mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-27 15:50:48 +00:00

Since we are already using reusable buffer objects from the GuC buffer cache, we can directly write into their CPU pointers and spare unnecessary temporary allocation. While around, also make sure to clear obtained buffer, to avoid sending some stale data. Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Matthew Brost <matthew.brost@intel.com> Reviewed-by: Matthew Brost <matthew.brost@intel.com> Link: https://lore.kernel.org/r/20250702142504.1656-1-michal.wajdeczko@intel.com
1029 lines
30 KiB
C
1029 lines
30 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_guc_ads.h"
|
|
|
|
#include <linux/fault-inject.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include <generated/xe_wa_oob.h>
|
|
|
|
#include "abi/guc_actions_abi.h"
|
|
#include "regs/xe_engine_regs.h"
|
|
#include "regs/xe_gt_regs.h"
|
|
#include "regs/xe_guc_regs.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_ccs_mode.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_guc_buf.h"
|
|
#include "xe_guc_capture.h"
|
|
#include "xe_guc_ct.h"
|
|
#include "xe_hw_engine.h"
|
|
#include "xe_lrc.h"
|
|
#include "xe_map.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_platform_types.h"
|
|
#include "xe_uc_fw.h"
|
|
#include "xe_wa.h"
|
|
#include "xe_gt_mcr.h"
|
|
|
|
/* Slack of a few additional entries per engine */
|
|
#define ADS_REGSET_EXTRA_MAX 8
|
|
|
|
static struct xe_guc *
|
|
ads_to_guc(struct xe_guc_ads *ads)
|
|
{
|
|
return container_of(ads, struct xe_guc, ads);
|
|
}
|
|
|
|
static struct xe_gt *
|
|
ads_to_gt(struct xe_guc_ads *ads)
|
|
{
|
|
return container_of(ads, struct xe_gt, uc.guc.ads);
|
|
}
|
|
|
|
static struct xe_device *
|
|
ads_to_xe(struct xe_guc_ads *ads)
|
|
{
|
|
return gt_to_xe(ads_to_gt(ads));
|
|
}
|
|
|
|
static struct iosys_map *
|
|
ads_to_map(struct xe_guc_ads *ads)
|
|
{
|
|
return &ads->bo->vmap;
|
|
}
|
|
|
|
/* UM Queue parameters: */
|
|
#define GUC_UM_QUEUE_SIZE (SZ_64K)
|
|
#define GUC_PAGE_RES_TIMEOUT_US (-1)
|
|
|
|
/*
|
|
* The Additional Data Struct (ADS) has pointers for different buffers used by
|
|
* the GuC. One single gem object contains the ADS struct itself (guc_ads) and
|
|
* all the extra buffers indirectly linked via the ADS struct's entries.
|
|
*
|
|
* Layout of the ADS blob allocated for the GuC:
|
|
*
|
|
* +---------------------------------------+ <== base
|
|
* | guc_ads |
|
|
* +---------------------------------------+
|
|
* | guc_policies |
|
|
* +---------------------------------------+
|
|
* | guc_gt_system_info |
|
|
* +---------------------------------------+
|
|
* | guc_engine_usage |
|
|
* +---------------------------------------+
|
|
* | guc_um_init_params |
|
|
* +---------------------------------------+ <== static
|
|
* | guc_mmio_reg[countA] (engine 0.0) |
|
|
* | guc_mmio_reg[countB] (engine 0.1) |
|
|
* | guc_mmio_reg[countC] (engine 1.0) |
|
|
* | ... |
|
|
* +---------------------------------------+ <== dynamic
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | golden contexts |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | w/a KLVs |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | capture lists |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | UM queues |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | private data |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
*/
|
|
struct __guc_ads_blob {
|
|
struct guc_ads ads;
|
|
struct guc_policies policies;
|
|
struct guc_gt_system_info system_info;
|
|
struct guc_engine_usage engine_usage;
|
|
struct guc_um_init_params um_init_params;
|
|
/* From here on, location is dynamic! Refer to above diagram. */
|
|
struct guc_mmio_reg regset[];
|
|
} __packed;
|
|
|
|
#define ads_blob_read(ads_, field_) \
|
|
xe_map_rd_field(ads_to_xe(ads_), ads_to_map(ads_), 0, \
|
|
struct __guc_ads_blob, field_)
|
|
|
|
#define ads_blob_write(ads_, field_, val_) \
|
|
xe_map_wr_field(ads_to_xe(ads_), ads_to_map(ads_), 0, \
|
|
struct __guc_ads_blob, field_, val_)
|
|
|
|
#define info_map_write(xe_, map_, field_, val_) \
|
|
xe_map_wr_field(xe_, map_, 0, struct guc_gt_system_info, field_, val_)
|
|
|
|
#define info_map_read(xe_, map_, field_) \
|
|
xe_map_rd_field(xe_, map_, 0, struct guc_gt_system_info, field_)
|
|
|
|
static size_t guc_ads_regset_size(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
|
|
xe_assert(xe, ads->regset_size);
|
|
|
|
return ads->regset_size;
|
|
}
|
|
|
|
static size_t guc_ads_golden_lrc_size(struct xe_guc_ads *ads)
|
|
{
|
|
return PAGE_ALIGN(ads->golden_lrc_size);
|
|
}
|
|
|
|
static u32 guc_ads_waklv_size(struct xe_guc_ads *ads)
|
|
{
|
|
return PAGE_ALIGN(ads->ads_waklv_size);
|
|
}
|
|
|
|
static size_t guc_ads_capture_size(struct xe_guc_ads *ads)
|
|
{
|
|
return PAGE_ALIGN(ads->capture_size);
|
|
}
|
|
|
|
static size_t guc_ads_um_queues_size(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
|
|
if (!xe->info.has_usm)
|
|
return 0;
|
|
|
|
return GUC_UM_QUEUE_SIZE * GUC_UM_HW_QUEUE_MAX;
|
|
}
|
|
|
|
static size_t guc_ads_private_data_size(struct xe_guc_ads *ads)
|
|
{
|
|
return PAGE_ALIGN(ads_to_guc(ads)->fw.private_data_size);
|
|
}
|
|
|
|
static size_t guc_ads_regset_offset(struct xe_guc_ads *ads)
|
|
{
|
|
return offsetof(struct __guc_ads_blob, regset);
|
|
}
|
|
|
|
static size_t guc_ads_golden_lrc_offset(struct xe_guc_ads *ads)
|
|
{
|
|
size_t offset;
|
|
|
|
offset = guc_ads_regset_offset(ads) +
|
|
guc_ads_regset_size(ads);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static size_t guc_ads_waklv_offset(struct xe_guc_ads *ads)
|
|
{
|
|
u32 offset;
|
|
|
|
offset = guc_ads_golden_lrc_offset(ads) +
|
|
guc_ads_golden_lrc_size(ads);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static size_t guc_ads_capture_offset(struct xe_guc_ads *ads)
|
|
{
|
|
size_t offset;
|
|
|
|
offset = guc_ads_waklv_offset(ads) +
|
|
guc_ads_waklv_size(ads);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static size_t guc_ads_um_queues_offset(struct xe_guc_ads *ads)
|
|
{
|
|
u32 offset;
|
|
|
|
offset = guc_ads_capture_offset(ads) +
|
|
guc_ads_capture_size(ads);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static size_t guc_ads_private_data_offset(struct xe_guc_ads *ads)
|
|
{
|
|
size_t offset;
|
|
|
|
offset = guc_ads_um_queues_offset(ads) +
|
|
guc_ads_um_queues_size(ads);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static size_t guc_ads_size(struct xe_guc_ads *ads)
|
|
{
|
|
return guc_ads_private_data_offset(ads) +
|
|
guc_ads_private_data_size(ads);
|
|
}
|
|
|
|
static size_t calculate_regset_size(struct xe_gt *gt)
|
|
{
|
|
struct xe_reg_sr_entry *sr_entry;
|
|
unsigned long sr_idx;
|
|
struct xe_hw_engine *hwe;
|
|
enum xe_hw_engine_id id;
|
|
unsigned int count = 0;
|
|
|
|
for_each_hw_engine(hwe, gt, id)
|
|
xa_for_each(&hwe->reg_sr.xa, sr_idx, sr_entry)
|
|
count++;
|
|
|
|
count += ADS_REGSET_EXTRA_MAX * XE_NUM_HW_ENGINES;
|
|
|
|
if (XE_WA(gt, 1607983814))
|
|
count += LNCFCMOCS_REG_COUNT;
|
|
|
|
return count * sizeof(struct guc_mmio_reg);
|
|
}
|
|
|
|
static u32 engine_enable_mask(struct xe_gt *gt, enum xe_engine_class class)
|
|
{
|
|
struct xe_hw_engine *hwe;
|
|
enum xe_hw_engine_id id;
|
|
u32 mask = 0;
|
|
|
|
for_each_hw_engine(hwe, gt, id)
|
|
if (hwe->class == class)
|
|
mask |= BIT(hwe->instance);
|
|
|
|
return mask;
|
|
}
|
|
|
|
static size_t calculate_golden_lrc_size(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
size_t total_size = 0, alloc_size, real_size;
|
|
int class;
|
|
|
|
for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
|
|
if (!engine_enable_mask(gt, class))
|
|
continue;
|
|
|
|
real_size = xe_gt_lrc_size(gt, class);
|
|
alloc_size = PAGE_ALIGN(real_size);
|
|
total_size += alloc_size;
|
|
}
|
|
|
|
return total_size;
|
|
}
|
|
|
|
static void guc_waklv_enable_one_word(struct xe_guc_ads *ads,
|
|
enum xe_guc_klv_ids klv_id,
|
|
u32 value,
|
|
u32 *offset, u32 *remain)
|
|
{
|
|
u32 size;
|
|
u32 klv_entry[] = {
|
|
/* 16:16 key/length */
|
|
FIELD_PREP(GUC_KLV_0_KEY, klv_id) |
|
|
FIELD_PREP(GUC_KLV_0_LEN, 1),
|
|
value,
|
|
/* 1 dword data */
|
|
};
|
|
|
|
size = sizeof(klv_entry);
|
|
|
|
if (*remain < size) {
|
|
drm_warn(&ads_to_xe(ads)->drm,
|
|
"w/a klv buffer too small to add klv id %d\n", klv_id);
|
|
} else {
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), *offset,
|
|
klv_entry, size);
|
|
*offset += size;
|
|
*remain -= size;
|
|
}
|
|
}
|
|
|
|
static void guc_waklv_enable_simple(struct xe_guc_ads *ads,
|
|
enum xe_guc_klv_ids klv_id, u32 *offset, u32 *remain)
|
|
{
|
|
u32 klv_entry[] = {
|
|
/* 16:16 key/length */
|
|
FIELD_PREP(GUC_KLV_0_KEY, klv_id) |
|
|
FIELD_PREP(GUC_KLV_0_LEN, 0),
|
|
/* 0 dwords data */
|
|
};
|
|
u32 size;
|
|
|
|
size = sizeof(klv_entry);
|
|
|
|
if (xe_gt_WARN(ads_to_gt(ads), *remain < size,
|
|
"w/a klv buffer too small to add klv id %d\n", klv_id))
|
|
return;
|
|
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), *offset,
|
|
klv_entry, size);
|
|
*offset += size;
|
|
*remain -= size;
|
|
}
|
|
|
|
static void guc_waklv_init(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
u64 addr_ggtt;
|
|
u32 offset, remain, size;
|
|
|
|
offset = guc_ads_waklv_offset(ads);
|
|
remain = guc_ads_waklv_size(ads);
|
|
|
|
if (XE_WA(gt, 14019882105) || XE_WA(gt, 16021333562))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WORKAROUND_KLV_BLOCK_INTERRUPTS_WHEN_MGSR_BLOCKED,
|
|
&offset, &remain);
|
|
if (XE_WA(gt, 18024947630))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WORKAROUND_KLV_ID_GAM_PFQ_SHADOW_TAIL_POLLING,
|
|
&offset, &remain);
|
|
if (XE_WA(gt, 16022287689))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WORKAROUND_KLV_ID_DISABLE_MTP_DURING_ASYNC_COMPUTE,
|
|
&offset, &remain);
|
|
|
|
if (XE_WA(gt, 14022866841))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WA_KLV_WAKE_POWER_DOMAINS_FOR_OUTBOUND_MMIO,
|
|
&offset, &remain);
|
|
|
|
/*
|
|
* On RC6 exit, GuC will write register 0xB04 with the default value provided. As of now,
|
|
* the default value for this register is determined to be 0xC40. This could change in the
|
|
* future, so GuC depends on KMD to send it the correct value.
|
|
*/
|
|
if (XE_WA(gt, 13011645652))
|
|
guc_waklv_enable_one_word(ads,
|
|
GUC_WA_KLV_NP_RD_WRITE_TO_CLEAR_RCSM_AT_CGP_LATE_RESTORE,
|
|
0xC40,
|
|
&offset, &remain);
|
|
|
|
if (XE_WA(gt, 14022293748) || XE_WA(gt, 22019794406))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WORKAROUND_KLV_ID_BACK_TO_BACK_RCS_ENGINE_RESET,
|
|
&offset, &remain);
|
|
|
|
if (GUC_FIRMWARE_VER(>->uc.guc) >= MAKE_GUC_VER(70, 44, 0) && XE_WA(gt, 16026508708))
|
|
guc_waklv_enable_simple(ads,
|
|
GUC_WA_KLV_RESET_BB_STACK_PTR_ON_VF_SWITCH,
|
|
&offset, &remain);
|
|
|
|
size = guc_ads_waklv_size(ads) - remain;
|
|
if (!size)
|
|
return;
|
|
|
|
offset = guc_ads_waklv_offset(ads);
|
|
addr_ggtt = xe_bo_ggtt_addr(ads->bo) + offset;
|
|
|
|
ads_blob_write(ads, ads.wa_klv_addr_lo, lower_32_bits(addr_ggtt));
|
|
ads_blob_write(ads, ads.wa_klv_addr_hi, upper_32_bits(addr_ggtt));
|
|
ads_blob_write(ads, ads.wa_klv_size, size);
|
|
}
|
|
|
|
static int calculate_waklv_size(struct xe_guc_ads *ads)
|
|
{
|
|
/*
|
|
* A single page is both the minimum size possible and
|
|
* is sufficiently large enough for all current platforms.
|
|
*/
|
|
return SZ_4K;
|
|
}
|
|
|
|
#define MAX_GOLDEN_LRC_SIZE (SZ_4K * 64)
|
|
|
|
int xe_guc_ads_init(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_bo *bo;
|
|
|
|
ads->golden_lrc_size = calculate_golden_lrc_size(ads);
|
|
ads->capture_size = xe_guc_capture_ads_input_worst_size(ads_to_guc(ads));
|
|
ads->regset_size = calculate_regset_size(gt);
|
|
ads->ads_waklv_size = calculate_waklv_size(ads);
|
|
|
|
bo = xe_managed_bo_create_pin_map(xe, tile, guc_ads_size(ads) + MAX_GOLDEN_LRC_SIZE,
|
|
XE_BO_FLAG_SYSTEM |
|
|
XE_BO_FLAG_GGTT |
|
|
XE_BO_FLAG_GGTT_INVALIDATE |
|
|
XE_BO_FLAG_PINNED_NORESTORE);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
ads->bo = bo;
|
|
|
|
return 0;
|
|
}
|
|
ALLOW_ERROR_INJECTION(xe_guc_ads_init, ERRNO); /* See xe_pci_probe() */
|
|
|
|
/**
|
|
* xe_guc_ads_init_post_hwconfig - initialize ADS post hwconfig load
|
|
* @ads: Additional data structures object
|
|
*
|
|
* Recalculate golden_lrc_size, capture_size and regset_size as the number
|
|
* hardware engines may have changed after the hwconfig was loaded. Also verify
|
|
* the new sizes fit in the already allocated ADS buffer object.
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_guc_ads_init_post_hwconfig(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
u32 prev_regset_size = ads->regset_size;
|
|
|
|
xe_gt_assert(gt, ads->bo);
|
|
|
|
ads->golden_lrc_size = calculate_golden_lrc_size(ads);
|
|
/* Calculate Capture size with worst size */
|
|
ads->capture_size = xe_guc_capture_ads_input_worst_size(ads_to_guc(ads));
|
|
ads->regset_size = calculate_regset_size(gt);
|
|
|
|
xe_gt_assert(gt, ads->golden_lrc_size +
|
|
(ads->regset_size - prev_regset_size) <=
|
|
MAX_GOLDEN_LRC_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_policies_init(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
u32 global_flags = 0;
|
|
|
|
ads_blob_write(ads, policies.dpc_promote_time,
|
|
GLOBAL_POLICY_DEFAULT_DPC_PROMOTE_TIME_US);
|
|
ads_blob_write(ads, policies.max_num_work_items,
|
|
GLOBAL_POLICY_MAX_NUM_WI);
|
|
|
|
if (xe->wedged.mode == 2)
|
|
global_flags |= GLOBAL_POLICY_DISABLE_ENGINE_RESET;
|
|
|
|
ads_blob_write(ads, policies.global_flags, global_flags);
|
|
ads_blob_write(ads, policies.is_valid, 1);
|
|
}
|
|
|
|
static void fill_engine_enable_masks(struct xe_gt *gt,
|
|
struct iosys_map *info_map)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
|
|
info_map_write(xe, info_map, engine_enabled_masks[GUC_RENDER_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_RENDER));
|
|
info_map_write(xe, info_map, engine_enabled_masks[GUC_BLITTER_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_COPY));
|
|
info_map_write(xe, info_map, engine_enabled_masks[GUC_VIDEO_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_VIDEO_DECODE));
|
|
info_map_write(xe, info_map,
|
|
engine_enabled_masks[GUC_VIDEOENHANCE_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_VIDEO_ENHANCE));
|
|
info_map_write(xe, info_map, engine_enabled_masks[GUC_COMPUTE_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_COMPUTE));
|
|
info_map_write(xe, info_map, engine_enabled_masks[GUC_GSC_OTHER_CLASS],
|
|
engine_enable_mask(gt, XE_ENGINE_CLASS_OTHER));
|
|
}
|
|
|
|
/*
|
|
* Write the offsets corresponding to the golden LRCs. The actual data is
|
|
* populated later by guc_golden_lrc_populate()
|
|
*/
|
|
static void guc_golden_lrc_init(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct iosys_map info_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
size_t alloc_size, real_size;
|
|
u32 addr_ggtt, offset;
|
|
int class;
|
|
|
|
offset = guc_ads_golden_lrc_offset(ads);
|
|
addr_ggtt = xe_bo_ggtt_addr(ads->bo) + offset;
|
|
|
|
for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
|
|
u8 guc_class;
|
|
|
|
guc_class = xe_engine_class_to_guc_class(class);
|
|
|
|
if (!info_map_read(xe, &info_map,
|
|
engine_enabled_masks[guc_class]))
|
|
continue;
|
|
|
|
real_size = xe_gt_lrc_size(gt, class);
|
|
alloc_size = PAGE_ALIGN(real_size);
|
|
|
|
/*
|
|
* This interface is slightly confusing. We need to pass the
|
|
* base address of the full golden context and the size of just
|
|
* the engine state, which is the section of the context image
|
|
* that starts after the execlists LRC registers. This is
|
|
* required to allow the GuC to restore just the engine state
|
|
* when a watchdog reset occurs.
|
|
* We calculate the engine state size by removing the size of
|
|
* what comes before it in the context image (which is identical
|
|
* on all engines).
|
|
*/
|
|
ads_blob_write(ads, ads.eng_state_size[guc_class],
|
|
real_size - xe_lrc_skip_size(xe));
|
|
ads_blob_write(ads, ads.golden_context_lrca[guc_class],
|
|
addr_ggtt);
|
|
|
|
addr_ggtt += alloc_size;
|
|
}
|
|
}
|
|
|
|
static void guc_mapping_table_init_invalid(struct xe_gt *gt,
|
|
struct iosys_map *info_map)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
unsigned int i, j;
|
|
|
|
/* Table must be set to invalid values for entries not used */
|
|
for (i = 0; i < GUC_MAX_ENGINE_CLASSES; ++i)
|
|
for (j = 0; j < GUC_MAX_INSTANCES_PER_CLASS; ++j)
|
|
info_map_write(xe, info_map, mapping_table[i][j],
|
|
GUC_MAX_INSTANCES_PER_CLASS);
|
|
}
|
|
|
|
static void guc_mapping_table_init(struct xe_gt *gt,
|
|
struct iosys_map *info_map)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_hw_engine *hwe;
|
|
enum xe_hw_engine_id id;
|
|
|
|
guc_mapping_table_init_invalid(gt, info_map);
|
|
|
|
for_each_hw_engine(hwe, gt, id) {
|
|
u8 guc_class;
|
|
|
|
guc_class = xe_engine_class_to_guc_class(hwe->class);
|
|
info_map_write(xe, info_map,
|
|
mapping_table[guc_class][hwe->logical_instance],
|
|
hwe->instance);
|
|
}
|
|
}
|
|
|
|
static u32 guc_get_capture_engine_mask(struct xe_gt *gt, struct iosys_map *info_map,
|
|
enum guc_capture_list_class_type capture_class)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 mask;
|
|
|
|
switch (capture_class) {
|
|
case GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE:
|
|
mask = info_map_read(xe, info_map, engine_enabled_masks[GUC_RENDER_CLASS]);
|
|
mask |= info_map_read(xe, info_map, engine_enabled_masks[GUC_COMPUTE_CLASS]);
|
|
break;
|
|
case GUC_CAPTURE_LIST_CLASS_VIDEO:
|
|
mask = info_map_read(xe, info_map, engine_enabled_masks[GUC_VIDEO_CLASS]);
|
|
break;
|
|
case GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE:
|
|
mask = info_map_read(xe, info_map, engine_enabled_masks[GUC_VIDEOENHANCE_CLASS]);
|
|
break;
|
|
case GUC_CAPTURE_LIST_CLASS_BLITTER:
|
|
mask = info_map_read(xe, info_map, engine_enabled_masks[GUC_BLITTER_CLASS]);
|
|
break;
|
|
case GUC_CAPTURE_LIST_CLASS_GSC_OTHER:
|
|
mask = info_map_read(xe, info_map, engine_enabled_masks[GUC_GSC_OTHER_CLASS]);
|
|
break;
|
|
default:
|
|
mask = 0;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static inline bool get_capture_list(struct xe_guc_ads *ads, struct xe_guc *guc, struct xe_gt *gt,
|
|
int owner, int type, int class, u32 *total_size, size_t *size,
|
|
void **pptr)
|
|
{
|
|
*size = 0;
|
|
|
|
if (!xe_guc_capture_getlistsize(guc, owner, type, class, size)) {
|
|
if (*total_size + *size > ads->capture_size)
|
|
xe_gt_dbg(gt, "Capture size overflow :%zu vs %d\n",
|
|
*total_size + *size, ads->capture_size);
|
|
else if (!xe_guc_capture_getlist(guc, owner, type, class, pptr))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int guc_capture_prep_lists(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_guc *guc = ads_to_guc(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
u32 ads_ggtt, capture_offset, null_ggtt, total_size = 0;
|
|
struct iosys_map info_map;
|
|
size_t size = 0;
|
|
void *ptr;
|
|
int i, j;
|
|
|
|
/*
|
|
* GuC Capture's steered reg-list needs to be allocated and initialized
|
|
* after the GuC-hwconfig is available which guaranteed from here.
|
|
*/
|
|
xe_guc_capture_steered_list_init(ads_to_guc(ads));
|
|
|
|
capture_offset = guc_ads_capture_offset(ads);
|
|
ads_ggtt = xe_bo_ggtt_addr(ads->bo);
|
|
info_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
|
|
/* first, set aside the first page for a capture_list with zero descriptors */
|
|
total_size = PAGE_SIZE;
|
|
if (!xe_guc_capture_getnullheader(guc, &ptr, &size))
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), capture_offset, ptr, size);
|
|
|
|
null_ggtt = ads_ggtt + capture_offset;
|
|
capture_offset += PAGE_SIZE;
|
|
|
|
/*
|
|
* Populate capture list : at this point adps is already allocated and
|
|
* mapped to worst case size
|
|
*/
|
|
for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; i++) {
|
|
bool write_empty_list;
|
|
|
|
for (j = 0; j < GUC_CAPTURE_LIST_CLASS_MAX; j++) {
|
|
u32 engine_mask = guc_get_capture_engine_mask(gt, &info_map, j);
|
|
/* null list if we dont have said engine or list */
|
|
if (!engine_mask) {
|
|
ads_blob_write(ads, ads.capture_class[i][j], null_ggtt);
|
|
ads_blob_write(ads, ads.capture_instance[i][j], null_ggtt);
|
|
continue;
|
|
}
|
|
|
|
/* engine exists: start with engine-class registers */
|
|
write_empty_list = get_capture_list(ads, guc, gt, i,
|
|
GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
|
|
j, &total_size, &size, &ptr);
|
|
if (!write_empty_list) {
|
|
ads_blob_write(ads, ads.capture_class[i][j],
|
|
ads_ggtt + capture_offset);
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), capture_offset,
|
|
ptr, size);
|
|
total_size += size;
|
|
capture_offset += size;
|
|
} else {
|
|
ads_blob_write(ads, ads.capture_class[i][j], null_ggtt);
|
|
}
|
|
|
|
/* engine exists: next, engine-instance registers */
|
|
write_empty_list = get_capture_list(ads, guc, gt, i,
|
|
GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE,
|
|
j, &total_size, &size, &ptr);
|
|
if (!write_empty_list) {
|
|
ads_blob_write(ads, ads.capture_instance[i][j],
|
|
ads_ggtt + capture_offset);
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), capture_offset,
|
|
ptr, size);
|
|
total_size += size;
|
|
capture_offset += size;
|
|
} else {
|
|
ads_blob_write(ads, ads.capture_instance[i][j], null_ggtt);
|
|
}
|
|
}
|
|
|
|
/* global registers is last in our PF/VF loops */
|
|
write_empty_list = get_capture_list(ads, guc, gt, i,
|
|
GUC_STATE_CAPTURE_TYPE_GLOBAL,
|
|
0, &total_size, &size, &ptr);
|
|
if (!write_empty_list) {
|
|
ads_blob_write(ads, ads.capture_global[i], ads_ggtt + capture_offset);
|
|
xe_map_memcpy_to(ads_to_xe(ads), ads_to_map(ads), capture_offset, ptr,
|
|
size);
|
|
total_size += size;
|
|
capture_offset += size;
|
|
} else {
|
|
ads_blob_write(ads, ads.capture_global[i], null_ggtt);
|
|
}
|
|
}
|
|
|
|
if (ads->capture_size != PAGE_ALIGN(total_size))
|
|
xe_gt_dbg(gt, "Updated ADS capture size %d (was %d)\n",
|
|
PAGE_ALIGN(total_size), ads->capture_size);
|
|
return PAGE_ALIGN(total_size);
|
|
}
|
|
|
|
static void guc_mmio_regset_write_one(struct xe_guc_ads *ads,
|
|
struct iosys_map *regset_map,
|
|
struct xe_reg reg,
|
|
unsigned int n_entry)
|
|
{
|
|
struct guc_mmio_reg entry = {
|
|
.offset = reg.addr,
|
|
.flags = reg.masked ? GUC_REGSET_MASKED : 0,
|
|
};
|
|
|
|
if (reg.mcr) {
|
|
struct xe_reg_mcr mcr_reg = XE_REG_MCR(reg.addr);
|
|
u8 group, instance;
|
|
|
|
bool steer = xe_gt_mcr_get_nonterminated_steering(ads_to_gt(ads), mcr_reg,
|
|
&group, &instance);
|
|
|
|
if (steer) {
|
|
entry.flags |= FIELD_PREP(GUC_REGSET_STEERING_GROUP, group);
|
|
entry.flags |= FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, instance);
|
|
entry.flags |= GUC_REGSET_STEERING_NEEDED;
|
|
}
|
|
}
|
|
|
|
xe_map_memcpy_to(ads_to_xe(ads), regset_map, n_entry * sizeof(entry),
|
|
&entry, sizeof(entry));
|
|
}
|
|
|
|
static unsigned int guc_mmio_regset_write(struct xe_guc_ads *ads,
|
|
struct iosys_map *regset_map,
|
|
struct xe_hw_engine *hwe)
|
|
{
|
|
struct xe_hw_engine *hwe_rcs_reset_domain =
|
|
xe_gt_any_hw_engine_by_reset_domain(hwe->gt, XE_ENGINE_CLASS_RENDER);
|
|
struct xe_reg_sr_entry *entry;
|
|
unsigned long idx;
|
|
unsigned int count = 0;
|
|
const struct {
|
|
struct xe_reg reg;
|
|
bool skip;
|
|
} *e, extra_regs[] = {
|
|
{ .reg = RING_MODE(hwe->mmio_base), },
|
|
{ .reg = RING_HWS_PGA(hwe->mmio_base), },
|
|
{ .reg = RING_IMR(hwe->mmio_base), },
|
|
{ .reg = RCU_MODE, .skip = hwe != hwe_rcs_reset_domain },
|
|
{ .reg = CCS_MODE,
|
|
.skip = hwe != hwe_rcs_reset_domain || !xe_gt_ccs_mode_enabled(hwe->gt) },
|
|
};
|
|
u32 i;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(extra_regs) > ADS_REGSET_EXTRA_MAX);
|
|
|
|
xa_for_each(&hwe->reg_sr.xa, idx, entry)
|
|
guc_mmio_regset_write_one(ads, regset_map, entry->reg, count++);
|
|
|
|
for (e = extra_regs; e < extra_regs + ARRAY_SIZE(extra_regs); e++) {
|
|
if (e->skip)
|
|
continue;
|
|
|
|
guc_mmio_regset_write_one(ads, regset_map, e->reg, count++);
|
|
}
|
|
|
|
if (XE_WA(hwe->gt, 1607983814) && hwe->class == XE_ENGINE_CLASS_RENDER) {
|
|
for (i = 0; i < LNCFCMOCS_REG_COUNT; i++) {
|
|
guc_mmio_regset_write_one(ads, regset_map,
|
|
XELP_LNCFCMOCS(i), count++);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void guc_mmio_reg_state_init(struct xe_guc_ads *ads)
|
|
{
|
|
size_t regset_offset = guc_ads_regset_offset(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct xe_hw_engine *hwe;
|
|
enum xe_hw_engine_id id;
|
|
u32 addr = xe_bo_ggtt_addr(ads->bo) + regset_offset;
|
|
struct iosys_map regset_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
regset_offset);
|
|
unsigned int regset_used = 0;
|
|
|
|
for_each_hw_engine(hwe, gt, id) {
|
|
unsigned int count;
|
|
u8 gc;
|
|
|
|
/*
|
|
* 1. Write all MMIO entries for this exec queue to the table. No
|
|
* need to worry about fused-off engines and when there are
|
|
* entries in the regset: the reg_state_list has been zero'ed
|
|
* by xe_guc_ads_populate()
|
|
*/
|
|
count = guc_mmio_regset_write(ads, ®set_map, hwe);
|
|
if (!count)
|
|
continue;
|
|
|
|
/*
|
|
* 2. Record in the header (ads.reg_state_list) the address
|
|
* location and number of entries
|
|
*/
|
|
gc = xe_engine_class_to_guc_class(hwe->class);
|
|
ads_blob_write(ads, ads.reg_state_list[gc][hwe->instance].address, addr);
|
|
ads_blob_write(ads, ads.reg_state_list[gc][hwe->instance].count, count);
|
|
|
|
addr += count * sizeof(struct guc_mmio_reg);
|
|
iosys_map_incr(®set_map, count * sizeof(struct guc_mmio_reg));
|
|
|
|
regset_used += count * sizeof(struct guc_mmio_reg);
|
|
}
|
|
|
|
xe_gt_assert(gt, regset_used <= ads->regset_size);
|
|
}
|
|
|
|
static void guc_um_init_params(struct xe_guc_ads *ads)
|
|
{
|
|
u32 um_queue_offset = guc_ads_um_queues_offset(ads);
|
|
u64 base_dpa;
|
|
u32 base_ggtt;
|
|
int i;
|
|
|
|
base_ggtt = xe_bo_ggtt_addr(ads->bo) + um_queue_offset;
|
|
base_dpa = xe_bo_main_addr(ads->bo, PAGE_SIZE) + um_queue_offset;
|
|
|
|
for (i = 0; i < GUC_UM_HW_QUEUE_MAX; ++i) {
|
|
ads_blob_write(ads, um_init_params.queue_params[i].base_dpa,
|
|
base_dpa + (i * GUC_UM_QUEUE_SIZE));
|
|
ads_blob_write(ads, um_init_params.queue_params[i].base_ggtt_address,
|
|
base_ggtt + (i * GUC_UM_QUEUE_SIZE));
|
|
ads_blob_write(ads, um_init_params.queue_params[i].size_in_bytes,
|
|
GUC_UM_QUEUE_SIZE);
|
|
}
|
|
|
|
ads_blob_write(ads, um_init_params.page_response_timeout_in_us,
|
|
GUC_PAGE_RES_TIMEOUT_US);
|
|
}
|
|
|
|
static void guc_doorbell_init(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
|
|
if (GRAPHICS_VER(xe) >= 12 && !IS_DGFX(xe)) {
|
|
u32 distdbreg =
|
|
xe_mmio_read32(>->mmio, DIST_DBS_POPULATED);
|
|
|
|
ads_blob_write(ads,
|
|
system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_DOORBELL_COUNT_PER_SQIDI],
|
|
REG_FIELD_GET(DOORBELLS_PER_SQIDI_MASK, distdbreg) + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ads_populate_minimal - populate minimal ADS
|
|
* @ads: Additional data structures object
|
|
*
|
|
* This function populates a minimal ADS that does not support submissions but
|
|
* enough so the GuC can load and the hwconfig table can be read.
|
|
*/
|
|
void xe_guc_ads_populate_minimal(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct iosys_map info_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
u32 base = xe_bo_ggtt_addr(ads->bo);
|
|
|
|
xe_gt_assert(gt, ads->bo);
|
|
|
|
xe_map_memset(ads_to_xe(ads), ads_to_map(ads), 0, 0, xe_bo_size(ads->bo));
|
|
guc_policies_init(ads);
|
|
guc_golden_lrc_init(ads);
|
|
guc_mapping_table_init_invalid(gt, &info_map);
|
|
guc_doorbell_init(ads);
|
|
|
|
ads_blob_write(ads, ads.scheduler_policies, base +
|
|
offsetof(struct __guc_ads_blob, policies));
|
|
ads_blob_write(ads, ads.gt_system_info, base +
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
ads_blob_write(ads, ads.private_data, base +
|
|
guc_ads_private_data_offset(ads));
|
|
}
|
|
|
|
void xe_guc_ads_populate(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct iosys_map info_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
u32 base = xe_bo_ggtt_addr(ads->bo);
|
|
|
|
xe_gt_assert(gt, ads->bo);
|
|
|
|
xe_map_memset(ads_to_xe(ads), ads_to_map(ads), 0, 0, xe_bo_size(ads->bo));
|
|
guc_policies_init(ads);
|
|
fill_engine_enable_masks(gt, &info_map);
|
|
guc_mmio_reg_state_init(ads);
|
|
guc_golden_lrc_init(ads);
|
|
guc_mapping_table_init(gt, &info_map);
|
|
guc_capture_prep_lists(ads);
|
|
guc_doorbell_init(ads);
|
|
guc_waklv_init(ads);
|
|
|
|
if (xe->info.has_usm) {
|
|
guc_um_init_params(ads);
|
|
ads_blob_write(ads, ads.um_init_data, base +
|
|
offsetof(struct __guc_ads_blob, um_init_params));
|
|
}
|
|
|
|
ads_blob_write(ads, ads.scheduler_policies, base +
|
|
offsetof(struct __guc_ads_blob, policies));
|
|
ads_blob_write(ads, ads.gt_system_info, base +
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
ads_blob_write(ads, ads.private_data, base +
|
|
guc_ads_private_data_offset(ads));
|
|
}
|
|
|
|
/*
|
|
* After the golden LRC's are recorded for each engine class by the first
|
|
* submission, copy them to the ADS, as initialized earlier by
|
|
* guc_golden_lrc_init().
|
|
*/
|
|
static void guc_golden_lrc_populate(struct xe_guc_ads *ads)
|
|
{
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
struct xe_gt *gt = ads_to_gt(ads);
|
|
struct iosys_map info_map = IOSYS_MAP_INIT_OFFSET(ads_to_map(ads),
|
|
offsetof(struct __guc_ads_blob, system_info));
|
|
size_t total_size = 0, alloc_size, real_size;
|
|
u32 offset;
|
|
int class;
|
|
|
|
offset = guc_ads_golden_lrc_offset(ads);
|
|
|
|
for (class = 0; class < XE_ENGINE_CLASS_MAX; ++class) {
|
|
u8 guc_class;
|
|
|
|
guc_class = xe_engine_class_to_guc_class(class);
|
|
|
|
if (!info_map_read(xe, &info_map,
|
|
engine_enabled_masks[guc_class]))
|
|
continue;
|
|
|
|
xe_gt_assert(gt, gt->default_lrc[class]);
|
|
|
|
real_size = xe_gt_lrc_size(gt, class);
|
|
alloc_size = PAGE_ALIGN(real_size);
|
|
total_size += alloc_size;
|
|
|
|
xe_map_memcpy_to(xe, ads_to_map(ads), offset,
|
|
gt->default_lrc[class], real_size);
|
|
|
|
offset += alloc_size;
|
|
}
|
|
|
|
xe_gt_assert(gt, total_size == ads->golden_lrc_size);
|
|
}
|
|
|
|
void xe_guc_ads_populate_post_load(struct xe_guc_ads *ads)
|
|
{
|
|
guc_golden_lrc_populate(ads);
|
|
}
|
|
|
|
static int guc_ads_action_update_policies(struct xe_guc_ads *ads, u32 policy_offset)
|
|
{
|
|
struct xe_guc_ct *ct = &ads_to_guc(ads)->ct;
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_GLOBAL_SCHED_POLICY_CHANGE,
|
|
policy_offset
|
|
};
|
|
|
|
return xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ads_scheduler_policy_toggle_reset - Toggle reset policy
|
|
* @ads: Additional data structures object
|
|
*
|
|
* This function update the GuC's engine reset policy based on wedged.mode.
|
|
*
|
|
* Return: 0 on success, and negative error code otherwise.
|
|
*/
|
|
int xe_guc_ads_scheduler_policy_toggle_reset(struct xe_guc_ads *ads)
|
|
{
|
|
struct guc_policies *policies;
|
|
struct xe_guc *guc = ads_to_guc(ads);
|
|
struct xe_device *xe = ads_to_xe(ads);
|
|
CLASS(xe_guc_buf, buf)(&guc->buf, sizeof(*policies));
|
|
|
|
if (!xe_guc_buf_is_valid(buf))
|
|
return -ENOBUFS;
|
|
|
|
policies = xe_guc_buf_cpu_ptr(buf);
|
|
memset(policies, 0, sizeof(*policies));
|
|
|
|
policies->dpc_promote_time = ads_blob_read(ads, policies.dpc_promote_time);
|
|
policies->max_num_work_items = ads_blob_read(ads, policies.max_num_work_items);
|
|
policies->is_valid = 1;
|
|
if (xe->wedged.mode == 2)
|
|
policies->global_flags |= GLOBAL_POLICY_DISABLE_ENGINE_RESET;
|
|
else
|
|
policies->global_flags &= ~GLOBAL_POLICY_DISABLE_ENGINE_RESET;
|
|
|
|
return guc_ads_action_update_policies(ads, xe_guc_buf_flush(buf));
|
|
}
|