linux/drivers/gpu/drm/xe/xe_hwmon.c
Karthik Poosa 55d49f0616
drm/xe/hwmon: Add SW clamp for power limits writes
Clamp writes to power limits powerX_crit/currX_crit, powerX_cap,
powerX_max, to the maximum supported by the pcode mailbox
when sysfs-provided values exceed this limit.
Although the pcode already performs clamping, values beyond the pcode
mailbox's supported range get truncated, leading to incorrect
critical power settings.
This patch ensures proper clamping to prevent such truncation.

v2:
 - Address below review comments. (Riana)
 - Split comments into multiple sentences.
 - Use local variables for readability.
 - Add a debug log.
 - Use u64 instead of unsigned long.

v3:
 - Change drm_dbg logs to drm_info. (Badal)

v4:
 - Rephrase the drm_info log. (Rodrigo, Riana)
 - Rename variable max_mbx_power_limit to max_supp_power_limit, as
   limit is same for platforms with and without mailbox power limit
   support.

Signed-off-by: Karthik Poosa <karthik.poosa@intel.com>
Fixes: 92d44a422d ("drm/xe/hwmon: Expose card reactive critical power")
Fixes: fb1b70607f ("drm/xe/hwmon: Expose power attributes")
Reviewed-by: Riana Tauro <riana.tauro@intel.com>
Link: https://lore.kernel.org/r/20250808185310.3466529-1-karthik.poosa@intel.com
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
(cherry picked from commit d301eb950da59f962bafe874cf5eb6d61a85b2c2)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2025-08-12 12:52:26 -04:00

1348 lines
37 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/units.h>
#include <drm/drm_managed.h>
#include "regs/xe_gt_regs.h"
#include "regs/xe_mchbar_regs.h"
#include "regs/xe_pcode_regs.h"
#include "xe_device.h"
#include "xe_hwmon.h"
#include "xe_mmio.h"
#include "xe_pcode.h"
#include "xe_pcode_api.h"
#include "xe_sriov.h"
#include "xe_pm.h"
#include "xe_vsec.h"
#include "regs/xe_pmt.h"
enum xe_hwmon_reg {
REG_TEMP,
REG_PKG_RAPL_LIMIT,
REG_PKG_POWER_SKU,
REG_PKG_POWER_SKU_UNIT,
REG_GT_PERF_STATUS,
REG_PKG_ENERGY_STATUS,
REG_FAN_SPEED,
};
enum xe_hwmon_reg_operation {
REG_READ32,
REG_RMW32,
REG_READ64,
};
enum xe_hwmon_channel {
CHANNEL_CARD,
CHANNEL_PKG,
CHANNEL_VRAM,
CHANNEL_MAX,
};
enum xe_fan_channel {
FAN_1,
FAN_2,
FAN_3,
FAN_MAX,
};
/* Attribute index for powerX_xxx_interval sysfs entries */
enum sensor_attr_power {
SENSOR_INDEX_PSYS_PL1,
SENSOR_INDEX_PKG_PL1,
SENSOR_INDEX_PSYS_PL2,
SENSOR_INDEX_PKG_PL2,
};
/*
* For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
* not supported and below are SKU units to be used.
*/
#define PWR_UNIT 0x3
#define ENERGY_UNIT 0xe
#define TIME_UNIT 0xa
/*
* SF_* - scale factors for particular quantities according to hwmon spec.
*/
#define SF_POWER 1000000 /* microwatts */
#define SF_CURR 1000 /* milliamperes */
#define SF_VOLTAGE 1000 /* millivolts */
#define SF_ENERGY 1000000 /* microjoules */
#define SF_TIME 1000 /* milliseconds */
/*
* PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
*/
#define PL1_HWMON_ATTR hwmon_power_max
#define PL2_HWMON_ATTR hwmon_power_cap
#define PWR_ATTR_TO_STR(attr) (((attr) == hwmon_power_max) ? "PL1" : "PL2")
/*
* Timeout for power limit write mailbox command.
*/
#define PL_WRITE_MBX_TIMEOUT_MS (1)
/**
* struct xe_hwmon_energy_info - to accumulate energy
*/
struct xe_hwmon_energy_info {
/** @reg_val_prev: previous energy reg val */
u32 reg_val_prev;
/** @accum_energy: accumulated energy */
long accum_energy;
};
/**
* struct xe_hwmon_fan_info - to cache previous fan reading
*/
struct xe_hwmon_fan_info {
/** @reg_val_prev: previous fan reg val */
u32 reg_val_prev;
/** @time_prev: previous timestamp */
u64 time_prev;
};
/**
* struct xe_hwmon - xe hwmon data structure
*/
struct xe_hwmon {
/** @hwmon_dev: hwmon device for xe */
struct device *hwmon_dev;
/** @xe: Xe device */
struct xe_device *xe;
/** @hwmon_lock: lock for rw attributes*/
struct mutex hwmon_lock;
/** @scl_shift_power: pkg power unit */
int scl_shift_power;
/** @scl_shift_energy: pkg energy unit */
int scl_shift_energy;
/** @scl_shift_time: pkg time unit */
int scl_shift_time;
/** @ei: Energy info for energyN_input */
struct xe_hwmon_energy_info ei[CHANNEL_MAX];
/** @fi: Fan info for fanN_input */
struct xe_hwmon_fan_info fi[FAN_MAX];
/** @boot_power_limit_read: is boot power limits read */
bool boot_power_limit_read;
/** @pl1_on_boot: power limit PL1 on boot */
u32 pl1_on_boot[CHANNEL_MAX];
/** @pl2_on_boot: power limit PL2 on boot */
u32 pl2_on_boot[CHANNEL_MAX];
};
static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
u32 val0 = 0, val1 = 0;
int ret = 0;
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
READ_PSYSGPU_POWER_LIMIT :
READ_PACKAGE_POWER_LIMIT,
hwmon->boot_power_limit_read ?
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
&val0, &val1);
if (ret) {
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
*uval = 0;
return ret;
}
/* return the value only if limit is enabled */
if (attr == PL1_HWMON_ATTR)
*uval = (val0 & PWR_LIM_EN) ? val0 : 0;
else if (attr == PL2_HWMON_ATTR)
*uval = (val1 & PWR_LIM_EN) ? val1 : 0;
else if (attr == hwmon_power_label)
*uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
else
*uval = 0;
return ret;
}
static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
u32 clr, u32 set)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
u32 val0, val1;
int ret = 0;
ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
READ_PSYSGPU_POWER_LIMIT :
READ_PACKAGE_POWER_LIMIT,
hwmon->boot_power_limit_read ?
READ_PL_FROM_PCODE : READ_PL_FROM_FW),
&val0, &val1);
if (ret)
drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
if (attr == PL1_HWMON_ATTR)
val0 = (val0 & ~clr) | set;
else if (attr == PL2_HWMON_ATTR)
val1 = (val1 & ~clr) | set;
else
return -EIO;
ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
(channel == CHANNEL_CARD) ?
WRITE_PSYSGPU_POWER_LIMIT :
WRITE_PACKAGE_POWER_LIMIT, 0),
val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
if (ret)
drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
channel, val0, val1, ret);
return ret;
}
static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
int channel)
{
struct xe_device *xe = hwmon->xe;
switch (hwmon_reg) {
case REG_TEMP:
if (xe->info.platform == XE_BATTLEMAGE) {
if (channel == CHANNEL_PKG)
return BMG_PACKAGE_TEMPERATURE;
else if (channel == CHANNEL_VRAM)
return BMG_VRAM_TEMPERATURE;
} else if (xe->info.platform == XE_DG2) {
if (channel == CHANNEL_PKG)
return PCU_CR_PACKAGE_TEMPERATURE;
else if (channel == CHANNEL_VRAM)
return BMG_VRAM_TEMPERATURE;
}
break;
case REG_PKG_RAPL_LIMIT:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
return PVC_GT0_PACKAGE_RAPL_LIMIT;
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
return PCU_CR_PACKAGE_RAPL_LIMIT;
break;
case REG_PKG_POWER_SKU:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
return PVC_GT0_PACKAGE_POWER_SKU;
else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
return PCU_CR_PACKAGE_POWER_SKU;
break;
case REG_PKG_POWER_SKU_UNIT:
if (xe->info.platform == XE_PVC)
return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
else if (xe->info.platform == XE_DG2)
return PCU_CR_PACKAGE_POWER_SKU_UNIT;
break;
case REG_GT_PERF_STATUS:
if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
return GT_PERF_STATUS;
break;
case REG_PKG_ENERGY_STATUS:
if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
return PVC_GT0_PLATFORM_ENERGY_STATUS;
} else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
return PCU_CR_PACKAGE_ENERGY_STATUS;
}
break;
case REG_FAN_SPEED:
if (channel == FAN_1)
return BMG_FAN_1_SPEED;
else if (channel == FAN_2)
return BMG_FAN_2_SPEED;
else if (channel == FAN_3)
return BMG_FAN_3_SPEED;
break;
default:
drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
break;
}
return XE_REG(0);
}
#define PL_DISABLE 0
/*
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
* "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
* clamped values when read.
*/
static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
{
u64 reg_val = 0, min, max;
struct xe_device *xe = hwmon->xe;
struct xe_reg rapl_limit, pkg_power_sku;
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)&reg_val);
} else {
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
reg_val = xe_mmio_read32(mmio, rapl_limit);
}
/* Check if PL limits are disabled. */
if (!(reg_val & PWR_LIM_EN)) {
*value = PL_DISABLE;
drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
PWR_ATTR_TO_STR(attr), channel, reg_val);
goto unlock;
}
reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
/* For platforms with mailbox power limit support clamping would be done by pcode. */
if (!hwmon->xe->info.has_mbx_power_limits) {
reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
if (min && max)
*value = clamp_t(u64, *value, min, max);
}
unlock:
mutex_unlock(&hwmon->hwmon_lock);
}
static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
int ret = 0;
u32 reg_val, max;
struct xe_reg rapl_limit;
u64 max_supp_power_limit = 0;
mutex_lock(&hwmon->hwmon_lock);
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
/* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
if (value == PL_DISABLE) {
if (hwmon->xe->info.has_mbx_power_limits) {
drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &reg_val);
} else {
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
reg_val = xe_mmio_read32(mmio, rapl_limit);
}
if (reg_val & PWR_LIM_EN) {
drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
ret = -EOPNOTSUPP;
}
goto unlock;
}
/*
* If the sysfs value exceeds the maximum pcode supported power limit value, clamp it to
* the supported maximum (U12.3 format).
* This is to avoid truncation during reg_val calculation below and ensure the valid
* power limit is sent for pcode which would clamp it to card-supported value.
*/
max_supp_power_limit = ((PWR_LIM_VAL) >> hwmon->scl_shift_power) * SF_POWER;
if (value > max_supp_power_limit) {
value = max_supp_power_limit;
drm_info(&hwmon->xe->drm,
"Power limit clamped as selected %s exceeds channel %d limit\n",
PWR_ATTR_TO_STR(attr), channel);
}
/* Computation in 64-bits to avoid overflow. Round to nearest. */
reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
/*
* Clamp power limit to GPU firmware default as maximum, as an additional protection to
* pcode clamp.
*/
if (hwmon->xe->info.has_mbx_power_limits) {
max = (attr == PL1_HWMON_ATTR) ?
hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
max = REG_FIELD_PREP(PWR_LIM_VAL, max);
if (reg_val > max) {
reg_val = max;
drm_dbg(&hwmon->xe->drm,
"Clamping power limit to GPU firmware default 0x%x\n",
reg_val);
}
}
reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
if (hwmon->xe->info.has_mbx_power_limits)
ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
else
reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
long *value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 reg_val;
if (hwmon->xe->info.has_mbx_power_limits) {
/* PL1 is rated max if supported. */
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, &reg_val);
} else {
/*
* This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
* for this register can be skipped.
* See xe_hwmon_power_is_visible.
*/
struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
reg_val = xe_mmio_read32(mmio, reg);
}
reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
}
/*
* xe_hwmon_energy_get - Obtain energy value
*
* The underlying energy hardware register is 32-bits and is subject to
* overflow. How long before overflow? For example, with an example
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
* a power draw of 1000 watts, the 32-bit counter will overflow in
* approximately 4.36 minutes.
*
* Examples:
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
*
* The function significantly increases overflow duration (from 4.36
* minutes) by accumulating the energy register into a 'long' as allowed by
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
* energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
*/
static void
xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
u32 reg_val;
int ret = 0;
/* Energy is supported only for card and pkg */
if (channel > CHANNEL_PKG) {
*energy = 0;
return;
}
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
u64 pmt_val;
ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
&pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET, sizeof(pmt_val));
if (ret != sizeof(pmt_val)) {
drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
*energy = 0;
return;
}
if (channel == CHANNEL_PKG)
reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
else
reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
} else {
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel));
}
ei->accum_energy += reg_val - ei->reg_val_prev;
ei->reg_val_prev = reg_val;
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
hwmon->scl_shift_energy);
}
static ssize_t
xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 x, y, x_w = 2; /* 2 bits */
u64 r, tau4, out;
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
int ret = 0;
xe_pm_runtime_get(hwmon->xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits) {
ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
if (ret) {
drm_err(&hwmon->xe->drm,
"power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
channel, power_attr, r, ret);
r = 0;
}
} else {
r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
}
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(hwmon->xe);
x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
/*
* tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
* = (4 | x) << (y - 2)
*
* Here (y - 2) ensures a 1.x fixed point representation of 1.x
* As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
*
* As y can be < 2, we compute tau4 = (4 | x) << y
* and then add 2 when doing the final right shift to account for units
*/
tau4 = (u64)((1 << x_w) | x) << y;
/* val in hwmon interface units (millisec) */
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
return sysfs_emit(buf, "%llu\n", out);
}
static ssize_t
xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u32 x, y, rxy, x_w = 2; /* 2 bits */
u64 tau4, r, max_win;
unsigned long val;
int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
int ret;
ret = kstrtoul(buf, 0, &val);
if (ret)
return ret;
/*
* Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
*
* The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
* However, it is observed that existing discrete GPUs does not provide correct
* PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
* this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
*/
#define PKG_MAX_WIN_DEFAULT 0x12ull
/*
* val must be < max in hwmon interface units. The steps below are
* explained in xe_hwmon_power_max_interval_show()
*/
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
tau4 = (u64)((1 << x_w) | x) << y;
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
if (val > max_win)
return -EINVAL;
/* val in hw units */
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
/*
* Convert val to 1.x * power(2,y)
* y = ilog2(val)
* x = (val - (1 << y)) >> (y - 2)
*/
if (!val) {
y = 0;
x = 0;
} else {
y = ilog2(val);
x = (val - (1ul << y)) << x_w >> y;
}
rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
xe_pm_runtime_get(hwmon->xe);
mutex_lock(&hwmon->hwmon_lock);
if (hwmon->xe->info.has_mbx_power_limits)
xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
else
r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
PWR_LIM_TIME, rxy);
mutex_unlock(&hwmon->hwmon_lock);
xe_pm_runtime_put(hwmon->xe);
return count;
}
/* PSYS PL1 */
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
/* PKG PL1 */
static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
/* PSYS PL2 */
static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
/* PKG PL2 */
static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
xe_hwmon_power_max_interval_show,
xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
&sensor_dev_attr_power2_max_interval.dev_attr.attr,
&sensor_dev_attr_power1_cap_interval.dev_attr.attr,
&sensor_dev_attr_power2_cap_interval.dev_attr.attr,
NULL
};
static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret = 0;
int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
u32 uval = 0;
struct xe_reg rapl_limit;
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
xe_pm_runtime_get(hwmon->xe);
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
} else if (power_attr != PL2_HWMON_ATTR) {
rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(rapl_limit))
uval = xe_mmio_read32(mmio, rapl_limit);
}
ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = xe_hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
static const struct hwmon_channel_info * const hwmon_info[] = {
HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
HWMON_P_CAP,
HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
NULL
};
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
/* Avoid Illegal Subcommand error */
if (hwmon->xe->info.platform == XE_DG2)
return -ENXIO;
return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_READ_I1, 0),
uval, NULL);
}
static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
(uval & POWER_SETUP_I1_DATA_MASK));
}
static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
{
struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
/* Platforms that don't return correct value */
if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
*uval = 2;
return 0;
}
return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
}
static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
long *value, u32 scale_factor)
{
int ret;
u32 uval;
mutex_lock(&hwmon->hwmon_lock);
ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
if (ret)
goto unlock;
*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
scale_factor, POWER_SETUP_I1_SHIFT);
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
long value, u32 scale_factor)
{
int ret;
u32 uval;
u64 max_crit_power_curr = 0;
mutex_lock(&hwmon->hwmon_lock);
/*
* If the sysfs value exceeds the pcode mailbox cmd POWER_SETUP_SUBCOMMAND_WRITE_I1
* max supported value, clamp it to the command's max (U10.6 format).
* This is to avoid truncation during uval calculation below and ensure the valid power
* limit is sent for pcode which would clamp it to card-supported value.
*/
max_crit_power_curr = (POWER_SETUP_I1_DATA_MASK >> POWER_SETUP_I1_SHIFT) * scale_factor;
if (value > max_crit_power_curr) {
value = max_crit_power_curr;
drm_info(&hwmon->xe->drm,
"Power limit clamped as selected exceeds channel %d limit\n",
channel);
}
uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
ret = xe_hwmon_pcode_write_i1(hwmon, uval);
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u64 reg_val;
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
/* HW register value in units of 2.5 millivolt */
*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
}
static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
u64 reg_val;
switch (attr) {
case hwmon_temp_input:
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
/* HW register value is in degrees Celsius, convert to millidegrees. */
*val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval = 0;
struct xe_reg reg;
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
switch (attr) {
case hwmon_power_max:
case hwmon_power_cap:
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
} else if (attr != PL2_HWMON_ATTR) {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
}
if (uval & PWR_LIM_EN) {
drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
return 0664;
}
drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
PWR_ATTR_TO_STR(attr), channel);
return 0;
case hwmon_power_rated_max:
if (hwmon->xe->info.has_mbx_power_limits) {
return 0;
} else {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
return uval ? 0444 : 0;
}
case hwmon_power_crit:
if (channel == CHANNEL_CARD) {
xe_hwmon_pcode_read_i1(hwmon, &uval);
return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
}
break;
case hwmon_power_label:
if (hwmon->xe->info.has_mbx_power_limits) {
xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
} else {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
if (!uval) {
reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
if (xe_reg_is_valid(reg))
uval = xe_mmio_read32(mmio, reg);
}
}
if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
xe_hwmon_pcode_read_i1(hwmon, &uval);
return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
}
return (uval) ? 0444 : 0;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_power_max:
case hwmon_power_cap:
xe_hwmon_power_max_read(hwmon, attr, channel, val);
return 0;
case hwmon_power_rated_max:
xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
return 0;
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_power_cap:
case hwmon_power_max:
return xe_hwmon_power_max_write(hwmon, attr, channel, val);
case hwmon_power_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
/* hwmon sysfs attribute of current available only for package */
if (channel != CHANNEL_PKG)
return 0;
switch (attr) {
case hwmon_curr_crit:
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
case hwmon_curr_label:
return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
break;
default:
return 0;
}
return 0;
}
static int
xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static int
xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
{
switch (attr) {
case hwmon_curr_crit:
return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
switch (attr) {
case hwmon_in_input:
case hwmon_in_label:
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
channel)) ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_in_input:
xe_hwmon_get_voltage(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
long energy = 0;
switch (attr) {
case hwmon_energy_input:
case hwmon_energy_label:
if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
xe_hwmon_energy_get(hwmon, channel, &energy);
return energy ? 0444 : 0;
} else {
return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
channel)) ? 0444 : 0;
}
default:
return 0;
}
}
static int
xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_energy_input:
xe_hwmon_energy_get(hwmon, channel, val);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
{
u32 uval;
if (!hwmon->xe->info.has_fan_control)
return 0;
switch (attr) {
case hwmon_fan_input:
if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
return 0;
return channel < uval ? 0444 : 0;
default:
return 0;
}
}
static int
xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
u64 rotations, time_now, time;
u32 reg_val;
int ret = 0;
mutex_lock(&hwmon->hwmon_lock);
reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
time_now = get_jiffies_64();
/*
* HW register value is accumulated count of pulses from PWM fan with the scale
* of 2 pulses per rotation.
*/
rotations = (reg_val - fi->reg_val_prev) / 2;
time = jiffies_delta_to_msecs(time_now - fi->time_prev);
if (unlikely(!time)) {
ret = -EAGAIN;
goto unlock;
}
/*
* Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
* RPM = number of rotations * msecs per minute / time in msecs
*/
*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
fi->reg_val_prev = reg_val;
fi->time_prev = time_now;
unlock:
mutex_unlock(&hwmon->hwmon_lock);
return ret;
}
static int
xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
{
switch (attr) {
case hwmon_fan_input:
return xe_hwmon_fan_input_read(hwmon, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t
xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_temp:
ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
break;
case hwmon_power:
ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
break;
case hwmon_curr:
ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
break;
case hwmon_in:
ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
break;
case hwmon_energy:
ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
break;
case hwmon_fan:
ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
break;
default:
ret = 0;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int
xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_temp:
ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
break;
case hwmon_power:
ret = xe_hwmon_power_read(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
break;
case hwmon_in:
ret = xe_hwmon_in_read(hwmon, attr, channel, val);
break;
case hwmon_energy:
ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
break;
case hwmon_fan:
ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int
xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
int ret;
xe_pm_runtime_get(hwmon->xe);
switch (type) {
case hwmon_power:
ret = xe_hwmon_power_write(hwmon, attr, channel, val);
break;
case hwmon_curr:
ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
break;
default:
ret = -EOPNOTSUPP;
break;
}
xe_pm_runtime_put(hwmon->xe);
return ret;
}
static int xe_hwmon_read_label(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
if (channel == CHANNEL_PKG)
*str = "pkg";
else if (channel == CHANNEL_VRAM)
*str = "vram";
return 0;
case hwmon_power:
case hwmon_energy:
case hwmon_curr:
case hwmon_in:
if (channel == CHANNEL_CARD)
*str = "card";
else if (channel == CHANNEL_PKG)
*str = "pkg";
return 0;
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops hwmon_ops = {
.is_visible = xe_hwmon_is_visible,
.read = xe_hwmon_read,
.write = xe_hwmon_write,
.read_string = xe_hwmon_read_label,
};
static const struct hwmon_chip_info hwmon_chip_info = {
.ops = &hwmon_ops,
.info = hwmon_info,
};
static void
xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
{
struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
long energy, fan_speed;
u64 val_sku_unit = 0;
int channel;
struct xe_reg pkg_power_sku_unit;
if (hwmon->xe->info.has_mbx_power_limits) {
/* Check if GPU firmware support mailbox power limits commands. */
if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
&hwmon->pl1_on_boot[CHANNEL_CARD]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
&hwmon->pl1_on_boot[CHANNEL_PKG]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
&hwmon->pl2_on_boot[CHANNEL_CARD]) |
xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
&hwmon->pl2_on_boot[CHANNEL_PKG])) {
drm_warn(&hwmon->xe->drm,
"Failed to read power limits, check GPU firmware !\n");
} else {
drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
/* Write default limits to read from pcode from now on. */
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
hwmon->pl1_on_boot[CHANNEL_CARD]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
hwmon->pl1_on_boot[CHANNEL_PKG]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
hwmon->pl2_on_boot[CHANNEL_CARD]);
xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
hwmon->pl2_on_boot[CHANNEL_PKG]);
hwmon->scl_shift_power = PWR_UNIT;
hwmon->scl_shift_energy = ENERGY_UNIT;
hwmon->scl_shift_time = TIME_UNIT;
hwmon->boot_power_limit_read = true;
}
} else {
drm_info(&hwmon->xe->drm, "Using register for power limits\n");
/*
* The contents of register PKG_POWER_SKU_UNIT do not change,
* so read it once and store the shift values.
*/
pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
if (xe_reg_is_valid(pkg_power_sku_unit)) {
val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
}
}
/*
* Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
* first value of the energy register read
*/
for (channel = 0; channel < CHANNEL_MAX; channel++)
if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
xe_hwmon_energy_get(hwmon, channel, &energy);
/* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
for (channel = 0; channel < FAN_MAX; channel++)
if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
}
static void xe_hwmon_mutex_destroy(void *arg)
{
struct xe_hwmon *hwmon = arg;
mutex_destroy(&hwmon->hwmon_lock);
}
int xe_hwmon_register(struct xe_device *xe)
{
struct device *dev = xe->drm.dev;
struct xe_hwmon *hwmon;
int ret;
/* hwmon is available only for dGfx */
if (!IS_DGFX(xe))
return 0;
/* hwmon is not available on VFs */
if (IS_SRIOV_VF(xe))
return 0;
hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return -ENOMEM;
mutex_init(&hwmon->hwmon_lock);
ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
if (ret)
return ret;
/* There's only one instance of hwmon per device */
hwmon->xe = xe;
xe->hwmon = hwmon;
xe_hwmon_get_preregistration_info(hwmon);
drm_dbg(&xe->drm, "Register xe hwmon interface\n");
/* hwmon_dev points to device hwmon<i> */
hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
&hwmon_chip_info,
hwmon_groups);
if (IS_ERR(hwmon->hwmon_dev)) {
drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
xe->hwmon = NULL;
return PTR_ERR(hwmon->hwmon_dev);
}
return 0;
}
MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");