linux/drivers/gpu/drm/xe/xe_bo.c
Matthew Brost 16ca06aa2c
drm/xe: Don't trigger rebind on initial dma-buf validation
On the first validate of an imported dma-buf (initial bind), the device
has no GPU mappings, so a rebind is unnecessary. Rebinding here is
harmful in multi-GPU setups and for VMs using preempt-fence mode, as it
would evict in-flight GPU work.

v2:
 - Drop dma_buf_validated, check for XE_PL_SYSTEM (Thomas)

Fixes: dd08ebf6c3 ("drm/xe: Introduce a new DRM driver for Intel GPUs")
Signed-off-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Link: https://lore.kernel.org/r/20250825152841.3837378-1-matthew.brost@intel.com
(cherry picked from commit ffdf968762e4fb3cdae54e811ec3525e67440a60)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2025-08-26 10:12:11 -04:00

3141 lines
79 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_bo.h"
#include <linux/dma-buf.h>
#include <linux/nospec.h>
#include <drm/drm_drv.h>
#include <drm/drm_gem_ttm_helper.h>
#include <drm/drm_managed.h>
#include <drm/ttm/ttm_backup.h>
#include <drm/ttm/ttm_device.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_tt.h>
#include <uapi/drm/xe_drm.h>
#include <kunit/static_stub.h>
#include <trace/events/gpu_mem.h>
#include "xe_device.h"
#include "xe_dma_buf.h"
#include "xe_drm_client.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_map.h"
#include "xe_migrate.h"
#include "xe_pm.h"
#include "xe_preempt_fence.h"
#include "xe_pxp.h"
#include "xe_res_cursor.h"
#include "xe_shrinker.h"
#include "xe_trace_bo.h"
#include "xe_ttm_stolen_mgr.h"
#include "xe_vm.h"
const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = {
[XE_PL_SYSTEM] = "system",
[XE_PL_TT] = "gtt",
[XE_PL_VRAM0] = "vram0",
[XE_PL_VRAM1] = "vram1",
[XE_PL_STOLEN] = "stolen"
};
static const struct ttm_place sys_placement_flags = {
.fpfn = 0,
.lpfn = 0,
.mem_type = XE_PL_SYSTEM,
.flags = 0,
};
static struct ttm_placement sys_placement = {
.num_placement = 1,
.placement = &sys_placement_flags,
};
static struct ttm_placement purge_placement;
static const struct ttm_place tt_placement_flags[] = {
{
.fpfn = 0,
.lpfn = 0,
.mem_type = XE_PL_TT,
.flags = TTM_PL_FLAG_DESIRED,
},
{
.fpfn = 0,
.lpfn = 0,
.mem_type = XE_PL_SYSTEM,
.flags = TTM_PL_FLAG_FALLBACK,
}
};
static struct ttm_placement tt_placement = {
.num_placement = 2,
.placement = tt_placement_flags,
};
bool mem_type_is_vram(u32 mem_type)
{
return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
}
static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
{
return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
}
static bool resource_is_vram(struct ttm_resource *res)
{
return mem_type_is_vram(res->mem_type);
}
bool xe_bo_is_vram(struct xe_bo *bo)
{
return resource_is_vram(bo->ttm.resource) ||
resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
}
bool xe_bo_is_stolen(struct xe_bo *bo)
{
return bo->ttm.resource->mem_type == XE_PL_STOLEN;
}
/**
* xe_bo_has_single_placement - check if BO is placed only in one memory location
* @bo: The BO
*
* This function checks whether a given BO is placed in only one memory location.
*
* Returns: true if the BO is placed in a single memory location, false otherwise.
*
*/
bool xe_bo_has_single_placement(struct xe_bo *bo)
{
return bo->placement.num_placement == 1;
}
/**
* xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
* @bo: The BO
*
* The stolen memory is accessed through the PCI BAR for both DGFX and some
* integrated platforms that have a dedicated bit in the PTE for devmem (DM).
*
* Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
*/
bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
{
return xe_bo_is_stolen(bo) &&
GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
}
/**
* xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
* @bo: The BO
*
* Check if a given bo is bound through VM_BIND. This requires the
* reservation lock for the BO to be held.
*
* Returns: boolean
*/
bool xe_bo_is_vm_bound(struct xe_bo *bo)
{
xe_bo_assert_held(bo);
return !list_empty(&bo->ttm.base.gpuva.list);
}
static bool xe_bo_is_user(struct xe_bo *bo)
{
return bo->flags & XE_BO_FLAG_USER;
}
static struct xe_migrate *
mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
{
struct xe_tile *tile;
xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
return tile->migrate;
}
static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
{
struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
struct ttm_resource_manager *mgr;
struct xe_ttm_vram_mgr *vram_mgr;
xe_assert(xe, resource_is_vram(res));
mgr = ttm_manager_type(&xe->ttm, res->mem_type);
vram_mgr = to_xe_ttm_vram_mgr(mgr);
return container_of(vram_mgr, struct xe_vram_region, ttm);
}
static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags, u32 *c)
{
if (bo_flags & XE_BO_FLAG_SYSTEM) {
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
bo->placements[*c] = (struct ttm_place) {
.mem_type = XE_PL_TT,
};
*c += 1;
}
}
static bool force_contiguous(u32 bo_flags)
{
if (bo_flags & XE_BO_FLAG_STOLEN)
return true; /* users expect this */
else if (bo_flags & XE_BO_FLAG_PINNED &&
!(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE))
return true; /* needs vmap */
/*
* For eviction / restore on suspend / resume objects pinned in VRAM
* must be contiguous, also only contiguous BOs support xe_bo_vmap.
*/
return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS &&
bo_flags & XE_BO_FLAG_PINNED;
}
static void add_vram(struct xe_device *xe, struct xe_bo *bo,
struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
{
struct ttm_place place = { .mem_type = mem_type };
struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
struct xe_vram_region *vram;
u64 io_size;
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
vram = container_of(vram_mgr, struct xe_vram_region, ttm);
xe_assert(xe, vram && vram->usable_size);
io_size = vram->io_size;
if (force_contiguous(bo_flags))
place.flags |= TTM_PL_FLAG_CONTIGUOUS;
if (io_size < vram->usable_size) {
if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
place.fpfn = 0;
place.lpfn = io_size >> PAGE_SHIFT;
} else {
place.flags |= TTM_PL_FLAG_TOPDOWN;
}
}
places[*c] = place;
*c += 1;
}
static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags, u32 *c)
{
if (bo_flags & XE_BO_FLAG_VRAM0)
add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
if (bo_flags & XE_BO_FLAG_VRAM1)
add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
}
static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags, u32 *c)
{
if (bo_flags & XE_BO_FLAG_STOLEN) {
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
bo->placements[*c] = (struct ttm_place) {
.mem_type = XE_PL_STOLEN,
.flags = force_contiguous(bo_flags) ?
TTM_PL_FLAG_CONTIGUOUS : 0,
};
*c += 1;
}
}
static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags)
{
u32 c = 0;
try_add_vram(xe, bo, bo_flags, &c);
try_add_system(xe, bo, bo_flags, &c);
try_add_stolen(xe, bo, bo_flags, &c);
if (!c)
return -EINVAL;
bo->placement = (struct ttm_placement) {
.num_placement = c,
.placement = bo->placements,
};
return 0;
}
int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
u32 bo_flags)
{
xe_bo_assert_held(bo);
return __xe_bo_placement_for_flags(xe, bo, bo_flags);
}
static void xe_evict_flags(struct ttm_buffer_object *tbo,
struct ttm_placement *placement)
{
struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm);
bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
struct xe_bo *bo;
if (!xe_bo_is_xe_bo(tbo)) {
/* Don't handle scatter gather BOs */
if (tbo->type == ttm_bo_type_sg) {
placement->num_placement = 0;
return;
}
*placement = device_unplugged ? purge_placement : sys_placement;
return;
}
bo = ttm_to_xe_bo(tbo);
if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
*placement = sys_placement;
return;
}
if (device_unplugged && !tbo->base.dma_buf) {
*placement = purge_placement;
return;
}
/*
* For xe, sg bos that are evicted to system just triggers a
* rebind of the sg list upon subsequent validation to XE_PL_TT.
*/
switch (tbo->resource->mem_type) {
case XE_PL_VRAM0:
case XE_PL_VRAM1:
case XE_PL_STOLEN:
*placement = tt_placement;
break;
case XE_PL_TT:
default:
*placement = sys_placement;
break;
}
}
/* struct xe_ttm_tt - Subclassed ttm_tt for xe */
struct xe_ttm_tt {
struct ttm_tt ttm;
struct sg_table sgt;
struct sg_table *sg;
/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
bool purgeable;
};
static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt)
{
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
unsigned long num_pages = tt->num_pages;
int ret;
XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
if (xe_tt->sg)
return 0;
ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
num_pages, 0,
(u64)num_pages << PAGE_SHIFT,
xe_sg_segment_size(xe->drm.dev),
GFP_KERNEL);
if (ret)
return ret;
xe_tt->sg = &xe_tt->sgt;
ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC);
if (ret) {
sg_free_table(xe_tt->sg);
xe_tt->sg = NULL;
return ret;
}
return 0;
}
static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt)
{
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
if (xe_tt->sg) {
dma_unmap_sgtable(xe->drm.dev, xe_tt->sg,
DMA_BIDIRECTIONAL, 0);
sg_free_table(xe_tt->sg);
xe_tt->sg = NULL;
}
}
struct sg_table *xe_bo_sg(struct xe_bo *bo)
{
struct ttm_tt *tt = bo->ttm.ttm;
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
return xe_tt->sg;
}
/*
* Account ttm pages against the device shrinker's shrinkable and
* purgeable counts.
*/
static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt)
{
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
if (xe_tt->purgeable)
xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages);
else
xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0);
}
static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt)
{
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
if (xe_tt->purgeable)
xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages);
else
xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0);
}
static void update_global_total_pages(struct ttm_device *ttm_dev,
long num_pages)
{
#if IS_ENABLED(CONFIG_TRACE_GPU_MEM)
struct xe_device *xe = ttm_to_xe_device(ttm_dev);
u64 global_total_pages =
atomic64_add_return(num_pages, &xe->global_total_pages);
trace_gpu_mem_total(xe->drm.primary->index, 0,
global_total_pages << PAGE_SHIFT);
#endif
}
static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
u32 page_flags)
{
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct xe_device *xe = xe_bo_device(bo);
struct xe_ttm_tt *xe_tt;
struct ttm_tt *tt;
unsigned long extra_pages;
enum ttm_caching caching = ttm_cached;
int err;
xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
if (!xe_tt)
return NULL;
tt = &xe_tt->ttm;
extra_pages = 0;
if (xe_bo_needs_ccs_pages(bo))
extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)),
PAGE_SIZE);
/*
* DGFX system memory is always WB / ttm_cached, since
* other caching modes are only supported on x86. DGFX
* GPU system memory accesses are always coherent with the
* CPU.
*/
if (!IS_DGFX(xe)) {
switch (bo->cpu_caching) {
case DRM_XE_GEM_CPU_CACHING_WC:
caching = ttm_write_combined;
break;
default:
caching = ttm_cached;
break;
}
WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
/*
* Display scanout is always non-coherent with the CPU cache.
*
* For Xe_LPG and beyond, PPGTT PTE lookups are also
* non-coherent and require a CPU:WC mapping.
*/
if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
(xe->info.graphics_verx100 >= 1270 &&
bo->flags & XE_BO_FLAG_PAGETABLE))
caching = ttm_write_combined;
}
if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
/*
* Valid only for internally-created buffers only, for
* which cpu_caching is never initialized.
*/
xe_assert(xe, bo->cpu_caching == 0);
caching = ttm_uncached;
}
if (ttm_bo->type != ttm_bo_type_sg)
page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
if (err) {
kfree(xe_tt);
return NULL;
}
if (ttm_bo->type != ttm_bo_type_sg) {
err = ttm_tt_setup_backup(tt);
if (err) {
ttm_tt_fini(tt);
kfree(xe_tt);
return NULL;
}
}
return tt;
}
static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
struct ttm_operation_ctx *ctx)
{
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
int err;
/*
* dma-bufs are not populated with pages, and the dma-
* addresses are set up when moved to XE_PL_TT.
*/
if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
return 0;
if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
err = ttm_tt_restore(ttm_dev, tt, ctx);
} else {
ttm_tt_clear_backed_up(tt);
err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
}
if (err)
return err;
xe_tt->purgeable = false;
xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt);
update_global_total_pages(ttm_dev, tt->num_pages);
return 0;
}
static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
{
struct xe_device *xe = ttm_to_xe_device(ttm_dev);
if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
return;
xe_tt_unmap_sg(xe, tt);
ttm_pool_free(&ttm_dev->pool, tt);
xe_ttm_tt_account_subtract(xe, tt);
update_global_total_pages(ttm_dev, -(long)tt->num_pages);
}
static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
{
ttm_tt_fini(tt);
kfree(tt);
}
static bool xe_ttm_resource_visible(struct ttm_resource *mem)
{
struct xe_ttm_vram_mgr_resource *vres =
to_xe_ttm_vram_mgr_resource(mem);
return vres->used_visible_size == mem->size;
}
static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
struct ttm_resource *mem)
{
struct xe_device *xe = ttm_to_xe_device(bdev);
switch (mem->mem_type) {
case XE_PL_SYSTEM:
case XE_PL_TT:
return 0;
case XE_PL_VRAM0:
case XE_PL_VRAM1: {
struct xe_vram_region *vram = res_to_mem_region(mem);
if (!xe_ttm_resource_visible(mem))
return -EINVAL;
mem->bus.offset = mem->start << PAGE_SHIFT;
if (vram->mapping &&
mem->placement & TTM_PL_FLAG_CONTIGUOUS)
mem->bus.addr = (u8 __force *)vram->mapping +
mem->bus.offset;
mem->bus.offset += vram->io_start;
mem->bus.is_iomem = true;
#if !IS_ENABLED(CONFIG_X86)
mem->bus.caching = ttm_write_combined;
#endif
return 0;
} case XE_PL_STOLEN:
return xe_ttm_stolen_io_mem_reserve(xe, mem);
default:
return -EINVAL;
}
}
static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
const struct ttm_operation_ctx *ctx)
{
struct dma_resv_iter cursor;
struct dma_fence *fence;
struct drm_gem_object *obj = &bo->ttm.base;
struct drm_gpuvm_bo *vm_bo;
bool idle = false;
int ret = 0;
dma_resv_assert_held(bo->ttm.base.resv);
if (!list_empty(&bo->ttm.base.gpuva.list)) {
dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
DMA_RESV_USAGE_BOOKKEEP);
dma_resv_for_each_fence_unlocked(&cursor, fence)
dma_fence_enable_sw_signaling(fence);
dma_resv_iter_end(&cursor);
}
drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
struct drm_gpuva *gpuva;
if (!xe_vm_in_fault_mode(vm)) {
drm_gpuvm_bo_evict(vm_bo, true);
continue;
}
if (!idle) {
long timeout;
if (ctx->no_wait_gpu &&
!dma_resv_test_signaled(bo->ttm.base.resv,
DMA_RESV_USAGE_BOOKKEEP))
return -EBUSY;
timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
DMA_RESV_USAGE_BOOKKEEP,
ctx->interruptible,
MAX_SCHEDULE_TIMEOUT);
if (!timeout)
return -ETIME;
if (timeout < 0)
return timeout;
idle = true;
}
drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
struct xe_vma *vma = gpuva_to_vma(gpuva);
trace_xe_vma_evict(vma);
ret = xe_vm_invalidate_vma(vma);
if (XE_WARN_ON(ret))
return ret;
}
}
return ret;
}
/*
* The dma-buf map_attachment() / unmap_attachment() is hooked up here.
* Note that unmapping the attachment is deferred to the next
* map_attachment time, or to bo destroy (after idling) whichever comes first.
* This is to avoid syncing before unmap_attachment(), assuming that the
* caller relies on idling the reservation object before moving the
* backing store out. Should that assumption not hold, then we will be able
* to unconditionally call unmap_attachment() when moving out to system.
*/
static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
struct ttm_resource *new_res)
{
struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
ttm);
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
bool device_unplugged = drm_dev_is_unplugged(&xe->drm);
struct sg_table *sg;
xe_assert(xe, attach);
xe_assert(xe, ttm_bo->ttm);
if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM &&
ttm_bo->sg) {
dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
ttm_bo->sg = NULL;
}
if (new_res->mem_type == XE_PL_SYSTEM)
goto out;
if (ttm_bo->sg) {
dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
ttm_bo->sg = NULL;
}
sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
if (IS_ERR(sg))
return PTR_ERR(sg);
ttm_bo->sg = sg;
xe_tt->sg = sg;
out:
ttm_bo_move_null(ttm_bo, new_res);
return 0;
}
/**
* xe_bo_move_notify - Notify subsystems of a pending move
* @bo: The buffer object
* @ctx: The struct ttm_operation_ctx controlling locking and waits.
*
* This function notifies subsystems of an upcoming buffer move.
* Upon receiving such a notification, subsystems should schedule
* halting access to the underlying pages and optionally add a fence
* to the buffer object's dma_resv object, that signals when access is
* stopped. The caller will wait on all dma_resv fences before
* starting the move.
*
* A subsystem may commence access to the object after obtaining
* bindings to the new backing memory under the object lock.
*
* Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
* negative error code on error.
*/
static int xe_bo_move_notify(struct xe_bo *bo,
const struct ttm_operation_ctx *ctx)
{
struct ttm_buffer_object *ttm_bo = &bo->ttm;
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
struct ttm_resource *old_mem = ttm_bo->resource;
u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
int ret;
/*
* If this starts to call into many components, consider
* using a notification chain here.
*/
if (xe_bo_is_pinned(bo))
return -EINVAL;
xe_bo_vunmap(bo);
ret = xe_bo_trigger_rebind(xe, bo, ctx);
if (ret)
return ret;
/* Don't call move_notify() for imported dma-bufs. */
if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
dma_buf_move_notify(ttm_bo->base.dma_buf);
/*
* TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
* so if we moved from VRAM make sure to unlink this from the userfault
* tracking.
*/
if (mem_type_is_vram(old_mem_type)) {
mutex_lock(&xe->mem_access.vram_userfault.lock);
if (!list_empty(&bo->vram_userfault_link))
list_del_init(&bo->vram_userfault_link);
mutex_unlock(&xe->mem_access.vram_userfault.lock);
}
return 0;
}
static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_mem,
struct ttm_place *hop)
{
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct ttm_resource *old_mem = ttm_bo->resource;
u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
struct ttm_tt *ttm = ttm_bo->ttm;
struct xe_migrate *migrate = NULL;
struct dma_fence *fence;
bool move_lacks_source;
bool tt_has_data;
bool needs_clear;
bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
ttm && ttm_tt_is_populated(ttm)) ? true : false;
int ret = 0;
/* Bo creation path, moving to system or TT. */
if ((!old_mem && ttm) && !handle_system_ccs) {
if (new_mem->mem_type == XE_PL_TT)
ret = xe_tt_map_sg(xe, ttm);
if (!ret)
ttm_bo_move_null(ttm_bo, new_mem);
goto out;
}
if (ttm_bo->type == ttm_bo_type_sg) {
if (new_mem->mem_type == XE_PL_SYSTEM)
ret = xe_bo_move_notify(bo, ctx);
if (!ret)
ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
return ret;
}
tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
(ttm->page_flags & TTM_TT_FLAG_SWAPPED));
move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
(!mem_type_is_vram(old_mem_type) && !tt_has_data));
needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
(!ttm && ttm_bo->type == ttm_bo_type_device);
if (new_mem->mem_type == XE_PL_TT) {
ret = xe_tt_map_sg(xe, ttm);
if (ret)
goto out;
}
if ((move_lacks_source && !needs_clear)) {
ttm_bo_move_null(ttm_bo, new_mem);
goto out;
}
if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
new_mem->mem_type == XE_PL_SYSTEM) {
ret = xe_svm_bo_evict(bo);
if (!ret) {
drm_dbg(&xe->drm, "Evict system allocator BO success\n");
ttm_bo_move_null(ttm_bo, new_mem);
} else {
drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
ERR_PTR(ret));
}
goto out;
}
if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
ttm_bo_move_null(ttm_bo, new_mem);
goto out;
}
/*
* Failed multi-hop where the old_mem is still marked as
* TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
*/
if (old_mem_type == XE_PL_TT &&
new_mem->mem_type == XE_PL_TT) {
ttm_bo_move_null(ttm_bo, new_mem);
goto out;
}
if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
ret = xe_bo_move_notify(bo, ctx);
if (ret)
goto out;
}
if (old_mem_type == XE_PL_TT &&
new_mem->mem_type == XE_PL_SYSTEM) {
long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP,
false,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
ret = timeout;
goto out;
}
if (!handle_system_ccs) {
ttm_bo_move_null(ttm_bo, new_mem);
goto out;
}
}
if (!move_lacks_source &&
((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
(mem_type_is_vram(old_mem_type) &&
new_mem->mem_type == XE_PL_SYSTEM))) {
hop->fpfn = 0;
hop->lpfn = 0;
hop->mem_type = XE_PL_TT;
hop->flags = TTM_PL_FLAG_TEMPORARY;
ret = -EMULTIHOP;
goto out;
}
if (bo->tile)
migrate = bo->tile->migrate;
else if (resource_is_vram(new_mem))
migrate = mem_type_to_migrate(xe, new_mem->mem_type);
else if (mem_type_is_vram(old_mem_type))
migrate = mem_type_to_migrate(xe, old_mem_type);
else
migrate = xe->tiles[0].migrate;
xe_assert(xe, migrate);
trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
if (xe_rpm_reclaim_safe(xe)) {
/*
* We might be called through swapout in the validation path of
* another TTM device, so acquire rpm here.
*/
xe_pm_runtime_get(xe);
} else {
drm_WARN_ON(&xe->drm, handle_system_ccs);
xe_pm_runtime_get_noresume(xe);
}
if (move_lacks_source) {
u32 flags = 0;
if (mem_type_is_vram(new_mem->mem_type))
flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
else if (handle_system_ccs)
flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
fence = xe_migrate_clear(migrate, bo, new_mem, flags);
} else {
fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem,
handle_system_ccs);
}
if (IS_ERR(fence)) {
ret = PTR_ERR(fence);
xe_pm_runtime_put(xe);
goto out;
}
if (!move_lacks_source) {
ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true,
new_mem);
if (ret) {
dma_fence_wait(fence, false);
ttm_bo_move_null(ttm_bo, new_mem);
ret = 0;
}
} else {
/*
* ttm_bo_move_accel_cleanup() may blow up if
* bo->resource == NULL, so just attach the
* fence and set the new resource.
*/
dma_resv_add_fence(ttm_bo->base.resv, fence,
DMA_RESV_USAGE_KERNEL);
ttm_bo_move_null(ttm_bo, new_mem);
}
dma_fence_put(fence);
xe_pm_runtime_put(xe);
out:
if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
ttm_bo->ttm) {
long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
DMA_RESV_USAGE_KERNEL,
false,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0)
ret = timeout;
xe_tt_unmap_sg(xe, ttm_bo->ttm);
}
return ret;
}
static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
struct ttm_buffer_object *bo,
unsigned long *scanned)
{
struct xe_device *xe = ttm_to_xe_device(bo->bdev);
long lret;
/* Fake move to system, without copying data. */
if (bo->resource->mem_type != XE_PL_SYSTEM) {
struct ttm_resource *new_resource;
lret = ttm_bo_wait_ctx(bo, ctx);
if (lret)
return lret;
lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
if (lret)
return lret;
xe_tt_unmap_sg(xe, bo->ttm);
ttm_bo_move_null(bo, new_resource);
}
*scanned += bo->ttm->num_pages;
lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
{.purge = true,
.writeback = false,
.allow_move = false});
if (lret > 0)
xe_ttm_tt_account_subtract(xe, bo->ttm);
return lret;
}
static bool
xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place)
{
struct drm_gpuvm_bo *vm_bo;
if (!ttm_bo_eviction_valuable(bo, place))
return false;
if (!xe_bo_is_xe_bo(bo))
return true;
drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) {
if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm)))
return false;
}
return true;
}
/**
* xe_bo_shrink() - Try to shrink an xe bo.
* @ctx: The struct ttm_operation_ctx used for shrinking.
* @bo: The TTM buffer object whose pages to shrink.
* @flags: Flags governing the shrink behaviour.
* @scanned: Pointer to a counter of the number of pages
* attempted to shrink.
*
* Try to shrink- or purge a bo, and if it succeeds, unmap dma.
* Note that we need to be able to handle also non xe bos
* (ghost bos), but only if the struct ttm_tt is embedded in
* a struct xe_ttm_tt. When the function attempts to shrink
* the pages of a buffer object, The value pointed to by @scanned
* is updated.
*
* Return: The number of pages shrunken or purged, or negative error
* code on failure.
*/
long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
const struct xe_bo_shrink_flags flags,
unsigned long *scanned)
{
struct ttm_tt *tt = bo->ttm;
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
struct ttm_place place = {.mem_type = bo->resource->mem_type};
struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
struct xe_device *xe = ttm_to_xe_device(bo->bdev);
bool needs_rpm;
long lret = 0L;
if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
(flags.purge && !xe_tt->purgeable))
return -EBUSY;
if (!xe_bo_eviction_valuable(bo, &place))
return -EBUSY;
if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
return xe_bo_shrink_purge(ctx, bo, scanned);
if (xe_tt->purgeable) {
if (bo->resource->mem_type != XE_PL_SYSTEM)
lret = xe_bo_move_notify(xe_bo, ctx);
if (!lret)
lret = xe_bo_shrink_purge(ctx, bo, scanned);
goto out_unref;
}
/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
xe_bo_needs_ccs_pages(xe_bo));
if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
goto out_unref;
*scanned += tt->num_pages;
lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
{.purge = false,
.writeback = flags.writeback,
.allow_move = true});
if (needs_rpm)
xe_pm_runtime_put(xe);
if (lret > 0)
xe_ttm_tt_account_subtract(xe, tt);
out_unref:
xe_bo_put(xe_bo);
return lret;
}
/**
* xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed
* up in system memory.
* @bo: The buffer object to prepare.
*
* On successful completion, the object backup pages are allocated. Expectation
* is that this is called from the PM notifier, prior to suspend/hibernation.
*
* Return: 0 on success. Negative error code on failure.
*/
int xe_bo_notifier_prepare_pinned(struct xe_bo *bo)
{
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
struct xe_bo *backup;
int ret = 0;
xe_bo_lock(bo, false);
xe_assert(xe, !bo->backup_obj);
/*
* Since this is called from the PM notifier we might have raced with
* someone unpinning this after we dropped the pinned list lock and
* grabbing the above bo lock.
*/
if (!xe_bo_is_pinned(bo))
goto out_unlock_bo;
if (!xe_bo_is_vram(bo))
goto out_unlock_bo;
if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
goto out_unlock_bo;
backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo),
DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
XE_BO_FLAG_PINNED);
if (IS_ERR(backup)) {
ret = PTR_ERR(backup);
goto out_unlock_bo;
}
backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
ttm_bo_pin(&backup->ttm);
bo->backup_obj = backup;
out_unlock_bo:
xe_bo_unlock(bo);
return ret;
}
/**
* xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation.
* @bo: The buffer object to undo the prepare for.
*
* Always returns 0. The backup object is removed, if still present. Expectation
* it that this called from the PM notifier when undoing the prepare step.
*
* Return: Always returns 0.
*/
int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo)
{
xe_bo_lock(bo, false);
if (bo->backup_obj) {
ttm_bo_unpin(&bo->backup_obj->ttm);
xe_bo_put(bo->backup_obj);
bo->backup_obj = NULL;
}
xe_bo_unlock(bo);
return 0;
}
/**
* xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
* @bo: The buffer object to move.
*
* On successful completion, the object memory will be moved to system memory.
*
* This is needed to for special handling of pinned VRAM object during
* suspend-resume.
*
* Return: 0 on success. Negative error code on failure.
*/
int xe_bo_evict_pinned(struct xe_bo *bo)
{
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
struct xe_bo *backup = bo->backup_obj;
bool backup_created = false;
bool unmap = false;
int ret = 0;
xe_bo_lock(bo, false);
if (WARN_ON(!bo->ttm.resource)) {
ret = -EINVAL;
goto out_unlock_bo;
}
if (WARN_ON(!xe_bo_is_pinned(bo))) {
ret = -EINVAL;
goto out_unlock_bo;
}
if (!xe_bo_is_vram(bo))
goto out_unlock_bo;
if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE)
goto out_unlock_bo;
if (!backup) {
backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv,
NULL, xe_bo_size(bo),
DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel,
XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS |
XE_BO_FLAG_PINNED);
if (IS_ERR(backup)) {
ret = PTR_ERR(backup);
goto out_unlock_bo;
}
backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */
backup_created = true;
}
if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
struct xe_migrate *migrate;
struct dma_fence *fence;
if (bo->tile)
migrate = bo->tile->migrate;
else
migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
if (ret)
goto out_backup;
ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
if (ret)
goto out_backup;
fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource,
backup->ttm.resource, false);
if (IS_ERR(fence)) {
ret = PTR_ERR(fence);
goto out_backup;
}
dma_resv_add_fence(bo->ttm.base.resv, fence,
DMA_RESV_USAGE_KERNEL);
dma_resv_add_fence(backup->ttm.base.resv, fence,
DMA_RESV_USAGE_KERNEL);
dma_fence_put(fence);
} else {
ret = xe_bo_vmap(backup);
if (ret)
goto out_backup;
if (iosys_map_is_null(&bo->vmap)) {
ret = xe_bo_vmap(bo);
if (ret)
goto out_backup;
unmap = true;
}
xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0,
xe_bo_size(bo));
}
if (!bo->backup_obj)
bo->backup_obj = backup;
out_backup:
xe_bo_vunmap(backup);
if (ret && backup_created)
xe_bo_put(backup);
out_unlock_bo:
if (unmap)
xe_bo_vunmap(bo);
xe_bo_unlock(bo);
return ret;
}
/**
* xe_bo_restore_pinned() - Restore a pinned VRAM object
* @bo: The buffer object to move.
*
* On successful completion, the object memory will be moved back to VRAM.
*
* This is needed to for special handling of pinned VRAM object during
* suspend-resume.
*
* Return: 0 on success. Negative error code on failure.
*/
int xe_bo_restore_pinned(struct xe_bo *bo)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.gfp_retry_mayfail = false,
};
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
struct xe_bo *backup = bo->backup_obj;
bool unmap = false;
int ret;
if (!backup)
return 0;
xe_bo_lock(bo, false);
if (!xe_bo_is_pinned(backup)) {
ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx);
if (ret)
goto out_unlock_bo;
}
if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) {
struct xe_migrate *migrate;
struct dma_fence *fence;
if (bo->tile)
migrate = bo->tile->migrate;
else
migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type);
ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
if (ret)
goto out_unlock_bo;
ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1);
if (ret)
goto out_unlock_bo;
fence = xe_migrate_copy(migrate, backup, bo,
backup->ttm.resource, bo->ttm.resource,
false);
if (IS_ERR(fence)) {
ret = PTR_ERR(fence);
goto out_unlock_bo;
}
dma_resv_add_fence(bo->ttm.base.resv, fence,
DMA_RESV_USAGE_KERNEL);
dma_resv_add_fence(backup->ttm.base.resv, fence,
DMA_RESV_USAGE_KERNEL);
dma_fence_put(fence);
} else {
ret = xe_bo_vmap(backup);
if (ret)
goto out_unlock_bo;
if (iosys_map_is_null(&bo->vmap)) {
ret = xe_bo_vmap(bo);
if (ret)
goto out_backup;
unmap = true;
}
xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr,
xe_bo_size(bo));
}
bo->backup_obj = NULL;
out_backup:
xe_bo_vunmap(backup);
if (!bo->backup_obj) {
if (xe_bo_is_pinned(backup))
ttm_bo_unpin(&backup->ttm);
xe_bo_put(backup);
}
out_unlock_bo:
if (unmap)
xe_bo_vunmap(bo);
xe_bo_unlock(bo);
return ret;
}
int xe_bo_dma_unmap_pinned(struct xe_bo *bo)
{
struct ttm_buffer_object *ttm_bo = &bo->ttm;
struct ttm_tt *tt = ttm_bo->ttm;
if (tt) {
struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm);
if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
dma_buf_unmap_attachment(ttm_bo->base.import_attach,
ttm_bo->sg,
DMA_BIDIRECTIONAL);
ttm_bo->sg = NULL;
xe_tt->sg = NULL;
} else if (xe_tt->sg) {
dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev,
xe_tt->sg,
DMA_BIDIRECTIONAL, 0);
sg_free_table(xe_tt->sg);
xe_tt->sg = NULL;
}
}
return 0;
}
static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
unsigned long page_offset)
{
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct xe_res_cursor cursor;
struct xe_vram_region *vram;
if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
vram = res_to_mem_region(ttm_bo->resource);
xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
return (vram->io_start + cursor.start) >> PAGE_SHIFT;
}
static void __xe_bo_vunmap(struct xe_bo *bo);
/*
* TODO: Move this function to TTM so we don't rely on how TTM does its
* locking, thereby abusing TTM internals.
*/
static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
{
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
bool locked;
xe_assert(xe, !kref_read(&ttm_bo->kref));
/*
* We can typically only race with TTM trylocking under the
* lru_lock, which will immediately be unlocked again since
* the ttm_bo refcount is zero at this point. So trylocking *should*
* always succeed here, as long as we hold the lru lock.
*/
spin_lock(&ttm_bo->bdev->lru_lock);
locked = dma_resv_trylock(ttm_bo->base.resv);
spin_unlock(&ttm_bo->bdev->lru_lock);
xe_assert(xe, locked);
return locked;
}
static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
{
struct dma_resv_iter cursor;
struct dma_fence *fence;
struct dma_fence *replacement = NULL;
struct xe_bo *bo;
if (!xe_bo_is_xe_bo(ttm_bo))
return;
bo = ttm_to_xe_bo(ttm_bo);
xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
/*
* Corner case where TTM fails to allocate memory and this BOs resv
* still points the VMs resv
*/
if (ttm_bo->base.resv != &ttm_bo->base._resv)
return;
if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
return;
/*
* Scrub the preempt fences if any. The unbind fence is already
* attached to the resv.
* TODO: Don't do this for external bos once we scrub them after
* unbind.
*/
dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
DMA_RESV_USAGE_BOOKKEEP, fence) {
if (xe_fence_is_xe_preempt(fence) &&
!dma_fence_is_signaled(fence)) {
if (!replacement)
replacement = dma_fence_get_stub();
dma_resv_replace_fences(ttm_bo->base.resv,
fence->context,
replacement,
DMA_RESV_USAGE_BOOKKEEP);
}
}
dma_fence_put(replacement);
dma_resv_unlock(ttm_bo->base.resv);
}
static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
{
if (!xe_bo_is_xe_bo(ttm_bo))
return;
/*
* Object is idle and about to be destroyed. Release the
* dma-buf attachment.
*/
if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
struct xe_ttm_tt, ttm);
dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
DMA_BIDIRECTIONAL);
ttm_bo->sg = NULL;
xe_tt->sg = NULL;
}
}
static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
{
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
if (ttm_bo->ttm) {
struct ttm_placement place = {};
int ret = ttm_bo_validate(ttm_bo, &place, ctx);
drm_WARN_ON(&xe->drm, ret);
}
}
static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.gfp_retry_mayfail = false,
};
if (ttm_bo->ttm) {
struct xe_ttm_tt *xe_tt =
container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
if (xe_tt->purgeable)
xe_ttm_bo_purge(ttm_bo, &ctx);
}
}
static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
unsigned long offset, void *buf, int len,
int write)
{
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
struct iosys_map vmap;
struct xe_res_cursor cursor;
struct xe_vram_region *vram;
int bytes_left = len;
int err = 0;
xe_bo_assert_held(bo);
xe_device_assert_mem_access(xe);
if (!mem_type_is_vram(ttm_bo->resource->mem_type))
return -EIO;
if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) {
struct xe_migrate *migrate =
mem_type_to_migrate(xe, ttm_bo->resource->mem_type);
err = xe_migrate_access_memory(migrate, bo, offset, buf, len,
write);
goto out;
}
vram = res_to_mem_region(ttm_bo->resource);
xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
xe_bo_size(bo) - (offset & PAGE_MASK), &cursor);
do {
unsigned long page_offset = (offset & ~PAGE_MASK);
int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
cursor.start);
if (write)
xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
else
xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
buf += byte_count;
offset += byte_count;
bytes_left -= byte_count;
if (bytes_left)
xe_res_next(&cursor, PAGE_SIZE);
} while (bytes_left);
out:
return err ?: len;
}
const struct ttm_device_funcs xe_ttm_funcs = {
.ttm_tt_create = xe_ttm_tt_create,
.ttm_tt_populate = xe_ttm_tt_populate,
.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
.ttm_tt_destroy = xe_ttm_tt_destroy,
.evict_flags = xe_evict_flags,
.move = xe_bo_move,
.io_mem_reserve = xe_ttm_io_mem_reserve,
.io_mem_pfn = xe_ttm_io_mem_pfn,
.access_memory = xe_ttm_access_memory,
.release_notify = xe_ttm_bo_release_notify,
.eviction_valuable = xe_bo_eviction_valuable,
.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
.swap_notify = xe_ttm_bo_swap_notify,
};
static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
{
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
struct xe_tile *tile;
u8 id;
if (bo->ttm.base.import_attach)
drm_prime_gem_destroy(&bo->ttm.base, NULL);
drm_gem_object_release(&bo->ttm.base);
xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
for_each_tile(tile, xe, id)
if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
xe_ggtt_remove_bo(tile->mem.ggtt, bo);
#ifdef CONFIG_PROC_FS
if (bo->client)
xe_drm_client_remove_bo(bo);
#endif
if (bo->vm && xe_bo_is_user(bo))
xe_vm_put(bo->vm);
if (bo->parent_obj)
xe_bo_put(bo->parent_obj);
mutex_lock(&xe->mem_access.vram_userfault.lock);
if (!list_empty(&bo->vram_userfault_link))
list_del(&bo->vram_userfault_link);
mutex_unlock(&xe->mem_access.vram_userfault.lock);
kfree(bo);
}
static void xe_gem_object_free(struct drm_gem_object *obj)
{
/* Our BO reference counting scheme works as follows:
*
* The gem object kref is typically used throughout the driver,
* and the gem object holds a ttm_buffer_object refcount, so
* that when the last gem object reference is put, which is when
* we end up in this function, we put also that ttm_buffer_object
* refcount. Anything using gem interfaces is then no longer
* allowed to access the object in a way that requires a gem
* refcount, including locking the object.
*
* driver ttm callbacks is allowed to use the ttm_buffer_object
* refcount directly if needed.
*/
__xe_bo_vunmap(gem_to_xe_bo(obj));
ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
}
static void xe_gem_object_close(struct drm_gem_object *obj,
struct drm_file *file_priv)
{
struct xe_bo *bo = gem_to_xe_bo(obj);
if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
xe_bo_lock(bo, false);
ttm_bo_set_bulk_move(&bo->ttm, NULL);
xe_bo_unlock(bo);
}
}
static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
{
struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
struct drm_device *ddev = tbo->base.dev;
struct xe_device *xe = to_xe_device(ddev);
struct xe_bo *bo = ttm_to_xe_bo(tbo);
bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
vm_fault_t ret;
int idx;
if (needs_rpm)
xe_pm_runtime_get(xe);
ret = ttm_bo_vm_reserve(tbo, vmf);
if (ret)
goto out;
if (drm_dev_enter(ddev, &idx)) {
trace_xe_bo_cpu_fault(bo);
ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
TTM_BO_VM_NUM_PREFAULT);
drm_dev_exit(idx);
} else {
ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
}
if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
goto out;
/*
* ttm_bo_vm_reserve() already has dma_resv_lock.
*/
if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
mutex_lock(&xe->mem_access.vram_userfault.lock);
if (list_empty(&bo->vram_userfault_link))
list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
mutex_unlock(&xe->mem_access.vram_userfault.lock);
}
dma_resv_unlock(tbo->base.resv);
out:
if (needs_rpm)
xe_pm_runtime_put(xe);
return ret;
}
static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
struct xe_device *xe = xe_bo_device(bo);
int ret;
xe_pm_runtime_get(xe);
ret = ttm_bo_vm_access(vma, addr, buf, len, write);
xe_pm_runtime_put(xe);
return ret;
}
/**
* xe_bo_read() - Read from an xe_bo
* @bo: The buffer object to read from.
* @offset: The byte offset to start reading from.
* @dst: Location to store the read.
* @size: Size in bytes for the read.
*
* Read @size bytes from the @bo, starting from @offset, storing into @dst.
*
* Return: Zero on success, or negative error.
*/
int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
{
int ret;
ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
if (ret >= 0 && ret != size)
ret = -EIO;
else if (ret == size)
ret = 0;
return ret;
}
static const struct vm_operations_struct xe_gem_vm_ops = {
.fault = xe_gem_fault,
.open = ttm_bo_vm_open,
.close = ttm_bo_vm_close,
.access = xe_bo_vm_access,
};
static const struct drm_gem_object_funcs xe_gem_object_funcs = {
.free = xe_gem_object_free,
.close = xe_gem_object_close,
.mmap = drm_gem_ttm_mmap,
.export = xe_gem_prime_export,
.vm_ops = &xe_gem_vm_ops,
};
/**
* xe_bo_alloc - Allocate storage for a struct xe_bo
*
* This function is intended to allocate storage to be used for input
* to __xe_bo_create_locked(), in the case a pointer to the bo to be
* created is needed before the call to __xe_bo_create_locked().
* If __xe_bo_create_locked ends up never to be called, then the
* storage allocated with this function needs to be freed using
* xe_bo_free().
*
* Return: A pointer to an uninitialized struct xe_bo on success,
* ERR_PTR(-ENOMEM) on error.
*/
struct xe_bo *xe_bo_alloc(void)
{
struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
return bo;
}
/**
* xe_bo_free - Free storage allocated using xe_bo_alloc()
* @bo: The buffer object storage.
*
* Refer to xe_bo_alloc() documentation for valid use-cases.
*/
void xe_bo_free(struct xe_bo *bo)
{
kfree(bo);
}
struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
struct xe_tile *tile, struct dma_resv *resv,
struct ttm_lru_bulk_move *bulk, size_t size,
u16 cpu_caching, enum ttm_bo_type type,
u32 flags)
{
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
.gfp_retry_mayfail = true,
};
struct ttm_placement *placement;
uint32_t alignment;
size_t aligned_size;
int err;
/* Only kernel objects should set GT */
xe_assert(xe, !tile || type == ttm_bo_type_kernel);
if (XE_WARN_ON(!size)) {
xe_bo_free(bo);
return ERR_PTR(-EINVAL);
}
/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
return ERR_PTR(-EINVAL);
if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
!(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
(flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
aligned_size = ALIGN(size, align);
if (type != ttm_bo_type_device)
size = ALIGN(size, align);
flags |= XE_BO_FLAG_INTERNAL_64K;
alignment = align >> PAGE_SHIFT;
} else {
aligned_size = ALIGN(size, SZ_4K);
flags &= ~XE_BO_FLAG_INTERNAL_64K;
alignment = SZ_4K >> PAGE_SHIFT;
}
if (type == ttm_bo_type_device && aligned_size != size)
return ERR_PTR(-EINVAL);
if (!bo) {
bo = xe_bo_alloc();
if (IS_ERR(bo))
return bo;
}
bo->ccs_cleared = false;
bo->tile = tile;
bo->flags = flags;
bo->cpu_caching = cpu_caching;
bo->ttm.base.funcs = &xe_gem_object_funcs;
bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
INIT_LIST_HEAD(&bo->pinned_link);
#ifdef CONFIG_PROC_FS
INIT_LIST_HEAD(&bo->client_link);
#endif
INIT_LIST_HEAD(&bo->vram_userfault_link);
drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
if (resv) {
ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
ctx.resv = resv;
}
if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
if (WARN_ON(err)) {
xe_ttm_bo_destroy(&bo->ttm);
return ERR_PTR(err);
}
}
/* Defer populating type_sg bos */
placement = (type == ttm_bo_type_sg ||
bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
&bo->placement;
err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
placement, alignment,
&ctx, NULL, resv, xe_ttm_bo_destroy);
if (err)
return ERR_PTR(err);
/*
* The VRAM pages underneath are potentially still being accessed by the
* GPU, as per async GPU clearing and async evictions. However TTM makes
* sure to add any corresponding move/clear fences into the objects
* dma-resv using the DMA_RESV_USAGE_KERNEL slot.
*
* For KMD internal buffers we don't care about GPU clearing, however we
* still need to handle async evictions, where the VRAM is still being
* accessed by the GPU. Most internal callers are not expecting this,
* since they are missing the required synchronisation before accessing
* the memory. To keep things simple just sync wait any kernel fences
* here, if the buffer is designated KMD internal.
*
* For normal userspace objects we should already have the required
* pipelining or sync waiting elsewhere, since we already have to deal
* with things like async GPU clearing.
*/
if (type == ttm_bo_type_kernel) {
long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
DMA_RESV_USAGE_KERNEL,
ctx.interruptible,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
if (!resv)
dma_resv_unlock(bo->ttm.base.resv);
xe_bo_put(bo);
return ERR_PTR(timeout);
}
}
bo->created = true;
if (bulk)
ttm_bo_set_bulk_move(&bo->ttm, bulk);
else
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
return bo;
}
static int __xe_bo_fixed_placement(struct xe_device *xe,
struct xe_bo *bo,
u32 flags,
u64 start, u64 end, u64 size)
{
struct ttm_place *place = bo->placements;
if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
return -EINVAL;
place->flags = TTM_PL_FLAG_CONTIGUOUS;
place->fpfn = start >> PAGE_SHIFT;
place->lpfn = end >> PAGE_SHIFT;
switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
case XE_BO_FLAG_VRAM0:
place->mem_type = XE_PL_VRAM0;
break;
case XE_BO_FLAG_VRAM1:
place->mem_type = XE_PL_VRAM1;
break;
case XE_BO_FLAG_STOLEN:
place->mem_type = XE_PL_STOLEN;
break;
default:
/* 0 or multiple of the above set */
return -EINVAL;
}
bo->placement = (struct ttm_placement) {
.num_placement = 1,
.placement = place,
};
return 0;
}
static struct xe_bo *
__xe_bo_create_locked(struct xe_device *xe,
struct xe_tile *tile, struct xe_vm *vm,
size_t size, u64 start, u64 end,
u16 cpu_caching, enum ttm_bo_type type, u32 flags,
u64 alignment)
{
struct xe_bo *bo = NULL;
int err;
if (vm)
xe_vm_assert_held(vm);
if (start || end != ~0ULL) {
bo = xe_bo_alloc();
if (IS_ERR(bo))
return bo;
flags |= XE_BO_FLAG_FIXED_PLACEMENT;
err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
if (err) {
xe_bo_free(bo);
return ERR_PTR(err);
}
}
bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
vm && !xe_vm_in_fault_mode(vm) &&
flags & XE_BO_FLAG_USER ?
&vm->lru_bulk_move : NULL, size,
cpu_caching, type, flags);
if (IS_ERR(bo))
return bo;
bo->min_align = alignment;
/*
* Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
* to ensure the shared resv doesn't disappear under the bo, the bo
* will keep a reference to the vm, and avoid circular references
* by having all the vm's bo refereferences released at vm close
* time.
*/
if (vm && xe_bo_is_user(bo))
xe_vm_get(vm);
bo->vm = vm;
if (bo->flags & XE_BO_FLAG_GGTT) {
struct xe_tile *t;
u8 id;
if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
if (!tile && flags & XE_BO_FLAG_STOLEN)
tile = xe_device_get_root_tile(xe);
xe_assert(xe, tile);
}
for_each_tile(t, xe, id) {
if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
continue;
if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
start + xe_bo_size(bo), U64_MAX);
} else {
err = xe_ggtt_insert_bo(t->mem.ggtt, bo);
}
if (err)
goto err_unlock_put_bo;
}
}
trace_xe_bo_create(bo);
return bo;
err_unlock_put_bo:
__xe_bo_unset_bulk_move(bo);
xe_bo_unlock_vm_held(bo);
xe_bo_put(bo);
return ERR_PTR(err);
}
struct xe_bo *
xe_bo_create_locked_range(struct xe_device *xe,
struct xe_tile *tile, struct xe_vm *vm,
size_t size, u64 start, u64 end,
enum ttm_bo_type type, u32 flags, u64 alignment)
{
return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
flags, alignment);
}
struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags)
{
return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
flags, 0);
}
struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm, size_t size,
u16 cpu_caching,
u32 flags)
{
struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
cpu_caching, ttm_bo_type_device,
flags | XE_BO_FLAG_USER, 0);
if (!IS_ERR(bo))
xe_bo_unlock_vm_held(bo);
return bo;
}
struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags)
{
struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
if (!IS_ERR(bo))
xe_bo_unlock_vm_held(bo);
return bo;
}
struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm,
size_t size, u64 offset,
enum ttm_bo_type type, u32 flags)
{
return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
type, flags, 0);
}
struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
struct xe_tile *tile,
struct xe_vm *vm,
size_t size, u64 offset,
enum ttm_bo_type type, u32 flags,
u64 alignment)
{
struct xe_bo *bo;
int err;
u64 start = offset == ~0ull ? 0 : offset;
u64 end = offset == ~0ull ? offset : start + size;
if (flags & XE_BO_FLAG_STOLEN &&
xe_ttm_stolen_cpu_access_needs_ggtt(xe))
flags |= XE_BO_FLAG_GGTT;
bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED,
alignment);
if (IS_ERR(bo))
return bo;
err = xe_bo_pin(bo);
if (err)
goto err_put;
err = xe_bo_vmap(bo);
if (err)
goto err_unpin;
xe_bo_unlock_vm_held(bo);
return bo;
err_unpin:
xe_bo_unpin(bo);
err_put:
xe_bo_unlock_vm_held(bo);
xe_bo_put(bo);
return ERR_PTR(err);
}
struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
struct xe_vm *vm, size_t size,
enum ttm_bo_type type, u32 flags)
{
return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
}
static void __xe_bo_unpin_map_no_vm(void *arg)
{
xe_bo_unpin_map_no_vm(arg);
}
struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
size_t size, u32 flags)
{
struct xe_bo *bo;
int ret;
KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
if (IS_ERR(bo))
return bo;
ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
if (ret)
return ERR_PTR(ret);
return bo;
}
struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
const void *data, size_t size, u32 flags)
{
struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
if (IS_ERR(bo))
return bo;
xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
return bo;
}
/**
* xe_managed_bo_reinit_in_vram
* @xe: xe device
* @tile: Tile where the new buffer will be created
* @src: Managed buffer object allocated in system memory
*
* Replace a managed src buffer object allocated in system memory with a new
* one allocated in vram, copying the data between them.
* Buffer object in VRAM is not going to have the same GGTT address, the caller
* is responsible for making sure that any old references to it are updated.
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
{
struct xe_bo *bo;
u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE |
XE_BO_FLAG_PINNED_NORESTORE);
xe_assert(xe, IS_DGFX(xe));
xe_assert(xe, !(*src)->vmap.is_iomem);
bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
xe_bo_size(*src), dst_flags);
if (IS_ERR(bo))
return PTR_ERR(bo);
devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
*src = bo;
return 0;
}
/*
* XXX: This is in the VM bind data path, likely should calculate this once and
* store, with a recalculation if the BO is moved.
*/
uint64_t vram_region_gpu_offset(struct ttm_resource *res)
{
struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
switch (res->mem_type) {
case XE_PL_STOLEN:
return xe_ttm_stolen_gpu_offset(xe);
case XE_PL_TT:
case XE_PL_SYSTEM:
return 0;
default:
return res_to_mem_region(res)->dpa_base;
}
return 0;
}
/**
* xe_bo_pin_external - pin an external BO
* @bo: buffer object to be pinned
*
* Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
* BO. Unique call compared to xe_bo_pin as this function has it own set of
* asserts and code to ensure evict / restore on suspend / resume.
*
* Returns 0 for success, negative error code otherwise.
*/
int xe_bo_pin_external(struct xe_bo *bo)
{
struct xe_device *xe = xe_bo_device(bo);
int err;
xe_assert(xe, !bo->vm);
xe_assert(xe, xe_bo_is_user(bo));
if (!xe_bo_is_pinned(bo)) {
err = xe_bo_validate(bo, NULL, false);
if (err)
return err;
spin_lock(&xe->pinned.lock);
list_add_tail(&bo->pinned_link, &xe->pinned.late.external);
spin_unlock(&xe->pinned.lock);
}
ttm_bo_pin(&bo->ttm);
if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
/*
* FIXME: If we always use the reserve / unreserve functions for locking
* we do not need this.
*/
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
return 0;
}
int xe_bo_pin(struct xe_bo *bo)
{
struct ttm_place *place = &bo->placements[0];
struct xe_device *xe = xe_bo_device(bo);
int err;
/* We currently don't expect user BO to be pinned */
xe_assert(xe, !xe_bo_is_user(bo));
/* Pinned object must be in GGTT or have pinned flag */
xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
XE_BO_FLAG_GGTT));
/*
* No reason we can't support pinning imported dma-bufs we just don't
* expect to pin an imported dma-buf.
*/
xe_assert(xe, !bo->ttm.base.import_attach);
/* We only expect at most 1 pin */
xe_assert(xe, !xe_bo_is_pinned(bo));
err = xe_bo_validate(bo, NULL, false);
if (err)
return err;
if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
spin_lock(&xe->pinned.lock);
if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)
list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present);
else
list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present);
spin_unlock(&xe->pinned.lock);
}
ttm_bo_pin(&bo->ttm);
if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
xe_ttm_tt_account_subtract(xe, bo->ttm.ttm);
/*
* FIXME: If we always use the reserve / unreserve functions for locking
* we do not need this.
*/
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
return 0;
}
/**
* xe_bo_unpin_external - unpin an external BO
* @bo: buffer object to be unpinned
*
* Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
* BO. Unique call compared to xe_bo_unpin as this function has it own set of
* asserts and code to ensure evict / restore on suspend / resume.
*
* Returns 0 for success, negative error code otherwise.
*/
void xe_bo_unpin_external(struct xe_bo *bo)
{
struct xe_device *xe = xe_bo_device(bo);
xe_assert(xe, !bo->vm);
xe_assert(xe, xe_bo_is_pinned(bo));
xe_assert(xe, xe_bo_is_user(bo));
spin_lock(&xe->pinned.lock);
if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
list_del_init(&bo->pinned_link);
spin_unlock(&xe->pinned.lock);
ttm_bo_unpin(&bo->ttm);
if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
xe_ttm_tt_account_add(xe, bo->ttm.ttm);
/*
* FIXME: If we always use the reserve / unreserve functions for locking
* we do not need this.
*/
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
}
void xe_bo_unpin(struct xe_bo *bo)
{
struct ttm_place *place = &bo->placements[0];
struct xe_device *xe = xe_bo_device(bo);
xe_assert(xe, !bo->ttm.base.import_attach);
xe_assert(xe, xe_bo_is_pinned(bo));
if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
spin_lock(&xe->pinned.lock);
xe_assert(xe, !list_empty(&bo->pinned_link));
list_del_init(&bo->pinned_link);
spin_unlock(&xe->pinned.lock);
if (bo->backup_obj) {
if (xe_bo_is_pinned(bo->backup_obj))
ttm_bo_unpin(&bo->backup_obj->ttm);
xe_bo_put(bo->backup_obj);
bo->backup_obj = NULL;
}
}
ttm_bo_unpin(&bo->ttm);
if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
xe_ttm_tt_account_add(xe, bo->ttm.ttm);
}
/**
* xe_bo_validate() - Make sure the bo is in an allowed placement
* @bo: The bo,
* @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
* NULL. Used together with @allow_res_evict.
* @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
* reservation object.
*
* Make sure the bo is in allowed placement, migrating it if necessary. If
* needed, other bos will be evicted. If bos selected for eviction shares
* the @vm's reservation object, they can be evicted iff @allow_res_evict is
* set to true, otherwise they will be bypassed.
*
* Return: 0 on success, negative error code on failure. May return
* -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
*/
int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
{
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
.gfp_retry_mayfail = true,
};
int ret;
if (vm) {
lockdep_assert_held(&vm->lock);
xe_vm_assert_held(vm);
ctx.allow_res_evict = allow_res_evict;
ctx.resv = xe_vm_resv(vm);
}
xe_vm_set_validating(vm, allow_res_evict);
trace_xe_bo_validate(bo);
ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
xe_vm_clear_validating(vm, allow_res_evict);
return ret;
}
bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
{
if (bo->destroy == &xe_ttm_bo_destroy)
return true;
return false;
}
/*
* Resolve a BO address. There is no assert to check if the proper lock is held
* so it should only be used in cases where it is not fatal to get the wrong
* address, such as printing debug information, but not in cases where memory is
* written based on this result.
*/
dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
{
struct xe_device *xe = xe_bo_device(bo);
struct xe_res_cursor cur;
u64 page;
xe_assert(xe, page_size <= PAGE_SIZE);
page = offset >> PAGE_SHIFT;
offset &= (PAGE_SIZE - 1);
if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
xe_assert(xe, bo->ttm.ttm);
xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
page_size, &cur);
return xe_res_dma(&cur) + offset;
} else {
struct xe_res_cursor cur;
xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
page_size, &cur);
return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
}
}
dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
{
if (!READ_ONCE(bo->ttm.pin_count))
xe_bo_assert_held(bo);
return __xe_bo_addr(bo, offset, page_size);
}
int xe_bo_vmap(struct xe_bo *bo)
{
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
void *virtual;
bool is_iomem;
int ret;
xe_bo_assert_held(bo);
if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
!force_contiguous(bo->flags)))
return -EINVAL;
if (!iosys_map_is_null(&bo->vmap))
return 0;
/*
* We use this more or less deprecated interface for now since
* ttm_bo_vmap() doesn't offer the optimization of kmapping
* single page bos, which is done here.
* TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
* to use struct iosys_map.
*/
ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap);
if (ret)
return ret;
virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
if (is_iomem)
iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
else
iosys_map_set_vaddr(&bo->vmap, virtual);
return 0;
}
static void __xe_bo_vunmap(struct xe_bo *bo)
{
if (!iosys_map_is_null(&bo->vmap)) {
iosys_map_clear(&bo->vmap);
ttm_bo_kunmap(&bo->kmap);
}
}
void xe_bo_vunmap(struct xe_bo *bo)
{
xe_bo_assert_held(bo);
__xe_bo_vunmap(bo);
}
static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
{
if (value == DRM_XE_PXP_TYPE_NONE)
return 0;
/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
return -EINVAL;
return xe_pxp_key_assign(xe->pxp, bo);
}
typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
struct xe_bo *bo,
u64 value);
static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
[DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type,
};
static int gem_create_user_ext_set_property(struct xe_device *xe,
struct xe_bo *bo,
u64 extension)
{
u64 __user *address = u64_to_user_ptr(extension);
struct drm_xe_ext_set_property ext;
int err;
u32 idx;
err = copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.property >=
ARRAY_SIZE(gem_create_set_property_funcs)) ||
XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
return -EINVAL;
idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
if (!gem_create_set_property_funcs[idx])
return -EINVAL;
return gem_create_set_property_funcs[idx](xe, bo, ext.value);
}
typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
struct xe_bo *bo,
u64 extension);
static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
};
#define MAX_USER_EXTENSIONS 16
static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
u64 extensions, int ext_number)
{
u64 __user *address = u64_to_user_ptr(extensions);
struct drm_xe_user_extension ext;
int err;
u32 idx;
if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
return -E2BIG;
err = copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
return -EINVAL;
idx = array_index_nospec(ext.name,
ARRAY_SIZE(gem_create_user_extension_funcs));
err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
if (XE_IOCTL_DBG(xe, err))
return err;
if (ext.next_extension)
return gem_create_user_extensions(xe, bo, ext.next_extension,
++ext_number);
return 0;
}
int xe_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_gem_create *args = data;
struct xe_vm *vm = NULL;
ktime_t end = 0;
struct xe_bo *bo;
unsigned int bo_flags;
u32 handle;
int err;
if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
/* at least one valid memory placement must be specified */
if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
!args->placement))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->flags &
~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
DRM_XE_GEM_CREATE_FLAG_SCANOUT |
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->handle))
return -EINVAL;
if (XE_IOCTL_DBG(xe, !args->size))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
return -EINVAL;
bo_flags = 0;
if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
bo_flags |= XE_BO_FLAG_DEFER_BACKING;
if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
bo_flags |= XE_BO_FLAG_SCANOUT;
bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
/* CCS formats need physical placement at a 64K alignment in VRAM. */
if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
(bo_flags & XE_BO_FLAG_SCANOUT) &&
!(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
IS_ALIGNED(args->size, SZ_64K))
bo_flags |= XE_BO_FLAG_NEEDS_64K;
if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
return -EINVAL;
bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
}
if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
return -EINVAL;
if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
return -EINVAL;
if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
return -EINVAL;
if (args->vm_id) {
vm = xe_vm_lookup(xef, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm))
return -ENOENT;
}
retry:
if (vm) {
err = xe_vm_lock(vm, true);
if (err)
goto out_vm;
}
bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
bo_flags);
if (vm)
xe_vm_unlock(vm);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
if (xe_vm_validate_should_retry(NULL, err, &end))
goto retry;
goto out_vm;
}
if (args->extensions) {
err = gem_create_user_extensions(xe, bo, args->extensions, 0);
if (err)
goto out_bulk;
}
err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
if (err)
goto out_bulk;
args->handle = handle;
goto out_put;
out_bulk:
if (vm && !xe_vm_in_fault_mode(vm)) {
xe_vm_lock(vm, false);
__xe_bo_unset_bulk_move(bo);
xe_vm_unlock(vm);
}
out_put:
xe_bo_put(bo);
out_vm:
if (vm)
xe_vm_put(vm);
return err;
}
int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct drm_xe_gem_mmap_offset *args = data;
struct drm_gem_object *gem_obj;
if (XE_IOCTL_DBG(xe, args->extensions) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->flags &
~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
return -EINVAL;
if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->handle))
return -EINVAL;
if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
return -EINVAL;
BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
return 0;
}
gem_obj = drm_gem_object_lookup(file, args->handle);
if (XE_IOCTL_DBG(xe, !gem_obj))
return -ENOENT;
/* The mmap offset was set up at BO allocation time. */
args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
xe_bo_put(gem_to_xe_bo(gem_obj));
return 0;
}
/**
* xe_bo_lock() - Lock the buffer object's dma_resv object
* @bo: The struct xe_bo whose lock is to be taken
* @intr: Whether to perform any wait interruptible
*
* Locks the buffer object's dma_resv object. If the buffer object is
* pointing to a shared dma_resv object, that shared lock is locked.
*
* Return: 0 on success, -EINTR if @intr is true and the wait for a
* contended lock was interrupted. If @intr is set to false, the
* function always returns 0.
*/
int xe_bo_lock(struct xe_bo *bo, bool intr)
{
if (intr)
return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
dma_resv_lock(bo->ttm.base.resv, NULL);
return 0;
}
/**
* xe_bo_unlock() - Unlock the buffer object's dma_resv object
* @bo: The struct xe_bo whose lock is to be released.
*
* Unlock a buffer object lock that was locked by xe_bo_lock().
*/
void xe_bo_unlock(struct xe_bo *bo)
{
dma_resv_unlock(bo->ttm.base.resv);
}
/**
* xe_bo_can_migrate - Whether a buffer object likely can be migrated
* @bo: The buffer object to migrate
* @mem_type: The TTM memory type intended to migrate to
*
* Check whether the buffer object supports migration to the
* given memory type. Note that pinning may affect the ability to migrate as
* returned by this function.
*
* This function is primarily intended as a helper for checking the
* possibility to migrate buffer objects and can be called without
* the object lock held.
*
* Return: true if migration is possible, false otherwise.
*/
bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
{
unsigned int cur_place;
if (bo->ttm.type == ttm_bo_type_kernel)
return true;
if (bo->ttm.type == ttm_bo_type_sg)
return false;
for (cur_place = 0; cur_place < bo->placement.num_placement;
cur_place++) {
if (bo->placements[cur_place].mem_type == mem_type)
return true;
}
return false;
}
static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
{
memset(place, 0, sizeof(*place));
place->mem_type = mem_type;
}
/**
* xe_bo_migrate - Migrate an object to the desired region id
* @bo: The buffer object to migrate.
* @mem_type: The TTM region type to migrate to.
*
* Attempt to migrate the buffer object to the desired memory region. The
* buffer object may not be pinned, and must be locked.
* On successful completion, the object memory type will be updated,
* but an async migration task may not have completed yet, and to
* accomplish that, the object's kernel fences must be signaled with
* the object lock held.
*
* Return: 0 on success. Negative error code on failure. In particular may
* return -EINTR or -ERESTARTSYS if signal pending.
*/
int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
{
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
.gfp_retry_mayfail = true,
};
struct ttm_placement placement;
struct ttm_place requested;
xe_bo_assert_held(bo);
if (bo->ttm.resource->mem_type == mem_type)
return 0;
if (xe_bo_is_pinned(bo))
return -EBUSY;
if (!xe_bo_can_migrate(bo, mem_type))
return -EINVAL;
xe_place_from_ttm_type(mem_type, &requested);
placement.num_placement = 1;
placement.placement = &requested;
/*
* Stolen needs to be handled like below VRAM handling if we ever need
* to support it.
*/
drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
if (mem_type_is_vram(mem_type)) {
u32 c = 0;
add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
}
return ttm_bo_validate(&bo->ttm, &placement, &ctx);
}
/**
* xe_bo_evict - Evict an object to evict placement
* @bo: The buffer object to migrate.
*
* On successful completion, the object memory will be moved to evict
* placement. This function blocks until the object has been fully moved.
*
* Return: 0 on success. Negative error code on failure.
*/
int xe_bo_evict(struct xe_bo *bo)
{
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false,
.gfp_retry_mayfail = true,
};
struct ttm_placement placement;
int ret;
xe_evict_flags(&bo->ttm, &placement);
ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
if (ret)
return ret;
dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
false, MAX_SCHEDULE_TIMEOUT);
return 0;
}
/**
* xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
* placed in system memory.
* @bo: The xe_bo
*
* Return: true if extra pages need to be allocated, false otherwise.
*/
bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
{
struct xe_device *xe = xe_bo_device(bo);
if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
return false;
if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
return false;
/* On discrete GPUs, if the GPU can access this buffer from
* system memory (i.e., it allows XE_PL_TT placement), FlatCCS
* can't be used since there's no CCS storage associated with
* non-VRAM addresses.
*/
if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
return false;
/*
* Compression implies coh_none, therefore we know for sure that WB
* memory can't currently use compression, which is likely one of the
* common cases.
*/
if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)
return false;
return true;
}
/**
* __xe_bo_release_dummy() - Dummy kref release function
* @kref: The embedded struct kref.
*
* Dummy release function for xe_bo_put_deferred(). Keep off.
*/
void __xe_bo_release_dummy(struct kref *kref)
{
}
/**
* xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
* @deferred: The lockless list used for the call to xe_bo_put_deferred().
*
* Puts all bos whose put was deferred by xe_bo_put_deferred().
* The @deferred list can be either an onstack local list or a global
* shared list used by a workqueue.
*/
void xe_bo_put_commit(struct llist_head *deferred)
{
struct llist_node *freed;
struct xe_bo *bo, *next;
if (!deferred)
return;
freed = llist_del_all(deferred);
if (!freed)
return;
llist_for_each_entry_safe(bo, next, freed, freed)
drm_gem_object_free(&bo->ttm.base.refcount);
}
static void xe_bo_dev_work_func(struct work_struct *work)
{
struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
xe_bo_put_commit(&bo_dev->async_list);
}
/**
* xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
* @bo_dev: The BO dev structure
*/
void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
{
INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
}
/**
* xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
* @bo_dev: The BO dev structure
*/
void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
{
flush_work(&bo_dev->async_free);
}
void xe_bo_put(struct xe_bo *bo)
{
struct xe_tile *tile;
u8 id;
might_sleep();
if (bo) {
#ifdef CONFIG_PROC_FS
if (bo->client)
might_lock(&bo->client->bos_lock);
#endif
for_each_tile(tile, xe_bo_device(bo), id)
if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt);
drm_gem_object_put(&bo->ttm.base);
}
}
/**
* xe_bo_dumb_create - Create a dumb bo as backing for a fb
* @file_priv: ...
* @dev: ...
* @args: ...
*
* See dumb_create() hook in include/drm/drm_drv.h
*
* Return: ...
*/
int xe_bo_dumb_create(struct drm_file *file_priv,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_bo *bo;
uint32_t handle;
int cpp = DIV_ROUND_UP(args->bpp, 8);
int err;
u32 page_size = max_t(u32, PAGE_SIZE,
xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
args->pitch = ALIGN(args->width * cpp, 64);
args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
page_size);
bo = xe_bo_create_user(xe, NULL, NULL, args->size,
DRM_XE_GEM_CPU_CACHING_WC,
XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
XE_BO_FLAG_SCANOUT |
XE_BO_FLAG_NEEDS_CPU_ACCESS);
if (IS_ERR(bo))
return PTR_ERR(bo);
err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
/* drop reference from allocate - handle holds it now */
drm_gem_object_put(&bo->ttm.base);
if (!err)
args->handle = handle;
return err;
}
void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
{
struct ttm_buffer_object *tbo = &bo->ttm;
struct ttm_device *bdev = tbo->bdev;
drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
list_del_init(&bo->vram_userfault_link);
}
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_bo.c"
#endif