mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-28 00:03:13 +00:00

In several code paths, such as xe_pt_create(), the vm->xef field is used
to determine whether a VM originates from userspace or the kernel.
Previously, this handler was only assigned in xe_vm_create_ioctl(),
after the VM was created by xe_vm_create(). However, xe_vm_create()
triggers page table creation, and that function assumes vm->xef should
be already set. This could lead to incorrect origin detection.
To fix this problem and ensure consistency in the initialization of
the VM object, let's move the assignment of this handler to
xe_vm_create.
v2:
- take reference to the xe file object only when xef is not NULL
- release the reference to the xe file object on the error path (Matthew)
Fixes: 7f387e6012
("drm/xe: add XE_BO_FLAG_PINNED_LATE_RESTORE")
Signed-off-by: Piotr Piórkowski <piotr.piorkowski@intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://lore.kernel.org/r/20250811104358.2064150-2-piotr.piorkowski@intel.com
Signed-off-by: Michał Winiarski <michal.winiarski@intel.com>
(cherry picked from commit 9337166fa1d80f7bb7c7d3a8f901f21c348c0f2a)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
1933 lines
53 KiB
C
1933 lines
53 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2020 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_migrate.h"
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/ttm/ttm_tt.h>
|
|
#include <uapi/drm/xe_drm.h>
|
|
|
|
#include <generated/xe_wa_oob.h>
|
|
|
|
#include "instructions/xe_gpu_commands.h"
|
|
#include "instructions/xe_mi_commands.h"
|
|
#include "regs/xe_gtt_defs.h"
|
|
#include "tests/xe_test.h"
|
|
#include "xe_assert.h"
|
|
#include "xe_bb.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_exec_queue.h"
|
|
#include "xe_ggtt.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_hw_engine.h"
|
|
#include "xe_lrc.h"
|
|
#include "xe_map.h"
|
|
#include "xe_mocs.h"
|
|
#include "xe_pt.h"
|
|
#include "xe_res_cursor.h"
|
|
#include "xe_sched_job.h"
|
|
#include "xe_sync.h"
|
|
#include "xe_trace_bo.h"
|
|
#include "xe_vm.h"
|
|
|
|
/**
|
|
* struct xe_migrate - migrate context.
|
|
*/
|
|
struct xe_migrate {
|
|
/** @q: Default exec queue used for migration */
|
|
struct xe_exec_queue *q;
|
|
/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
|
|
struct xe_tile *tile;
|
|
/** @job_mutex: Timeline mutex for @eng. */
|
|
struct mutex job_mutex;
|
|
/** @pt_bo: Page-table buffer object. */
|
|
struct xe_bo *pt_bo;
|
|
/** @batch_base_ofs: VM offset of the migration batch buffer */
|
|
u64 batch_base_ofs;
|
|
/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
|
|
u64 usm_batch_base_ofs;
|
|
/** @cleared_mem_ofs: VM offset of @cleared_bo. */
|
|
u64 cleared_mem_ofs;
|
|
/**
|
|
* @fence: dma-fence representing the last migration job batch.
|
|
* Protected by @job_mutex.
|
|
*/
|
|
struct dma_fence *fence;
|
|
/**
|
|
* @vm_update_sa: For integrated, used to suballocate page-tables
|
|
* out of the pt_bo.
|
|
*/
|
|
struct drm_suballoc_manager vm_update_sa;
|
|
/** @min_chunk_size: For dgfx, Minimum chunk size */
|
|
u64 min_chunk_size;
|
|
};
|
|
|
|
#define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
|
|
#define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
|
|
#define NUM_KERNEL_PDE 15
|
|
#define NUM_PT_SLOTS 32
|
|
#define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
|
|
#define MAX_NUM_PTE 512
|
|
#define IDENTITY_OFFSET 256ULL
|
|
|
|
/*
|
|
* Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
|
|
* legal value accepted. Since that instruction field is always stored in
|
|
* (val-2) format, this translates to 0x400 dwords for the true maximum length
|
|
* of the instruction. Subtracting the instruction header (1 dword) and
|
|
* address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
|
|
*/
|
|
#define MAX_PTE_PER_SDI 0x1FEU
|
|
|
|
/**
|
|
* xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue.
|
|
* @tile: The tile.
|
|
*
|
|
* Returns the default migrate exec queue of this tile.
|
|
*
|
|
* Return: The default migrate exec queue
|
|
*/
|
|
struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile)
|
|
{
|
|
return tile->migrate->q;
|
|
}
|
|
|
|
static void xe_migrate_fini(void *arg)
|
|
{
|
|
struct xe_migrate *m = arg;
|
|
|
|
xe_vm_lock(m->q->vm, false);
|
|
xe_bo_unpin(m->pt_bo);
|
|
xe_vm_unlock(m->q->vm);
|
|
|
|
dma_fence_put(m->fence);
|
|
xe_bo_put(m->pt_bo);
|
|
drm_suballoc_manager_fini(&m->vm_update_sa);
|
|
mutex_destroy(&m->job_mutex);
|
|
xe_vm_close_and_put(m->q->vm);
|
|
xe_exec_queue_put(m->q);
|
|
}
|
|
|
|
static u64 xe_migrate_vm_addr(u64 slot, u32 level)
|
|
{
|
|
XE_WARN_ON(slot >= NUM_PT_SLOTS);
|
|
|
|
/* First slot is reserved for mapping of PT bo and bb, start from 1 */
|
|
return (slot + 1ULL) << xe_pt_shift(level + 1);
|
|
}
|
|
|
|
static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
|
|
{
|
|
/*
|
|
* Remove the DPA to get a correct offset into identity table for the
|
|
* migrate offset
|
|
*/
|
|
u64 identity_offset = IDENTITY_OFFSET;
|
|
|
|
if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
|
|
identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
|
|
|
|
addr -= xe->mem.vram.dpa_base;
|
|
return addr + (identity_offset << xe_pt_shift(2));
|
|
}
|
|
|
|
static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
|
|
u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
|
|
{
|
|
u64 pos, ofs, flags;
|
|
u64 entry;
|
|
/* XXX: Unclear if this should be usable_size? */
|
|
u64 vram_limit = xe->mem.vram.actual_physical_size +
|
|
xe->mem.vram.dpa_base;
|
|
u32 level = 2;
|
|
|
|
ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
|
|
flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
|
|
true, 0);
|
|
|
|
xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M));
|
|
|
|
/*
|
|
* Use 1GB pages when possible, last chunk always use 2M
|
|
* pages as mixing reserved memory (stolen, WOCPM) with a single
|
|
* mapping is not allowed on certain platforms.
|
|
*/
|
|
for (pos = xe->mem.vram.dpa_base; pos < vram_limit;
|
|
pos += SZ_1G, ofs += 8) {
|
|
if (pos + SZ_1G >= vram_limit) {
|
|
entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs,
|
|
pat_index);
|
|
xe_map_wr(xe, &bo->vmap, ofs, u64, entry);
|
|
|
|
flags = vm->pt_ops->pte_encode_addr(xe, 0,
|
|
pat_index,
|
|
level - 1,
|
|
true, 0);
|
|
|
|
for (ofs = pt_2m_ofs; pos < vram_limit;
|
|
pos += SZ_2M, ofs += 8)
|
|
xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
|
|
break; /* Ensure pos == vram_limit assert correct */
|
|
}
|
|
|
|
xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
|
|
}
|
|
|
|
xe_assert(xe, pos == vram_limit);
|
|
}
|
|
|
|
static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
|
|
struct xe_vm *vm)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
u16 pat_index = xe->pat.idx[XE_CACHE_WB];
|
|
u8 id = tile->id;
|
|
u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
|
|
#define VRAM_IDENTITY_MAP_COUNT 2
|
|
u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
|
|
#undef VRAM_IDENTITY_MAP_COUNT
|
|
u32 map_ofs, level, i;
|
|
struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
|
|
u64 entry, pt29_ofs;
|
|
|
|
/* Can't bump NUM_PT_SLOTS too high */
|
|
BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
|
|
/* Must be a multiple of 64K to support all platforms */
|
|
BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
|
|
/* And one slot reserved for the 4KiB page table updates */
|
|
BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));
|
|
|
|
/* Need to be sure everything fits in the first PT, or create more */
|
|
xe_tile_assert(tile, m->batch_base_ofs + xe_bo_size(batch) < SZ_2M);
|
|
|
|
bo = xe_bo_create_pin_map(vm->xe, tile, vm,
|
|
num_entries * XE_PAGE_SIZE,
|
|
ttm_bo_type_kernel,
|
|
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
|
|
XE_BO_FLAG_PAGETABLE);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
/* PT30 & PT31 reserved for 2M identity map */
|
|
pt29_ofs = xe_bo_size(bo) - 3 * XE_PAGE_SIZE;
|
|
entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index);
|
|
xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);
|
|
|
|
map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;
|
|
|
|
/* Map the entire BO in our level 0 pt */
|
|
for (i = 0, level = 0; i < num_entries; level++) {
|
|
entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
|
|
pat_index, 0);
|
|
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);
|
|
|
|
if (vm->flags & XE_VM_FLAG_64K)
|
|
i += 16;
|
|
else
|
|
i += 1;
|
|
}
|
|
|
|
if (!IS_DGFX(xe)) {
|
|
/* Write out batch too */
|
|
m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
|
|
for (i = 0; i < xe_bo_size(batch);
|
|
i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
|
|
XE_PAGE_SIZE) {
|
|
entry = vm->pt_ops->pte_encode_bo(batch, i,
|
|
pat_index, 0);
|
|
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
|
|
entry);
|
|
level++;
|
|
}
|
|
if (xe->info.has_usm) {
|
|
xe_tile_assert(tile, xe_bo_size(batch) == SZ_1M);
|
|
|
|
batch = tile->primary_gt->usm.bb_pool->bo;
|
|
m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
|
|
xe_tile_assert(tile, xe_bo_size(batch) == SZ_512K);
|
|
|
|
for (i = 0; i < xe_bo_size(batch);
|
|
i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
|
|
XE_PAGE_SIZE) {
|
|
entry = vm->pt_ops->pte_encode_bo(batch, i,
|
|
pat_index, 0);
|
|
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
|
|
entry);
|
|
level++;
|
|
}
|
|
}
|
|
} else {
|
|
u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
|
|
|
|
m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
|
|
|
|
if (xe->info.has_usm) {
|
|
batch = tile->primary_gt->usm.bb_pool->bo;
|
|
batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
|
|
m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
|
|
}
|
|
}
|
|
|
|
for (level = 1; level < num_level; level++) {
|
|
u32 flags = 0;
|
|
|
|
if (vm->flags & XE_VM_FLAG_64K && level == 1)
|
|
flags = XE_PDE_64K;
|
|
|
|
entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
|
|
XE_PAGE_SIZE, pat_index);
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
|
|
entry | flags);
|
|
}
|
|
|
|
/* Write PDE's that point to our BO. */
|
|
for (i = 0; i < map_ofs / PAGE_SIZE; i++) {
|
|
entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
|
|
pat_index);
|
|
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
|
|
(i + 1) * 8, u64, entry);
|
|
}
|
|
|
|
/* Set up a 1GiB NULL mapping at 255GiB offset. */
|
|
level = 2;
|
|
xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
|
|
vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
|
|
| XE_PTE_NULL);
|
|
m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));
|
|
|
|
/* Identity map the entire vram at 256GiB offset */
|
|
if (IS_DGFX(xe)) {
|
|
u64 pt30_ofs = xe_bo_size(bo) - 2 * XE_PAGE_SIZE;
|
|
|
|
xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
|
|
pat_index, pt30_ofs);
|
|
xe_assert(xe, xe->mem.vram.actual_physical_size <=
|
|
(MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);
|
|
|
|
/*
|
|
* Identity map the entire vram for compressed pat_index for xe2+
|
|
* if flat ccs is enabled.
|
|
*/
|
|
if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
|
|
u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
|
|
u64 vram_offset = IDENTITY_OFFSET +
|
|
DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
|
|
u64 pt31_ofs = xe_bo_size(bo) - XE_PAGE_SIZE;
|
|
|
|
xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE -
|
|
IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G);
|
|
xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
|
|
comp_pat_index, pt31_ofs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Example layout created above, with root level = 3:
|
|
* [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
|
|
* [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
|
|
* [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
|
|
* [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
|
|
*
|
|
* This makes the lowest part of the VM point to the pagetables.
|
|
* Hence the lowest 2M in the vm should point to itself, with a few writes
|
|
* and flushes, other parts of the VM can be used either for copying and
|
|
* clearing.
|
|
*
|
|
* For performance, the kernel reserves PDE's, so about 20 are left
|
|
* for async VM updates.
|
|
*
|
|
* To make it easier to work, each scratch PT is put in slot (1 + PT #)
|
|
* everywhere, this allows lockless updates to scratch pages by using
|
|
* the different addresses in VM.
|
|
*/
|
|
#define NUM_VMUSA_UNIT_PER_PAGE 32
|
|
#define VM_SA_UPDATE_UNIT_SIZE (XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
|
|
#define NUM_VMUSA_WRITES_PER_UNIT (VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
|
|
drm_suballoc_manager_init(&m->vm_update_sa,
|
|
(size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
|
|
NUM_VMUSA_UNIT_PER_PAGE, 0);
|
|
|
|
m->pt_bo = bo;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Including the reserved copy engine is required to avoid deadlocks due to
|
|
* migrate jobs servicing the faults gets stuck behind the job that faulted.
|
|
*/
|
|
static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
|
|
{
|
|
u32 logical_mask = 0;
|
|
struct xe_hw_engine *hwe;
|
|
enum xe_hw_engine_id id;
|
|
|
|
for_each_hw_engine(hwe, gt, id) {
|
|
if (hwe->class != XE_ENGINE_CLASS_COPY)
|
|
continue;
|
|
|
|
if (xe_gt_is_usm_hwe(gt, hwe))
|
|
logical_mask |= BIT(hwe->logical_instance);
|
|
}
|
|
|
|
return logical_mask;
|
|
}
|
|
|
|
static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
|
|
{
|
|
return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_init() - Initialize a migrate context
|
|
* @tile: Back-pointer to the tile we're initializing for.
|
|
*
|
|
* Return: Pointer to a migrate context on success. Error pointer on error.
|
|
*/
|
|
struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
struct xe_gt *primary_gt = tile->primary_gt;
|
|
struct xe_migrate *m;
|
|
struct xe_vm *vm;
|
|
int err;
|
|
|
|
m = devm_kzalloc(xe->drm.dev, sizeof(*m), GFP_KERNEL);
|
|
if (!m)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
m->tile = tile;
|
|
|
|
/* Special layout, prepared below.. */
|
|
vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
|
|
XE_VM_FLAG_SET_TILE_ID(tile), NULL);
|
|
if (IS_ERR(vm))
|
|
return ERR_CAST(vm);
|
|
|
|
xe_vm_lock(vm, false);
|
|
err = xe_migrate_prepare_vm(tile, m, vm);
|
|
xe_vm_unlock(vm);
|
|
if (err) {
|
|
xe_vm_close_and_put(vm);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (xe->info.has_usm) {
|
|
struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
|
|
XE_ENGINE_CLASS_COPY,
|
|
primary_gt->usm.reserved_bcs_instance,
|
|
false);
|
|
u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);
|
|
|
|
if (!hwe || !logical_mask)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* XXX: Currently only reserving 1 (likely slow) BCS instance on
|
|
* PVC, may want to revisit if performance is needed.
|
|
*/
|
|
m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
|
|
EXEC_QUEUE_FLAG_KERNEL |
|
|
EXEC_QUEUE_FLAG_PERMANENT |
|
|
EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
|
|
} else {
|
|
m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
|
|
XE_ENGINE_CLASS_COPY,
|
|
EXEC_QUEUE_FLAG_KERNEL |
|
|
EXEC_QUEUE_FLAG_PERMANENT, 0);
|
|
}
|
|
if (IS_ERR(m->q)) {
|
|
xe_vm_close_and_put(vm);
|
|
return ERR_CAST(m->q);
|
|
}
|
|
|
|
mutex_init(&m->job_mutex);
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
might_lock(&m->job_mutex);
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
|
|
err = devm_add_action_or_reset(xe->drm.dev, xe_migrate_fini, m);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
if (IS_DGFX(xe)) {
|
|
if (xe_migrate_needs_ccs_emit(xe))
|
|
/* min chunk size corresponds to 4K of CCS Metadata */
|
|
m->min_chunk_size = SZ_4K * SZ_64K /
|
|
xe_device_ccs_bytes(xe, SZ_64K);
|
|
else
|
|
/* Somewhat arbitrary to avoid a huge amount of blits */
|
|
m->min_chunk_size = SZ_64K;
|
|
m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
|
|
drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
|
|
(unsigned long long)m->min_chunk_size);
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
static u64 max_mem_transfer_per_pass(struct xe_device *xe)
|
|
{
|
|
if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
|
|
return MAX_CCS_LIMITED_TRANSFER;
|
|
|
|
return MAX_PREEMPTDISABLE_TRANSFER;
|
|
}
|
|
|
|
static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(m->tile);
|
|
u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);
|
|
|
|
if (mem_type_is_vram(cur->mem_type)) {
|
|
/*
|
|
* VRAM we want to blit in chunks with sizes aligned to
|
|
* min_chunk_size in order for the offset to CCS metadata to be
|
|
* page-aligned. If it's the last chunk it may be smaller.
|
|
*
|
|
* Another constraint is that we need to limit the blit to
|
|
* the VRAM block size, unless size is smaller than
|
|
* min_chunk_size.
|
|
*/
|
|
u64 chunk = max_t(u64, cur->size, m->min_chunk_size);
|
|
|
|
size = min_t(u64, size, chunk);
|
|
if (size > m->min_chunk_size)
|
|
size = round_down(size, m->min_chunk_size);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
|
|
{
|
|
/* If the chunk is not fragmented, allow identity map. */
|
|
return cur->size >= size;
|
|
}
|
|
|
|
#define PTE_UPDATE_FLAG_IS_VRAM BIT(0)
|
|
#define PTE_UPDATE_FLAG_IS_COMP_PTE BIT(1)
|
|
|
|
static u32 pte_update_size(struct xe_migrate *m,
|
|
u32 flags,
|
|
struct ttm_resource *res,
|
|
struct xe_res_cursor *cur,
|
|
u64 *L0, u64 *L0_ofs, u32 *L0_pt,
|
|
u32 cmd_size, u32 pt_ofs, u32 avail_pts)
|
|
{
|
|
u32 cmds = 0;
|
|
bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
|
|
bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;
|
|
|
|
*L0_pt = pt_ofs;
|
|
if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
|
|
/* Offset into identity map. */
|
|
*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
|
|
cur->start + vram_region_gpu_offset(res),
|
|
is_comp_pte);
|
|
cmds += cmd_size;
|
|
} else {
|
|
/* Clip L0 to available size */
|
|
u64 size = min(*L0, (u64)avail_pts * SZ_2M);
|
|
u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;
|
|
|
|
*L0 = size;
|
|
*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);
|
|
|
|
/* MI_STORE_DATA_IMM */
|
|
cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);
|
|
|
|
/* PDE qwords */
|
|
cmds += num_4k_pages * 2;
|
|
|
|
/* Each chunk has a single blit command */
|
|
cmds += cmd_size;
|
|
}
|
|
|
|
return cmds;
|
|
}
|
|
|
|
static void emit_pte(struct xe_migrate *m,
|
|
struct xe_bb *bb, u32 at_pt,
|
|
bool is_vram, bool is_comp_pte,
|
|
struct xe_res_cursor *cur,
|
|
u32 size, struct ttm_resource *res)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(m->tile);
|
|
struct xe_vm *vm = m->q->vm;
|
|
u16 pat_index;
|
|
u32 ptes;
|
|
u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
|
|
u64 cur_ofs;
|
|
|
|
/* Indirect access needs compression enabled uncached PAT index */
|
|
if (GRAPHICS_VERx100(xe) >= 2000)
|
|
pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
|
|
xe->pat.idx[XE_CACHE_WB];
|
|
else
|
|
pat_index = xe->pat.idx[XE_CACHE_WB];
|
|
|
|
ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
|
|
|
|
while (ptes) {
|
|
u32 chunk = min(MAX_PTE_PER_SDI, ptes);
|
|
|
|
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
|
|
bb->cs[bb->len++] = ofs;
|
|
bb->cs[bb->len++] = 0;
|
|
|
|
cur_ofs = ofs;
|
|
ofs += chunk * 8;
|
|
ptes -= chunk;
|
|
|
|
while (chunk--) {
|
|
u64 addr, flags = 0;
|
|
bool devmem = false;
|
|
|
|
addr = xe_res_dma(cur) & PAGE_MASK;
|
|
if (is_vram) {
|
|
if (vm->flags & XE_VM_FLAG_64K) {
|
|
u64 va = cur_ofs * XE_PAGE_SIZE / 8;
|
|
|
|
xe_assert(xe, (va & (SZ_64K - 1)) ==
|
|
(addr & (SZ_64K - 1)));
|
|
|
|
flags |= XE_PTE_PS64;
|
|
}
|
|
|
|
addr += vram_region_gpu_offset(res);
|
|
devmem = true;
|
|
}
|
|
|
|
addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
|
|
addr, pat_index,
|
|
0, devmem, flags);
|
|
bb->cs[bb->len++] = lower_32_bits(addr);
|
|
bb->cs[bb->len++] = upper_32_bits(addr);
|
|
|
|
xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
|
|
cur_ofs += 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define EMIT_COPY_CCS_DW 5
|
|
static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
|
|
u64 dst_ofs, bool dst_is_indirect,
|
|
u64 src_ofs, bool src_is_indirect,
|
|
u32 size)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 *cs = bb->cs + bb->len;
|
|
u32 num_ccs_blks;
|
|
u32 num_pages;
|
|
u32 ccs_copy_size;
|
|
u32 mocs;
|
|
|
|
if (GRAPHICS_VERx100(xe) >= 2000) {
|
|
num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
|
|
xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));
|
|
|
|
ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
|
|
mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);
|
|
|
|
} else {
|
|
num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
|
|
NUM_CCS_BYTES_PER_BLOCK);
|
|
xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));
|
|
|
|
ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
|
|
mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
|
|
}
|
|
|
|
*cs++ = XY_CTRL_SURF_COPY_BLT |
|
|
(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
|
|
(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
|
|
ccs_copy_size;
|
|
*cs++ = lower_32_bits(src_ofs);
|
|
*cs++ = upper_32_bits(src_ofs) | mocs;
|
|
*cs++ = lower_32_bits(dst_ofs);
|
|
*cs++ = upper_32_bits(dst_ofs) | mocs;
|
|
|
|
bb->len = cs - bb->cs;
|
|
}
|
|
|
|
#define EMIT_COPY_DW 10
|
|
static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
|
|
u64 src_ofs, u64 dst_ofs, unsigned int size,
|
|
unsigned int pitch)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 mocs = 0;
|
|
u32 tile_y = 0;
|
|
|
|
xe_gt_assert(gt, !(pitch & 3));
|
|
xe_gt_assert(gt, size / pitch <= S16_MAX);
|
|
xe_gt_assert(gt, pitch / 4 <= S16_MAX);
|
|
xe_gt_assert(gt, pitch <= U16_MAX);
|
|
|
|
if (GRAPHICS_VER(xe) >= 20)
|
|
mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);
|
|
|
|
if (GRAPHICS_VERx100(xe) >= 1250)
|
|
tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;
|
|
|
|
bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
|
|
bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
|
|
bb->cs[bb->len++] = 0;
|
|
bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
|
|
bb->cs[bb->len++] = lower_32_bits(dst_ofs);
|
|
bb->cs[bb->len++] = upper_32_bits(dst_ofs);
|
|
bb->cs[bb->len++] = 0;
|
|
bb->cs[bb->len++] = pitch | mocs;
|
|
bb->cs[bb->len++] = lower_32_bits(src_ofs);
|
|
bb->cs[bb->len++] = upper_32_bits(src_ofs);
|
|
}
|
|
|
|
static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
|
|
{
|
|
return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
|
|
}
|
|
|
|
static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
|
|
struct xe_bb *bb,
|
|
u64 src_ofs, bool src_is_indirect,
|
|
u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
|
|
u64 ccs_ofs, bool copy_ccs)
|
|
{
|
|
struct xe_gt *gt = m->tile->primary_gt;
|
|
u32 flush_flags = 0;
|
|
|
|
if (!copy_ccs && dst_is_indirect) {
|
|
/*
|
|
* If the src is already in vram, then it should already
|
|
* have been cleared by us, or has been populated by the
|
|
* user. Make sure we copy the CCS aux state as-is.
|
|
*
|
|
* Otherwise if the bo doesn't have any CCS metadata attached,
|
|
* we still need to clear it for security reasons.
|
|
*/
|
|
u64 ccs_src_ofs = src_is_indirect ? src_ofs : m->cleared_mem_ofs;
|
|
|
|
emit_copy_ccs(gt, bb,
|
|
dst_ofs, true,
|
|
ccs_src_ofs, src_is_indirect, dst_size);
|
|
|
|
flush_flags = MI_FLUSH_DW_CCS;
|
|
} else if (copy_ccs) {
|
|
if (!src_is_indirect)
|
|
src_ofs = ccs_ofs;
|
|
else if (!dst_is_indirect)
|
|
dst_ofs = ccs_ofs;
|
|
|
|
xe_gt_assert(gt, src_is_indirect || dst_is_indirect);
|
|
|
|
emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
|
|
src_is_indirect, dst_size);
|
|
if (dst_is_indirect)
|
|
flush_flags = MI_FLUSH_DW_CCS;
|
|
}
|
|
|
|
return flush_flags;
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_copy() - Copy content of TTM resources.
|
|
* @m: The migration context.
|
|
* @src_bo: The buffer object @src is currently bound to.
|
|
* @dst_bo: If copying between resources created for the same bo, set this to
|
|
* the same value as @src_bo. If copying between buffer objects, set it to
|
|
* the buffer object @dst is currently bound to.
|
|
* @src: The source TTM resource.
|
|
* @dst: The dst TTM resource.
|
|
* @copy_only_ccs: If true copy only CCS metadata
|
|
*
|
|
* Copies the contents of @src to @dst: On flat CCS devices,
|
|
* the CCS metadata is copied as well if needed, or if not present,
|
|
* the CCS metadata of @dst is cleared for security reasons.
|
|
*
|
|
* Return: Pointer to a dma_fence representing the last copy batch, or
|
|
* an error pointer on failure. If there is a failure, any copy operation
|
|
* started by the function call has been synced.
|
|
*/
|
|
struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
|
|
struct xe_bo *src_bo,
|
|
struct xe_bo *dst_bo,
|
|
struct ttm_resource *src,
|
|
struct ttm_resource *dst,
|
|
bool copy_only_ccs)
|
|
{
|
|
struct xe_gt *gt = m->tile->primary_gt;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct dma_fence *fence = NULL;
|
|
u64 size = xe_bo_size(src_bo);
|
|
struct xe_res_cursor src_it, dst_it, ccs_it;
|
|
u64 src_L0_ofs, dst_L0_ofs;
|
|
u32 src_L0_pt, dst_L0_pt;
|
|
u64 src_L0, dst_L0;
|
|
int pass = 0;
|
|
int err;
|
|
bool src_is_pltt = src->mem_type == XE_PL_TT;
|
|
bool dst_is_pltt = dst->mem_type == XE_PL_TT;
|
|
bool src_is_vram = mem_type_is_vram(src->mem_type);
|
|
bool dst_is_vram = mem_type_is_vram(dst->mem_type);
|
|
bool type_device = src_bo->ttm.type == ttm_bo_type_device;
|
|
bool needs_ccs_emit = type_device && xe_migrate_needs_ccs_emit(xe);
|
|
bool copy_ccs = xe_device_has_flat_ccs(xe) &&
|
|
xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
|
|
bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
|
|
bool use_comp_pat = type_device && xe_device_has_flat_ccs(xe) &&
|
|
GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;
|
|
|
|
/* Copying CCS between two different BOs is not supported yet. */
|
|
if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (src_bo != dst_bo && XE_WARN_ON(xe_bo_size(src_bo) != xe_bo_size(dst_bo)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!src_is_vram)
|
|
xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
|
|
else
|
|
xe_res_first(src, 0, size, &src_it);
|
|
if (!dst_is_vram)
|
|
xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
|
|
else
|
|
xe_res_first(dst, 0, size, &dst_it);
|
|
|
|
if (copy_system_ccs)
|
|
xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
|
|
PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
|
|
&ccs_it);
|
|
|
|
while (size) {
|
|
u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
|
|
struct xe_sched_job *job;
|
|
struct xe_bb *bb;
|
|
u32 flush_flags = 0;
|
|
u32 update_idx;
|
|
u64 ccs_ofs, ccs_size;
|
|
u32 ccs_pt;
|
|
u32 pte_flags;
|
|
|
|
bool usm = xe->info.has_usm;
|
|
u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
|
|
|
|
src_L0 = xe_migrate_res_sizes(m, &src_it);
|
|
dst_L0 = xe_migrate_res_sizes(m, &dst_it);
|
|
|
|
drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
|
|
pass++, src_L0, dst_L0);
|
|
|
|
src_L0 = min(src_L0, dst_L0);
|
|
|
|
pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
|
|
pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
|
|
batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
|
|
&src_L0_ofs, &src_L0_pt, 0, 0,
|
|
avail_pts);
|
|
|
|
pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
|
|
batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0,
|
|
&dst_L0_ofs, &dst_L0_pt, 0,
|
|
avail_pts, avail_pts);
|
|
|
|
if (copy_system_ccs) {
|
|
xe_assert(xe, type_device);
|
|
ccs_size = xe_device_ccs_bytes(xe, src_L0);
|
|
batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
|
|
&ccs_ofs, &ccs_pt, 0,
|
|
2 * avail_pts,
|
|
avail_pts);
|
|
xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
|
|
}
|
|
|
|
/* Add copy commands size here */
|
|
batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
|
|
((needs_ccs_emit ? EMIT_COPY_CCS_DW : 0));
|
|
|
|
bb = xe_bb_new(gt, batch_size, usm);
|
|
if (IS_ERR(bb)) {
|
|
err = PTR_ERR(bb);
|
|
goto err_sync;
|
|
}
|
|
|
|
if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
|
|
xe_res_next(&src_it, src_L0);
|
|
else
|
|
emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs || use_comp_pat,
|
|
&src_it, src_L0, src);
|
|
|
|
if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
|
|
xe_res_next(&dst_it, src_L0);
|
|
else
|
|
emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
|
|
&dst_it, src_L0, dst);
|
|
|
|
if (copy_system_ccs)
|
|
emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);
|
|
|
|
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
|
|
update_idx = bb->len;
|
|
|
|
if (!copy_only_ccs)
|
|
emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);
|
|
|
|
if (needs_ccs_emit)
|
|
flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
|
|
IS_DGFX(xe) ? src_is_vram : src_is_pltt,
|
|
dst_L0_ofs,
|
|
IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
|
|
src_L0, ccs_ofs, copy_ccs);
|
|
|
|
job = xe_bb_create_migration_job(m->q, bb,
|
|
xe_migrate_batch_base(m, usm),
|
|
update_idx);
|
|
if (IS_ERR(job)) {
|
|
err = PTR_ERR(job);
|
|
goto err;
|
|
}
|
|
|
|
xe_sched_job_add_migrate_flush(job, flush_flags);
|
|
if (!fence) {
|
|
err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP);
|
|
if (!err && src_bo != dst_bo)
|
|
err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP);
|
|
if (err)
|
|
goto err_job;
|
|
}
|
|
|
|
mutex_lock(&m->job_mutex);
|
|
xe_sched_job_arm(job);
|
|
dma_fence_put(fence);
|
|
fence = dma_fence_get(&job->drm.s_fence->finished);
|
|
xe_sched_job_push(job);
|
|
|
|
dma_fence_put(m->fence);
|
|
m->fence = dma_fence_get(fence);
|
|
|
|
mutex_unlock(&m->job_mutex);
|
|
|
|
xe_bb_free(bb, fence);
|
|
size -= src_L0;
|
|
continue;
|
|
|
|
err_job:
|
|
xe_sched_job_put(job);
|
|
err:
|
|
xe_bb_free(bb, NULL);
|
|
|
|
err_sync:
|
|
/* Sync partial copy if any. FIXME: under job_mutex? */
|
|
if (fence) {
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
}
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return fence;
|
|
}
|
|
|
|
static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
|
|
u32 size, u32 pitch)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 *cs = bb->cs + bb->len;
|
|
u32 len = PVC_MEM_SET_CMD_LEN_DW;
|
|
|
|
*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
|
|
*cs++ = pitch - 1;
|
|
*cs++ = (size / pitch) - 1;
|
|
*cs++ = pitch - 1;
|
|
*cs++ = lower_32_bits(src_ofs);
|
|
*cs++ = upper_32_bits(src_ofs);
|
|
if (GRAPHICS_VERx100(xe) >= 2000)
|
|
*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
|
|
else
|
|
*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
|
|
|
|
xe_gt_assert(gt, cs - bb->cs == len + bb->len);
|
|
|
|
bb->len += len;
|
|
}
|
|
|
|
static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
|
|
u64 src_ofs, u32 size, u32 pitch, bool is_vram)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 *cs = bb->cs + bb->len;
|
|
u32 len = XY_FAST_COLOR_BLT_DW;
|
|
|
|
if (GRAPHICS_VERx100(xe) < 1250)
|
|
len = 11;
|
|
|
|
*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
|
|
(len - 2);
|
|
if (GRAPHICS_VERx100(xe) >= 2000)
|
|
*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
|
|
(pitch - 1);
|
|
else
|
|
*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
|
|
(pitch - 1);
|
|
*cs++ = 0;
|
|
*cs++ = (size / pitch) << 16 | pitch / 4;
|
|
*cs++ = lower_32_bits(src_ofs);
|
|
*cs++ = upper_32_bits(src_ofs);
|
|
*cs++ = (is_vram ? 0x0 : 0x1) << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
|
|
if (len > 11) {
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
*cs++ = 0;
|
|
}
|
|
|
|
xe_gt_assert(gt, cs - bb->cs == len + bb->len);
|
|
|
|
bb->len += len;
|
|
}
|
|
|
|
static bool has_service_copy_support(struct xe_gt *gt)
|
|
{
|
|
/*
|
|
* What we care about is whether the architecture was designed with
|
|
* service copy functionality (specifically the new MEM_SET / MEM_COPY
|
|
* instructions) so check the architectural engine list rather than the
|
|
* actual list since these instructions are usable on BCS0 even if
|
|
* all of the actual service copy engines (BCS1-BCS8) have been fused
|
|
* off.
|
|
*/
|
|
return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
|
|
XE_HW_ENGINE_BCS1);
|
|
}
|
|
|
|
static u32 emit_clear_cmd_len(struct xe_gt *gt)
|
|
{
|
|
if (has_service_copy_support(gt))
|
|
return PVC_MEM_SET_CMD_LEN_DW;
|
|
else
|
|
return XY_FAST_COLOR_BLT_DW;
|
|
}
|
|
|
|
static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
|
|
u32 size, u32 pitch, bool is_vram)
|
|
{
|
|
if (has_service_copy_support(gt))
|
|
emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
|
|
else
|
|
emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
|
|
is_vram);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_clear() - Copy content of TTM resources.
|
|
* @m: The migration context.
|
|
* @bo: The buffer object @dst is currently bound to.
|
|
* @dst: The dst TTM resource to be cleared.
|
|
* @clear_flags: flags to specify which data to clear: CCS, BO, or both.
|
|
*
|
|
* Clear the contents of @dst to zero when XE_MIGRATE_CLEAR_FLAG_BO_DATA is set.
|
|
* On flat CCS devices, the CCS metadata is cleared to zero with XE_MIGRATE_CLEAR_FLAG_CCS_DATA.
|
|
* Set XE_MIGRATE_CLEAR_FLAG_FULL to clear bo as well as CCS metadata.
|
|
* TODO: Eliminate the @bo argument.
|
|
*
|
|
* Return: Pointer to a dma_fence representing the last clear batch, or
|
|
* an error pointer on failure. If there is a failure, any clear operation
|
|
* started by the function call has been synced.
|
|
*/
|
|
struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
|
|
struct xe_bo *bo,
|
|
struct ttm_resource *dst,
|
|
u32 clear_flags)
|
|
{
|
|
bool clear_vram = mem_type_is_vram(dst->mem_type);
|
|
bool clear_bo_data = XE_MIGRATE_CLEAR_FLAG_BO_DATA & clear_flags;
|
|
bool clear_ccs = XE_MIGRATE_CLEAR_FLAG_CCS_DATA & clear_flags;
|
|
struct xe_gt *gt = m->tile->primary_gt;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
bool clear_only_system_ccs = false;
|
|
struct dma_fence *fence = NULL;
|
|
u64 size = xe_bo_size(bo);
|
|
struct xe_res_cursor src_it;
|
|
struct ttm_resource *src = dst;
|
|
int err;
|
|
|
|
if (WARN_ON(!clear_bo_data && !clear_ccs))
|
|
return NULL;
|
|
|
|
if (!clear_bo_data && clear_ccs && !IS_DGFX(xe))
|
|
clear_only_system_ccs = true;
|
|
|
|
if (!clear_vram)
|
|
xe_res_first_sg(xe_bo_sg(bo), 0, xe_bo_size(bo), &src_it);
|
|
else
|
|
xe_res_first(src, 0, xe_bo_size(bo), &src_it);
|
|
|
|
while (size) {
|
|
u64 clear_L0_ofs;
|
|
u32 clear_L0_pt;
|
|
u32 flush_flags = 0;
|
|
u64 clear_L0;
|
|
struct xe_sched_job *job;
|
|
struct xe_bb *bb;
|
|
u32 batch_size, update_idx;
|
|
u32 pte_flags;
|
|
|
|
bool usm = xe->info.has_usm;
|
|
u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;
|
|
|
|
clear_L0 = xe_migrate_res_sizes(m, &src_it);
|
|
|
|
/* Calculate final sizes and batch size.. */
|
|
pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
|
|
batch_size = 2 +
|
|
pte_update_size(m, pte_flags, src, &src_it,
|
|
&clear_L0, &clear_L0_ofs, &clear_L0_pt,
|
|
clear_bo_data ? emit_clear_cmd_len(gt) : 0, 0,
|
|
avail_pts);
|
|
|
|
if (xe_migrate_needs_ccs_emit(xe))
|
|
batch_size += EMIT_COPY_CCS_DW;
|
|
|
|
/* Clear commands */
|
|
|
|
if (WARN_ON_ONCE(!clear_L0))
|
|
break;
|
|
|
|
bb = xe_bb_new(gt, batch_size, usm);
|
|
if (IS_ERR(bb)) {
|
|
err = PTR_ERR(bb);
|
|
goto err_sync;
|
|
}
|
|
|
|
size -= clear_L0;
|
|
/* Preemption is enabled again by the ring ops. */
|
|
if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
|
|
xe_res_next(&src_it, clear_L0);
|
|
else
|
|
emit_pte(m, bb, clear_L0_pt, clear_vram, clear_only_system_ccs,
|
|
&src_it, clear_L0, dst);
|
|
|
|
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
|
|
update_idx = bb->len;
|
|
|
|
if (clear_bo_data)
|
|
emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);
|
|
|
|
if (xe_migrate_needs_ccs_emit(xe)) {
|
|
emit_copy_ccs(gt, bb, clear_L0_ofs, true,
|
|
m->cleared_mem_ofs, false, clear_L0);
|
|
flush_flags = MI_FLUSH_DW_CCS;
|
|
}
|
|
|
|
job = xe_bb_create_migration_job(m->q, bb,
|
|
xe_migrate_batch_base(m, usm),
|
|
update_idx);
|
|
if (IS_ERR(job)) {
|
|
err = PTR_ERR(job);
|
|
goto err;
|
|
}
|
|
|
|
xe_sched_job_add_migrate_flush(job, flush_flags);
|
|
if (!fence) {
|
|
/*
|
|
* There can't be anything userspace related at this
|
|
* point, so we just need to respect any potential move
|
|
* fences, which are always tracked as
|
|
* DMA_RESV_USAGE_KERNEL.
|
|
*/
|
|
err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_KERNEL);
|
|
if (err)
|
|
goto err_job;
|
|
}
|
|
|
|
mutex_lock(&m->job_mutex);
|
|
xe_sched_job_arm(job);
|
|
dma_fence_put(fence);
|
|
fence = dma_fence_get(&job->drm.s_fence->finished);
|
|
xe_sched_job_push(job);
|
|
|
|
dma_fence_put(m->fence);
|
|
m->fence = dma_fence_get(fence);
|
|
|
|
mutex_unlock(&m->job_mutex);
|
|
|
|
xe_bb_free(bb, fence);
|
|
continue;
|
|
|
|
err_job:
|
|
xe_sched_job_put(job);
|
|
err:
|
|
xe_bb_free(bb, NULL);
|
|
err_sync:
|
|
/* Sync partial copies if any. FIXME: job_mutex? */
|
|
if (fence) {
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
}
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (clear_ccs)
|
|
bo->ccs_cleared = true;
|
|
|
|
return fence;
|
|
}
|
|
|
|
static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
|
|
const struct xe_vm_pgtable_update_op *pt_op,
|
|
const struct xe_vm_pgtable_update *update,
|
|
struct xe_migrate_pt_update *pt_update)
|
|
{
|
|
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
|
|
u32 chunk;
|
|
u32 ofs = update->ofs, size = update->qwords;
|
|
|
|
/*
|
|
* If we have 512 entries (max), we would populate it ourselves,
|
|
* and update the PDE above it to the new pointer.
|
|
* The only time this can only happen if we have to update the top
|
|
* PDE. This requires a BO that is almost vm->size big.
|
|
*
|
|
* This shouldn't be possible in practice.. might change when 16K
|
|
* pages are used. Hence the assert.
|
|
*/
|
|
xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
|
|
if (!ppgtt_ofs)
|
|
ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
|
|
xe_bo_addr(update->pt_bo, 0,
|
|
XE_PAGE_SIZE), false);
|
|
|
|
do {
|
|
u64 addr = ppgtt_ofs + ofs * 8;
|
|
|
|
chunk = min(size, MAX_PTE_PER_SDI);
|
|
|
|
/* Ensure populatefn can do memset64 by aligning bb->cs */
|
|
if (!(bb->len & 1))
|
|
bb->cs[bb->len++] = MI_NOOP;
|
|
|
|
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
|
|
bb->cs[bb->len++] = lower_32_bits(addr);
|
|
bb->cs[bb->len++] = upper_32_bits(addr);
|
|
if (pt_op->bind)
|
|
ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
|
|
ofs, chunk, update);
|
|
else
|
|
ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
|
|
ofs, chunk, update);
|
|
|
|
bb->len += chunk * 2;
|
|
ofs += chunk;
|
|
size -= chunk;
|
|
} while (size);
|
|
}
|
|
|
|
struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
|
|
{
|
|
return xe_vm_get(m->q->vm);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
|
|
struct migrate_test_params {
|
|
struct xe_test_priv base;
|
|
bool force_gpu;
|
|
};
|
|
|
|
#define to_migrate_test_params(_priv) \
|
|
container_of(_priv, struct migrate_test_params, base)
|
|
#endif
|
|
|
|
static struct dma_fence *
|
|
xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
|
|
struct xe_migrate_pt_update *pt_update)
|
|
{
|
|
XE_TEST_DECLARE(struct migrate_test_params *test =
|
|
to_migrate_test_params
|
|
(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
|
|
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
|
|
struct xe_vm *vm = pt_update->vops->vm;
|
|
struct xe_vm_pgtable_update_ops *pt_update_ops =
|
|
&pt_update->vops->pt_update_ops[pt_update->tile_id];
|
|
int err;
|
|
u32 i, j;
|
|
|
|
if (XE_TEST_ONLY(test && test->force_gpu))
|
|
return ERR_PTR(-ETIME);
|
|
|
|
if (ops->pre_commit) {
|
|
pt_update->job = NULL;
|
|
err = ops->pre_commit(pt_update);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
for (i = 0; i < pt_update_ops->num_ops; ++i) {
|
|
const struct xe_vm_pgtable_update_op *pt_op =
|
|
&pt_update_ops->ops[i];
|
|
|
|
for (j = 0; j < pt_op->num_entries; j++) {
|
|
const struct xe_vm_pgtable_update *update =
|
|
&pt_op->entries[j];
|
|
|
|
if (pt_op->bind)
|
|
ops->populate(pt_update, m->tile,
|
|
&update->pt_bo->vmap, NULL,
|
|
update->ofs, update->qwords,
|
|
update);
|
|
else
|
|
ops->clear(pt_update, m->tile,
|
|
&update->pt_bo->vmap, NULL,
|
|
update->ofs, update->qwords, update);
|
|
}
|
|
}
|
|
|
|
trace_xe_vm_cpu_bind(vm);
|
|
xe_device_wmb(vm->xe);
|
|
|
|
return dma_fence_get_stub();
|
|
}
|
|
|
|
static struct dma_fence *
|
|
__xe_migrate_update_pgtables(struct xe_migrate *m,
|
|
struct xe_migrate_pt_update *pt_update,
|
|
struct xe_vm_pgtable_update_ops *pt_update_ops)
|
|
{
|
|
const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
|
|
struct xe_tile *tile = m->tile;
|
|
struct xe_gt *gt = tile->primary_gt;
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
struct xe_sched_job *job;
|
|
struct dma_fence *fence;
|
|
struct drm_suballoc *sa_bo = NULL;
|
|
struct xe_bb *bb;
|
|
u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
|
|
u32 num_updates = 0, current_update = 0;
|
|
u64 addr;
|
|
int err = 0;
|
|
bool is_migrate = pt_update_ops->q == m->q;
|
|
bool usm = is_migrate && xe->info.has_usm;
|
|
|
|
for (i = 0; i < pt_update_ops->num_ops; ++i) {
|
|
struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
|
|
struct xe_vm_pgtable_update *updates = pt_op->entries;
|
|
|
|
num_updates += pt_op->num_entries;
|
|
for (j = 0; j < pt_op->num_entries; ++j) {
|
|
u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
|
|
MAX_PTE_PER_SDI);
|
|
|
|
/* align noop + MI_STORE_DATA_IMM cmd prefix */
|
|
batch_size += 4 * num_cmds + updates[j].qwords * 2;
|
|
}
|
|
}
|
|
|
|
/* fixed + PTE entries */
|
|
if (IS_DGFX(xe))
|
|
batch_size += 2;
|
|
else
|
|
batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
|
|
num_updates * 2;
|
|
|
|
bb = xe_bb_new(gt, batch_size, usm);
|
|
if (IS_ERR(bb))
|
|
return ERR_CAST(bb);
|
|
|
|
/* For sysmem PTE's, need to map them in our hole.. */
|
|
if (!IS_DGFX(xe)) {
|
|
u16 pat_index = xe->pat.idx[XE_CACHE_WB];
|
|
u32 ptes, ofs;
|
|
|
|
ppgtt_ofs = NUM_KERNEL_PDE - 1;
|
|
if (!is_migrate) {
|
|
u32 num_units = DIV_ROUND_UP(num_updates,
|
|
NUM_VMUSA_WRITES_PER_UNIT);
|
|
|
|
if (num_units > m->vm_update_sa.size) {
|
|
err = -ENOBUFS;
|
|
goto err_bb;
|
|
}
|
|
sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
|
|
GFP_KERNEL, true, 0);
|
|
if (IS_ERR(sa_bo)) {
|
|
err = PTR_ERR(sa_bo);
|
|
goto err_bb;
|
|
}
|
|
|
|
ppgtt_ofs = NUM_KERNEL_PDE +
|
|
(drm_suballoc_soffset(sa_bo) /
|
|
NUM_VMUSA_UNIT_PER_PAGE);
|
|
page_ofs = (drm_suballoc_soffset(sa_bo) %
|
|
NUM_VMUSA_UNIT_PER_PAGE) *
|
|
VM_SA_UPDATE_UNIT_SIZE;
|
|
}
|
|
|
|
/* Map our PT's to gtt */
|
|
i = 0;
|
|
j = 0;
|
|
ptes = num_updates;
|
|
ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
|
|
while (ptes) {
|
|
u32 chunk = min(MAX_PTE_PER_SDI, ptes);
|
|
u32 idx = 0;
|
|
|
|
bb->cs[bb->len++] = MI_STORE_DATA_IMM |
|
|
MI_SDI_NUM_QW(chunk);
|
|
bb->cs[bb->len++] = ofs;
|
|
bb->cs[bb->len++] = 0; /* upper_32_bits */
|
|
|
|
for (; i < pt_update_ops->num_ops; ++i) {
|
|
struct xe_vm_pgtable_update_op *pt_op =
|
|
&pt_update_ops->ops[i];
|
|
struct xe_vm_pgtable_update *updates = pt_op->entries;
|
|
|
|
for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
|
|
struct xe_vm *vm = pt_update->vops->vm;
|
|
struct xe_bo *pt_bo = updates[j].pt_bo;
|
|
|
|
if (idx == chunk)
|
|
goto next_cmd;
|
|
|
|
xe_tile_assert(tile, xe_bo_size(pt_bo) == SZ_4K);
|
|
|
|
/* Map a PT at most once */
|
|
if (pt_bo->update_index < 0)
|
|
pt_bo->update_index = current_update;
|
|
|
|
addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
|
|
pat_index, 0);
|
|
bb->cs[bb->len++] = lower_32_bits(addr);
|
|
bb->cs[bb->len++] = upper_32_bits(addr);
|
|
}
|
|
|
|
j = 0;
|
|
}
|
|
|
|
next_cmd:
|
|
ptes -= chunk;
|
|
ofs += chunk * sizeof(u64);
|
|
}
|
|
|
|
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
|
|
update_idx = bb->len;
|
|
|
|
addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
|
|
(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
|
|
for (i = 0; i < pt_update_ops->num_ops; ++i) {
|
|
struct xe_vm_pgtable_update_op *pt_op =
|
|
&pt_update_ops->ops[i];
|
|
struct xe_vm_pgtable_update *updates = pt_op->entries;
|
|
|
|
for (j = 0; j < pt_op->num_entries; ++j) {
|
|
struct xe_bo *pt_bo = updates[j].pt_bo;
|
|
|
|
write_pgtable(tile, bb, addr +
|
|
pt_bo->update_index * XE_PAGE_SIZE,
|
|
pt_op, &updates[j], pt_update);
|
|
}
|
|
}
|
|
} else {
|
|
/* phys pages, no preamble required */
|
|
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
|
|
update_idx = bb->len;
|
|
|
|
for (i = 0; i < pt_update_ops->num_ops; ++i) {
|
|
struct xe_vm_pgtable_update_op *pt_op =
|
|
&pt_update_ops->ops[i];
|
|
struct xe_vm_pgtable_update *updates = pt_op->entries;
|
|
|
|
for (j = 0; j < pt_op->num_entries; ++j)
|
|
write_pgtable(tile, bb, 0, pt_op, &updates[j],
|
|
pt_update);
|
|
}
|
|
}
|
|
|
|
job = xe_bb_create_migration_job(pt_update_ops->q, bb,
|
|
xe_migrate_batch_base(m, usm),
|
|
update_idx);
|
|
if (IS_ERR(job)) {
|
|
err = PTR_ERR(job);
|
|
goto err_sa;
|
|
}
|
|
|
|
if (ops->pre_commit) {
|
|
pt_update->job = job;
|
|
err = ops->pre_commit(pt_update);
|
|
if (err)
|
|
goto err_job;
|
|
}
|
|
if (is_migrate)
|
|
mutex_lock(&m->job_mutex);
|
|
|
|
xe_sched_job_arm(job);
|
|
fence = dma_fence_get(&job->drm.s_fence->finished);
|
|
xe_sched_job_push(job);
|
|
|
|
if (is_migrate)
|
|
mutex_unlock(&m->job_mutex);
|
|
|
|
xe_bb_free(bb, fence);
|
|
drm_suballoc_free(sa_bo, fence);
|
|
|
|
return fence;
|
|
|
|
err_job:
|
|
xe_sched_job_put(job);
|
|
err_sa:
|
|
drm_suballoc_free(sa_bo, NULL);
|
|
err_bb:
|
|
xe_bb_free(bb, NULL);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_update_pgtables() - Pipelined page-table update
|
|
* @m: The migrate context.
|
|
* @pt_update: PT update arguments
|
|
*
|
|
* Perform a pipelined page-table update. The update descriptors are typically
|
|
* built under the same lock critical section as a call to this function. If
|
|
* using the default engine for the updates, they will be performed in the
|
|
* order they grab the job_mutex. If different engines are used, external
|
|
* synchronization is needed for overlapping updates to maintain page-table
|
|
* consistency. Note that the meaning of "overlapping" is that the updates
|
|
* touch the same page-table, which might be a higher-level page-directory.
|
|
* If no pipelining is needed, then updates may be performed by the cpu.
|
|
*
|
|
* Return: A dma_fence that, when signaled, indicates the update completion.
|
|
*/
|
|
struct dma_fence *
|
|
xe_migrate_update_pgtables(struct xe_migrate *m,
|
|
struct xe_migrate_pt_update *pt_update)
|
|
|
|
{
|
|
struct xe_vm_pgtable_update_ops *pt_update_ops =
|
|
&pt_update->vops->pt_update_ops[pt_update->tile_id];
|
|
struct dma_fence *fence;
|
|
|
|
fence = xe_migrate_update_pgtables_cpu(m, pt_update);
|
|
|
|
/* -ETIME indicates a job is needed, anything else is legit error */
|
|
if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
|
|
return fence;
|
|
|
|
return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_wait() - Complete all operations using the xe_migrate context
|
|
* @m: Migrate context to wait for.
|
|
*
|
|
* Waits until the GPU no longer uses the migrate context's default engine
|
|
* or its page-table objects. FIXME: What about separate page-table update
|
|
* engines?
|
|
*/
|
|
void xe_migrate_wait(struct xe_migrate *m)
|
|
{
|
|
if (m->fence)
|
|
dma_fence_wait(m->fence, false);
|
|
}
|
|
|
|
static u32 pte_update_cmd_size(u64 size)
|
|
{
|
|
u32 num_dword;
|
|
u64 entries = DIV_U64_ROUND_UP(size, XE_PAGE_SIZE);
|
|
|
|
XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
|
|
|
|
/*
|
|
* MI_STORE_DATA_IMM command is used to update page table. Each
|
|
* instruction can update maximumly MAX_PTE_PER_SDI pte entries. To
|
|
* update n (n <= MAX_PTE_PER_SDI) pte entries, we need:
|
|
*
|
|
* - 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
|
|
* - 2 dword for the page table's physical location
|
|
* - 2*n dword for value of pte to fill (each pte entry is 2 dwords)
|
|
*/
|
|
num_dword = (1 + 2) * DIV_U64_ROUND_UP(entries, MAX_PTE_PER_SDI);
|
|
num_dword += entries * 2;
|
|
|
|
return num_dword;
|
|
}
|
|
|
|
static void build_pt_update_batch_sram(struct xe_migrate *m,
|
|
struct xe_bb *bb, u32 pt_offset,
|
|
dma_addr_t *sram_addr, u32 size)
|
|
{
|
|
u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
|
|
u32 ptes;
|
|
int i = 0;
|
|
|
|
ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
|
|
while (ptes) {
|
|
u32 chunk = min(MAX_PTE_PER_SDI, ptes);
|
|
|
|
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
|
|
bb->cs[bb->len++] = pt_offset;
|
|
bb->cs[bb->len++] = 0;
|
|
|
|
pt_offset += chunk * 8;
|
|
ptes -= chunk;
|
|
|
|
while (chunk--) {
|
|
u64 addr = sram_addr[i++] & PAGE_MASK;
|
|
|
|
xe_tile_assert(m->tile, addr);
|
|
addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
|
|
addr, pat_index,
|
|
0, false, 0);
|
|
bb->cs[bb->len++] = lower_32_bits(addr);
|
|
bb->cs[bb->len++] = upper_32_bits(addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
enum xe_migrate_copy_dir {
|
|
XE_MIGRATE_COPY_TO_VRAM,
|
|
XE_MIGRATE_COPY_TO_SRAM,
|
|
};
|
|
|
|
#define XE_CACHELINE_BYTES 64ull
|
|
#define XE_CACHELINE_MASK (XE_CACHELINE_BYTES - 1)
|
|
|
|
static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
|
|
unsigned long len,
|
|
unsigned long sram_offset,
|
|
dma_addr_t *sram_addr, u64 vram_addr,
|
|
const enum xe_migrate_copy_dir dir)
|
|
{
|
|
struct xe_gt *gt = m->tile->primary_gt;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
bool use_usm_batch = xe->info.has_usm;
|
|
struct dma_fence *fence = NULL;
|
|
u32 batch_size = 2;
|
|
u64 src_L0_ofs, dst_L0_ofs;
|
|
struct xe_sched_job *job;
|
|
struct xe_bb *bb;
|
|
u32 update_idx, pt_slot = 0;
|
|
unsigned long npages = DIV_ROUND_UP(len + sram_offset, PAGE_SIZE);
|
|
unsigned int pitch = len >= PAGE_SIZE && !(len & ~PAGE_MASK) ?
|
|
PAGE_SIZE : 4;
|
|
int err;
|
|
|
|
if (drm_WARN_ON(&xe->drm, (len & XE_CACHELINE_MASK) ||
|
|
(sram_offset | vram_addr) & XE_CACHELINE_MASK))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
xe_assert(xe, npages * PAGE_SIZE <= MAX_PREEMPTDISABLE_TRANSFER);
|
|
|
|
batch_size += pte_update_cmd_size(len);
|
|
batch_size += EMIT_COPY_DW;
|
|
|
|
bb = xe_bb_new(gt, batch_size, use_usm_batch);
|
|
if (IS_ERR(bb)) {
|
|
err = PTR_ERR(bb);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
|
|
sram_addr, len + sram_offset);
|
|
|
|
if (dir == XE_MIGRATE_COPY_TO_VRAM) {
|
|
src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
|
|
dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
|
|
|
|
} else {
|
|
src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
|
|
dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0) + sram_offset;
|
|
}
|
|
|
|
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
|
|
update_idx = bb->len;
|
|
|
|
emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, len, pitch);
|
|
|
|
job = xe_bb_create_migration_job(m->q, bb,
|
|
xe_migrate_batch_base(m, use_usm_batch),
|
|
update_idx);
|
|
if (IS_ERR(job)) {
|
|
err = PTR_ERR(job);
|
|
goto err;
|
|
}
|
|
|
|
xe_sched_job_add_migrate_flush(job, 0);
|
|
|
|
mutex_lock(&m->job_mutex);
|
|
xe_sched_job_arm(job);
|
|
fence = dma_fence_get(&job->drm.s_fence->finished);
|
|
xe_sched_job_push(job);
|
|
|
|
dma_fence_put(m->fence);
|
|
m->fence = dma_fence_get(fence);
|
|
mutex_unlock(&m->job_mutex);
|
|
|
|
xe_bb_free(bb, fence);
|
|
|
|
return fence;
|
|
|
|
err:
|
|
xe_bb_free(bb, NULL);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_to_vram() - Migrate to VRAM
|
|
* @m: The migration context.
|
|
* @npages: Number of pages to migrate.
|
|
* @src_addr: Array of dma addresses (source of migrate)
|
|
* @dst_addr: Device physical address of VRAM (destination of migrate)
|
|
*
|
|
* Copy from an array dma addresses to a VRAM device physical address
|
|
*
|
|
* Return: dma fence for migrate to signal completion on succees, ERR_PTR on
|
|
* failure
|
|
*/
|
|
struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
|
|
unsigned long npages,
|
|
dma_addr_t *src_addr,
|
|
u64 dst_addr)
|
|
{
|
|
return xe_migrate_vram(m, npages * PAGE_SIZE, 0, src_addr, dst_addr,
|
|
XE_MIGRATE_COPY_TO_VRAM);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_from_vram() - Migrate from VRAM
|
|
* @m: The migration context.
|
|
* @npages: Number of pages to migrate.
|
|
* @src_addr: Device physical address of VRAM (source of migrate)
|
|
* @dst_addr: Array of dma addresses (destination of migrate)
|
|
*
|
|
* Copy from a VRAM device physical address to an array dma addresses
|
|
*
|
|
* Return: dma fence for migrate to signal completion on succees, ERR_PTR on
|
|
* failure
|
|
*/
|
|
struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
|
|
unsigned long npages,
|
|
u64 src_addr,
|
|
dma_addr_t *dst_addr)
|
|
{
|
|
return xe_migrate_vram(m, npages * PAGE_SIZE, 0, dst_addr, src_addr,
|
|
XE_MIGRATE_COPY_TO_SRAM);
|
|
}
|
|
|
|
static void xe_migrate_dma_unmap(struct xe_device *xe, dma_addr_t *dma_addr,
|
|
int len, int write)
|
|
{
|
|
unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
if (!dma_addr[i])
|
|
break;
|
|
|
|
dma_unmap_page(xe->drm.dev, dma_addr[i], PAGE_SIZE,
|
|
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
|
}
|
|
kfree(dma_addr);
|
|
}
|
|
|
|
static dma_addr_t *xe_migrate_dma_map(struct xe_device *xe,
|
|
void *buf, int len, int write)
|
|
{
|
|
dma_addr_t *dma_addr;
|
|
unsigned long i, npages = DIV_ROUND_UP(len, PAGE_SIZE);
|
|
|
|
dma_addr = kcalloc(npages, sizeof(*dma_addr), GFP_KERNEL);
|
|
if (!dma_addr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < npages; ++i) {
|
|
dma_addr_t addr;
|
|
struct page *page;
|
|
|
|
if (is_vmalloc_addr(buf))
|
|
page = vmalloc_to_page(buf);
|
|
else
|
|
page = virt_to_page(buf);
|
|
|
|
addr = dma_map_page(xe->drm.dev,
|
|
page, 0, PAGE_SIZE,
|
|
write ? DMA_TO_DEVICE :
|
|
DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(xe->drm.dev, addr))
|
|
goto err_fault;
|
|
|
|
dma_addr[i] = addr;
|
|
buf += PAGE_SIZE;
|
|
}
|
|
|
|
return dma_addr;
|
|
|
|
err_fault:
|
|
xe_migrate_dma_unmap(xe, dma_addr, len, write);
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
|
|
/**
|
|
* xe_migrate_access_memory - Access memory of a BO via GPU
|
|
*
|
|
* @m: The migration context.
|
|
* @bo: buffer object
|
|
* @offset: access offset into buffer object
|
|
* @buf: pointer to caller memory to read into or write from
|
|
* @len: length of access
|
|
* @write: write access
|
|
*
|
|
* Access memory of a BO via GPU either reading in or writing from a passed in
|
|
* pointer. Pointer is dma mapped for GPU access and GPU commands are issued to
|
|
* read to or write from pointer.
|
|
*
|
|
* Returns:
|
|
* 0 if successful, negative error code on failure.
|
|
*/
|
|
int xe_migrate_access_memory(struct xe_migrate *m, struct xe_bo *bo,
|
|
unsigned long offset, void *buf, int len,
|
|
int write)
|
|
{
|
|
struct xe_tile *tile = m->tile;
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
struct xe_res_cursor cursor;
|
|
struct dma_fence *fence = NULL;
|
|
dma_addr_t *dma_addr;
|
|
unsigned long page_offset = (unsigned long)buf & ~PAGE_MASK;
|
|
int bytes_left = len, current_page = 0;
|
|
void *orig_buf = buf;
|
|
|
|
xe_bo_assert_held(bo);
|
|
|
|
/* Use bounce buffer for small access and unaligned access */
|
|
if (!IS_ALIGNED(len, XE_CACHELINE_BYTES) ||
|
|
!IS_ALIGNED((unsigned long)buf + offset, XE_CACHELINE_BYTES)) {
|
|
int buf_offset = 0;
|
|
void *bounce;
|
|
int err;
|
|
|
|
BUILD_BUG_ON(!is_power_of_2(XE_CACHELINE_BYTES));
|
|
bounce = kmalloc(XE_CACHELINE_BYTES, GFP_KERNEL);
|
|
if (!bounce)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Less than ideal for large unaligned access but this should be
|
|
* fairly rare, can fixup if this becomes common.
|
|
*/
|
|
do {
|
|
int copy_bytes = min_t(int, bytes_left,
|
|
XE_CACHELINE_BYTES -
|
|
(offset & XE_CACHELINE_MASK));
|
|
int ptr_offset = offset & XE_CACHELINE_MASK;
|
|
|
|
err = xe_migrate_access_memory(m, bo,
|
|
offset &
|
|
~XE_CACHELINE_MASK,
|
|
bounce,
|
|
XE_CACHELINE_BYTES, 0);
|
|
if (err)
|
|
break;
|
|
|
|
if (write) {
|
|
memcpy(bounce + ptr_offset, buf + buf_offset, copy_bytes);
|
|
|
|
err = xe_migrate_access_memory(m, bo,
|
|
offset & ~XE_CACHELINE_MASK,
|
|
bounce,
|
|
XE_CACHELINE_BYTES, write);
|
|
if (err)
|
|
break;
|
|
} else {
|
|
memcpy(buf + buf_offset, bounce + ptr_offset,
|
|
copy_bytes);
|
|
}
|
|
|
|
bytes_left -= copy_bytes;
|
|
buf_offset += copy_bytes;
|
|
offset += copy_bytes;
|
|
} while (bytes_left);
|
|
|
|
kfree(bounce);
|
|
return err;
|
|
}
|
|
|
|
dma_addr = xe_migrate_dma_map(xe, buf, len + page_offset, write);
|
|
if (IS_ERR(dma_addr))
|
|
return PTR_ERR(dma_addr);
|
|
|
|
xe_res_first(bo->ttm.resource, offset, xe_bo_size(bo) - offset, &cursor);
|
|
|
|
do {
|
|
struct dma_fence *__fence;
|
|
u64 vram_addr = vram_region_gpu_offset(bo->ttm.resource) +
|
|
cursor.start;
|
|
int current_bytes;
|
|
|
|
if (cursor.size > MAX_PREEMPTDISABLE_TRANSFER)
|
|
current_bytes = min_t(int, bytes_left,
|
|
MAX_PREEMPTDISABLE_TRANSFER);
|
|
else
|
|
current_bytes = min_t(int, bytes_left, cursor.size);
|
|
|
|
if (current_bytes & ~PAGE_MASK) {
|
|
int pitch = 4;
|
|
|
|
current_bytes = min_t(int, current_bytes, S16_MAX * pitch);
|
|
}
|
|
|
|
__fence = xe_migrate_vram(m, current_bytes,
|
|
(unsigned long)buf & ~PAGE_MASK,
|
|
dma_addr + current_page,
|
|
vram_addr, write ?
|
|
XE_MIGRATE_COPY_TO_VRAM :
|
|
XE_MIGRATE_COPY_TO_SRAM);
|
|
if (IS_ERR(__fence)) {
|
|
if (fence) {
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
}
|
|
fence = __fence;
|
|
goto out_err;
|
|
}
|
|
|
|
dma_fence_put(fence);
|
|
fence = __fence;
|
|
|
|
buf += current_bytes;
|
|
offset += current_bytes;
|
|
current_page = (int)(buf - orig_buf) / PAGE_SIZE;
|
|
bytes_left -= current_bytes;
|
|
if (bytes_left)
|
|
xe_res_next(&cursor, current_bytes);
|
|
} while (bytes_left);
|
|
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
|
|
out_err:
|
|
xe_migrate_dma_unmap(xe, dma_addr, len + page_offset, write);
|
|
return IS_ERR(fence) ? PTR_ERR(fence) : 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
|
|
#include "tests/xe_migrate.c"
|
|
#endif
|