linux/arch/x86/coco/sev/vc-handle.c
Nikunj A Dadhania 5eb1bcdb6a x86/sev: Improve handling of writes to intercepted TSC MSRs
Currently, when a Secure TSC enabled SNP guest attempts to write to the
intercepted GUEST_TSC_FREQ MSR (a read-only MSR), the guest kernel response
incorrectly implies a VMM configuration error, when in fact it is the usual
VMM configuration to intercept writes to read-only MSRs, unless explicitly
documented.

Modify the intercepted TSC MSR #VC handling:
* Write to GUEST_TSC_FREQ will generate a #GP instead of terminating the
  guest
* Write to MSR_IA32_TSC will generate a #GP instead of silently ignoring it

However, continue to terminate the guest when reading from intercepted
GUEST_TSC_FREQ MSR with Secure TSC enabled, as intercepted reads indicate an
improper VMM configuration for Secure TSC enabled SNP guests.

  [ bp: simplify comment. ]

Fixes: 38cc6495cd ("x86/sev: Prevent GUEST_TSC_FREQ MSR interception for Secure TSC enabled guests")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/20250722074853.22253-1-nikunj@amd.com
2025-08-12 12:33:58 +02:00

1070 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Memory Encryption Support
*
* Copyright (C) 2019 SUSE
*
* Author: Joerg Roedel <jroedel@suse.de>
*/
#define pr_fmt(fmt) "SEV: " fmt
#include <linux/sched/debug.h> /* For show_regs() */
#include <linux/cc_platform.h>
#include <linux/printk.h>
#include <linux/mm_types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/psp-sev.h>
#include <linux/efi.h>
#include <uapi/linux/sev-guest.h>
#include <asm/init.h>
#include <asm/stacktrace.h>
#include <asm/sev.h>
#include <asm/sev-internal.h>
#include <asm/insn-eval.h>
#include <asm/fpu/xcr.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/svm.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/cpuid/api.h>
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
unsigned long vaddr, phys_addr_t *paddr)
{
unsigned long va = (unsigned long)vaddr;
unsigned int level;
phys_addr_t pa;
pgd_t *pgd;
pte_t *pte;
pgd = __va(read_cr3_pa());
pgd = &pgd[pgd_index(va)];
pte = lookup_address_in_pgd(pgd, va, &level);
if (!pte) {
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.cr2 = vaddr;
ctxt->fi.error_code = 0;
if (user_mode(ctxt->regs))
ctxt->fi.error_code |= X86_PF_USER;
return ES_EXCEPTION;
}
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
/* Emulated MMIO to/from encrypted memory not supported */
return ES_UNSUPPORTED;
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
pa |= va & ~page_level_mask(level);
*paddr = pa;
return ES_OK;
}
static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
{
BUG_ON(size > 4);
if (user_mode(ctxt->regs)) {
struct thread_struct *t = &current->thread;
struct io_bitmap *iobm = t->io_bitmap;
size_t idx;
if (!iobm)
goto fault;
for (idx = port; idx < port + size; ++idx) {
if (test_bit(idx, iobm->bitmap))
goto fault;
}
}
return ES_OK;
fault:
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
void vc_forward_exception(struct es_em_ctxt *ctxt)
{
long error_code = ctxt->fi.error_code;
int trapnr = ctxt->fi.vector;
ctxt->regs->orig_ax = ctxt->fi.error_code;
switch (trapnr) {
case X86_TRAP_GP:
exc_general_protection(ctxt->regs, error_code);
break;
case X86_TRAP_UD:
exc_invalid_op(ctxt->regs);
break;
case X86_TRAP_PF:
write_cr2(ctxt->fi.cr2);
exc_page_fault(ctxt->regs, error_code);
break;
case X86_TRAP_AC:
exc_alignment_check(ctxt->regs, error_code);
break;
default:
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
BUG();
}
}
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
unsigned char *buffer)
{
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
}
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
{
char buffer[MAX_INSN_SIZE];
int insn_bytes;
insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
if (insn_bytes == 0) {
/* Nothing could be copied */
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
ctxt->fi.cr2 = ctxt->regs->ip;
return ES_EXCEPTION;
} else if (insn_bytes == -EINVAL) {
/* Effective RIP could not be calculated */
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
ctxt->fi.cr2 = 0;
return ES_EXCEPTION;
}
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
return ES_DECODE_FAILED;
if (ctxt->insn.immediate.got)
return ES_OK;
else
return ES_DECODE_FAILED;
}
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
{
char buffer[MAX_INSN_SIZE];
int res, ret;
res = vc_fetch_insn_kernel(ctxt, buffer);
if (res) {
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = X86_PF_INSTR;
ctxt->fi.cr2 = ctxt->regs->ip;
return ES_EXCEPTION;
}
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
if (ret < 0)
return ES_DECODE_FAILED;
else
return ES_OK;
}
/*
* User instruction decoding is also required for the EFI runtime. Even though
* the EFI runtime is running in kernel mode, it uses special EFI virtual
* address mappings that require the use of efi_mm to properly address and
* decode.
*/
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
{
if (user_mode(ctxt->regs) || mm_is_efi(current->active_mm))
return __vc_decode_user_insn(ctxt);
else
return __vc_decode_kern_insn(ctxt);
}
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
char *dst, char *buf, size_t size)
{
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
/*
* This function uses __put_user() independent of whether kernel or user
* memory is accessed. This works fine because __put_user() does no
* sanity checks of the pointer being accessed. All that it does is
* to report when the access failed.
*
* Also, this function runs in atomic context, so __put_user() is not
* allowed to sleep. The page-fault handler detects that it is running
* in atomic context and will not try to take mmap_sem and handle the
* fault, so additional pagefault_enable()/disable() calls are not
* needed.
*
* The access can't be done via copy_to_user() here because
* vc_write_mem() must not use string instructions to access unsafe
* memory. The reason is that MOVS is emulated by the #VC handler by
* splitting the move up into a read and a write and taking a nested #VC
* exception on whatever of them is the MMIO access. Using string
* instructions here would cause infinite nesting.
*/
switch (size) {
case 1: {
u8 d1;
u8 __user *target = (u8 __user *)dst;
memcpy(&d1, buf, 1);
if (__put_user(d1, target))
goto fault;
break;
}
case 2: {
u16 d2;
u16 __user *target = (u16 __user *)dst;
memcpy(&d2, buf, 2);
if (__put_user(d2, target))
goto fault;
break;
}
case 4: {
u32 d4;
u32 __user *target = (u32 __user *)dst;
memcpy(&d4, buf, 4);
if (__put_user(d4, target))
goto fault;
break;
}
case 8: {
u64 d8;
u64 __user *target = (u64 __user *)dst;
memcpy(&d8, buf, 8);
if (__put_user(d8, target))
goto fault;
break;
}
default:
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
return ES_UNSUPPORTED;
}
return ES_OK;
fault:
if (user_mode(ctxt->regs))
error_code |= X86_PF_USER;
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = error_code;
ctxt->fi.cr2 = (unsigned long)dst;
return ES_EXCEPTION;
}
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
char *src, char *buf, size_t size)
{
unsigned long error_code = X86_PF_PROT;
/*
* This function uses __get_user() independent of whether kernel or user
* memory is accessed. This works fine because __get_user() does no
* sanity checks of the pointer being accessed. All that it does is
* to report when the access failed.
*
* Also, this function runs in atomic context, so __get_user() is not
* allowed to sleep. The page-fault handler detects that it is running
* in atomic context and will not try to take mmap_sem and handle the
* fault, so additional pagefault_enable()/disable() calls are not
* needed.
*
* The access can't be done via copy_from_user() here because
* vc_read_mem() must not use string instructions to access unsafe
* memory. The reason is that MOVS is emulated by the #VC handler by
* splitting the move up into a read and a write and taking a nested #VC
* exception on whatever of them is the MMIO access. Using string
* instructions here would cause infinite nesting.
*/
switch (size) {
case 1: {
u8 d1;
u8 __user *s = (u8 __user *)src;
if (__get_user(d1, s))
goto fault;
memcpy(buf, &d1, 1);
break;
}
case 2: {
u16 d2;
u16 __user *s = (u16 __user *)src;
if (__get_user(d2, s))
goto fault;
memcpy(buf, &d2, 2);
break;
}
case 4: {
u32 d4;
u32 __user *s = (u32 __user *)src;
if (__get_user(d4, s))
goto fault;
memcpy(buf, &d4, 4);
break;
}
case 8: {
u64 d8;
u64 __user *s = (u64 __user *)src;
if (__get_user(d8, s))
goto fault;
memcpy(buf, &d8, 8);
break;
}
default:
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
return ES_UNSUPPORTED;
}
return ES_OK;
fault:
if (user_mode(ctxt->regs))
error_code |= X86_PF_USER;
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = error_code;
ctxt->fi.cr2 = (unsigned long)src;
return ES_EXCEPTION;
}
#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__)
#include "vc-shared.c"
/* Writes to the SVSM CAA MSR are ignored */
static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
{
if (write)
return ES_OK;
regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
return ES_OK;
}
/*
* TSC related accesses should not exit to the hypervisor when a guest is
* executing with Secure TSC enabled, so special handling is required for
* accesses of MSR_IA32_TSC and MSR_AMD64_GUEST_TSC_FREQ.
*/
static enum es_result __vc_handle_secure_tsc_msrs(struct es_em_ctxt *ctxt, bool write)
{
struct pt_regs *regs = ctxt->regs;
u64 tsc;
/*
* Writing to MSR_IA32_TSC can cause subsequent reads of the TSC to
* return undefined values, and GUEST_TSC_FREQ is read-only. Generate
* a #GP on all writes.
*/
if (write) {
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
/*
* GUEST_TSC_FREQ read should not be intercepted when Secure TSC is
* enabled. Terminate the guest if a read is attempted.
*/
if (regs->cx == MSR_AMD64_GUEST_TSC_FREQ)
return ES_VMM_ERROR;
/* Reads of MSR_IA32_TSC should return the current TSC value. */
tsc = rdtsc_ordered();
regs->ax = lower_32_bits(tsc);
regs->dx = upper_32_bits(tsc);
return ES_OK;
}
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct pt_regs *regs = ctxt->regs;
enum es_result ret;
bool write;
/* Is it a WRMSR? */
write = ctxt->insn.opcode.bytes[1] == 0x30;
switch (regs->cx) {
case MSR_SVSM_CAA:
return __vc_handle_msr_caa(regs, write);
case MSR_IA32_TSC:
case MSR_AMD64_GUEST_TSC_FREQ:
if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
return __vc_handle_secure_tsc_msrs(ctxt, write);
break;
default:
break;
}
ghcb_set_rcx(ghcb, regs->cx);
if (write) {
ghcb_set_rax(ghcb, regs->ax);
ghcb_set_rdx(ghcb, regs->dx);
}
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
if ((ret == ES_OK) && !write) {
regs->ax = ghcb->save.rax;
regs->dx = ghcb->save.rdx;
}
return ret;
}
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
{
int trapnr = ctxt->fi.vector;
if (trapnr == X86_TRAP_PF)
native_write_cr2(ctxt->fi.cr2);
ctxt->regs->orig_ax = ctxt->fi.error_code;
do_early_exception(ctxt->regs, trapnr);
}
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
{
long *reg_array;
int offset;
reg_array = (long *)ctxt->regs;
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
if (offset < 0)
return NULL;
offset /= sizeof(long);
return reg_array + offset;
}
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
unsigned int bytes, bool read)
{
u64 exit_code, exit_info_1, exit_info_2;
unsigned long ghcb_pa = __pa(ghcb);
enum es_result res;
phys_addr_t paddr;
void __user *ref;
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
if (ref == (void __user *)-1L)
return ES_UNSUPPORTED;
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
if (res != ES_OK) {
if (res == ES_EXCEPTION && !read)
ctxt->fi.error_code |= X86_PF_WRITE;
return res;
}
exit_info_1 = paddr;
/* Can never be greater than 8 */
exit_info_2 = bytes;
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
}
/*
* The MOVS instruction has two memory operands, which raises the
* problem that it is not known whether the access to the source or the
* destination caused the #VC exception (and hence whether an MMIO read
* or write operation needs to be emulated).
*
* Instead of playing games with walking page-tables and trying to guess
* whether the source or destination is an MMIO range, split the move
* into two operations, a read and a write with only one memory operand.
* This will cause a nested #VC exception on the MMIO address which can
* then be handled.
*
* This implementation has the benefit that it also supports MOVS where
* source _and_ destination are MMIO regions.
*
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
* rare operation. If it turns out to be a performance problem the split
* operations can be moved to memcpy_fromio() and memcpy_toio().
*/
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
unsigned int bytes)
{
unsigned long ds_base, es_base;
unsigned char *src, *dst;
unsigned char buffer[8];
enum es_result ret;
bool rep;
int off;
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
if (ds_base == -1L || es_base == -1L) {
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
src = ds_base + (unsigned char *)ctxt->regs->si;
dst = es_base + (unsigned char *)ctxt->regs->di;
ret = vc_read_mem(ctxt, src, buffer, bytes);
if (ret != ES_OK)
return ret;
ret = vc_write_mem(ctxt, dst, buffer, bytes);
if (ret != ES_OK)
return ret;
if (ctxt->regs->flags & X86_EFLAGS_DF)
off = -bytes;
else
off = bytes;
ctxt->regs->si += off;
ctxt->regs->di += off;
rep = insn_has_rep_prefix(&ctxt->insn);
if (rep)
ctxt->regs->cx -= 1;
if (!rep || ctxt->regs->cx == 0)
return ES_OK;
else
return ES_RETRY;
}
static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct insn *insn = &ctxt->insn;
enum insn_mmio_type mmio;
unsigned int bytes = 0;
enum es_result ret;
u8 sign_byte;
long *reg_data;
mmio = insn_decode_mmio(insn, &bytes);
if (mmio == INSN_MMIO_DECODE_FAILED)
return ES_DECODE_FAILED;
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
if (!reg_data)
return ES_DECODE_FAILED;
}
if (user_mode(ctxt->regs))
return ES_UNSUPPORTED;
switch (mmio) {
case INSN_MMIO_WRITE:
memcpy(ghcb->shared_buffer, reg_data, bytes);
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
break;
case INSN_MMIO_WRITE_IMM:
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
break;
case INSN_MMIO_READ:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
/* Zero-extend for 32-bit operation */
if (bytes == 4)
*reg_data = 0;
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_READ_ZERO_EXTEND:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
/* Zero extend based on operand size */
memset(reg_data, 0, insn->opnd_bytes);
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_READ_SIGN_EXTEND:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
if (bytes == 1) {
u8 *val = (u8 *)ghcb->shared_buffer;
sign_byte = (*val & 0x80) ? 0xff : 0x00;
} else {
u16 *val = (u16 *)ghcb->shared_buffer;
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
}
/* Sign extend based on operand size */
memset(reg_data, sign_byte, insn->opnd_bytes);
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_MOVS:
ret = vc_handle_mmio_movs(ctxt, bytes);
break;
default:
ret = ES_UNSUPPORTED;
break;
}
return ret;
}
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
long val, *reg = vc_insn_get_rm(ctxt);
enum es_result ret;
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
return ES_VMM_ERROR;
if (!reg)
return ES_DECODE_FAILED;
val = *reg;
/* Upper 32 bits must be written as zeroes */
if (val >> 32) {
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
/* Clear out other reserved bits and set bit 10 */
val = (val & 0xffff23ffL) | BIT(10);
/* Early non-zero writes to DR7 are not supported */
if (!data && (val & ~DR7_RESET_VALUE))
return ES_UNSUPPORTED;
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
ghcb_set_rax(ghcb, val);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
if (ret != ES_OK)
return ret;
if (data)
data->dr7 = val;
return ES_OK;
}
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
long *reg = vc_insn_get_rm(ctxt);
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
return ES_VMM_ERROR;
if (!reg)
return ES_DECODE_FAILED;
if (data)
*reg = data->dr7;
else
*reg = DR7_RESET_VALUE;
return ES_OK;
}
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
}
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
enum es_result ret;
ghcb_set_rcx(ghcb, ctxt->regs->cx);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
if (ret != ES_OK)
return ret;
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
return ES_VMM_ERROR;
ctxt->regs->ax = ghcb->save.rax;
ctxt->regs->dx = ghcb->save.rdx;
return ES_OK;
}
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/*
* Treat it as a NOP and do not leak a physical address to the
* hypervisor.
*/
return ES_OK;
}
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/* Treat the same as MONITOR/MONITORX */
return ES_OK;
}
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
enum es_result ret;
ghcb_set_rax(ghcb, ctxt->regs->ax);
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
if (x86_platform.hyper.sev_es_hcall_prepare)
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
if (ret != ES_OK)
return ret;
if (!ghcb_rax_is_valid(ghcb))
return ES_VMM_ERROR;
ctxt->regs->ax = ghcb->save.rax;
/*
* Call sev_es_hcall_finish() after regs->ax is already set.
* This allows the hypervisor handler to overwrite it again if
* necessary.
*/
if (x86_platform.hyper.sev_es_hcall_finish &&
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
return ES_VMM_ERROR;
return ES_OK;
}
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/*
* Calling ecx_alignment_check() directly does not work, because it
* enables IRQs and the GHCB is active. Forward the exception and call
* it later from vc_forward_exception().
*/
ctxt->fi.vector = X86_TRAP_AC;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
struct ghcb *ghcb,
unsigned long exit_code)
{
enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
if (result != ES_OK)
return result;
switch (exit_code) {
case SVM_EXIT_READ_DR7:
result = vc_handle_dr7_read(ghcb, ctxt);
break;
case SVM_EXIT_WRITE_DR7:
result = vc_handle_dr7_write(ghcb, ctxt);
break;
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
result = vc_handle_trap_ac(ghcb, ctxt);
break;
case SVM_EXIT_RDTSC:
case SVM_EXIT_RDTSCP:
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
break;
case SVM_EXIT_RDPMC:
result = vc_handle_rdpmc(ghcb, ctxt);
break;
case SVM_EXIT_INVD:
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
result = ES_UNSUPPORTED;
break;
case SVM_EXIT_CPUID:
result = vc_handle_cpuid(ghcb, ctxt);
break;
case SVM_EXIT_IOIO:
result = vc_handle_ioio(ghcb, ctxt);
break;
case SVM_EXIT_MSR:
result = vc_handle_msr(ghcb, ctxt);
break;
case SVM_EXIT_VMMCALL:
result = vc_handle_vmmcall(ghcb, ctxt);
break;
case SVM_EXIT_WBINVD:
result = vc_handle_wbinvd(ghcb, ctxt);
break;
case SVM_EXIT_MONITOR:
result = vc_handle_monitor(ghcb, ctxt);
break;
case SVM_EXIT_MWAIT:
result = vc_handle_mwait(ghcb, ctxt);
break;
case SVM_EXIT_NPF:
result = vc_handle_mmio(ghcb, ctxt);
break;
default:
/*
* Unexpected #VC exception
*/
result = ES_UNSUPPORTED;
}
return result;
}
static __always_inline bool is_vc2_stack(unsigned long sp)
{
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
}
static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
{
unsigned long sp, prev_sp;
sp = (unsigned long)regs;
prev_sp = regs->sp;
/*
* If the code was already executing on the VC2 stack when the #VC
* happened, let it proceed to the normal handling routine. This way the
* code executing on the VC2 stack can cause #VC exceptions to get handled.
*/
return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
}
static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
{
struct ghcb_state state;
struct es_em_ctxt ctxt;
enum es_result result;
struct ghcb *ghcb;
bool ret = true;
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
result = vc_init_em_ctxt(&ctxt, regs, error_code);
if (result == ES_OK)
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
__sev_put_ghcb(&state);
/* Done - now check the result */
switch (result) {
case ES_OK:
vc_finish_insn(&ctxt);
break;
case ES_UNSUPPORTED:
pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_VMM_ERROR:
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_DECODE_FAILED:
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_EXCEPTION:
vc_forward_exception(&ctxt);
break;
case ES_RETRY:
/* Nothing to do */
break;
default:
pr_emerg("Unknown result in %s():%d\n", __func__, result);
/*
* Emulating the instruction which caused the #VC exception
* failed - can't continue so print debug information
*/
BUG();
}
return ret;
}
static __always_inline bool vc_is_db(unsigned long error_code)
{
return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
}
/*
* Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
* and will panic when an error happens.
*/
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
{
irqentry_state_t irq_state;
/*
* With the current implementation it is always possible to switch to a
* safe stack because #VC exceptions only happen at known places, like
* intercepted instructions or accesses to MMIO areas/IO ports. They can
* also happen with code instrumentation when the hypervisor intercepts
* #DB, but the critical paths are forbidden to be instrumented, so #DB
* exceptions currently also only happen in safe places.
*
* But keep this here in case the noinstr annotations are violated due
* to bug elsewhere.
*/
if (unlikely(vc_from_invalid_context(regs))) {
instrumentation_begin();
panic("Can't handle #VC exception from unsupported context\n");
instrumentation_end();
}
/*
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
*/
if (vc_is_db(error_code)) {
exc_debug(regs);
return;
}
irq_state = irqentry_nmi_enter(regs);
instrumentation_begin();
if (!vc_raw_handle_exception(regs, error_code)) {
/* Show some debug info */
show_regs(regs);
/* Ask hypervisor to sev_es_terminate */
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
/* If that fails and we get here - just panic */
panic("Returned from Terminate-Request to Hypervisor\n");
}
instrumentation_end();
irqentry_nmi_exit(regs, irq_state);
}
/*
* Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
* and will kill the current task with SIGBUS when an error happens.
*/
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
{
/*
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
*/
if (vc_is_db(error_code)) {
noist_exc_debug(regs);
return;
}
irqentry_enter_from_user_mode(regs);
instrumentation_begin();
if (!vc_raw_handle_exception(regs, error_code)) {
/*
* Do not kill the machine if user-space triggered the
* exception. Send SIGBUS instead and let user-space deal with
* it.
*/
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
}
instrumentation_end();
irqentry_exit_to_user_mode(regs);
}
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
{
unsigned long exit_code = regs->orig_ax;
struct es_em_ctxt ctxt;
enum es_result result;
vc_ghcb_invalidate(boot_ghcb);
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
if (result == ES_OK)
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
/* Done - now check the result */
switch (result) {
case ES_OK:
vc_finish_insn(&ctxt);
break;
case ES_UNSUPPORTED:
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_VMM_ERROR:
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_DECODE_FAILED:
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_EXCEPTION:
vc_early_forward_exception(&ctxt);
break;
case ES_RETRY:
/* Nothing to do */
break;
default:
BUG();
}
return true;
fail:
show_regs(regs);
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}