mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-26 04:47:45 +00:00

Two 'static inline' TDX helper functions (sc_retry() and sc_retry_prerr()) take function pointer arguments which refer to assembly functions. Normally, the compiler inlines the TDX helper, realizes that the function pointer targets are completely static -- thus can be resolved at compile time -- and generates direct call instructions. But, other times (like when CONFIG_CC_OPTIMIZE_FOR_SIZE=y), the compiler declines to inline the helpers and will instead generate indirect call instructions. Indirect calls to assembly functions require special annotation (for various Control Flow Integrity mechanisms). But TDX assembly functions lack the special annotations and can only be called directly. Annotate both the helpers as '__always_inline' to prod the compiler into maintaining the direct calls. There is no guarantee here, but Peter has volunteered to report the compiler bug if this assumption ever breaks[1]. Fixes:1e66a7e275
("x86/virt/tdx: Handle SEAMCALL no entropy error in common code") Fixes:df01f5ae07
("x86/virt/tdx: Add SEAMCALL error printing for module initialization") Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/lkml/20250605145914.GW39944@noisy.programming.kicks-ass.net/ [1] Link: https://lore.kernel.org/all/20250606130737.30713-1-kai.huang%40intel.com
1873 lines
45 KiB
C
1873 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright(c) 2023 Intel Corporation.
|
|
*
|
|
* Intel Trusted Domain Extensions (TDX) support
|
|
*/
|
|
|
|
#include "asm/page_types.h"
|
|
#define pr_fmt(fmt) "virt/tdx: " fmt
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/align.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/idr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/special_insns.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/tdx.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mce.h>
|
|
#include "tdx.h"
|
|
|
|
static u32 tdx_global_keyid __ro_after_init;
|
|
static u32 tdx_guest_keyid_start __ro_after_init;
|
|
static u32 tdx_nr_guest_keyids __ro_after_init;
|
|
|
|
static DEFINE_IDA(tdx_guest_keyid_pool);
|
|
|
|
static DEFINE_PER_CPU(bool, tdx_lp_initialized);
|
|
|
|
static struct tdmr_info_list tdx_tdmr_list;
|
|
|
|
static enum tdx_module_status_t tdx_module_status;
|
|
static DEFINE_MUTEX(tdx_module_lock);
|
|
|
|
/* All TDX-usable memory regions. Protected by mem_hotplug_lock. */
|
|
static LIST_HEAD(tdx_memlist);
|
|
|
|
static struct tdx_sys_info tdx_sysinfo;
|
|
|
|
typedef void (*sc_err_func_t)(u64 fn, u64 err, struct tdx_module_args *args);
|
|
|
|
static inline void seamcall_err(u64 fn, u64 err, struct tdx_module_args *args)
|
|
{
|
|
pr_err("SEAMCALL (0x%016llx) failed: 0x%016llx\n", fn, err);
|
|
}
|
|
|
|
static inline void seamcall_err_ret(u64 fn, u64 err,
|
|
struct tdx_module_args *args)
|
|
{
|
|
seamcall_err(fn, err, args);
|
|
pr_err("RCX 0x%016llx RDX 0x%016llx R08 0x%016llx\n",
|
|
args->rcx, args->rdx, args->r8);
|
|
pr_err("R09 0x%016llx R10 0x%016llx R11 0x%016llx\n",
|
|
args->r9, args->r10, args->r11);
|
|
}
|
|
|
|
static __always_inline int sc_retry_prerr(sc_func_t func,
|
|
sc_err_func_t err_func,
|
|
u64 fn, struct tdx_module_args *args)
|
|
{
|
|
u64 sret = sc_retry(func, fn, args);
|
|
|
|
if (sret == TDX_SUCCESS)
|
|
return 0;
|
|
|
|
if (sret == TDX_SEAMCALL_VMFAILINVALID)
|
|
return -ENODEV;
|
|
|
|
if (sret == TDX_SEAMCALL_GP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (sret == TDX_SEAMCALL_UD)
|
|
return -EACCES;
|
|
|
|
err_func(fn, sret, args);
|
|
return -EIO;
|
|
}
|
|
|
|
#define seamcall_prerr(__fn, __args) \
|
|
sc_retry_prerr(__seamcall, seamcall_err, (__fn), (__args))
|
|
|
|
#define seamcall_prerr_ret(__fn, __args) \
|
|
sc_retry_prerr(__seamcall_ret, seamcall_err_ret, (__fn), (__args))
|
|
|
|
/*
|
|
* Do the module global initialization once and return its result.
|
|
* It can be done on any cpu. It's always called with interrupts
|
|
* disabled.
|
|
*/
|
|
static int try_init_module_global(void)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
static DEFINE_RAW_SPINLOCK(sysinit_lock);
|
|
static bool sysinit_done;
|
|
static int sysinit_ret;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
raw_spin_lock(&sysinit_lock);
|
|
|
|
if (sysinit_done)
|
|
goto out;
|
|
|
|
/* RCX is module attributes and all bits are reserved */
|
|
args.rcx = 0;
|
|
sysinit_ret = seamcall_prerr(TDH_SYS_INIT, &args);
|
|
|
|
/*
|
|
* The first SEAMCALL also detects the TDX module, thus
|
|
* it can fail due to the TDX module is not loaded.
|
|
* Dump message to let the user know.
|
|
*/
|
|
if (sysinit_ret == -ENODEV)
|
|
pr_err("module not loaded\n");
|
|
|
|
sysinit_done = true;
|
|
out:
|
|
raw_spin_unlock(&sysinit_lock);
|
|
return sysinit_ret;
|
|
}
|
|
|
|
/**
|
|
* tdx_cpu_enable - Enable TDX on local cpu
|
|
*
|
|
* Do one-time TDX module per-cpu initialization SEAMCALL (and TDX module
|
|
* global initialization SEAMCALL if not done) on local cpu to make this
|
|
* cpu be ready to run any other SEAMCALLs.
|
|
*
|
|
* Always call this function via IPI function calls.
|
|
*
|
|
* Return 0 on success, otherwise errors.
|
|
*/
|
|
int tdx_cpu_enable(void)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
int ret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
|
|
return -ENODEV;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
if (__this_cpu_read(tdx_lp_initialized))
|
|
return 0;
|
|
|
|
/*
|
|
* The TDX module global initialization is the very first step
|
|
* to enable TDX. Need to do it first (if hasn't been done)
|
|
* before the per-cpu initialization.
|
|
*/
|
|
ret = try_init_module_global();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = seamcall_prerr(TDH_SYS_LP_INIT, &args);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__this_cpu_write(tdx_lp_initialized, true);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_cpu_enable);
|
|
|
|
/*
|
|
* Add a memory region as a TDX memory block. The caller must make sure
|
|
* all memory regions are added in address ascending order and don't
|
|
* overlap.
|
|
*/
|
|
static int add_tdx_memblock(struct list_head *tmb_list, unsigned long start_pfn,
|
|
unsigned long end_pfn, int nid)
|
|
{
|
|
struct tdx_memblock *tmb;
|
|
|
|
tmb = kmalloc(sizeof(*tmb), GFP_KERNEL);
|
|
if (!tmb)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&tmb->list);
|
|
tmb->start_pfn = start_pfn;
|
|
tmb->end_pfn = end_pfn;
|
|
tmb->nid = nid;
|
|
|
|
/* @tmb_list is protected by mem_hotplug_lock */
|
|
list_add_tail(&tmb->list, tmb_list);
|
|
return 0;
|
|
}
|
|
|
|
static void free_tdx_memlist(struct list_head *tmb_list)
|
|
{
|
|
/* @tmb_list is protected by mem_hotplug_lock */
|
|
while (!list_empty(tmb_list)) {
|
|
struct tdx_memblock *tmb = list_first_entry(tmb_list,
|
|
struct tdx_memblock, list);
|
|
|
|
list_del(&tmb->list);
|
|
kfree(tmb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure that all memblock memory regions are convertible to TDX
|
|
* memory. Once this has been established, stash the memblock
|
|
* ranges off in a secondary structure because memblock is modified
|
|
* in memory hotplug while TDX memory regions are fixed.
|
|
*/
|
|
static int build_tdx_memlist(struct list_head *tmb_list)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, nid, ret;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
/*
|
|
* The first 1MB is not reported as TDX convertible memory.
|
|
* Although the first 1MB is always reserved and won't end up
|
|
* to the page allocator, it is still in memblock's memory
|
|
* regions. Skip them manually to exclude them as TDX memory.
|
|
*/
|
|
start_pfn = max(start_pfn, PHYS_PFN(SZ_1M));
|
|
if (start_pfn >= end_pfn)
|
|
continue;
|
|
|
|
/*
|
|
* Add the memory regions as TDX memory. The regions in
|
|
* memblock has already guaranteed they are in address
|
|
* ascending order and don't overlap.
|
|
*/
|
|
ret = add_tdx_memblock(tmb_list, start_pfn, end_pfn, nid);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
free_tdx_memlist(tmb_list);
|
|
return ret;
|
|
}
|
|
|
|
static int read_sys_metadata_field(u64 field_id, u64 *data)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
int ret;
|
|
|
|
/*
|
|
* TDH.SYS.RD -- reads one global metadata field
|
|
* - RDX (in): the field to read
|
|
* - R8 (out): the field data
|
|
*/
|
|
args.rdx = field_id;
|
|
ret = seamcall_prerr_ret(TDH_SYS_RD, &args);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*data = args.r8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#include "tdx_global_metadata.c"
|
|
|
|
static int check_features(struct tdx_sys_info *sysinfo)
|
|
{
|
|
u64 tdx_features0 = sysinfo->features.tdx_features0;
|
|
|
|
if (!(tdx_features0 & TDX_FEATURES0_NO_RBP_MOD)) {
|
|
pr_err("frame pointer (RBP) clobber bug present, upgrade TDX module\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate the actual TDMR size */
|
|
static int tdmr_size_single(u16 max_reserved_per_tdmr)
|
|
{
|
|
int tdmr_sz;
|
|
|
|
/*
|
|
* The actual size of TDMR depends on the maximum
|
|
* number of reserved areas.
|
|
*/
|
|
tdmr_sz = sizeof(struct tdmr_info);
|
|
tdmr_sz += sizeof(struct tdmr_reserved_area) * max_reserved_per_tdmr;
|
|
|
|
return ALIGN(tdmr_sz, TDMR_INFO_ALIGNMENT);
|
|
}
|
|
|
|
static int alloc_tdmr_list(struct tdmr_info_list *tdmr_list,
|
|
struct tdx_sys_info_tdmr *sysinfo_tdmr)
|
|
{
|
|
size_t tdmr_sz, tdmr_array_sz;
|
|
void *tdmr_array;
|
|
|
|
tdmr_sz = tdmr_size_single(sysinfo_tdmr->max_reserved_per_tdmr);
|
|
tdmr_array_sz = tdmr_sz * sysinfo_tdmr->max_tdmrs;
|
|
|
|
/*
|
|
* To keep things simple, allocate all TDMRs together.
|
|
* The buffer needs to be physically contiguous to make
|
|
* sure each TDMR is physically contiguous.
|
|
*/
|
|
tdmr_array = alloc_pages_exact(tdmr_array_sz,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!tdmr_array)
|
|
return -ENOMEM;
|
|
|
|
tdmr_list->tdmrs = tdmr_array;
|
|
|
|
/*
|
|
* Keep the size of TDMR to find the target TDMR
|
|
* at a given index in the TDMR list.
|
|
*/
|
|
tdmr_list->tdmr_sz = tdmr_sz;
|
|
tdmr_list->max_tdmrs = sysinfo_tdmr->max_tdmrs;
|
|
tdmr_list->nr_consumed_tdmrs = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_tdmr_list(struct tdmr_info_list *tdmr_list)
|
|
{
|
|
free_pages_exact(tdmr_list->tdmrs,
|
|
tdmr_list->max_tdmrs * tdmr_list->tdmr_sz);
|
|
}
|
|
|
|
/* Get the TDMR from the list at the given index. */
|
|
static struct tdmr_info *tdmr_entry(struct tdmr_info_list *tdmr_list,
|
|
int idx)
|
|
{
|
|
int tdmr_info_offset = tdmr_list->tdmr_sz * idx;
|
|
|
|
return (void *)tdmr_list->tdmrs + tdmr_info_offset;
|
|
}
|
|
|
|
#define TDMR_ALIGNMENT SZ_1G
|
|
#define TDMR_ALIGN_DOWN(_addr) ALIGN_DOWN((_addr), TDMR_ALIGNMENT)
|
|
#define TDMR_ALIGN_UP(_addr) ALIGN((_addr), TDMR_ALIGNMENT)
|
|
|
|
static inline u64 tdmr_end(struct tdmr_info *tdmr)
|
|
{
|
|
return tdmr->base + tdmr->size;
|
|
}
|
|
|
|
/*
|
|
* Take the memory referenced in @tmb_list and populate the
|
|
* preallocated @tdmr_list, following all the special alignment
|
|
* and size rules for TDMR.
|
|
*/
|
|
static int fill_out_tdmrs(struct list_head *tmb_list,
|
|
struct tdmr_info_list *tdmr_list)
|
|
{
|
|
struct tdx_memblock *tmb;
|
|
int tdmr_idx = 0;
|
|
|
|
/*
|
|
* Loop over TDX memory regions and fill out TDMRs to cover them.
|
|
* To keep it simple, always try to use one TDMR to cover one
|
|
* memory region.
|
|
*
|
|
* In practice TDX supports at least 64 TDMRs. A 2-socket system
|
|
* typically only consumes less than 10 of those. This code is
|
|
* dumb and simple and may use more TMDRs than is strictly
|
|
* required.
|
|
*/
|
|
list_for_each_entry(tmb, tmb_list, list) {
|
|
struct tdmr_info *tdmr = tdmr_entry(tdmr_list, tdmr_idx);
|
|
u64 start, end;
|
|
|
|
start = TDMR_ALIGN_DOWN(PFN_PHYS(tmb->start_pfn));
|
|
end = TDMR_ALIGN_UP(PFN_PHYS(tmb->end_pfn));
|
|
|
|
/*
|
|
* A valid size indicates the current TDMR has already
|
|
* been filled out to cover the previous memory region(s).
|
|
*/
|
|
if (tdmr->size) {
|
|
/*
|
|
* Loop to the next if the current memory region
|
|
* has already been fully covered.
|
|
*/
|
|
if (end <= tdmr_end(tdmr))
|
|
continue;
|
|
|
|
/* Otherwise, skip the already covered part. */
|
|
if (start < tdmr_end(tdmr))
|
|
start = tdmr_end(tdmr);
|
|
|
|
/*
|
|
* Create a new TDMR to cover the current memory
|
|
* region, or the remaining part of it.
|
|
*/
|
|
tdmr_idx++;
|
|
if (tdmr_idx >= tdmr_list->max_tdmrs) {
|
|
pr_warn("initialization failed: TDMRs exhausted.\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
tdmr = tdmr_entry(tdmr_list, tdmr_idx);
|
|
}
|
|
|
|
tdmr->base = start;
|
|
tdmr->size = end - start;
|
|
}
|
|
|
|
/* @tdmr_idx is always the index of the last valid TDMR. */
|
|
tdmr_list->nr_consumed_tdmrs = tdmr_idx + 1;
|
|
|
|
/*
|
|
* Warn early that kernel is about to run out of TDMRs.
|
|
*
|
|
* This is an indication that TDMR allocation has to be
|
|
* reworked to be smarter to not run into an issue.
|
|
*/
|
|
if (tdmr_list->max_tdmrs - tdmr_list->nr_consumed_tdmrs < TDMR_NR_WARN)
|
|
pr_warn("consumed TDMRs reaching limit: %d used out of %d\n",
|
|
tdmr_list->nr_consumed_tdmrs,
|
|
tdmr_list->max_tdmrs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calculate PAMT size given a TDMR and a page size. The returned
|
|
* PAMT size is always aligned up to 4K page boundary.
|
|
*/
|
|
static unsigned long tdmr_get_pamt_sz(struct tdmr_info *tdmr, int pgsz,
|
|
u16 pamt_entry_size)
|
|
{
|
|
unsigned long pamt_sz, nr_pamt_entries;
|
|
|
|
switch (pgsz) {
|
|
case TDX_PS_4K:
|
|
nr_pamt_entries = tdmr->size >> PAGE_SHIFT;
|
|
break;
|
|
case TDX_PS_2M:
|
|
nr_pamt_entries = tdmr->size >> PMD_SHIFT;
|
|
break;
|
|
case TDX_PS_1G:
|
|
nr_pamt_entries = tdmr->size >> PUD_SHIFT;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
|
|
pamt_sz = nr_pamt_entries * pamt_entry_size;
|
|
/* TDX requires PAMT size must be 4K aligned */
|
|
pamt_sz = ALIGN(pamt_sz, PAGE_SIZE);
|
|
|
|
return pamt_sz;
|
|
}
|
|
|
|
/*
|
|
* Locate a NUMA node which should hold the allocation of the @tdmr
|
|
* PAMT. This node will have some memory covered by the TDMR. The
|
|
* relative amount of memory covered is not considered.
|
|
*/
|
|
static int tdmr_get_nid(struct tdmr_info *tdmr, struct list_head *tmb_list)
|
|
{
|
|
struct tdx_memblock *tmb;
|
|
|
|
/*
|
|
* A TDMR must cover at least part of one TMB. That TMB will end
|
|
* after the TDMR begins. But, that TMB may have started before
|
|
* the TDMR. Find the next 'tmb' that _ends_ after this TDMR
|
|
* begins. Ignore 'tmb' start addresses. They are irrelevant.
|
|
*/
|
|
list_for_each_entry(tmb, tmb_list, list) {
|
|
if (tmb->end_pfn > PHYS_PFN(tdmr->base))
|
|
return tmb->nid;
|
|
}
|
|
|
|
/*
|
|
* Fall back to allocating the TDMR's metadata from node 0 when
|
|
* no TDX memory block can be found. This should never happen
|
|
* since TDMRs originate from TDX memory blocks.
|
|
*/
|
|
pr_warn("TDMR [0x%llx, 0x%llx): unable to find local NUMA node for PAMT allocation, fallback to use node 0.\n",
|
|
tdmr->base, tdmr_end(tdmr));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate PAMTs from the local NUMA node of some memory in @tmb_list
|
|
* within @tdmr, and set up PAMTs for @tdmr.
|
|
*/
|
|
static int tdmr_set_up_pamt(struct tdmr_info *tdmr,
|
|
struct list_head *tmb_list,
|
|
u16 pamt_entry_size[])
|
|
{
|
|
unsigned long pamt_base[TDX_PS_NR];
|
|
unsigned long pamt_size[TDX_PS_NR];
|
|
unsigned long tdmr_pamt_base;
|
|
unsigned long tdmr_pamt_size;
|
|
struct page *pamt;
|
|
int pgsz, nid;
|
|
|
|
nid = tdmr_get_nid(tdmr, tmb_list);
|
|
|
|
/*
|
|
* Calculate the PAMT size for each TDX supported page size
|
|
* and the total PAMT size.
|
|
*/
|
|
tdmr_pamt_size = 0;
|
|
for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
|
|
pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz,
|
|
pamt_entry_size[pgsz]);
|
|
tdmr_pamt_size += pamt_size[pgsz];
|
|
}
|
|
|
|
/*
|
|
* Allocate one chunk of physically contiguous memory for all
|
|
* PAMTs. This helps minimize the PAMT's use of reserved areas
|
|
* in overlapped TDMRs.
|
|
*/
|
|
pamt = alloc_contig_pages(tdmr_pamt_size >> PAGE_SHIFT, GFP_KERNEL,
|
|
nid, &node_online_map);
|
|
if (!pamt)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Break the contiguous allocation back up into the
|
|
* individual PAMTs for each page size.
|
|
*/
|
|
tdmr_pamt_base = page_to_pfn(pamt) << PAGE_SHIFT;
|
|
for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
|
|
pamt_base[pgsz] = tdmr_pamt_base;
|
|
tdmr_pamt_base += pamt_size[pgsz];
|
|
}
|
|
|
|
tdmr->pamt_4k_base = pamt_base[TDX_PS_4K];
|
|
tdmr->pamt_4k_size = pamt_size[TDX_PS_4K];
|
|
tdmr->pamt_2m_base = pamt_base[TDX_PS_2M];
|
|
tdmr->pamt_2m_size = pamt_size[TDX_PS_2M];
|
|
tdmr->pamt_1g_base = pamt_base[TDX_PS_1G];
|
|
tdmr->pamt_1g_size = pamt_size[TDX_PS_1G];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tdmr_get_pamt(struct tdmr_info *tdmr, unsigned long *pamt_base,
|
|
unsigned long *pamt_size)
|
|
{
|
|
unsigned long pamt_bs, pamt_sz;
|
|
|
|
/*
|
|
* The PAMT was allocated in one contiguous unit. The 4K PAMT
|
|
* should always point to the beginning of that allocation.
|
|
*/
|
|
pamt_bs = tdmr->pamt_4k_base;
|
|
pamt_sz = tdmr->pamt_4k_size + tdmr->pamt_2m_size + tdmr->pamt_1g_size;
|
|
|
|
WARN_ON_ONCE((pamt_bs & ~PAGE_MASK) || (pamt_sz & ~PAGE_MASK));
|
|
|
|
*pamt_base = pamt_bs;
|
|
*pamt_size = pamt_sz;
|
|
}
|
|
|
|
static void tdmr_do_pamt_func(struct tdmr_info *tdmr,
|
|
void (*pamt_func)(unsigned long base, unsigned long size))
|
|
{
|
|
unsigned long pamt_base, pamt_size;
|
|
|
|
tdmr_get_pamt(tdmr, &pamt_base, &pamt_size);
|
|
|
|
/* Do nothing if PAMT hasn't been allocated for this TDMR */
|
|
if (!pamt_size)
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(!pamt_base))
|
|
return;
|
|
|
|
pamt_func(pamt_base, pamt_size);
|
|
}
|
|
|
|
static void free_pamt(unsigned long pamt_base, unsigned long pamt_size)
|
|
{
|
|
free_contig_range(pamt_base >> PAGE_SHIFT, pamt_size >> PAGE_SHIFT);
|
|
}
|
|
|
|
static void tdmr_free_pamt(struct tdmr_info *tdmr)
|
|
{
|
|
tdmr_do_pamt_func(tdmr, free_pamt);
|
|
}
|
|
|
|
static void tdmrs_free_pamt_all(struct tdmr_info_list *tdmr_list)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
|
|
tdmr_free_pamt(tdmr_entry(tdmr_list, i));
|
|
}
|
|
|
|
/* Allocate and set up PAMTs for all TDMRs */
|
|
static int tdmrs_set_up_pamt_all(struct tdmr_info_list *tdmr_list,
|
|
struct list_head *tmb_list,
|
|
u16 pamt_entry_size[])
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
ret = tdmr_set_up_pamt(tdmr_entry(tdmr_list, i), tmb_list,
|
|
pamt_entry_size);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
tdmrs_free_pamt_all(tdmr_list);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Convert TDX private pages back to normal by using MOVDIR64B to
|
|
* clear these pages. Note this function doesn't flush cache of
|
|
* these TDX private pages. The caller should make sure of that.
|
|
*/
|
|
static void reset_tdx_pages(unsigned long base, unsigned long size)
|
|
{
|
|
const void *zero_page = (const void *)page_address(ZERO_PAGE(0));
|
|
unsigned long phys, end;
|
|
|
|
end = base + size;
|
|
for (phys = base; phys < end; phys += 64)
|
|
movdir64b(__va(phys), zero_page);
|
|
|
|
/*
|
|
* MOVDIR64B uses WC protocol. Use memory barrier to
|
|
* make sure any later user of these pages sees the
|
|
* updated data.
|
|
*/
|
|
mb();
|
|
}
|
|
|
|
static void tdmr_reset_pamt(struct tdmr_info *tdmr)
|
|
{
|
|
tdmr_do_pamt_func(tdmr, reset_tdx_pages);
|
|
}
|
|
|
|
static void tdmrs_reset_pamt_all(struct tdmr_info_list *tdmr_list)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
|
|
tdmr_reset_pamt(tdmr_entry(tdmr_list, i));
|
|
}
|
|
|
|
static unsigned long tdmrs_count_pamt_kb(struct tdmr_info_list *tdmr_list)
|
|
{
|
|
unsigned long pamt_size = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
unsigned long base, size;
|
|
|
|
tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
|
|
pamt_size += size;
|
|
}
|
|
|
|
return pamt_size / 1024;
|
|
}
|
|
|
|
static int tdmr_add_rsvd_area(struct tdmr_info *tdmr, int *p_idx, u64 addr,
|
|
u64 size, u16 max_reserved_per_tdmr)
|
|
{
|
|
struct tdmr_reserved_area *rsvd_areas = tdmr->reserved_areas;
|
|
int idx = *p_idx;
|
|
|
|
/* Reserved area must be 4K aligned in offset and size */
|
|
if (WARN_ON(addr & ~PAGE_MASK || size & ~PAGE_MASK))
|
|
return -EINVAL;
|
|
|
|
if (idx >= max_reserved_per_tdmr) {
|
|
pr_warn("initialization failed: TDMR [0x%llx, 0x%llx): reserved areas exhausted.\n",
|
|
tdmr->base, tdmr_end(tdmr));
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* Consume one reserved area per call. Make no effort to
|
|
* optimize or reduce the number of reserved areas which are
|
|
* consumed by contiguous reserved areas, for instance.
|
|
*/
|
|
rsvd_areas[idx].offset = addr - tdmr->base;
|
|
rsvd_areas[idx].size = size;
|
|
|
|
*p_idx = idx + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Go through @tmb_list to find holes between memory areas. If any of
|
|
* those holes fall within @tdmr, set up a TDMR reserved area to cover
|
|
* the hole.
|
|
*/
|
|
static int tdmr_populate_rsvd_holes(struct list_head *tmb_list,
|
|
struct tdmr_info *tdmr,
|
|
int *rsvd_idx,
|
|
u16 max_reserved_per_tdmr)
|
|
{
|
|
struct tdx_memblock *tmb;
|
|
u64 prev_end;
|
|
int ret;
|
|
|
|
/*
|
|
* Start looking for reserved blocks at the
|
|
* beginning of the TDMR.
|
|
*/
|
|
prev_end = tdmr->base;
|
|
list_for_each_entry(tmb, tmb_list, list) {
|
|
u64 start, end;
|
|
|
|
start = PFN_PHYS(tmb->start_pfn);
|
|
end = PFN_PHYS(tmb->end_pfn);
|
|
|
|
/* Break if this region is after the TDMR */
|
|
if (start >= tdmr_end(tdmr))
|
|
break;
|
|
|
|
/* Exclude regions before this TDMR */
|
|
if (end < tdmr->base)
|
|
continue;
|
|
|
|
/*
|
|
* Skip over memory areas that
|
|
* have already been dealt with.
|
|
*/
|
|
if (start <= prev_end) {
|
|
prev_end = end;
|
|
continue;
|
|
}
|
|
|
|
/* Add the hole before this region */
|
|
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
|
|
start - prev_end,
|
|
max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
prev_end = end;
|
|
}
|
|
|
|
/* Add the hole after the last region if it exists. */
|
|
if (prev_end < tdmr_end(tdmr)) {
|
|
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
|
|
tdmr_end(tdmr) - prev_end,
|
|
max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Go through @tdmr_list to find all PAMTs. If any of those PAMTs
|
|
* overlaps with @tdmr, set up a TDMR reserved area to cover the
|
|
* overlapping part.
|
|
*/
|
|
static int tdmr_populate_rsvd_pamts(struct tdmr_info_list *tdmr_list,
|
|
struct tdmr_info *tdmr,
|
|
int *rsvd_idx,
|
|
u16 max_reserved_per_tdmr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
struct tdmr_info *tmp = tdmr_entry(tdmr_list, i);
|
|
unsigned long pamt_base, pamt_size, pamt_end;
|
|
|
|
tdmr_get_pamt(tmp, &pamt_base, &pamt_size);
|
|
/* Each TDMR must already have PAMT allocated */
|
|
WARN_ON_ONCE(!pamt_size || !pamt_base);
|
|
|
|
pamt_end = pamt_base + pamt_size;
|
|
/* Skip PAMTs outside of the given TDMR */
|
|
if ((pamt_end <= tdmr->base) ||
|
|
(pamt_base >= tdmr_end(tdmr)))
|
|
continue;
|
|
|
|
/* Only mark the part within the TDMR as reserved */
|
|
if (pamt_base < tdmr->base)
|
|
pamt_base = tdmr->base;
|
|
if (pamt_end > tdmr_end(tdmr))
|
|
pamt_end = tdmr_end(tdmr);
|
|
|
|
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, pamt_base,
|
|
pamt_end - pamt_base,
|
|
max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare function called by sort() for TDMR reserved areas */
|
|
static int rsvd_area_cmp_func(const void *a, const void *b)
|
|
{
|
|
struct tdmr_reserved_area *r1 = (struct tdmr_reserved_area *)a;
|
|
struct tdmr_reserved_area *r2 = (struct tdmr_reserved_area *)b;
|
|
|
|
if (r1->offset + r1->size <= r2->offset)
|
|
return -1;
|
|
if (r1->offset >= r2->offset + r2->size)
|
|
return 1;
|
|
|
|
/* Reserved areas cannot overlap. The caller must guarantee. */
|
|
WARN_ON_ONCE(1);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Populate reserved areas for the given @tdmr, including memory holes
|
|
* (via @tmb_list) and PAMTs (via @tdmr_list).
|
|
*/
|
|
static int tdmr_populate_rsvd_areas(struct tdmr_info *tdmr,
|
|
struct list_head *tmb_list,
|
|
struct tdmr_info_list *tdmr_list,
|
|
u16 max_reserved_per_tdmr)
|
|
{
|
|
int ret, rsvd_idx = 0;
|
|
|
|
ret = tdmr_populate_rsvd_holes(tmb_list, tdmr, &rsvd_idx,
|
|
max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tdmr_populate_rsvd_pamts(tdmr_list, tdmr, &rsvd_idx,
|
|
max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* TDX requires reserved areas listed in address ascending order */
|
|
sort(tdmr->reserved_areas, rsvd_idx, sizeof(struct tdmr_reserved_area),
|
|
rsvd_area_cmp_func, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Populate reserved areas for all TDMRs in @tdmr_list, including memory
|
|
* holes (via @tmb_list) and PAMTs.
|
|
*/
|
|
static int tdmrs_populate_rsvd_areas_all(struct tdmr_info_list *tdmr_list,
|
|
struct list_head *tmb_list,
|
|
u16 max_reserved_per_tdmr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
int ret;
|
|
|
|
ret = tdmr_populate_rsvd_areas(tdmr_entry(tdmr_list, i),
|
|
tmb_list, tdmr_list, max_reserved_per_tdmr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Construct a list of TDMRs on the preallocated space in @tdmr_list
|
|
* to cover all TDX memory regions in @tmb_list based on the TDX module
|
|
* TDMR global information in @sysinfo_tdmr.
|
|
*/
|
|
static int construct_tdmrs(struct list_head *tmb_list,
|
|
struct tdmr_info_list *tdmr_list,
|
|
struct tdx_sys_info_tdmr *sysinfo_tdmr)
|
|
{
|
|
u16 pamt_entry_size[TDX_PS_NR] = {
|
|
sysinfo_tdmr->pamt_4k_entry_size,
|
|
sysinfo_tdmr->pamt_2m_entry_size,
|
|
sysinfo_tdmr->pamt_1g_entry_size,
|
|
};
|
|
int ret;
|
|
|
|
ret = fill_out_tdmrs(tmb_list, tdmr_list);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tdmrs_set_up_pamt_all(tdmr_list, tmb_list, pamt_entry_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tdmrs_populate_rsvd_areas_all(tdmr_list, tmb_list,
|
|
sysinfo_tdmr->max_reserved_per_tdmr);
|
|
if (ret)
|
|
tdmrs_free_pamt_all(tdmr_list);
|
|
|
|
/*
|
|
* The tdmr_info_list is read-only from here on out.
|
|
* Ensure that these writes are seen by other CPUs.
|
|
* Pairs with a smp_rmb() in is_pamt_page().
|
|
*/
|
|
smp_wmb();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int config_tdx_module(struct tdmr_info_list *tdmr_list, u64 global_keyid)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
u64 *tdmr_pa_array;
|
|
size_t array_sz;
|
|
int i, ret;
|
|
|
|
/*
|
|
* TDMRs are passed to the TDX module via an array of physical
|
|
* addresses of each TDMR. The array itself also has certain
|
|
* alignment requirement.
|
|
*/
|
|
array_sz = tdmr_list->nr_consumed_tdmrs * sizeof(u64);
|
|
array_sz = roundup_pow_of_two(array_sz);
|
|
if (array_sz < TDMR_INFO_PA_ARRAY_ALIGNMENT)
|
|
array_sz = TDMR_INFO_PA_ARRAY_ALIGNMENT;
|
|
|
|
tdmr_pa_array = kzalloc(array_sz, GFP_KERNEL);
|
|
if (!tdmr_pa_array)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
|
|
tdmr_pa_array[i] = __pa(tdmr_entry(tdmr_list, i));
|
|
|
|
args.rcx = __pa(tdmr_pa_array);
|
|
args.rdx = tdmr_list->nr_consumed_tdmrs;
|
|
args.r8 = global_keyid;
|
|
ret = seamcall_prerr(TDH_SYS_CONFIG, &args);
|
|
|
|
/* Free the array as it is not required anymore. */
|
|
kfree(tdmr_pa_array);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int do_global_key_config(void *unused)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
|
|
return seamcall_prerr(TDH_SYS_KEY_CONFIG, &args);
|
|
}
|
|
|
|
/*
|
|
* Attempt to configure the global KeyID on all physical packages.
|
|
*
|
|
* This requires running code on at least one CPU in each package.
|
|
* TDMR initialization) will fail will fail if any package in the
|
|
* system has no online CPUs.
|
|
*
|
|
* This code takes no affirmative steps to online CPUs. Callers (aka.
|
|
* KVM) can ensure success by ensuring sufficient CPUs are online and
|
|
* can run SEAMCALLs.
|
|
*/
|
|
static int config_global_keyid(void)
|
|
{
|
|
cpumask_var_t packages;
|
|
int cpu, ret = -EINVAL;
|
|
|
|
if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Hardware doesn't guarantee cache coherency across different
|
|
* KeyIDs. The kernel needs to flush PAMT's dirty cachelines
|
|
* (associated with KeyID 0) before the TDX module can use the
|
|
* global KeyID to access the PAMT. Given PAMTs are potentially
|
|
* large (~1/256th of system RAM), just use WBINVD.
|
|
*/
|
|
wbinvd_on_all_cpus();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
/*
|
|
* The key configuration only needs to be done once per
|
|
* package and will return an error if configured more
|
|
* than once. Avoid doing it multiple times per package.
|
|
*/
|
|
if (cpumask_test_and_set_cpu(topology_physical_package_id(cpu),
|
|
packages))
|
|
continue;
|
|
|
|
/*
|
|
* TDH.SYS.KEY.CONFIG cannot run concurrently on
|
|
* different cpus. Do it one by one.
|
|
*/
|
|
ret = smp_call_on_cpu(cpu, do_global_key_config, NULL, true);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
free_cpumask_var(packages);
|
|
return ret;
|
|
}
|
|
|
|
static int init_tdmr(struct tdmr_info *tdmr)
|
|
{
|
|
u64 next;
|
|
|
|
/*
|
|
* Initializing a TDMR can be time consuming. To avoid long
|
|
* SEAMCALLs, the TDX module may only initialize a part of the
|
|
* TDMR in each call.
|
|
*/
|
|
do {
|
|
struct tdx_module_args args = {
|
|
.rcx = tdmr->base,
|
|
};
|
|
int ret;
|
|
|
|
ret = seamcall_prerr_ret(TDH_SYS_TDMR_INIT, &args);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* RDX contains 'next-to-initialize' address if
|
|
* TDH.SYS.TDMR.INIT did not fully complete and
|
|
* should be retried.
|
|
*/
|
|
next = args.rdx;
|
|
cond_resched();
|
|
/* Keep making SEAMCALLs until the TDMR is done */
|
|
} while (next < tdmr->base + tdmr->size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_tdmrs(struct tdmr_info_list *tdmr_list)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* This operation is costly. It can be parallelized,
|
|
* but keep it simple for now.
|
|
*/
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
int ret;
|
|
|
|
ret = init_tdmr(tdmr_entry(tdmr_list, i));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_tdx_module(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = get_tdx_sys_info(&tdx_sysinfo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check whether the kernel can support this module */
|
|
ret = check_features(&tdx_sysinfo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* To keep things simple, assume that all TDX-protected memory
|
|
* will come from the page allocator. Make sure all pages in the
|
|
* page allocator are TDX-usable memory.
|
|
*
|
|
* Build the list of "TDX-usable" memory regions which cover all
|
|
* pages in the page allocator to guarantee that. Do it while
|
|
* holding mem_hotplug_lock read-lock as the memory hotplug code
|
|
* path reads the @tdx_memlist to reject any new memory.
|
|
*/
|
|
get_online_mems();
|
|
|
|
ret = build_tdx_memlist(&tdx_memlist);
|
|
if (ret)
|
|
goto out_put_tdxmem;
|
|
|
|
/* Allocate enough space for constructing TDMRs */
|
|
ret = alloc_tdmr_list(&tdx_tdmr_list, &tdx_sysinfo.tdmr);
|
|
if (ret)
|
|
goto err_free_tdxmem;
|
|
|
|
/* Cover all TDX-usable memory regions in TDMRs */
|
|
ret = construct_tdmrs(&tdx_memlist, &tdx_tdmr_list, &tdx_sysinfo.tdmr);
|
|
if (ret)
|
|
goto err_free_tdmrs;
|
|
|
|
/* Pass the TDMRs and the global KeyID to the TDX module */
|
|
ret = config_tdx_module(&tdx_tdmr_list, tdx_global_keyid);
|
|
if (ret)
|
|
goto err_free_pamts;
|
|
|
|
/* Config the key of global KeyID on all packages */
|
|
ret = config_global_keyid();
|
|
if (ret)
|
|
goto err_reset_pamts;
|
|
|
|
/* Initialize TDMRs to complete the TDX module initialization */
|
|
ret = init_tdmrs(&tdx_tdmr_list);
|
|
if (ret)
|
|
goto err_reset_pamts;
|
|
|
|
pr_info("%lu KB allocated for PAMT\n", tdmrs_count_pamt_kb(&tdx_tdmr_list));
|
|
|
|
out_put_tdxmem:
|
|
/*
|
|
* @tdx_memlist is written here and read at memory hotplug time.
|
|
* Lock out memory hotplug code while building it.
|
|
*/
|
|
put_online_mems();
|
|
return ret;
|
|
|
|
err_reset_pamts:
|
|
/*
|
|
* Part of PAMTs may already have been initialized by the
|
|
* TDX module. Flush cache before returning PAMTs back
|
|
* to the kernel.
|
|
*/
|
|
wbinvd_on_all_cpus();
|
|
/*
|
|
* According to the TDX hardware spec, if the platform
|
|
* doesn't have the "partial write machine check"
|
|
* erratum, any kernel read/write will never cause #MC
|
|
* in kernel space, thus it's OK to not convert PAMTs
|
|
* back to normal. But do the conversion anyway here
|
|
* as suggested by the TDX spec.
|
|
*/
|
|
tdmrs_reset_pamt_all(&tdx_tdmr_list);
|
|
err_free_pamts:
|
|
tdmrs_free_pamt_all(&tdx_tdmr_list);
|
|
err_free_tdmrs:
|
|
free_tdmr_list(&tdx_tdmr_list);
|
|
err_free_tdxmem:
|
|
free_tdx_memlist(&tdx_memlist);
|
|
goto out_put_tdxmem;
|
|
}
|
|
|
|
static int __tdx_enable(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = init_tdx_module();
|
|
if (ret) {
|
|
pr_err("module initialization failed (%d)\n", ret);
|
|
tdx_module_status = TDX_MODULE_ERROR;
|
|
return ret;
|
|
}
|
|
|
|
pr_info("module initialized\n");
|
|
tdx_module_status = TDX_MODULE_INITIALIZED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tdx_enable - Enable TDX module to make it ready to run TDX guests
|
|
*
|
|
* This function assumes the caller has: 1) held read lock of CPU hotplug
|
|
* lock to prevent any new cpu from becoming online; 2) done both VMXON
|
|
* and tdx_cpu_enable() on all online cpus.
|
|
*
|
|
* This function requires there's at least one online cpu for each CPU
|
|
* package to succeed.
|
|
*
|
|
* This function can be called in parallel by multiple callers.
|
|
*
|
|
* Return 0 if TDX is enabled successfully, otherwise error.
|
|
*/
|
|
int tdx_enable(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
|
|
return -ENODEV;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
mutex_lock(&tdx_module_lock);
|
|
|
|
switch (tdx_module_status) {
|
|
case TDX_MODULE_UNINITIALIZED:
|
|
ret = __tdx_enable();
|
|
break;
|
|
case TDX_MODULE_INITIALIZED:
|
|
/* Already initialized, great, tell the caller. */
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
/* Failed to initialize in the previous attempts */
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&tdx_module_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_enable);
|
|
|
|
static bool is_pamt_page(unsigned long phys)
|
|
{
|
|
struct tdmr_info_list *tdmr_list = &tdx_tdmr_list;
|
|
int i;
|
|
|
|
/* Ensure that all remote 'tdmr_list' writes are visible: */
|
|
smp_rmb();
|
|
|
|
/*
|
|
* The TDX module is no longer returning TDX_SYS_NOT_READY and
|
|
* is initialized. The 'tdmr_list' was initialized long ago
|
|
* and is now read-only.
|
|
*/
|
|
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
|
|
unsigned long base, size;
|
|
|
|
tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
|
|
|
|
if (phys >= base && phys < (base + size))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return whether the memory page at the given physical address is TDX
|
|
* private memory or not.
|
|
*
|
|
* This can be imprecise for two known reasons:
|
|
* 1. PAMTs are private memory and exist before the TDX module is
|
|
* ready and TDH_PHYMEM_PAGE_RDMD works. This is a relatively
|
|
* short window that occurs once per boot.
|
|
* 2. TDH_PHYMEM_PAGE_RDMD reflects the TDX module's knowledge of the
|
|
* page. However, the page can still cause #MC until it has been
|
|
* fully converted to shared using 64-byte writes like MOVDIR64B.
|
|
* Buggy hosts might still leave #MC-causing memory in place which
|
|
* this function can not detect.
|
|
*/
|
|
static bool paddr_is_tdx_private(unsigned long phys)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = phys & PAGE_MASK,
|
|
};
|
|
u64 sret;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
|
|
return false;
|
|
|
|
/* Get page type from the TDX module */
|
|
sret = __seamcall_ret(TDH_PHYMEM_PAGE_RDMD, &args);
|
|
|
|
/*
|
|
* The SEAMCALL will not return success unless there is a
|
|
* working, "ready" TDX module. Assume an absence of TDX
|
|
* private pages until SEAMCALL is working.
|
|
*/
|
|
if (sret)
|
|
return false;
|
|
|
|
/*
|
|
* SEAMCALL was successful -- read page type (via RCX):
|
|
*
|
|
* - PT_NDA: Page is not used by the TDX module
|
|
* - PT_RSVD: Reserved for Non-TDX use
|
|
* - Others: Page is used by the TDX module
|
|
*
|
|
* Note PAMT pages are marked as PT_RSVD but they are also TDX
|
|
* private memory.
|
|
*/
|
|
switch (args.rcx) {
|
|
case PT_NDA:
|
|
return false;
|
|
case PT_RSVD:
|
|
return is_pamt_page(phys);
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some TDX-capable CPUs have an erratum. A write to TDX private
|
|
* memory poisons that memory, and a subsequent read of that memory
|
|
* triggers #MC.
|
|
*
|
|
* Help distinguish erratum-triggered #MCs from a normal hardware one.
|
|
* Just print additional message to show such #MC may be result of the
|
|
* erratum.
|
|
*/
|
|
const char *tdx_dump_mce_info(struct mce *m)
|
|
{
|
|
if (!m || !mce_is_memory_error(m) || !mce_usable_address(m))
|
|
return NULL;
|
|
|
|
if (!paddr_is_tdx_private(m->addr))
|
|
return NULL;
|
|
|
|
return "TDX private memory error. Possible kernel bug.";
|
|
}
|
|
|
|
static __init int record_keyid_partitioning(u32 *tdx_keyid_start,
|
|
u32 *nr_tdx_keyids)
|
|
{
|
|
u32 _nr_mktme_keyids, _tdx_keyid_start, _nr_tdx_keyids;
|
|
int ret;
|
|
|
|
/*
|
|
* IA32_MKTME_KEYID_PARTIONING:
|
|
* Bit [31:0]: Number of MKTME KeyIDs.
|
|
* Bit [63:32]: Number of TDX private KeyIDs.
|
|
*/
|
|
ret = rdmsr_safe(MSR_IA32_MKTME_KEYID_PARTITIONING, &_nr_mktme_keyids,
|
|
&_nr_tdx_keyids);
|
|
if (ret || !_nr_tdx_keyids)
|
|
return -EINVAL;
|
|
|
|
/* TDX KeyIDs start after the last MKTME KeyID. */
|
|
_tdx_keyid_start = _nr_mktme_keyids + 1;
|
|
|
|
*tdx_keyid_start = _tdx_keyid_start;
|
|
*nr_tdx_keyids = _nr_tdx_keyids;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_tdx_memory(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct tdx_memblock *tmb;
|
|
|
|
/*
|
|
* This check assumes that the start_pfn<->end_pfn range does not
|
|
* cross multiple @tdx_memlist entries. A single memory online
|
|
* event across multiple memblocks (from which @tdx_memlist
|
|
* entries are derived at the time of module initialization) is
|
|
* not possible. This is because memory offline/online is done
|
|
* on granularity of 'struct memory_block', and the hotpluggable
|
|
* memory region (one memblock) must be multiple of memory_block.
|
|
*/
|
|
list_for_each_entry(tmb, &tdx_memlist, list) {
|
|
if (start_pfn >= tmb->start_pfn && end_pfn <= tmb->end_pfn)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int tdx_memory_notifier(struct notifier_block *nb, unsigned long action,
|
|
void *v)
|
|
{
|
|
struct memory_notify *mn = v;
|
|
|
|
if (action != MEM_GOING_ONLINE)
|
|
return NOTIFY_OK;
|
|
|
|
/*
|
|
* Empty list means TDX isn't enabled. Allow any memory
|
|
* to go online.
|
|
*/
|
|
if (list_empty(&tdx_memlist))
|
|
return NOTIFY_OK;
|
|
|
|
/*
|
|
* The TDX memory configuration is static and can not be
|
|
* changed. Reject onlining any memory which is outside of
|
|
* the static configuration whether it supports TDX or not.
|
|
*/
|
|
if (is_tdx_memory(mn->start_pfn, mn->start_pfn + mn->nr_pages))
|
|
return NOTIFY_OK;
|
|
|
|
return NOTIFY_BAD;
|
|
}
|
|
|
|
static struct notifier_block tdx_memory_nb = {
|
|
.notifier_call = tdx_memory_notifier,
|
|
};
|
|
|
|
static void __init check_tdx_erratum(void)
|
|
{
|
|
/*
|
|
* These CPUs have an erratum. A partial write from non-TD
|
|
* software (e.g. via MOVNTI variants or UC/WC mapping) to TDX
|
|
* private memory poisons that memory, and a subsequent read of
|
|
* that memory triggers #MC.
|
|
*/
|
|
switch (boot_cpu_data.x86_vfm) {
|
|
case INTEL_SAPPHIRERAPIDS_X:
|
|
case INTEL_EMERALDRAPIDS_X:
|
|
setup_force_cpu_bug(X86_BUG_TDX_PW_MCE);
|
|
}
|
|
}
|
|
|
|
void __init tdx_init(void)
|
|
{
|
|
u32 tdx_keyid_start, nr_tdx_keyids;
|
|
int err;
|
|
|
|
err = record_keyid_partitioning(&tdx_keyid_start, &nr_tdx_keyids);
|
|
if (err)
|
|
return;
|
|
|
|
pr_info("BIOS enabled: private KeyID range [%u, %u)\n",
|
|
tdx_keyid_start, tdx_keyid_start + nr_tdx_keyids);
|
|
|
|
/*
|
|
* The TDX module itself requires one 'global KeyID' to protect
|
|
* its metadata. If there's only one TDX KeyID, there won't be
|
|
* any left for TDX guests thus there's no point to enable TDX
|
|
* at all.
|
|
*/
|
|
if (nr_tdx_keyids < 2) {
|
|
pr_err("initialization failed: too few private KeyIDs available.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* At this point, hibernation_available() indicates whether or
|
|
* not hibernation support has been permanently disabled.
|
|
*/
|
|
if (hibernation_available()) {
|
|
pr_err("initialization failed: Hibernation support is enabled\n");
|
|
return;
|
|
}
|
|
|
|
err = register_memory_notifier(&tdx_memory_nb);
|
|
if (err) {
|
|
pr_err("initialization failed: register_memory_notifier() failed (%d)\n",
|
|
err);
|
|
return;
|
|
}
|
|
|
|
#if defined(CONFIG_ACPI) && defined(CONFIG_SUSPEND)
|
|
pr_info("Disable ACPI S3. Turn off TDX in the BIOS to use ACPI S3.\n");
|
|
acpi_suspend_lowlevel = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Just use the first TDX KeyID as the 'global KeyID' and
|
|
* leave the rest for TDX guests.
|
|
*/
|
|
tdx_global_keyid = tdx_keyid_start;
|
|
tdx_guest_keyid_start = tdx_keyid_start + 1;
|
|
tdx_nr_guest_keyids = nr_tdx_keyids - 1;
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_TDX_HOST_PLATFORM);
|
|
|
|
check_tdx_erratum();
|
|
}
|
|
|
|
const struct tdx_sys_info *tdx_get_sysinfo(void)
|
|
{
|
|
const struct tdx_sys_info *p = NULL;
|
|
|
|
/* Make sure all fields in @tdx_sysinfo have been populated */
|
|
mutex_lock(&tdx_module_lock);
|
|
if (tdx_module_status == TDX_MODULE_INITIALIZED)
|
|
p = (const struct tdx_sys_info *)&tdx_sysinfo;
|
|
mutex_unlock(&tdx_module_lock);
|
|
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_get_sysinfo);
|
|
|
|
u32 tdx_get_nr_guest_keyids(void)
|
|
{
|
|
return tdx_nr_guest_keyids;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_get_nr_guest_keyids);
|
|
|
|
int tdx_guest_keyid_alloc(void)
|
|
{
|
|
return ida_alloc_range(&tdx_guest_keyid_pool, tdx_guest_keyid_start,
|
|
tdx_guest_keyid_start + tdx_nr_guest_keyids - 1,
|
|
GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_guest_keyid_alloc);
|
|
|
|
void tdx_guest_keyid_free(unsigned int keyid)
|
|
{
|
|
ida_free(&tdx_guest_keyid_pool, keyid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_guest_keyid_free);
|
|
|
|
static inline u64 tdx_tdr_pa(struct tdx_td *td)
|
|
{
|
|
return page_to_phys(td->tdr_page);
|
|
}
|
|
|
|
static inline u64 tdx_tdvpr_pa(struct tdx_vp *td)
|
|
{
|
|
return page_to_phys(td->tdvpr_page);
|
|
}
|
|
|
|
/*
|
|
* The TDX module exposes a CLFLUSH_BEFORE_ALLOC bit to specify whether
|
|
* a CLFLUSH of pages is required before handing them to the TDX module.
|
|
* Be conservative and make the code simpler by doing the CLFLUSH
|
|
* unconditionally.
|
|
*/
|
|
static void tdx_clflush_page(struct page *page)
|
|
{
|
|
clflush_cache_range(page_to_virt(page), PAGE_SIZE);
|
|
}
|
|
|
|
noinstr __flatten u64 tdh_vp_enter(struct tdx_vp *td, struct tdx_module_args *args)
|
|
{
|
|
args->rcx = tdx_tdvpr_pa(td);
|
|
|
|
return __seamcall_saved_ret(TDH_VP_ENTER, args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_enter);
|
|
|
|
u64 tdh_mng_addcx(struct tdx_td *td, struct page *tdcs_page)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = page_to_phys(tdcs_page),
|
|
.rdx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
tdx_clflush_page(tdcs_page);
|
|
return seamcall(TDH_MNG_ADDCX, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_addcx);
|
|
|
|
u64 tdh_mem_page_add(struct tdx_td *td, u64 gpa, struct page *page, struct page *source, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa,
|
|
.rdx = tdx_tdr_pa(td),
|
|
.r8 = page_to_phys(page),
|
|
.r9 = page_to_phys(source),
|
|
};
|
|
u64 ret;
|
|
|
|
tdx_clflush_page(page);
|
|
ret = seamcall_ret(TDH_MEM_PAGE_ADD, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_page_add);
|
|
|
|
u64 tdh_mem_sept_add(struct tdx_td *td, u64 gpa, int level, struct page *page, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa | level,
|
|
.rdx = tdx_tdr_pa(td),
|
|
.r8 = page_to_phys(page),
|
|
};
|
|
u64 ret;
|
|
|
|
tdx_clflush_page(page);
|
|
ret = seamcall_ret(TDH_MEM_SEPT_ADD, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_sept_add);
|
|
|
|
u64 tdh_vp_addcx(struct tdx_vp *vp, struct page *tdcx_page)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = page_to_phys(tdcx_page),
|
|
.rdx = tdx_tdvpr_pa(vp),
|
|
};
|
|
|
|
tdx_clflush_page(tdcx_page);
|
|
return seamcall(TDH_VP_ADDCX, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_addcx);
|
|
|
|
u64 tdh_mem_page_aug(struct tdx_td *td, u64 gpa, int level, struct page *page, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa | level,
|
|
.rdx = tdx_tdr_pa(td),
|
|
.r8 = page_to_phys(page),
|
|
};
|
|
u64 ret;
|
|
|
|
tdx_clflush_page(page);
|
|
ret = seamcall_ret(TDH_MEM_PAGE_AUG, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_page_aug);
|
|
|
|
u64 tdh_mem_range_block(struct tdx_td *td, u64 gpa, int level, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa | level,
|
|
.rdx = tdx_tdr_pa(td),
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_MEM_RANGE_BLOCK, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_range_block);
|
|
|
|
u64 tdh_mng_key_config(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
return seamcall(TDH_MNG_KEY_CONFIG, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_key_config);
|
|
|
|
u64 tdh_mng_create(struct tdx_td *td, u16 hkid)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
.rdx = hkid,
|
|
};
|
|
|
|
tdx_clflush_page(td->tdr_page);
|
|
return seamcall(TDH_MNG_CREATE, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_create);
|
|
|
|
u64 tdh_vp_create(struct tdx_td *td, struct tdx_vp *vp)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdvpr_pa(vp),
|
|
.rdx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
tdx_clflush_page(vp->tdvpr_page);
|
|
return seamcall(TDH_VP_CREATE, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_create);
|
|
|
|
u64 tdh_mng_rd(struct tdx_td *td, u64 field, u64 *data)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
.rdx = field,
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_MNG_RD, &args);
|
|
|
|
/* R8: Content of the field, or 0 in case of error. */
|
|
*data = args.r8;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_rd);
|
|
|
|
u64 tdh_mr_extend(struct tdx_td *td, u64 gpa, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa,
|
|
.rdx = tdx_tdr_pa(td),
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_MR_EXTEND, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mr_extend);
|
|
|
|
u64 tdh_mr_finalize(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
return seamcall(TDH_MR_FINALIZE, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mr_finalize);
|
|
|
|
u64 tdh_vp_flush(struct tdx_vp *vp)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdvpr_pa(vp),
|
|
};
|
|
|
|
return seamcall(TDH_VP_FLUSH, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_flush);
|
|
|
|
u64 tdh_mng_vpflushdone(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
return seamcall(TDH_MNG_VPFLUSHDONE, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_vpflushdone);
|
|
|
|
u64 tdh_mng_key_freeid(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
return seamcall(TDH_MNG_KEY_FREEID, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_key_freeid);
|
|
|
|
u64 tdh_mng_init(struct tdx_td *td, u64 td_params, u64 *extended_err)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
.rdx = td_params,
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_MNG_INIT, &args);
|
|
|
|
*extended_err = args.rcx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mng_init);
|
|
|
|
u64 tdh_vp_rd(struct tdx_vp *vp, u64 field, u64 *data)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdvpr_pa(vp),
|
|
.rdx = field,
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_VP_RD, &args);
|
|
|
|
/* R8: Content of the field, or 0 in case of error. */
|
|
*data = args.r8;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_rd);
|
|
|
|
u64 tdh_vp_wr(struct tdx_vp *vp, u64 field, u64 data, u64 mask)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdvpr_pa(vp),
|
|
.rdx = field,
|
|
.r8 = data,
|
|
.r9 = mask,
|
|
};
|
|
|
|
return seamcall(TDH_VP_WR, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_wr);
|
|
|
|
u64 tdh_vp_init(struct tdx_vp *vp, u64 initial_rcx, u32 x2apicid)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdvpr_pa(vp),
|
|
.rdx = initial_rcx,
|
|
.r8 = x2apicid,
|
|
};
|
|
|
|
/* apicid requires version == 1. */
|
|
return seamcall(TDH_VP_INIT | (1ULL << TDX_VERSION_SHIFT), &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_vp_init);
|
|
|
|
/*
|
|
* TDX ABI defines output operands as PT, OWNER and SIZE. These are TDX defined fomats.
|
|
* So despite the names, they must be interpted specially as described by the spec. Return
|
|
* them only for error reporting purposes.
|
|
*/
|
|
u64 tdh_phymem_page_reclaim(struct page *page, u64 *tdx_pt, u64 *tdx_owner, u64 *tdx_size)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = page_to_phys(page),
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_PHYMEM_PAGE_RECLAIM, &args);
|
|
|
|
*tdx_pt = args.rcx;
|
|
*tdx_owner = args.rdx;
|
|
*tdx_size = args.r8;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_phymem_page_reclaim);
|
|
|
|
u64 tdh_mem_track(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = tdx_tdr_pa(td),
|
|
};
|
|
|
|
return seamcall(TDH_MEM_TRACK, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_track);
|
|
|
|
u64 tdh_mem_page_remove(struct tdx_td *td, u64 gpa, u64 level, u64 *ext_err1, u64 *ext_err2)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = gpa | level,
|
|
.rdx = tdx_tdr_pa(td),
|
|
};
|
|
u64 ret;
|
|
|
|
ret = seamcall_ret(TDH_MEM_PAGE_REMOVE, &args);
|
|
|
|
*ext_err1 = args.rcx;
|
|
*ext_err2 = args.rdx;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_mem_page_remove);
|
|
|
|
u64 tdh_phymem_cache_wb(bool resume)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = resume ? 1 : 0,
|
|
};
|
|
|
|
return seamcall(TDH_PHYMEM_CACHE_WB, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_phymem_cache_wb);
|
|
|
|
u64 tdh_phymem_page_wbinvd_tdr(struct tdx_td *td)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
|
|
args.rcx = mk_keyed_paddr(tdx_global_keyid, td->tdr_page);
|
|
|
|
return seamcall(TDH_PHYMEM_PAGE_WBINVD, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_phymem_page_wbinvd_tdr);
|
|
|
|
u64 tdh_phymem_page_wbinvd_hkid(u64 hkid, struct page *page)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
|
|
args.rcx = mk_keyed_paddr(hkid, page);
|
|
|
|
return seamcall(TDH_PHYMEM_PAGE_WBINVD, &args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdh_phymem_page_wbinvd_hkid);
|