mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-26 02:29:13 +00:00

semaphore" from Lance Yang enhances the hung task detector. The detector presently dumps the blocking tasks's stack when it is blocked on a mutex. Lance's series extends this to semaphores. - The 2 patch series "nilfs2: improve sanity checks in dirty state propagation" from Wentao Liang addresses a couple of minor flaws in nilfs2. - The 2 patch series "scripts/gdb: Fixes related to lx_per_cpu()" from Illia Ostapyshyn fixes a couple of issues in the gdb scripts. - The 9 patch series "Support kdump with LUKS encryption by reusing LUKS volume keys" from Coiby Xu addresses a usability problem with kdump. When the dump device is LUKS-encrypted, the kdump kernel may not have the keys to the encrypted filesystem. A full writeup of this is in the series [0/N] cover letter. - The 2 patch series "sysfs: add counters for lockups and stalls" from Max Kellermann adds /sys/kernel/hardlockup_count and /sys/kernel/hardlockup_count and /sys/kernel/rcu_stall_count. - The 3 patch series "fork: Page operation cleanups in the fork code" from Pasha Tatashin implements a number of code cleanups in fork.c. - The 3 patch series "scripts/gdb/symbols: determine KASLR offset on s390 during early boot" from Ilya Leoshkevich fixes some s390 issues in the gdb scripts. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaDuCvQAKCRDdBJ7gKXxA jrkxAQCnFAp/uK9ckkbN4nfpJ0+OMY36C+A+dawSDtuRsIkXBAEAq3e6MNAUdg5W Ca0cXdgSIq1Op7ZKEA+66Km6Rfvfow8= =g45L -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - "hung_task: extend blocking task stacktrace dump to semaphore" from Lance Yang enhances the hung task detector. The detector presently dumps the blocking tasks's stack when it is blocked on a mutex. Lance's series extends this to semaphores - "nilfs2: improve sanity checks in dirty state propagation" from Wentao Liang addresses a couple of minor flaws in nilfs2 - "scripts/gdb: Fixes related to lx_per_cpu()" from Illia Ostapyshyn fixes a couple of issues in the gdb scripts - "Support kdump with LUKS encryption by reusing LUKS volume keys" from Coiby Xu addresses a usability problem with kdump. When the dump device is LUKS-encrypted, the kdump kernel may not have the keys to the encrypted filesystem. A full writeup of this is in the series [0/N] cover letter - "sysfs: add counters for lockups and stalls" from Max Kellermann adds /sys/kernel/hardlockup_count and /sys/kernel/hardlockup_count and /sys/kernel/rcu_stall_count - "fork: Page operation cleanups in the fork code" from Pasha Tatashin implements a number of code cleanups in fork.c - "scripts/gdb/symbols: determine KASLR offset on s390 during early boot" from Ilya Leoshkevich fixes some s390 issues in the gdb scripts * tag 'mm-nonmm-stable-2025-05-31-15-28' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (67 commits) llist: make llist_add_batch() a static inline delayacct: remove redundant code and adjust indentation squashfs: add optional full compressed block caching crash_dump, nvme: select CONFIGFS_FS as built-in scripts/gdb/symbols: determine KASLR offset on s390 during early boot scripts/gdb/symbols: factor out pagination_off() scripts/gdb/symbols: factor out get_vmlinux() kernel/panic.c: format kernel-doc comments mailmap: update and consolidate Casey Connolly's name and email nilfs2: remove wbc->for_reclaim handling fork: define a local GFP_VMAP_STACK fork: check charging success before zeroing stack fork: clean-up naming of vm_stack/vm_struct variables in vmap stacks code fork: clean-up ifdef logic around stack allocation kernel/rcu/tree_stall: add /sys/kernel/rcu_stall_count kernel/watchdog: add /sys/kernel/{hard,soft}lockup_count x86/crash: make the page that stores the dm crypt keys inaccessible x86/crash: pass dm crypt keys to kdump kernel Revert "x86/mm: Remove unused __set_memory_prot()" crash_dump: retrieve dm crypt keys in kdump kernel ...
699 lines
18 KiB
C
699 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* handle transition of Linux booting another kernel
|
|
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/string.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/io.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/cc_platform.h>
|
|
|
|
#include <asm/init.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kexec-bzimage64.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/efi.h>
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Used while adding mapping for ACPI tables.
|
|
* Can be reused when other iomem regions need be mapped
|
|
*/
|
|
struct init_pgtable_data {
|
|
struct x86_mapping_info *info;
|
|
pgd_t *level4p;
|
|
};
|
|
|
|
static int mem_region_callback(struct resource *res, void *arg)
|
|
{
|
|
struct init_pgtable_data *data = arg;
|
|
|
|
return kernel_ident_mapping_init(data->info, data->level4p,
|
|
res->start, res->end + 1);
|
|
}
|
|
|
|
static int
|
|
map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
struct init_pgtable_data data;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
data.info = info;
|
|
data.level4p = level4p;
|
|
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
/* ACPI tables could be located in ACPI Non-volatile Storage region */
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
|
|
#endif
|
|
|
|
static int map_mmio_serial(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
unsigned long mstart, mend;
|
|
|
|
if (!kexec_debug_8250_mmio32)
|
|
return 0;
|
|
|
|
mstart = kexec_debug_8250_mmio32 & PAGE_MASK;
|
|
mend = (kexec_debug_8250_mmio32 + PAGE_SIZE + 23) & PAGE_MASK;
|
|
pr_info("Map PCI serial at %lx - %lx\n", mstart, mend);
|
|
return kernel_ident_mapping_init(info, level4p, mstart, mend);
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
const struct kexec_file_ops * const kexec_file_loaders[] = {
|
|
&kexec_bzImage64_ops,
|
|
NULL
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
#ifdef CONFIG_EFI
|
|
unsigned long mstart, mend;
|
|
void *kaddr;
|
|
int ret;
|
|
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return 0;
|
|
|
|
mstart = (boot_params.efi_info.efi_systab |
|
|
((u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
mend = mstart + sizeof(efi_system_table_64_t);
|
|
else
|
|
mend = mstart + sizeof(efi_system_table_32_t);
|
|
|
|
if (!mstart)
|
|
return 0;
|
|
|
|
ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
|
|
if (ret)
|
|
return ret;
|
|
|
|
kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
|
|
if (!kaddr) {
|
|
pr_err("Could not map UEFI system table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mstart = efi_config_table;
|
|
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
|
|
|
|
mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
|
|
} else {
|
|
efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
|
|
|
|
mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
|
|
}
|
|
|
|
memunmap(kaddr);
|
|
|
|
return kernel_ident_mapping_init(info, level4p, mstart, mend);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void free_transition_pgtable(struct kimage *image)
|
|
{
|
|
free_page((unsigned long)image->arch.p4d);
|
|
image->arch.p4d = NULL;
|
|
free_page((unsigned long)image->arch.pud);
|
|
image->arch.pud = NULL;
|
|
free_page((unsigned long)image->arch.pmd);
|
|
image->arch.pmd = NULL;
|
|
free_page((unsigned long)image->arch.pte);
|
|
image->arch.pte = NULL;
|
|
}
|
|
|
|
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd,
|
|
unsigned long control_page)
|
|
{
|
|
pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
|
|
unsigned long vaddr, paddr;
|
|
int result = -ENOMEM;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
/*
|
|
* For the transition to the identity mapped page tables, the control
|
|
* code page also needs to be mapped at the virtual address it starts
|
|
* off running from.
|
|
*/
|
|
vaddr = (unsigned long)__va(control_page);
|
|
paddr = control_page;
|
|
pgd += pgd_index(vaddr);
|
|
if (!pgd_present(*pgd)) {
|
|
p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!p4d)
|
|
goto err;
|
|
image->arch.p4d = p4d;
|
|
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
|
|
}
|
|
p4d = p4d_offset(pgd, vaddr);
|
|
if (!p4d_present(*p4d)) {
|
|
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pud)
|
|
goto err;
|
|
image->arch.pud = pud;
|
|
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
|
|
}
|
|
pud = pud_offset(p4d, vaddr);
|
|
if (!pud_present(*pud)) {
|
|
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pmd)
|
|
goto err;
|
|
image->arch.pmd = pmd;
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (!pmd_present(*pmd)) {
|
|
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pte)
|
|
goto err;
|
|
image->arch.pte = pte;
|
|
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
|
|
}
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
prot = PAGE_KERNEL_EXEC;
|
|
|
|
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
|
|
return 0;
|
|
err:
|
|
return result;
|
|
}
|
|
|
|
static void *alloc_pgt_page(void *data)
|
|
{
|
|
struct kimage *image = (struct kimage *)data;
|
|
struct page *page;
|
|
void *p = NULL;
|
|
|
|
page = kimage_alloc_control_pages(image, 0);
|
|
if (page) {
|
|
p = page_address(page);
|
|
clear_page(p);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static int init_pgtable(struct kimage *image, unsigned long control_page)
|
|
{
|
|
struct x86_mapping_info info = {
|
|
.alloc_pgt_page = alloc_pgt_page,
|
|
.context = image,
|
|
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
|
|
.kernpg_flag = _KERNPG_TABLE_NOENC,
|
|
};
|
|
unsigned long mstart, mend;
|
|
int result;
|
|
int i;
|
|
|
|
image->arch.pgd = alloc_pgt_page(image);
|
|
if (!image->arch.pgd)
|
|
return -ENOMEM;
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
|
|
info.page_flag |= _PAGE_ENC;
|
|
info.kernpg_flag |= _PAGE_ENC;
|
|
}
|
|
|
|
if (direct_gbpages)
|
|
info.direct_gbpages = true;
|
|
|
|
for (i = 0; i < nr_pfn_mapped; i++) {
|
|
mstart = pfn_mapped[i].start << PAGE_SHIFT;
|
|
mend = pfn_mapped[i].end << PAGE_SHIFT;
|
|
|
|
result = kernel_ident_mapping_init(&info, image->arch.pgd,
|
|
mstart, mend);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* segments's mem ranges could be outside 0 ~ max_pfn,
|
|
* for example when jump back to original kernel from kexeced kernel.
|
|
* or first kernel is booted with user mem map, and second kernel
|
|
* could be loaded out of that range.
|
|
*/
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
|
|
result = kernel_ident_mapping_init(&info, image->arch.pgd,
|
|
mstart, mend);
|
|
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Prepare EFI systab and ACPI tables for kexec kernel since they are
|
|
* not covered by pfn_mapped.
|
|
*/
|
|
result = map_efi_systab(&info, image->arch.pgd);
|
|
if (result)
|
|
return result;
|
|
|
|
result = map_acpi_tables(&info, image->arch.pgd);
|
|
if (result)
|
|
return result;
|
|
|
|
result = map_mmio_serial(&info, image->arch.pgd);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* This must be last because the intermediate page table pages it
|
|
* allocates will not be control pages and may overlap the image.
|
|
*/
|
|
return init_transition_pgtable(image, image->arch.pgd, control_page);
|
|
}
|
|
|
|
static void load_segments(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"\tmovl %0,%%ds\n"
|
|
"\tmovl %0,%%es\n"
|
|
"\tmovl %0,%%ss\n"
|
|
"\tmovl %0,%%fs\n"
|
|
"\tmovl %0,%%gs\n"
|
|
: : "a" (__KERNEL_DS) : "memory"
|
|
);
|
|
}
|
|
|
|
static void prepare_debug_idt(unsigned long control_page, unsigned long vec_ofs)
|
|
{
|
|
gate_desc idtentry = { 0 };
|
|
int i;
|
|
|
|
idtentry.bits.p = 1;
|
|
idtentry.bits.type = GATE_TRAP;
|
|
idtentry.segment = __KERNEL_CS;
|
|
idtentry.offset_low = (control_page & 0xFFFF) + vec_ofs;
|
|
idtentry.offset_middle = (control_page >> 16) & 0xFFFF;
|
|
idtentry.offset_high = control_page >> 32;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
kexec_debug_idt[i] = idtentry;
|
|
idtentry.offset_low += KEXEC_DEBUG_EXC_HANDLER_SIZE;
|
|
}
|
|
}
|
|
|
|
int machine_kexec_prepare(struct kimage *image)
|
|
{
|
|
void *control_page = page_address(image->control_code_page);
|
|
unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
|
|
unsigned long reloc_end = (unsigned long)__relocate_kernel_end;
|
|
int result;
|
|
|
|
/* Setup the identity mapped 64bit page table */
|
|
result = init_pgtable(image, __pa(control_page));
|
|
if (result)
|
|
return result;
|
|
kexec_va_control_page = (unsigned long)control_page;
|
|
kexec_pa_table_page = (unsigned long)__pa(image->arch.pgd);
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT)
|
|
kexec_pa_swap_page = page_to_pfn(image->swap_page) << PAGE_SHIFT;
|
|
|
|
prepare_debug_idt((unsigned long)__pa(control_page),
|
|
(unsigned long)kexec_debug_exc_vectors - reloc_start);
|
|
|
|
__memcpy(control_page, __relocate_kernel_start, reloc_end - reloc_start);
|
|
|
|
set_memory_rox((unsigned long)control_page, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void machine_kexec_cleanup(struct kimage *image)
|
|
{
|
|
void *control_page = page_address(image->control_code_page);
|
|
|
|
set_memory_nx((unsigned long)control_page, 1);
|
|
set_memory_rw((unsigned long)control_page, 1);
|
|
|
|
free_transition_pgtable(image);
|
|
}
|
|
|
|
/*
|
|
* Do not allocate memory (or fail in any way) in machine_kexec().
|
|
* We are past the point of no return, committed to rebooting now.
|
|
*/
|
|
void __nocfi machine_kexec(struct kimage *image)
|
|
{
|
|
unsigned long reloc_start = (unsigned long)__relocate_kernel_start;
|
|
relocate_kernel_fn *relocate_kernel_ptr;
|
|
unsigned int host_mem_enc_active;
|
|
int save_ftrace_enabled;
|
|
void *control_page;
|
|
|
|
/*
|
|
* This must be done before load_segments() since if call depth tracking
|
|
* is used then GS must be valid to make any function calls.
|
|
*/
|
|
host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
save_processor_state();
|
|
#endif
|
|
|
|
save_ftrace_enabled = __ftrace_enabled_save();
|
|
|
|
/* Interrupts aren't acceptable while we reboot */
|
|
local_irq_disable();
|
|
hw_breakpoint_disable();
|
|
cet_disable();
|
|
|
|
if (image->preserve_context) {
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/*
|
|
* We need to put APICs in legacy mode so that we can
|
|
* get timer interrupts in second kernel. kexec/kdump
|
|
* paths already have calls to restore_boot_irq_mode()
|
|
* in one form or other. kexec jump path also need one.
|
|
*/
|
|
clear_IO_APIC();
|
|
restore_boot_irq_mode();
|
|
#endif
|
|
}
|
|
|
|
control_page = page_address(image->control_code_page);
|
|
|
|
/*
|
|
* Allow for the possibility that relocate_kernel might not be at
|
|
* the very start of the page.
|
|
*/
|
|
relocate_kernel_ptr = control_page + (unsigned long)relocate_kernel - reloc_start;
|
|
|
|
/*
|
|
* The segment registers are funny things, they have both a
|
|
* visible and an invisible part. Whenever the visible part is
|
|
* set to a specific selector, the invisible part is loaded
|
|
* with from a table in memory. At no other time is the
|
|
* descriptor table in memory accessed.
|
|
*
|
|
* Take advantage of this here by force loading the segments,
|
|
* before the GDT is zapped with an invalid value.
|
|
*/
|
|
load_segments();
|
|
|
|
/* now call it */
|
|
image->start = relocate_kernel_ptr((unsigned long)image->head,
|
|
virt_to_phys(control_page),
|
|
image->start,
|
|
image->preserve_context,
|
|
host_mem_enc_active);
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
restore_processor_state();
|
|
#endif
|
|
|
|
__ftrace_enabled_restore(save_ftrace_enabled);
|
|
}
|
|
|
|
/* arch-dependent functionality related to kexec file-based syscall */
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
/*
|
|
* Apply purgatory relocations.
|
|
*
|
|
* @pi: Purgatory to be relocated.
|
|
* @section: Section relocations applying to.
|
|
* @relsec: Section containing RELAs.
|
|
* @symtabsec: Corresponding symtab.
|
|
*
|
|
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
|
|
*/
|
|
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
|
|
Elf_Shdr *section, const Elf_Shdr *relsec,
|
|
const Elf_Shdr *symtabsec)
|
|
{
|
|
unsigned int i;
|
|
Elf64_Rela *rel;
|
|
Elf64_Sym *sym;
|
|
void *location;
|
|
unsigned long address, sec_base, value;
|
|
const char *strtab, *name, *shstrtab;
|
|
const Elf_Shdr *sechdrs;
|
|
|
|
/* String & section header string table */
|
|
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
|
|
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
|
|
|
|
rel = (void *)pi->ehdr + relsec->sh_offset;
|
|
|
|
pr_debug("Applying relocate section %s to %u\n",
|
|
shstrtab + relsec->sh_name, relsec->sh_info);
|
|
|
|
for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
|
|
|
|
/*
|
|
* rel[i].r_offset contains byte offset from beginning
|
|
* of section to the storage unit affected.
|
|
*
|
|
* This is location to update. This is temporary buffer
|
|
* where section is currently loaded. This will finally be
|
|
* loaded to a different address later, pointed to by
|
|
* ->sh_addr. kexec takes care of moving it
|
|
* (kexec_load_segment()).
|
|
*/
|
|
location = pi->purgatory_buf;
|
|
location += section->sh_offset;
|
|
location += rel[i].r_offset;
|
|
|
|
/* Final address of the location */
|
|
address = section->sh_addr + rel[i].r_offset;
|
|
|
|
/*
|
|
* rel[i].r_info contains information about symbol table index
|
|
* w.r.t which relocation must be made and type of relocation
|
|
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
|
|
* these respectively.
|
|
*/
|
|
sym = (void *)pi->ehdr + symtabsec->sh_offset;
|
|
sym += ELF64_R_SYM(rel[i].r_info);
|
|
|
|
if (sym->st_name)
|
|
name = strtab + sym->st_name;
|
|
else
|
|
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
|
|
|
|
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
|
|
name, sym->st_info, sym->st_shndx, sym->st_value,
|
|
sym->st_size);
|
|
|
|
if (sym->st_shndx == SHN_UNDEF) {
|
|
pr_err("Undefined symbol: %s\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_COMMON) {
|
|
pr_err("symbol '%s' in common section\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_ABS)
|
|
sec_base = 0;
|
|
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
|
|
pr_err("Invalid section %d for symbol %s\n",
|
|
sym->st_shndx, name);
|
|
return -ENOEXEC;
|
|
} else
|
|
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
|
|
|
|
value = sym->st_value;
|
|
value += sec_base;
|
|
value += rel[i].r_addend;
|
|
|
|
switch (ELF64_R_TYPE(rel[i].r_info)) {
|
|
case R_X86_64_NONE:
|
|
break;
|
|
case R_X86_64_64:
|
|
*(u64 *)location = value;
|
|
break;
|
|
case R_X86_64_32:
|
|
*(u32 *)location = value;
|
|
if (value != *(u32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_32S:
|
|
*(s32 *)location = value;
|
|
if ((s64)value != *(s32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PLT32:
|
|
value -= (u64)address;
|
|
*(u32 *)location = value;
|
|
break;
|
|
default:
|
|
pr_err("Unknown rela relocation: %llu\n",
|
|
ELF64_R_TYPE(rel[i].r_info));
|
|
return -ENOEXEC;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
overflow:
|
|
pr_err("Overflow in relocation type %d value 0x%lx\n",
|
|
(int)ELF64_R_TYPE(rel[i].r_info), value);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
int arch_kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
vfree(image->elf_headers);
|
|
image->elf_headers = NULL;
|
|
image->elf_headers_sz = 0;
|
|
|
|
return kexec_image_post_load_cleanup_default(image);
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
|
|
static int
|
|
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
|
|
{
|
|
struct page *page;
|
|
unsigned int nr_pages;
|
|
|
|
/*
|
|
* For physical range: [start, end]. We must skip the unassigned
|
|
* crashk resource with zero-valued "end" member.
|
|
*/
|
|
if (!end || start > end)
|
|
return 0;
|
|
|
|
page = pfn_to_page(start >> PAGE_SHIFT);
|
|
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
|
|
if (protect)
|
|
return set_pages_ro(page, nr_pages);
|
|
else
|
|
return set_pages_rw(page, nr_pages);
|
|
}
|
|
|
|
static void kexec_mark_crashkres(bool protect)
|
|
{
|
|
unsigned long control;
|
|
|
|
kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
|
|
|
|
/* Don't touch the control code page used in crash_kexec().*/
|
|
control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
|
|
kexec_mark_range(crashk_res.start, control - 1, protect);
|
|
control += KEXEC_CONTROL_PAGE_SIZE;
|
|
kexec_mark_range(control, crashk_res.end, protect);
|
|
}
|
|
|
|
/* make the memory storing dm crypt keys in/accessible */
|
|
static void kexec_mark_dm_crypt_keys(bool protect)
|
|
{
|
|
unsigned long start_paddr, end_paddr;
|
|
unsigned int nr_pages;
|
|
|
|
if (kexec_crash_image->dm_crypt_keys_addr) {
|
|
start_paddr = kexec_crash_image->dm_crypt_keys_addr;
|
|
end_paddr = start_paddr + kexec_crash_image->dm_crypt_keys_sz - 1;
|
|
nr_pages = (PAGE_ALIGN(end_paddr) - PAGE_ALIGN_DOWN(start_paddr))/PAGE_SIZE;
|
|
if (protect)
|
|
set_memory_np((unsigned long)phys_to_virt(start_paddr), nr_pages);
|
|
else
|
|
__set_memory_prot(
|
|
(unsigned long)phys_to_virt(start_paddr),
|
|
nr_pages,
|
|
__pgprot(_PAGE_PRESENT | _PAGE_NX | _PAGE_RW));
|
|
}
|
|
}
|
|
|
|
void arch_kexec_protect_crashkres(void)
|
|
{
|
|
kexec_mark_crashkres(true);
|
|
kexec_mark_dm_crypt_keys(true);
|
|
}
|
|
|
|
void arch_kexec_unprotect_crashkres(void)
|
|
{
|
|
kexec_mark_dm_crypt_keys(false);
|
|
kexec_mark_crashkres(false);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* During a traditional boot under SME, SME will encrypt the kernel,
|
|
* so the SME kexec kernel also needs to be un-encrypted in order to
|
|
* replicate a normal SME boot.
|
|
*
|
|
* During a traditional boot under SEV, the kernel has already been
|
|
* loaded encrypted, so the SEV kexec kernel needs to be encrypted in
|
|
* order to replicate a normal SEV boot.
|
|
*/
|
|
int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return 0;
|
|
|
|
/*
|
|
* If host memory encryption is active we need to be sure that kexec
|
|
* pages are not encrypted because when we boot to the new kernel the
|
|
* pages won't be accessed encrypted (initially).
|
|
*/
|
|
return set_memory_decrypted((unsigned long)vaddr, pages);
|
|
}
|
|
|
|
void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/*
|
|
* If host memory encryption is active we need to reset the pages back
|
|
* to being an encrypted mapping before freeing them.
|
|
*/
|
|
set_memory_encrypted((unsigned long)vaddr, pages);
|
|
}
|