_EN,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_TIMESTAMP_EN_ALL);
if (rc < 0)
return rc;
if (clock->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
/* Enable / disable of the TX timestamp in the SYNC frames */
rc = mchp_rds_phy_modify_mmd(clock, MCHP_RDS_PTP_TX_MOD,
MCHP_RDS_PTP_PORT,
MCHP_RDS_TX_MOD_PTP_SYNC_TS_INSERT,
MCHP_RDS_TX_MOD_PTP_SYNC_TS_INSERT);
else
rc = mchp_rds_phy_modify_mmd(clock, MCHP_RDS_PTP_TX_MOD,
MCHP_RDS_PTP_PORT,
MCHP_RDS_TX_MOD_PTP_SYNC_TS_INSERT,
(u16)~MCHP_RDS_TX_MOD_PTP_SYNC_TS_INSERT);
if (rc < 0)
return rc;
/* In case of multiple starts and stops, these needs to be cleared */
spin_lock_irqsave(&clock->rx_ts_lock, flags);
list_for_each_entry_safe(rx_ts, tmp, &clock->rx_ts_list, list) {
list_del(&rx_ts->list);
kfree(rx_ts);
}
spin_unlock_irqrestore(&clock->rx_ts_lock, flags);
rc = mchp_rds_ptp_flush_fifo(clock, MCHP_RDS_PTP_INGRESS_FIFO);
if (rc < 0)
return rc;
rc = mchp_rds_ptp_flush_fifo(clock, MCHP_RDS_PTP_EGRESS_FIFO);
if (rc < 0)
return rc;
/* Now enable the timestamping interrupts */
rc = mchp_rds_ptp_config_intr(clock,
config->rx_filter != HWTSTAMP_FILTER_NONE);
return rc < 0 ? rc : 0;
}
static int mchp_rds_ptp_ts_info(struct mii_timestamper *mii_ts,
struct kernel_ethtool_ts_info *info)
{
struct mchp_rds_ptp_clock *clock = container_of(mii_ts,
struct mchp_rds_ptp_clock,
mii_ts);
info->phc_index = ptp_clock_index(clock->ptp_clock);
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON) |
BIT(HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
static int mchp_rds_ptp_ltc_adjtime(struct ptp_clock_info *info, s64 delta)
{
struct mchp_rds_ptp_clock *clock = container_of(info,
struct mchp_rds_ptp_clock,
caps);
struct timespec64 ts;
bool add = true;
int rc = 0;
u32 nsec;
s32 sec;
/* The HW allows up to 15 sec to adjust the time, but here we limit to
* 10 sec the adjustment. The reason is, in case the adjustment is 14
* sec and 999999999 nsec, then we add 8ns to compensate the actual
* increment so the value can be bigger than 15 sec. Therefore limit the
* possible adjustments so we will not have these corner cases
*/
if (delta > 10000000000LL || delta < -10000000000LL) {
/* The timeadjustment is too big, so fall back using set time */
u64 now;
info->gettime64(info, &ts);
now = ktime_to_ns(timespec64_to_ktime(ts));
ts = ns_to_timespec64(now + delta);
info->settime64(info, &ts);
return 0;
}
sec = div_u64_rem(abs(delta), NSEC_PER_SEC, &nsec);
if (delta < 0 && nsec != 0) {
/* It is not allowed to adjust low the nsec part, therefore
* subtract more from second part and add to nanosecond such
* that would roll over, so the second part will increase
*/
sec--;
nsec = NSEC_PER_SEC - nsec;
}
/* Calculate the adjustments and the direction */
if (delta < 0)
add = false;
if (nsec > 0) {
/* add 8 ns to cover the likely normal increment */
nsec += 8;
if (nsec >= NSEC_PER_SEC) {
/* carry into seconds */
sec++;
nsec -= NSEC_PER_SEC;
}
}
mutex_lock(&clock->ptp_lock);
if (sec) {
sec = abs(sec);
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_STEP_ADJ_LO,
MCHP_RDS_PTP_CLOCK, sec);
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_set_bits_mmd(clock, MCHP_RDS_PTP_STEP_ADJ_HI,
MCHP_RDS_PTP_CLOCK,
((add ?
MCHP_RDS_PTP_STEP_ADJ_HI_DIR :
0) | ((sec >> 16) &
GENMASK(13, 0))));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_set_bits_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_LTC_STEP_SEC);
if (rc < 0)
goto out_unlock;
}
if (nsec) {
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_STEP_ADJ_LO,
MCHP_RDS_PTP_CLOCK,
nsec & GENMASK(15, 0));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_STEP_ADJ_HI,
MCHP_RDS_PTP_CLOCK,
(nsec >> 16) & GENMASK(13, 0));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_set_bits_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_LTC_STEP_NSEC);
}
mutex_unlock(&clock->ptp_lock);
info->gettime64(info, &ts);
mutex_lock(&clock->ptp_lock);
/* Target update is required for pulse generation on events that
* are enabled
*/
if (clock->mchp_rds_ptp_event >= 0)
mchp_set_clock_target(clock,
ts.tv_sec + MCHP_RDS_PTP_BUFFER_TIME, 0);
out_unlock:
mutex_unlock(&clock->ptp_lock);
return rc;
}
static int mchp_rds_ptp_ltc_adjfine(struct ptp_clock_info *info,
long scaled_ppm)
{
struct mchp_rds_ptp_clock *clock = container_of(info,
struct mchp_rds_ptp_clock,
caps);
u16 rate_lo, rate_hi;
bool faster = true;
u32 rate;
int rc;
if (!scaled_ppm)
return 0;
if (scaled_ppm < 0) {
scaled_ppm = -scaled_ppm;
faster = false;
}
rate = MCHP_RDS_PTP_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
rate += (MCHP_RDS_PTP_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
rate_lo = rate & GENMASK(15, 0);
rate_hi = (rate >> 16) & GENMASK(13, 0);
if (faster)
rate_hi |= MCHP_RDS_PTP_LTC_RATE_ADJ_HI_DIR;
mutex_lock(&clock->ptp_lock);
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_RATE_ADJ_HI,
MCHP_RDS_PTP_CLOCK, rate_hi);
if (rc < 0)
goto error;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_RATE_ADJ_LO,
MCHP_RDS_PTP_CLOCK, rate_lo);
if (rc > 0)
rc = 0;
error:
mutex_unlock(&clock->ptp_lock);
return rc;
}
static int mchp_rds_ptp_ltc_gettime64(struct ptp_clock_info *info,
struct timespec64 *ts)
{
struct mchp_rds_ptp_clock *clock = container_of(info,
struct mchp_rds_ptp_clock,
caps);
time64_t secs;
int rc = 0;
s64 nsecs;
mutex_lock(&clock->ptp_lock);
/* Set read bit to 1 to save current values of 1588 local time counter
* into PTP LTC seconds and nanoseconds registers.
*/
rc = mchp_rds_phy_set_bits_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_CLOCK_READ);
if (rc < 0)
goto out_unlock;
/* Get LTC clock values */
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_LTC_READ_SEC_HI,
MCHP_RDS_PTP_CLOCK);
if (rc < 0)
goto out_unlock;
secs = rc << 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_LTC_READ_SEC_MID,
MCHP_RDS_PTP_CLOCK);
if (rc < 0)
goto out_unlock;
secs |= rc;
secs <<= 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_LTC_READ_SEC_LO,
MCHP_RDS_PTP_CLOCK);
if (rc < 0)
goto out_unlock;
secs |= rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_LTC_READ_NS_HI,
MCHP_RDS_PTP_CLOCK);
if (rc < 0)
goto out_unlock;
nsecs = (rc & GENMASK(13, 0));
nsecs <<= 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_LTC_READ_NS_LO,
MCHP_RDS_PTP_CLOCK);
if (rc < 0)
goto out_unlock;
nsecs |= rc;
set_normalized_timespec64(ts, secs, nsecs);
if (rc > 0)
rc = 0;
out_unlock:
mutex_unlock(&clock->ptp_lock);
return rc;
}
static int mchp_rds_ptp_ltc_settime64(struct ptp_clock_info *info,
const struct timespec64 *ts)
{
struct mchp_rds_ptp_clock *clock = container_of(info,
struct mchp_rds_ptp_clock,
caps);
int rc;
mutex_lock(&clock->ptp_lock);
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_SEC_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(ts->tv_sec));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_SEC_MID,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(ts->tv_sec));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_SEC_HI,
MCHP_RDS_PTP_CLOCK,
upper_32_bits(ts->tv_sec) & GENMASK(15, 0));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_NS_LO,
MCHP_RDS_PTP_CLOCK,
lower_16_bits(ts->tv_nsec));
if (rc < 0)
goto out_unlock;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LTC_NS_HI,
MCHP_RDS_PTP_CLOCK,
upper_16_bits(ts->tv_nsec) & GENMASK(13, 0));
if (rc < 0)
goto out_unlock;
/* Set load bit to 1 to write PTP LTC seconds and nanoseconds
* registers to 1588 local time counter.
*/
rc = mchp_rds_phy_set_bits_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_CLOCK_LOAD);
if (rc > 0)
rc = 0;
out_unlock:
mutex_unlock(&clock->ptp_lock);
return rc;
}
static bool mchp_rds_ptp_get_sig_tx(struct sk_buff *skb, u16 *sig)
{
struct ptp_header *ptp_header;
int type;
type = ptp_classify_raw(skb);
if (type == PTP_CLASS_NONE)
return false;
ptp_header = ptp_parse_header(skb, type);
if (!ptp_header)
return false;
*sig = (__force u16)(ntohs(ptp_header->sequence_id));
return true;
}
static void mchp_rds_ptp_match_tx_skb(struct mchp_rds_ptp_clock *clock,
u32 seconds, u32 nsec, u16 seq_id)
{
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb, *skb_tmp;
unsigned long flags;
bool rc = false;
u16 skb_sig;
spin_lock_irqsave(&clock->tx_queue.lock, flags);
skb_queue_walk_safe(&clock->tx_queue, skb, skb_tmp) {
if (!mchp_rds_ptp_get_sig_tx(skb, &skb_sig))
continue;
if (skb_sig != seq_id)
continue;
__skb_unlink(skb, &clock->tx_queue);
rc = true;
break;
}
spin_unlock_irqrestore(&clock->tx_queue.lock, flags);
if (rc) {
shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
skb_complete_tx_timestamp(skb, &shhwtstamps);
}
}
static struct mchp_rds_ptp_rx_ts
*mchp_rds_ptp_get_rx_ts(struct mchp_rds_ptp_clock *clock)
{
struct phy_device *phydev = clock->phydev;
struct mchp_rds_ptp_rx_ts *rx_ts = NULL;
u32 sec, nsec;
int rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_RX_INGRESS_NS_HI,
MCHP_RDS_PTP_PORT);
if (rc < 0)
goto error;
if (!(rc & MCHP_RDS_PTP_RX_INGRESS_NS_HI_TS_VALID)) {
phydev_err(phydev, "RX Timestamp is not valid!\n");
goto error;
}
nsec = (rc & GENMASK(13, 0)) << 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_RX_INGRESS_NS_LO,
MCHP_RDS_PTP_PORT);
if (rc < 0)
goto error;
nsec |= rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_RX_INGRESS_SEC_HI,
MCHP_RDS_PTP_PORT);
if (rc < 0)
goto error;
sec = rc << 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_RX_INGRESS_SEC_LO,
MCHP_RDS_PTP_PORT);
if (rc < 0)
goto error;
sec |= rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_RX_MSG_HDR2,
MCHP_RDS_PTP_PORT);
if (rc < 0)
goto error;
rx_ts = kmalloc(sizeof(*rx_ts), GFP_KERNEL);
if (!rx_ts)
return NULL;
rx_ts->seconds = sec;
rx_ts->nsec = nsec;
rx_ts->seq_id = rc;
error:
return rx_ts;
}
static void mchp_rds_ptp_process_rx_ts(struct mchp_rds_ptp_clock *clock)
{
int caps;
do {
struct mchp_rds_ptp_rx_ts *rx_ts;
rx_ts = mchp_rds_ptp_get_rx_ts(clock);
if (rx_ts)
mchp_rds_ptp_match_rx_ts(clock, rx_ts);
caps = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_CAP_INFO,
MCHP_RDS_PTP_PORT);
if (caps < 0)
return;
} while (MCHP_RDS_PTP_RX_TS_CNT(caps) > 0);
}
static bool mchp_rds_ptp_get_tx_ts(struct mchp_rds_ptp_clock *clock,
u32 *sec, u32 *nsec, u16 *seq)
{
int rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_TX_EGRESS_NS_HI,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return false;
if (!(rc & MCHP_RDS_PTP_TX_EGRESS_NS_HI_TS_VALID))
return false;
*nsec = (rc & GENMASK(13, 0)) << 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_TX_EGRESS_NS_LO,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return false;
*nsec = *nsec | rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_TX_EGRESS_SEC_HI,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return false;
*sec = rc << 16;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_TX_EGRESS_SEC_LO,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return false;
*sec = *sec | rc;
rc = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_TX_MSG_HDR2,
MCHP_RDS_PTP_PORT);
if (rc < 0)
return false;
*seq = rc;
return true;
}
static void mchp_rds_ptp_process_tx_ts(struct mchp_rds_ptp_clock *clock)
{
int caps;
do {
u32 sec, nsec;
u16 seq;
if (mchp_rds_ptp_get_tx_ts(clock, &sec, &nsec, &seq))
mchp_rds_ptp_match_tx_skb(clock, sec, nsec, seq);
caps = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_CAP_INFO,
MCHP_RDS_PTP_PORT);
if (caps < 0)
return;
} while (MCHP_RDS_PTP_TX_TS_CNT(caps) > 0);
}
int mchp_rds_ptp_top_config_intr(struct mchp_rds_ptp_clock *clock,
u16 reg, u16 val, bool clear)
{
if (clear)
return phy_clear_bits_mmd(clock->phydev, PTP_MMD(clock), reg,
val);
else
return phy_set_bits_mmd(clock->phydev, PTP_MMD(clock), reg,
val);
}
EXPORT_SYMBOL_GPL(mchp_rds_ptp_top_config_intr);
irqreturn_t mchp_rds_ptp_handle_interrupt(struct mchp_rds_ptp_clock *clock)
{
int irq_sts;
/* To handle rogue interrupt scenarios */
if (!clock)
return IRQ_NONE;
do {
irq_sts = mchp_rds_phy_read_mmd(clock, MCHP_RDS_PTP_INT_STS,
MCHP_RDS_PTP_PORT);
if (irq_sts < 0)
return IRQ_NONE;
if (irq_sts & MCHP_RDS_PTP_INT_RX_TS_EN)
mchp_rds_ptp_process_rx_ts(clock);
if (irq_sts & MCHP_RDS_PTP_INT_TX_TS_EN)
mchp_rds_ptp_process_tx_ts(clock);
if (irq_sts & MCHP_RDS_PTP_INT_TX_TS_OVRFL_EN)
mchp_rds_ptp_flush_fifo(clock,
MCHP_RDS_PTP_EGRESS_FIFO);
if (irq_sts & MCHP_RDS_PTP_INT_RX_TS_OVRFL_EN)
mchp_rds_ptp_flush_fifo(clock,
MCHP_RDS_PTP_INGRESS_FIFO);
} while (irq_sts & (MCHP_RDS_PTP_INT_RX_TS_EN |
MCHP_RDS_PTP_INT_TX_TS_EN |
MCHP_RDS_PTP_INT_TX_TS_OVRFL_EN |
MCHP_RDS_PTP_INT_RX_TS_OVRFL_EN));
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(mchp_rds_ptp_handle_interrupt);
static int mchp_rds_ptp_init(struct mchp_rds_ptp_clock *clock)
{
int rc;
/* Disable PTP */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_DIS);
if (rc < 0)
return rc;
/* Disable TSU */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TSU_GEN_CONFIG,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
/* Clear PTP interrupt status registers */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TSU_HARD_RESET,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_TSU_HARDRESET);
if (rc < 0)
return rc;
/* Predictor enable */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_LATENCY_CORRECTION_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_LATENCY_SETTING);
if (rc < 0)
return rc;
/* Configure PTP operational mode */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_OP_MODE,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_OP_MODE_STANDALONE);
if (rc < 0)
return rc;
/* Reference clock configuration */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_REF_CLK_CFG,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_REF_CLK_CFG_SET);
if (rc < 0)
return rc;
/* Classifier configurations */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_PARSE_CONFIG,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_PARSE_CONFIG,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_PARSE_L2_ADDR_EN,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_PARSE_L2_ADDR_EN,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_PARSE_IPV4_ADDR_EN,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_PARSE_IPV4_ADDR_EN,
MCHP_RDS_PTP_PORT, 0);
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_RX_VERSION,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_MAX_VERSION(0xff) |
MCHP_RDS_PTP_MIN_VERSION(0x0));
if (rc < 0)
return rc;
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TX_VERSION,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_MAX_VERSION(0xff) |
MCHP_RDS_PTP_MIN_VERSION(0x0));
if (rc < 0)
return rc;
/* Enable TSU */
rc = mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_TSU_GEN_CONFIG,
MCHP_RDS_PTP_PORT,
MCHP_RDS_PTP_TSU_GEN_CFG_TSU_EN);
if (rc < 0)
return rc;
/* Enable PTP */
return mchp_rds_phy_write_mmd(clock, MCHP_RDS_PTP_CMD_CTL,
MCHP_RDS_PTP_CLOCK,
MCHP_RDS_PTP_CMD_CTL_EN);
}
struct mchp_rds_ptp_clock *mchp_rds_ptp_probe(struct phy_device *phydev, u8 mmd,
u16 clk_base_addr,
u16 port_base_addr)
{
struct mchp_rds_ptp_clock *clock;
int rc;
clock = devm_kzalloc(&phydev->mdio.dev, sizeof(*clock), GFP_KERNEL);
if (!clock)
return ERR_PTR(-ENOMEM);
clock->port_base_addr = port_base_addr;
clock->clk_base_addr = clk_base_addr;
clock->mmd = mmd;
mutex_init(&clock->ptp_lock);
clock->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
MCHP_RDS_PTP_N_PIN,
sizeof(*clock->pin_config),
GFP_KERNEL);
if (!clock->pin_config)
return ERR_PTR(-ENOMEM);
for (int i = 0; i < MCHP_RDS_PTP_N_PIN; ++i) {
struct ptp_pin_desc *p = &clock->pin_config[i];
memset(p, 0, sizeof(*p));
snprintf(p->name, sizeof(p->name), "pin%d", i);
p->index = i;
p->func = PTP_PF_NONE;
}
/* Register PTP clock */
clock->caps.owner = THIS_MODULE;
snprintf(clock->caps.name, 30, "%s", phydev->drv->name);
clock->caps.max_adj = MCHP_RDS_PTP_MAX_ADJ;
clock->caps.n_ext_ts = 0;
clock->caps.pps = 0;
clock->caps.n_pins = MCHP_RDS_PTP_N_PIN;
clock->caps.n_per_out = MCHP_RDS_PTP_N_PEROUT;
clock->caps.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
clock->caps.pin_config = clock->pin_config;
clock->caps.adjfine = mchp_rds_ptp_ltc_adjfine;
clock->caps.adjtime = mchp_rds_ptp_ltc_adjtime;
clock->caps.gettime64 = mchp_rds_ptp_ltc_gettime64;
clock->caps.settime64 = mchp_rds_ptp_ltc_settime64;
clock->caps.enable = mchp_rds_ptpci_enable;
clock->caps.verify = mchp_rds_ptpci_verify;
clock->caps.getcrosststamp = NULL;
clock->ptp_clock = ptp_clock_register(&clock->caps,
&phydev->mdio.dev);
if (IS_ERR(clock->ptp_clock))
return ERR_PTR(-EINVAL);
/* Check if PHC support is missing at the configuration level */
if (!clock->ptp_clock)
return NULL;
/* Initialize the SW */
skb_queue_head_init(&clock->tx_queue);
skb_queue_head_init(&clock->rx_queue);
INIT_LIST_HEAD(&clock->rx_ts_list);
spin_lock_init(&clock->rx_ts_lock);
clock->mii_ts.rxtstamp = mchp_rds_ptp_rxtstamp;
clock->mii_ts.txtstamp = mchp_rds_ptp_txtstamp;
clock->mii_ts.hwtstamp = mchp_rds_ptp_hwtstamp;
clock->mii_ts.ts_info = mchp_rds_ptp_ts_info;
phydev->mii_ts = &clock->mii_ts;
clock->mchp_rds_ptp_event = -1;
/* Timestamp selected by default to keep legacy API */
phydev->default_timestamp = true;
clock->phydev = phydev;
rc = mchp_rds_ptp_init(clock);
if (rc < 0)
return ERR_PTR(rc);
return clock;
}
EXPORT_SYMBOL_GPL(mchp_rds_ptp_probe);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MICROCHIP PHY RDS PTP driver");
MODULE_AUTHOR("Divya Koppera");