linux/drivers/irqchip/irq-gic-v5-its.c
Lorenzo Pieralisi 9ba0a63bad irqchip/gic-v5: Remove IRQD_RESEND_WHEN_IN_PROGRESS for ITS IRQs
GICv5 LPI interrupts have an active state hence they cannot retrigger
while the interrupt is being handled.

Therefore, setting the IRQD_RESEND_WHEN_IN_PROGRESS flag on LPIs is
pointless, as the situation this flag caters for cannot happen.

Remove it.

Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/all/20250801-gic-v5-fixes-6-17-v1-3-4fcedaccf9e6@kernel.org
2025-08-05 10:43:48 +02:00

1228 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2024-2025 ARM Limited, All Rights Reserved.
*/
#define pr_fmt(fmt) "GICv5 ITS: " fmt
#include <linux/bitmap.h>
#include <linux/iommu.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-gic-v5.h>
#include <linux/irqchip/irq-msi-lib.h>
#include "irq-gic-its-msi-parent.h"
#define ITS_FLAGS_NON_COHERENT BIT(0)
struct gicv5_its_chip_data {
struct xarray its_devices;
struct mutex dev_alloc_lock;
struct fwnode_handle *fwnode;
struct gicv5_its_devtab_cfg devtab_cfgr;
void __iomem *its_base;
u32 flags;
unsigned int msi_domain_flags;
};
struct gicv5_its_dev {
struct gicv5_its_chip_data *its_node;
struct gicv5_its_itt_cfg itt_cfg;
unsigned long *event_map;
u32 device_id;
u32 num_events;
phys_addr_t its_trans_phys_base;
};
static u32 its_readl_relaxed(struct gicv5_its_chip_data *its_node, const u32 reg_offset)
{
return readl_relaxed(its_node->its_base + reg_offset);
}
static void its_writel_relaxed(struct gicv5_its_chip_data *its_node, const u32 val,
const u32 reg_offset)
{
writel_relaxed(val, its_node->its_base + reg_offset);
}
static void its_writeq_relaxed(struct gicv5_its_chip_data *its_node, const u64 val,
const u32 reg_offset)
{
writeq_relaxed(val, its_node->its_base + reg_offset);
}
static void gicv5_its_dcache_clean(struct gicv5_its_chip_data *its, void *start,
size_t sz)
{
void *end = start + sz;
if (its->flags & ITS_FLAGS_NON_COHERENT)
dcache_clean_inval_poc((unsigned long)start, (unsigned long)end);
else
dsb(ishst);
}
static void its_write_table_entry(struct gicv5_its_chip_data *its, __le64 *entry,
u64 val)
{
WRITE_ONCE(*entry, cpu_to_le64(val));
gicv5_its_dcache_clean(its, entry, sizeof(*entry));
}
#define devtab_cfgr_field(its, f) \
FIELD_GET(GICV5_ITS_DT_CFGR_##f, (its)->devtab_cfgr.cfgr)
static int gicv5_its_cache_sync(struct gicv5_its_chip_data *its)
{
return gicv5_wait_for_op_atomic(its->its_base, GICV5_ITS_STATUSR,
GICV5_ITS_STATUSR_IDLE, NULL);
}
static void gicv5_its_syncr(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev)
{
u64 syncr;
syncr = FIELD_PREP(GICV5_ITS_SYNCR_SYNC, 1) |
FIELD_PREP(GICV5_ITS_SYNCR_DEVICEID, its_dev->device_id);
its_writeq_relaxed(its, syncr, GICV5_ITS_SYNCR);
gicv5_wait_for_op(its->its_base, GICV5_ITS_SYNC_STATUSR, GICV5_ITS_SYNC_STATUSR_IDLE);
}
/* Number of bits required for each L2 {device/interrupt translation} table size */
#define ITS_L2SZ_64K_L2_BITS 13
#define ITS_L2SZ_16K_L2_BITS 11
#define ITS_L2SZ_4K_L2_BITS 9
static unsigned int gicv5_its_l2sz_to_l2_bits(unsigned int sz)
{
switch (sz) {
case GICV5_ITS_DT_ITT_CFGR_L2SZ_64k:
return ITS_L2SZ_64K_L2_BITS;
case GICV5_ITS_DT_ITT_CFGR_L2SZ_16k:
return ITS_L2SZ_16K_L2_BITS;
case GICV5_ITS_DT_ITT_CFGR_L2SZ_4k:
default:
return ITS_L2SZ_4K_L2_BITS;
}
}
static int gicv5_its_itt_cache_inv(struct gicv5_its_chip_data *its, u32 device_id,
u16 event_id)
{
u32 eventr, eidr;
u64 didr;
didr = FIELD_PREP(GICV5_ITS_DIDR_DEVICEID, device_id);
eidr = FIELD_PREP(GICV5_ITS_EIDR_EVENTID, event_id);
eventr = FIELD_PREP(GICV5_ITS_INV_EVENTR_I, 0x1);
its_writeq_relaxed(its, didr, GICV5_ITS_DIDR);
its_writel_relaxed(its, eidr, GICV5_ITS_EIDR);
its_writel_relaxed(its, eventr, GICV5_ITS_INV_EVENTR);
return gicv5_its_cache_sync(its);
}
static void gicv5_its_free_itt_linear(struct gicv5_its_dev *its_dev)
{
kfree(its_dev->itt_cfg.linear.itt);
}
static void gicv5_its_free_itt_two_level(struct gicv5_its_dev *its_dev)
{
unsigned int i, num_ents = its_dev->itt_cfg.l2.num_l1_ents;
for (i = 0; i < num_ents; i++)
kfree(its_dev->itt_cfg.l2.l2ptrs[i]);
kfree(its_dev->itt_cfg.l2.l2ptrs);
kfree(its_dev->itt_cfg.l2.l1itt);
}
static void gicv5_its_free_itt(struct gicv5_its_dev *its_dev)
{
if (!its_dev->itt_cfg.l2itt)
gicv5_its_free_itt_linear(its_dev);
else
gicv5_its_free_itt_two_level(its_dev);
}
static int gicv5_its_create_itt_linear(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev,
unsigned int event_id_bits)
{
unsigned int num_ents = BIT(event_id_bits);
__le64 *itt;
itt = kcalloc(num_ents, sizeof(*itt), GFP_KERNEL);
if (!itt)
return -ENOMEM;
its_dev->itt_cfg.linear.itt = itt;
its_dev->itt_cfg.linear.num_ents = num_ents;
its_dev->itt_cfg.l2itt = false;
its_dev->itt_cfg.event_id_bits = event_id_bits;
gicv5_its_dcache_clean(its, itt, num_ents * sizeof(*itt));
return 0;
}
/*
* Allocate a two-level ITT. All ITT entries are allocated in one go, unlike
* with the device table. Span may be used to limit the second level table
* size, where possible.
*/
static int gicv5_its_create_itt_two_level(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev,
unsigned int event_id_bits,
unsigned int itt_l2sz,
unsigned int num_events)
{
unsigned int l1_bits, l2_bits, span, events_per_l2_table;
unsigned int i, complete_tables, final_span, num_ents;
__le64 *itt_l1, *itt_l2, **l2ptrs;
int ret;
u64 val;
ret = gicv5_its_l2sz_to_l2_bits(itt_l2sz);
if (ret >= event_id_bits) {
pr_debug("Incorrect l2sz (0x%x) for %u EventID bits. Cannot allocate ITT\n",
itt_l2sz, event_id_bits);
return -EINVAL;
}
l2_bits = ret;
l1_bits = event_id_bits - l2_bits;
num_ents = BIT(l1_bits);
itt_l1 = kcalloc(num_ents, sizeof(*itt_l1), GFP_KERNEL);
if (!itt_l1)
return -ENOMEM;
l2ptrs = kcalloc(num_ents, sizeof(*l2ptrs), GFP_KERNEL);
if (!l2ptrs) {
kfree(itt_l1);
return -ENOMEM;
}
its_dev->itt_cfg.l2.l2ptrs = l2ptrs;
its_dev->itt_cfg.l2.l2sz = itt_l2sz;
its_dev->itt_cfg.l2.l1itt = itt_l1;
its_dev->itt_cfg.l2.num_l1_ents = num_ents;
its_dev->itt_cfg.l2itt = true;
its_dev->itt_cfg.event_id_bits = event_id_bits;
/*
* Need to determine how many entries there are per L2 - this is based
* on the number of bits in the table.
*/
events_per_l2_table = BIT(l2_bits);
complete_tables = num_events / events_per_l2_table;
final_span = order_base_2(num_events % events_per_l2_table);
for (i = 0; i < num_ents; i++) {
size_t l2sz;
span = i == complete_tables ? final_span : l2_bits;
itt_l2 = kcalloc(BIT(span), sizeof(*itt_l2), GFP_KERNEL);
if (!itt_l2) {
ret = -ENOMEM;
goto out_free;
}
its_dev->itt_cfg.l2.l2ptrs[i] = itt_l2;
l2sz = BIT(span) * sizeof(*itt_l2);
gicv5_its_dcache_clean(its, itt_l2, l2sz);
val = (virt_to_phys(itt_l2) & GICV5_ITTL1E_L2_ADDR_MASK) |
FIELD_PREP(GICV5_ITTL1E_SPAN, span) |
FIELD_PREP(GICV5_ITTL1E_VALID, 0x1);
WRITE_ONCE(itt_l1[i], cpu_to_le64(val));
}
gicv5_its_dcache_clean(its, itt_l1, num_ents * sizeof(*itt_l1));
return 0;
out_free:
for (i = i - 1; i >= 0; i--)
kfree(its_dev->itt_cfg.l2.l2ptrs[i]);
kfree(its_dev->itt_cfg.l2.l2ptrs);
kfree(itt_l1);
return ret;
}
/*
* Function to check whether the device table or ITT table support
* a two-level table and if so depending on the number of id_bits
* requested, determine whether a two-level table is required.
*
* Return the 2-level size value if a two level table is deemed
* necessary.
*/
static bool gicv5_its_l2sz_two_level(bool devtab, u32 its_idr1, u8 id_bits, u8 *sz)
{
unsigned int l2_bits, l2_sz;
if (devtab && !FIELD_GET(GICV5_ITS_IDR1_DT_LEVELS, its_idr1))
return false;
if (!devtab && !FIELD_GET(GICV5_ITS_IDR1_ITT_LEVELS, its_idr1))
return false;
/*
* Pick an L2 size that matches the pagesize; if a match
* is not found, go for the smallest supported l2 size granule.
*
* This ensures that we will always be able to allocate
* contiguous memory at L2.
*/
switch (PAGE_SIZE) {
case SZ_64K:
if (GICV5_ITS_IDR1_L2SZ_SUPPORT_64KB(its_idr1)) {
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_64k;
break;
}
fallthrough;
case SZ_4K:
if (GICV5_ITS_IDR1_L2SZ_SUPPORT_4KB(its_idr1)) {
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k;
break;
}
fallthrough;
case SZ_16K:
if (GICV5_ITS_IDR1_L2SZ_SUPPORT_16KB(its_idr1)) {
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_16k;
break;
}
if (GICV5_ITS_IDR1_L2SZ_SUPPORT_4KB(its_idr1)) {
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k;
break;
}
if (GICV5_ITS_IDR1_L2SZ_SUPPORT_64KB(its_idr1)) {
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_64k;
break;
}
l2_sz = GICV5_ITS_DT_ITT_CFGR_L2SZ_4k;
break;
}
l2_bits = gicv5_its_l2sz_to_l2_bits(l2_sz);
if (l2_bits > id_bits)
return false;
*sz = l2_sz;
return true;
}
static __le64 *gicv5_its_device_get_itte_ref(struct gicv5_its_dev *its_dev,
u16 event_id)
{
unsigned int l1_idx, l2_idx, l2_bits;
__le64 *l2_itt;
if (!its_dev->itt_cfg.l2itt) {
__le64 *itt = its_dev->itt_cfg.linear.itt;
return &itt[event_id];
}
l2_bits = gicv5_its_l2sz_to_l2_bits(its_dev->itt_cfg.l2.l2sz);
l1_idx = event_id >> l2_bits;
l2_idx = event_id & GENMASK(l2_bits - 1, 0);
l2_itt = its_dev->itt_cfg.l2.l2ptrs[l1_idx];
return &l2_itt[l2_idx];
}
static int gicv5_its_device_cache_inv(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev)
{
u32 devicer;
u64 didr;
didr = FIELD_PREP(GICV5_ITS_DIDR_DEVICEID, its_dev->device_id);
devicer = FIELD_PREP(GICV5_ITS_INV_DEVICER_I, 0x1) |
FIELD_PREP(GICV5_ITS_INV_DEVICER_EVENTID_BITS,
its_dev->itt_cfg.event_id_bits) |
FIELD_PREP(GICV5_ITS_INV_DEVICER_L1, 0x0);
its_writeq_relaxed(its, didr, GICV5_ITS_DIDR);
its_writel_relaxed(its, devicer, GICV5_ITS_INV_DEVICER);
return gicv5_its_cache_sync(its);
}
/*
* Allocate a level 2 device table entry, update L1 parent to reference it.
* Only used for 2-level device tables, and it is called on demand.
*/
static int gicv5_its_alloc_l2_devtab(struct gicv5_its_chip_data *its,
unsigned int l1_index)
{
__le64 *l2devtab, *l1devtab = its->devtab_cfgr.l2.l1devtab;
u8 span, l2sz, l2_bits;
u64 l1dte;
if (FIELD_GET(GICV5_DTL1E_VALID, le64_to_cpu(l1devtab[l1_index])))
return 0;
span = FIELD_GET(GICV5_DTL1E_SPAN, le64_to_cpu(l1devtab[l1_index]));
l2sz = devtab_cfgr_field(its, L2SZ);
l2_bits = gicv5_its_l2sz_to_l2_bits(l2sz);
/*
* Span allows us to create a smaller L2 device table.
* If it is too large, use the number of allowed L2 bits.
*/
if (span > l2_bits)
span = l2_bits;
l2devtab = kcalloc(BIT(span), sizeof(*l2devtab), GFP_KERNEL);
if (!l2devtab)
return -ENOMEM;
its->devtab_cfgr.l2.l2ptrs[l1_index] = l2devtab;
l1dte = FIELD_PREP(GICV5_DTL1E_SPAN, span) |
(virt_to_phys(l2devtab) & GICV5_DTL1E_L2_ADDR_MASK) |
FIELD_PREP(GICV5_DTL1E_VALID, 0x1);
its_write_table_entry(its, &l1devtab[l1_index], l1dte);
return 0;
}
static __le64 *gicv5_its_devtab_get_dte_ref(struct gicv5_its_chip_data *its,
u32 device_id, bool alloc)
{
u8 str = devtab_cfgr_field(its, STRUCTURE);
unsigned int l2sz, l2_bits, l1_idx, l2_idx;
__le64 *l2devtab;
int ret;
if (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) {
l2devtab = its->devtab_cfgr.linear.devtab;
return &l2devtab[device_id];
}
l2sz = devtab_cfgr_field(its, L2SZ);
l2_bits = gicv5_its_l2sz_to_l2_bits(l2sz);
l1_idx = device_id >> l2_bits;
l2_idx = device_id & GENMASK(l2_bits - 1, 0);
if (alloc) {
/*
* Allocate a new L2 device table here before
* continuing. We make the assumption that the span in
* the L1 table has been set correctly, and blindly use
* that value.
*/
ret = gicv5_its_alloc_l2_devtab(its, l1_idx);
if (ret)
return NULL;
}
l2devtab = its->devtab_cfgr.l2.l2ptrs[l1_idx];
return &l2devtab[l2_idx];
}
/*
* Register a new device in the device table. Allocate an ITT and
* program the L2DTE entry according to the ITT structure that
* was chosen.
*/
static int gicv5_its_device_register(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev)
{
u8 event_id_bits, device_id_bits, itt_struct, itt_l2sz;
phys_addr_t itt_phys_base;
bool two_level_itt;
u32 idr1, idr2;
__le64 *dte;
u64 val;
int ret;
device_id_bits = devtab_cfgr_field(its, DEVICEID_BITS);
if (its_dev->device_id >= BIT(device_id_bits)) {
pr_err("Supplied DeviceID (%u) outside of Device Table range (%u)!",
its_dev->device_id, (u32)GENMASK(device_id_bits - 1, 0));
return -EINVAL;
}
dte = gicv5_its_devtab_get_dte_ref(its, its_dev->device_id, true);
if (!dte)
return -ENOMEM;
if (FIELD_GET(GICV5_DTL2E_VALID, le64_to_cpu(*dte)))
return -EBUSY;
/*
* Determine how many bits we need, validate those against the max.
* Based on these, determine if we should go for a 1- or 2-level ITT.
*/
event_id_bits = order_base_2(its_dev->num_events);
idr2 = its_readl_relaxed(its, GICV5_ITS_IDR2);
if (event_id_bits > FIELD_GET(GICV5_ITS_IDR2_EVENTID_BITS, idr2)) {
pr_err("Required EventID bits (%u) larger than supported bits (%u)!",
event_id_bits,
(u8)FIELD_GET(GICV5_ITS_IDR2_EVENTID_BITS, idr2));
return -EINVAL;
}
idr1 = its_readl_relaxed(its, GICV5_ITS_IDR1);
/*
* L2 ITT size is programmed into the L2DTE regardless of
* whether a two-level or linear ITT is built, init it.
*/
itt_l2sz = 0;
two_level_itt = gicv5_its_l2sz_two_level(false, idr1, event_id_bits,
&itt_l2sz);
if (two_level_itt)
ret = gicv5_its_create_itt_two_level(its, its_dev, event_id_bits,
itt_l2sz,
its_dev->num_events);
else
ret = gicv5_its_create_itt_linear(its, its_dev, event_id_bits);
if (ret)
return ret;
itt_phys_base = two_level_itt ? virt_to_phys(its_dev->itt_cfg.l2.l1itt) :
virt_to_phys(its_dev->itt_cfg.linear.itt);
itt_struct = two_level_itt ? GICV5_ITS_DT_ITT_CFGR_STRUCTURE_TWO_LEVEL :
GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR;
val = FIELD_PREP(GICV5_DTL2E_EVENT_ID_BITS, event_id_bits) |
FIELD_PREP(GICV5_DTL2E_ITT_STRUCTURE, itt_struct) |
(itt_phys_base & GICV5_DTL2E_ITT_ADDR_MASK) |
FIELD_PREP(GICV5_DTL2E_ITT_L2SZ, itt_l2sz) |
FIELD_PREP(GICV5_DTL2E_VALID, 0x1);
its_write_table_entry(its, dte, val);
ret = gicv5_its_device_cache_inv(its, its_dev);
if (ret) {
its_write_table_entry(its, dte, 0);
gicv5_its_free_itt(its_dev);
return ret;
}
return 0;
}
/*
* Unregister a device in the device table. Lookup the device by ID, free the
* corresponding ITT, mark the device as invalid in the device table.
*/
static int gicv5_its_device_unregister(struct gicv5_its_chip_data *its,
struct gicv5_its_dev *its_dev)
{
__le64 *dte;
dte = gicv5_its_devtab_get_dte_ref(its, its_dev->device_id, false);
if (!FIELD_GET(GICV5_DTL2E_VALID, le64_to_cpu(*dte))) {
pr_debug("Device table entry for DeviceID 0x%x is not valid. Nothing to clean up!",
its_dev->device_id);
return -EINVAL;
}
/* Zero everything - make it clear that this is an invalid entry */
its_write_table_entry(its, dte, 0);
gicv5_its_free_itt(its_dev);
return gicv5_its_device_cache_inv(its, its_dev);
}
/*
* Allocate a 1-level device table. All entries are allocated, but marked
* invalid.
*/
static int gicv5_its_alloc_devtab_linear(struct gicv5_its_chip_data *its,
u8 device_id_bits)
{
__le64 *devtab;
size_t sz;
u64 baser;
u32 cfgr;
/*
* We expect a GICv5 implementation requiring a large number of
* deviceID bits to support a 2-level device table. If that's not
* the case, cap the number of deviceIDs supported according to the
* kmalloc limits so that the system can chug along with a linear
* device table.
*/
sz = BIT_ULL(device_id_bits) * sizeof(*devtab);
if (sz > KMALLOC_MAX_SIZE) {
u8 device_id_cap = ilog2(KMALLOC_MAX_SIZE/sizeof(*devtab));
pr_warn("Limiting device ID bits from %u to %u\n",
device_id_bits, device_id_cap);
device_id_bits = device_id_cap;
}
devtab = kcalloc(BIT(device_id_bits), sizeof(*devtab), GFP_KERNEL);
if (!devtab)
return -ENOMEM;
gicv5_its_dcache_clean(its, devtab, sz);
cfgr = FIELD_PREP(GICV5_ITS_DT_CFGR_STRUCTURE,
GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) |
FIELD_PREP(GICV5_ITS_DT_CFGR_L2SZ, 0) |
FIELD_PREP(GICV5_ITS_DT_CFGR_DEVICEID_BITS, device_id_bits);
its_writel_relaxed(its, cfgr, GICV5_ITS_DT_CFGR);
baser = virt_to_phys(devtab) & GICV5_ITS_DT_BASER_ADDR_MASK;
its_writeq_relaxed(its, baser, GICV5_ITS_DT_BASER);
its->devtab_cfgr.cfgr = cfgr;
its->devtab_cfgr.linear.devtab = devtab;
return 0;
}
/*
* Allocate a 2-level device table. L2 entries are not allocated,
* they are allocated on-demand.
*/
static int gicv5_its_alloc_devtab_two_level(struct gicv5_its_chip_data *its,
u8 device_id_bits,
u8 devtab_l2sz)
{
unsigned int l1_bits, l2_bits, i;
__le64 *l1devtab, **l2ptrs;
size_t l1_sz;
u64 baser;
u32 cfgr;
l2_bits = gicv5_its_l2sz_to_l2_bits(devtab_l2sz);
l1_bits = device_id_bits - l2_bits;
l1_sz = BIT(l1_bits) * sizeof(*l1devtab);
/*
* With 2-level device table support it is highly unlikely
* that we are not able to allocate the required amount of
* device table memory to cover deviceID space; cap the
* deviceID space if we encounter such set-up.
* If this ever becomes a problem we could revisit the policy
* behind level 2 size selection to reduce level-1 deviceID bits.
*/
if (l1_sz > KMALLOC_MAX_SIZE) {
l1_bits = ilog2(KMALLOC_MAX_SIZE/sizeof(*l1devtab));
pr_warn("Limiting device ID bits from %u to %u\n",
device_id_bits, l1_bits + l2_bits);
device_id_bits = l1_bits + l2_bits;
l1_sz = KMALLOC_MAX_SIZE;
}
l1devtab = kcalloc(BIT(l1_bits), sizeof(*l1devtab), GFP_KERNEL);
if (!l1devtab)
return -ENOMEM;
l2ptrs = kcalloc(BIT(l1_bits), sizeof(*l2ptrs), GFP_KERNEL);
if (!l2ptrs) {
kfree(l1devtab);
return -ENOMEM;
}
for (i = 0; i < BIT(l1_bits); i++)
l1devtab[i] = cpu_to_le64(FIELD_PREP(GICV5_DTL1E_SPAN, l2_bits));
gicv5_its_dcache_clean(its, l1devtab, l1_sz);
cfgr = FIELD_PREP(GICV5_ITS_DT_CFGR_STRUCTURE,
GICV5_ITS_DT_ITT_CFGR_STRUCTURE_TWO_LEVEL) |
FIELD_PREP(GICV5_ITS_DT_CFGR_L2SZ, devtab_l2sz) |
FIELD_PREP(GICV5_ITS_DT_CFGR_DEVICEID_BITS, device_id_bits);
its_writel_relaxed(its, cfgr, GICV5_ITS_DT_CFGR);
baser = virt_to_phys(l1devtab) & GICV5_ITS_DT_BASER_ADDR_MASK;
its_writeq_relaxed(its, baser, GICV5_ITS_DT_BASER);
its->devtab_cfgr.cfgr = cfgr;
its->devtab_cfgr.l2.l1devtab = l1devtab;
its->devtab_cfgr.l2.l2ptrs = l2ptrs;
return 0;
}
/*
* Initialise the device table as either 1- or 2-level depending on what is
* supported by the hardware.
*/
static int gicv5_its_init_devtab(struct gicv5_its_chip_data *its)
{
u8 device_id_bits, devtab_l2sz;
bool two_level_devtab;
u32 idr1;
idr1 = its_readl_relaxed(its, GICV5_ITS_IDR1);
device_id_bits = FIELD_GET(GICV5_ITS_IDR1_DEVICEID_BITS, idr1);
two_level_devtab = gicv5_its_l2sz_two_level(true, idr1, device_id_bits,
&devtab_l2sz);
if (two_level_devtab)
return gicv5_its_alloc_devtab_two_level(its, device_id_bits,
devtab_l2sz);
else
return gicv5_its_alloc_devtab_linear(its, device_id_bits);
}
static void gicv5_its_deinit_devtab(struct gicv5_its_chip_data *its)
{
u8 str = devtab_cfgr_field(its, STRUCTURE);
if (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR) {
kfree(its->devtab_cfgr.linear.devtab);
} else {
kfree(its->devtab_cfgr.l2.l1devtab);
kfree(its->devtab_cfgr.l2.l2ptrs);
}
}
static void gicv5_its_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
{
struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d);
u64 addr = its_dev->its_trans_phys_base;
msg->data = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq);
msi_msg_set_addr(irq_data_get_msi_desc(d), msg, addr);
}
static const struct irq_chip gicv5_its_irq_chip = {
.name = "GICv5-ITS-MSI",
.irq_mask = irq_chip_mask_parent,
.irq_unmask = irq_chip_unmask_parent,
.irq_eoi = irq_chip_eoi_parent,
.irq_set_affinity = irq_chip_set_affinity_parent,
.irq_get_irqchip_state = irq_chip_get_parent_state,
.irq_set_irqchip_state = irq_chip_set_parent_state,
.irq_compose_msi_msg = gicv5_its_compose_msi_msg,
};
static struct gicv5_its_dev *gicv5_its_find_device(struct gicv5_its_chip_data *its,
u32 device_id)
{
struct gicv5_its_dev *dev = xa_load(&its->its_devices, device_id);
return dev ? dev : ERR_PTR(-ENODEV);
}
static struct gicv5_its_dev *gicv5_its_alloc_device(struct gicv5_its_chip_data *its, int nvec,
u32 dev_id)
{
struct gicv5_its_dev *its_dev;
void *entry;
int ret;
its_dev = gicv5_its_find_device(its, dev_id);
if (!IS_ERR(its_dev)) {
pr_err("A device with this DeviceID (0x%x) has already been registered.\n",
dev_id);
return ERR_PTR(-EBUSY);
}
its_dev = kzalloc(sizeof(*its_dev), GFP_KERNEL);
if (!its_dev)
return ERR_PTR(-ENOMEM);
its_dev->device_id = dev_id;
its_dev->num_events = nvec;
ret = gicv5_its_device_register(its, its_dev);
if (ret) {
pr_err("Failed to register the device\n");
goto out_dev_free;
}
gicv5_its_device_cache_inv(its, its_dev);
its_dev->its_node = its;
its_dev->event_map = (unsigned long *)bitmap_zalloc(its_dev->num_events, GFP_KERNEL);
if (!its_dev->event_map) {
ret = -ENOMEM;
goto out_unregister;
}
entry = xa_store(&its->its_devices, dev_id, its_dev, GFP_KERNEL);
if (xa_is_err(entry)) {
ret = xa_err(entry);
goto out_bitmap_free;
}
return its_dev;
out_bitmap_free:
bitmap_free(its_dev->event_map);
out_unregister:
gicv5_its_device_unregister(its, its_dev);
out_dev_free:
kfree(its_dev);
return ERR_PTR(ret);
}
static int gicv5_its_msi_prepare(struct irq_domain *domain, struct device *dev,
int nvec, msi_alloc_info_t *info)
{
u32 dev_id = info->scratchpad[0].ul;
struct msi_domain_info *msi_info;
struct gicv5_its_chip_data *its;
struct gicv5_its_dev *its_dev;
msi_info = msi_get_domain_info(domain);
its = msi_info->data;
guard(mutex)(&its->dev_alloc_lock);
its_dev = gicv5_its_alloc_device(its, nvec, dev_id);
if (IS_ERR(its_dev))
return PTR_ERR(its_dev);
its_dev->its_trans_phys_base = info->scratchpad[1].ul;
info->scratchpad[0].ptr = its_dev;
return 0;
}
static void gicv5_its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info)
{
struct gicv5_its_dev *its_dev = info->scratchpad[0].ptr;
struct msi_domain_info *msi_info;
struct gicv5_its_chip_data *its;
msi_info = msi_get_domain_info(domain);
its = msi_info->data;
guard(mutex)(&its->dev_alloc_lock);
if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map, its_dev->num_events)))
return;
xa_erase(&its->its_devices, its_dev->device_id);
bitmap_free(its_dev->event_map);
gicv5_its_device_unregister(its, its_dev);
kfree(its_dev);
}
static struct msi_domain_ops gicv5_its_msi_domain_ops = {
.msi_prepare = gicv5_its_msi_prepare,
.msi_teardown = gicv5_its_msi_teardown,
};
static int gicv5_its_map_event(struct gicv5_its_dev *its_dev, u16 event_id, u32 lpi)
{
struct gicv5_its_chip_data *its = its_dev->its_node;
u64 itt_entry;
__le64 *itte;
itte = gicv5_its_device_get_itte_ref(its_dev, event_id);
if (FIELD_GET(GICV5_ITTL2E_VALID, *itte))
return -EEXIST;
itt_entry = FIELD_PREP(GICV5_ITTL2E_LPI_ID, lpi) |
FIELD_PREP(GICV5_ITTL2E_VALID, 0x1);
its_write_table_entry(its, itte, itt_entry);
gicv5_its_itt_cache_inv(its, its_dev->device_id, event_id);
return 0;
}
static void gicv5_its_unmap_event(struct gicv5_its_dev *its_dev, u16 event_id)
{
struct gicv5_its_chip_data *its = its_dev->its_node;
u64 itte_val;
__le64 *itte;
itte = gicv5_its_device_get_itte_ref(its_dev, event_id);
itte_val = le64_to_cpu(*itte);
itte_val &= ~GICV5_ITTL2E_VALID;
its_write_table_entry(its, itte, itte_val);
gicv5_its_itt_cache_inv(its, its_dev->device_id, event_id);
}
static int gicv5_its_alloc_eventid(struct gicv5_its_dev *its_dev, msi_alloc_info_t *info,
unsigned int nr_irqs, u32 *eventid)
{
int event_id_base;
if (!(info->flags & MSI_ALLOC_FLAGS_FIXED_MSG_DATA)) {
event_id_base = bitmap_find_free_region(its_dev->event_map,
its_dev->num_events,
get_count_order(nr_irqs));
if (event_id_base < 0)
return event_id_base;
} else {
/*
* We want to have a fixed EventID mapped for hardcoded
* message data allocations.
*/
if (WARN_ON_ONCE(nr_irqs != 1))
return -EINVAL;
event_id_base = info->hwirq;
if (event_id_base >= its_dev->num_events) {
pr_err("EventID ouside of ITT range; cannot allocate an ITT entry!\n");
return -EINVAL;
}
if (test_and_set_bit(event_id_base, its_dev->event_map)) {
pr_warn("Can't reserve event_id bitmap\n");
return -EINVAL;
}
}
*eventid = event_id_base;
return 0;
}
static void gicv5_its_free_eventid(struct gicv5_its_dev *its_dev, u32 event_id_base,
unsigned int nr_irqs)
{
bitmap_release_region(its_dev->event_map, event_id_base,
get_count_order(nr_irqs));
}
static int gicv5_its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
u32 device_id, event_id_base, lpi;
struct gicv5_its_dev *its_dev;
msi_alloc_info_t *info = arg;
irq_hw_number_t hwirq;
struct irq_data *irqd;
int ret, i;
its_dev = info->scratchpad[0].ptr;
ret = gicv5_its_alloc_eventid(its_dev, info, nr_irqs, &event_id_base);
if (ret)
return ret;
ret = iommu_dma_prepare_msi(info->desc, its_dev->its_trans_phys_base);
if (ret)
goto out_eventid;
device_id = its_dev->device_id;
for (i = 0; i < nr_irqs; i++) {
lpi = gicv5_alloc_lpi();
if (ret < 0) {
pr_debug("Failed to find free LPI!\n");
goto out_eventid;
}
ret = irq_domain_alloc_irqs_parent(domain, virq + i, 1, &lpi);
if (ret)
goto out_free_lpi;
/*
* Store eventid and deviceid into the hwirq for later use.
*
* hwirq = event_id << 32 | device_id
*/
hwirq = FIELD_PREP(GICV5_ITS_HWIRQ_DEVICE_ID, device_id) |
FIELD_PREP(GICV5_ITS_HWIRQ_EVENT_ID, (u64)event_id_base + i);
irq_domain_set_info(domain, virq + i, hwirq,
&gicv5_its_irq_chip, its_dev,
handle_fasteoi_irq, NULL, NULL);
irqd = irq_get_irq_data(virq + i);
irqd_set_single_target(irqd);
irqd_set_affinity_on_activate(irqd);
}
return 0;
out_free_lpi:
gicv5_free_lpi(lpi);
out_eventid:
gicv5_its_free_eventid(its_dev, event_id_base, nr_irqs);
return ret;
}
static void gicv5_its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct gicv5_its_chip_data *its;
struct gicv5_its_dev *its_dev;
u16 event_id_base;
unsigned int i;
its_dev = irq_data_get_irq_chip_data(d);
its = its_dev->its_node;
event_id_base = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq);
bitmap_release_region(its_dev->event_map, event_id_base,
get_count_order(nr_irqs));
/* Hierarchically free irq data */
for (i = 0; i < nr_irqs; i++) {
d = irq_domain_get_irq_data(domain, virq + i);
gicv5_free_lpi(d->parent_data->hwirq);
irq_domain_reset_irq_data(d);
irq_domain_free_irqs_parent(domain, virq + i, 1);
}
gicv5_its_syncr(its, its_dev);
gicv5_irs_syncr();
}
static int gicv5_its_irq_domain_activate(struct irq_domain *domain, struct irq_data *d,
bool reserve)
{
struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d);
u16 event_id;
u32 lpi;
event_id = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq);
lpi = d->parent_data->hwirq;
return gicv5_its_map_event(its_dev, event_id, lpi);
}
static void gicv5_its_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *d)
{
struct gicv5_its_dev *its_dev = irq_data_get_irq_chip_data(d);
u16 event_id;
event_id = FIELD_GET(GICV5_ITS_HWIRQ_EVENT_ID, d->hwirq);
gicv5_its_unmap_event(its_dev, event_id);
}
static const struct irq_domain_ops gicv5_its_irq_domain_ops = {
.alloc = gicv5_its_irq_domain_alloc,
.free = gicv5_its_irq_domain_free,
.activate = gicv5_its_irq_domain_activate,
.deactivate = gicv5_its_irq_domain_deactivate,
.select = msi_lib_irq_domain_select,
};
static int gicv5_its_write_cr0(struct gicv5_its_chip_data *its, bool enable)
{
u32 cr0 = FIELD_PREP(GICV5_ITS_CR0_ITSEN, enable);
its_writel_relaxed(its, cr0, GICV5_ITS_CR0);
return gicv5_wait_for_op_atomic(its->its_base, GICV5_ITS_CR0,
GICV5_ITS_CR0_IDLE, NULL);
}
static int gicv5_its_enable(struct gicv5_its_chip_data *its)
{
return gicv5_its_write_cr0(its, true);
}
static int gicv5_its_disable(struct gicv5_its_chip_data *its)
{
return gicv5_its_write_cr0(its, false);
}
static void gicv5_its_print_info(struct gicv5_its_chip_data *its_node)
{
bool devtab_linear;
u8 device_id_bits;
u8 str;
device_id_bits = devtab_cfgr_field(its_node, DEVICEID_BITS);
str = devtab_cfgr_field(its_node, STRUCTURE);
devtab_linear = (str == GICV5_ITS_DT_ITT_CFGR_STRUCTURE_LINEAR);
pr_info("ITS %s enabled using %s device table device_id_bits %u\n",
fwnode_get_name(its_node->fwnode),
devtab_linear ? "linear" : "2-level",
device_id_bits);
}
static int gicv5_its_init_domain(struct gicv5_its_chip_data *its, struct irq_domain *parent)
{
struct irq_domain_info dom_info = {
.fwnode = its->fwnode,
.ops = &gicv5_its_irq_domain_ops,
.domain_flags = its->msi_domain_flags,
.parent = parent,
};
struct msi_domain_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->ops = &gicv5_its_msi_domain_ops;
info->data = its;
dom_info.host_data = info;
if (!msi_create_parent_irq_domain(&dom_info, &gic_v5_its_msi_parent_ops)) {
kfree(info);
return -ENOMEM;
}
return 0;
}
static int __init gicv5_its_init_bases(void __iomem *its_base, struct fwnode_handle *handle,
struct irq_domain *parent_domain)
{
struct device_node *np = to_of_node(handle);
struct gicv5_its_chip_data *its_node;
u32 cr0, cr1;
bool enabled;
int ret;
its_node = kzalloc(sizeof(*its_node), GFP_KERNEL);
if (!its_node)
return -ENOMEM;
mutex_init(&its_node->dev_alloc_lock);
xa_init(&its_node->its_devices);
its_node->fwnode = handle;
its_node->its_base = its_base;
its_node->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI |
IRQ_DOMAIN_FLAG_FWNODE_PARENT;
cr0 = its_readl_relaxed(its_node, GICV5_ITS_CR0);
enabled = FIELD_GET(GICV5_ITS_CR0_ITSEN, cr0);
if (WARN(enabled, "ITS %s enabled, disabling it before proceeding\n", np->full_name)) {
ret = gicv5_its_disable(its_node);
if (ret)
goto out_free_node;
}
if (of_property_read_bool(np, "dma-noncoherent")) {
/*
* A non-coherent ITS implies that some cache levels cannot be
* used coherently by the cores and GIC. Our only option is to mark
* memory attributes for the GIC as non-cacheable; by default,
* non-cacheable memory attributes imply outer-shareable
* shareability, the value written into ITS_CR1_SH is ignored.
*/
cr1 = FIELD_PREP(GICV5_ITS_CR1_ITT_RA, GICV5_NO_READ_ALLOC) |
FIELD_PREP(GICV5_ITS_CR1_DT_RA, GICV5_NO_READ_ALLOC) |
FIELD_PREP(GICV5_ITS_CR1_IC, GICV5_NON_CACHE) |
FIELD_PREP(GICV5_ITS_CR1_OC, GICV5_NON_CACHE);
its_node->flags |= ITS_FLAGS_NON_COHERENT;
} else {
cr1 = FIELD_PREP(GICV5_ITS_CR1_ITT_RA, GICV5_READ_ALLOC) |
FIELD_PREP(GICV5_ITS_CR1_DT_RA, GICV5_READ_ALLOC) |
FIELD_PREP(GICV5_ITS_CR1_IC, GICV5_WB_CACHE) |
FIELD_PREP(GICV5_ITS_CR1_OC, GICV5_WB_CACHE) |
FIELD_PREP(GICV5_ITS_CR1_SH, GICV5_INNER_SHARE);
}
its_writel_relaxed(its_node, cr1, GICV5_ITS_CR1);
ret = gicv5_its_init_devtab(its_node);
if (ret)
goto out_free_node;
ret = gicv5_its_enable(its_node);
if (ret)
goto out_free_devtab;
ret = gicv5_its_init_domain(its_node, parent_domain);
if (ret)
goto out_disable_its;
gicv5_its_print_info(its_node);
return 0;
out_disable_its:
gicv5_its_disable(its_node);
out_free_devtab:
gicv5_its_deinit_devtab(its_node);
out_free_node:
kfree(its_node);
return ret;
}
static int __init gicv5_its_init(struct device_node *node)
{
void __iomem *its_base;
int ret, idx;
idx = of_property_match_string(node, "reg-names", "ns-config");
if (idx < 0) {
pr_err("%pOF: ns-config reg-name not present\n", node);
return -ENODEV;
}
its_base = of_io_request_and_map(node, idx, of_node_full_name(node));
if (IS_ERR(its_base)) {
pr_err("%pOF: unable to map GICv5 ITS_CONFIG_FRAME\n", node);
return PTR_ERR(its_base);
}
ret = gicv5_its_init_bases(its_base, of_fwnode_handle(node),
gicv5_global_data.lpi_domain);
if (ret)
goto out_unmap;
return 0;
out_unmap:
iounmap(its_base);
return ret;
}
void __init gicv5_its_of_probe(struct device_node *parent)
{
struct device_node *np;
for_each_available_child_of_node(parent, np) {
if (!of_device_is_compatible(np, "arm,gic-v5-its"))
continue;
if (gicv5_its_init(np))
pr_err("Failed to init ITS %s\n", np->full_name);
}
}