mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-26 04:47:45 +00:00
master
102 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
d222b6e6fb |
tools headers x86 cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
0939bd2fcf |
perf tools improvements and fixes for Linux v6.16:
perf report/top/annotate TUI: - Accept the left arrow key as a Zoom out if done on the first column. - Show if source code toggle status in title, to help spotting bugs with the various disassemblers (capstone, llvm, objdump). - Provide feedback on unhandled hotkeys. Build: - Better inform when certain features are not available with warnings in the build process and in 'perf version --build-options' or 'perf -vv'. perf record: - Improve the --off-cpu code by synthesizing events for switch-out -> switch-in intervals using a BPF program. This can be fine tuned using a --off-cpu-thresh knob. perf report: - Add 'tgid' sort key. perf mem/c2c: - Add 'op', 'cache', 'snoop', 'dtlb' output fields. - Add support for 'ldlat' on AMD IBS (Instruction Based Sampling). perf ftrace: - Use process/session specific trace settings instead of messing with the global ftrace knobs. perf trace: - Implement syscall summary in BPF. - Support --summary-mode=cgroup. - Always print return value for syscalls returning a pid. - The rseq and set_robust_list don't return a pid, just -errno. perf lock contention: - Symbolize zone->lock using BTF. - Add -J/--inject-delay option to estimate impact on application performance by optimization of kernel locking behavior. perf stat: - Improve hybrid support for the NMI watchdog warning. Symbol resolution: - Handle 'u' and 'l' symbols in /proc/kallsyms, resolving some Rust symbols. - Improve Rust demangler. Hardware tracing: Intel PT: - Fix PEBS-via-PT data_src. - Do not default to recording all switch events. - Fix pattern matching with python3 on the SQL viewer script. arm64: - Fixups for the hip08 hha PMU. Vendor events: - Update Intel events/metrics files for alderlake, alderlaken, arrowlake, bonnell, broadwell, broadwellde, broadwellx, cascadelakex, clearwaterforest, elkhartlake, emeraldrapids, grandridge, graniterapids, haswell, haswellx, icelake, icelakex, ivybridge, ivytown, jaketown, lunarlake, meteorlake, nehalemep, nehalemex, rocketlake, sandybridge, sapphirerapids, sierraforest, skylake, skylakex, snowridgex, tigerlake, westmereep-dp, westmereep-sp, westmereep-sx. python support: - Add support for event counts in the python binding, add a counting.py example. perf list: - Display the PMU name associated with a perf metric in JSON. perf test: - Hybrid improvements for metric value validation test. - Fix LBR test by ignoring idle task. - Add AMD IBS sw filter ana d'ldlat' tests. - Add 'perf trace --summary-mode=cgroup' test. - Add tests for the various language symbol demanglers. Miscellaneous. - Allow specifying the cpu an event will be tied using '-e event/cpu=N/'. - Sync various headers with the kernel sources. - Add annotations to use clang's -Wthread-safety and fix some problems it detected. - Make dump_stack() use perf's symbol resolution to provide better backtraces. - Intel TPEBS support cleanups and fixes. TPEBS stands for Timed PEBS (Precision Event-Based Sampling), that adds timing info, the retirement latency of instructions. - Various memory allocation (some detected by ASAN) and reference counting fixes. - Add a 8-byte aligned PERF_RECORD_COMPRESSED2 to replace PERF_RECORD_COMPRESSED. - Skip unsupported event types in perf.data files, don't stop when finding one. - Improve lookups using hashmaps and binary searches. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCaD9ViwAKCRCyPKLppCJ+ JzOfAQDXlukhPQyuJ4j1ie0x1QO4jalloMbG1Bkp3hn6yjxafAD9Ha5wr+dwnAj4 FfxOVqua29r8Htn4aGahXZ0nnlVp9Ac= =bwgD -----END PGP SIGNATURE----- Merge tag 'perf-tools-for-v6.16-1-2025-06-03' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools Pull perf tools updates from Arnaldo Carvalho de Melo: "perf report/top/annotate TUI: - Accept the left arrow key as a Zoom out if done on the first column - Show if source code toggle status in title, to help spotting bugs with the various disassemblers (capstone, llvm, objdump) - Provide feedback on unhandled hotkeys Build: - Better inform when certain features are not available with warnings in the build process and in 'perf version --build-options' or 'perf -vv' perf record: - Improve the --off-cpu code by synthesizing events for switch-out -> switch-in intervals using a BPF program. This can be fine tuned using a --off-cpu-thresh knob perf report: - Add 'tgid' sort key perf mem/c2c: - Add 'op', 'cache', 'snoop', 'dtlb' output fields - Add support for 'ldlat' on AMD IBS (Instruction Based Sampling) perf ftrace: - Use process/session specific trace settings instead of messing with the global ftrace knobs perf trace: - Implement syscall summary in BPF - Support --summary-mode=cgroup - Always print return value for syscalls returning a pid - The rseq and set_robust_list don't return a pid, just -errno perf lock contention: - Symbolize zone->lock using BTF - Add -J/--inject-delay option to estimate impact on application performance by optimization of kernel locking behavior perf stat: - Improve hybrid support for the NMI watchdog warning Symbol resolution: - Handle 'u' and 'l' symbols in /proc/kallsyms, resolving some Rust symbols - Improve Rust demangler Hardware tracing: Intel PT: - Fix PEBS-via-PT data_src - Do not default to recording all switch events - Fix pattern matching with python3 on the SQL viewer script arm64: - Fixups for the hip08 hha PMU Vendor events: - Update Intel events/metrics files for alderlake, alderlaken, arrowlake, bonnell, broadwell, broadwellde, broadwellx, cascadelakex, clearwaterforest, elkhartlake, emeraldrapids, grandridge, graniterapids, haswell, haswellx, icelake, icelakex, ivybridge, ivytown, jaketown, lunarlake, meteorlake, nehalemep, nehalemex, rocketlake, sandybridge, sapphirerapids, sierraforest, skylake, skylakex, snowridgex, tigerlake, westmereep-dp, westmereep-sp, westmereep-sx python support: - Add support for event counts in the python binding, add a counting.py example perf list: - Display the PMU name associated with a perf metric in JSON perf test: - Hybrid improvements for metric value validation test - Fix LBR test by ignoring idle task - Add AMD IBS sw filter ana d'ldlat' tests - Add 'perf trace --summary-mode=cgroup' test - Add tests for the various language symbol demanglers Miscellaneous: - Allow specifying the cpu an event will be tied using '-e event/cpu=N/' - Sync various headers with the kernel sources - Add annotations to use clang's -Wthread-safety and fix some problems it detected - Make dump_stack() use perf's symbol resolution to provide better backtraces - Intel TPEBS support cleanups and fixes. TPEBS stands for Timed PEBS (Precision Event-Based Sampling), that adds timing info, the retirement latency of instructions - Various memory allocation (some detected by ASAN) and reference counting fixes - Add a 8-byte aligned PERF_RECORD_COMPRESSED2 to replace PERF_RECORD_COMPRESSED - Skip unsupported event types in perf.data files, don't stop when finding one - Improve lookups using hashmaps and binary searches" * tag 'perf-tools-for-v6.16-1-2025-06-03' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools: (206 commits) perf callchain: Always populate the addr_location map when adding IP perf lock contention: Reject more than 10ms delays for safety perf trace: Set errpid to false for rseq and set_robust_list perf symbol: Move demangling code out of symbol-elf.c perf trace: Always print return value for syscalls returning a pid perf script: Print PERF_AUX_FLAG_COLLISION flag perf mem: Show absolute percent in mem_stat output perf mem: Display sort order only if it's available perf mem: Describe overhead calculation in brief perf record: Fix incorrect --user-regs comments Revert "perf thread: Ensure comm_lock held for comm_list" perf test trace_summary: Skip --bpf-summary tests if no libbpf perf test intel-pt: Skip jitdump test if no libelf perf intel-tpebs: Avoid race when evlist is being deleted perf test demangle-java: Don't segv if demangling fails perf symbol: Fix use-after-free in filename__read_build_id perf pmu: Avoid segv for missing name/alias_name in wildcarding perf machine: Factor creating a "live" machine out of dwarf-unwind perf test: Add AMD IBS sw filter test perf mem: Count L2 HITM for c2c statistic ... |
||
![]() |
7f9039c524 |
Generic:
* Clean up locking of all vCPUs for a VM by using the *_nest_lock() family of functions, and move duplicated code to virt/kvm/. kernel/ patches acked by Peter Zijlstra. * Add MGLRU support to the access tracking perf test. ARM fixes: * Make the irqbypass hooks resilient to changes in the GSI<->MSI routing, avoiding behind stale vLPI mappings being left behind. The fix is to resolve the VGIC IRQ using the host IRQ (which is stable) and nuking the vLPI mapping upon a routing change. * Close another VGIC race where vCPU creation races with VGIC creation, leading to in-flight vCPUs entering the kernel w/o private IRQs allocated. * Fix a build issue triggered by the recently added workaround for Ampere's AC04_CPU_23 erratum. * Correctly sign-extend the VA when emulating a TLBI instruction potentially targeting a VNCR mapping. * Avoid dereferencing a NULL pointer in the VGIC debug code, which can happen if the device doesn't have any mapping yet. s390: * Fix interaction between some filesystems and Secure Execution * Some cleanups and refactorings, preparing for an upcoming big series x86: * Wait for target vCPU to acknowledge KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN. * Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM. * Refine and harden handling of spurious faults. * Add support for ALLOWED_SEV_FEATURES. * Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y. * Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits. * Don't account temporary allocations in sev_send_update_data(). * Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold. * Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX. * Advertise support to userspace for WRMSRNS and PREFETCHI. * Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing. * Add a module param to control and enumerate support for device posted interrupts. * Fix a potential overflow with nested virt on Intel systems running 32-bit kernels. * Flush shadow VMCSes on emergency reboot. * Add support for SNP to the various SEV selftests. * Add a selftest to verify fastops instructions via forced emulation. * Refine and optimize KVM's software processing of the posted interrupt bitmap, and share the harvesting code between KVM and the kernel's Posted MSI handler -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmg9TjwUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroOUxQf7B7nnWqIKd7jSkGzSD6YsSX9TXktr 2tJIOfWM3zNYg5GRCidg+m4Y5+DqQWd3Hi5hH2P9wUw7RNuOjOFsDe+y0VBr8ysE ve39t/yp+mYalNmHVFl8s3dBDgrIeGKiz+Wgw3zCQIBZ18rJE1dREhv37RlYZ3a2 wSvuObe8sVpCTyKIowDs1xUi7qJUBoopMSuqfleSHawRrcgCpV99U8/KNFF5plLH 7fXOBAHHniVCVc+mqQN2wxtVJDhST+U3TaU4GwlKy9Yevr+iibdOXffveeIgNEU4 D6q1F2zKp6UdV3+p8hxyaTTbiCVDqsp9WOgY/0I/f+CddYn0WVZgOlR+ow== =mYFL -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull more kvm updates from Paolo Bonzini: Generic: - Clean up locking of all vCPUs for a VM by using the *_nest_lock() family of functions, and move duplicated code to virt/kvm/. kernel/ patches acked by Peter Zijlstra - Add MGLRU support to the access tracking perf test ARM fixes: - Make the irqbypass hooks resilient to changes in the GSI<->MSI routing, avoiding behind stale vLPI mappings being left behind. The fix is to resolve the VGIC IRQ using the host IRQ (which is stable) and nuking the vLPI mapping upon a routing change - Close another VGIC race where vCPU creation races with VGIC creation, leading to in-flight vCPUs entering the kernel w/o private IRQs allocated - Fix a build issue triggered by the recently added workaround for Ampere's AC04_CPU_23 erratum - Correctly sign-extend the VA when emulating a TLBI instruction potentially targeting a VNCR mapping - Avoid dereferencing a NULL pointer in the VGIC debug code, which can happen if the device doesn't have any mapping yet s390: - Fix interaction between some filesystems and Secure Execution - Some cleanups and refactorings, preparing for an upcoming big series x86: - Wait for target vCPU to ack KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to fix a race between AP destroy and VMRUN - Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM - Refine and harden handling of spurious faults - Add support for ALLOWED_SEV_FEATURES - Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y - Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features that utilize those bits - Don't account temporary allocations in sev_send_update_data() - Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX - Advertise support to userspace for WRMSRNS and PREFETCHI - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing - Add a module param to control and enumerate support for device posted interrupts - Fix a potential overflow with nested virt on Intel systems running 32-bit kernels - Flush shadow VMCSes on emergency reboot - Add support for SNP to the various SEV selftests - Add a selftest to verify fastops instructions via forced emulation - Refine and optimize KVM's software processing of the posted interrupt bitmap, and share the harvesting code between KVM and the kernel's Posted MSI handler" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits) rtmutex_api: provide correct extern functions KVM: arm64: vgic-debug: Avoid dereferencing NULL ITE pointer KVM: arm64: vgic-init: Plug vCPU vs. VGIC creation race KVM: arm64: Unmap vLPIs affected by changes to GSI routing information KVM: arm64: Resolve vLPI by host IRQ in vgic_v4_unset_forwarding() KVM: arm64: Protect vLPI translation with vgic_irq::irq_lock KVM: arm64: Use lock guard in vgic_v4_set_forwarding() KVM: arm64: Mask out non-VA bits from TLBI VA* on VNCR invalidation arm64: sysreg: Drag linux/kconfig.h to work around vdso build issue KVM: s390: Simplify and move pv code KVM: s390: Refactor and split some gmap helpers KVM: s390: Remove unneeded srcu lock s390: Remove unneeded includes s390/uv: Improve splitting of large folios that cannot be split while dirty s390/uv: Always return 0 from s390_wiggle_split_folio() if successful s390/uv: Don't return 0 from make_hva_secure() if the operation was not successful rust: add helper for mutex_trylock RISC-V: KVM: use kvm_trylock_all_vcpus when locking all vCPUs KVM: arm64: use kvm_trylock_all_vcpus when locking all vCPUs x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementation ... |
||
![]() |
ebd38b26ec |
KVM x86 misc changes for 6.16:
- Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX. - Advertise support to userspace for WRMSRNS and PREFETCHI. - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing. - Add a module param to control and enumerate support for device posted interrupts. - Misc cleanups. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmgwmHsACgkQOlYIJqCj N/2fYhAAiwKkqQpOWLcGjjezDTnpMqDDbHCffroq0Ttmqfg/cuul1oyZax+9fxBO 203HUi5VKcG7uAGSpLcMFkPUs9hKnaln2lsDaQD+AnGucdj+JKF5p3INCsSYCo9N LVRjRZWtZocxJwHSHX9gU8om0pJ5fBCBG2+7+7XhWRaIqCpJe5k944JotiiOkgZ4 5sXeITkN2kouFVMI8eD4wQGNXxRxs837SYUlwCnoD3VuuBesOZuEhz/CEL9l8vNY keXBLPg7bSW53clKfquNKwXDQRephnZaYoexDebUd+OlZphGhTIPh+C75xPQLWSi aYg6W9XDu3TChf4LPxHnJLwLg/rjeKNQARcxrnb3XLpPAtx3i2cKU8pDPhnd4qn0 +YV5H0dato8bbe+oClGv+oIolM01qfI9SJVoaEhTPu3Rdw9cCQSVFn5t32vG3Vab FVxX+seV3+XTmVveD4cjiiMbqtNADwZ/PmHNAi9QCl46DgHR++MLfRtjYuGo1koL QOmCg2fWOFYtQT6XPJqZxp1SHYxuawrB4qcO9FNyxTuMChoslYoLAr3mBUj0DvwL fdXNof74Ccj8OK9o3uCPOXS92pZz92rz/edy/XmYiCmO+VEwBJFR6IdginZMPX11 UAc4mAC+KkDTvOcKPPIWEXArOsfQMFKefi+bPOeWUx9/nqpcVws= =Vs9P -----END PGP SIGNATURE----- Merge tag 'kvm-x86-misc-6.16' of https://github.com/kvm-x86/linux into HEAD KVM x86 misc changes for 6.16: - Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU IBPB, between SVM and VMX. - Advertise support to userspace for WRMSRNS and PREFETCHI. - Rescan I/O APIC routes after handling EOI that needed to be intercepted due to the old/previous routing, but not the new/current routing. - Add a module param to control and enumerate support for device posted interrupts. - Misc cleanups. |
||
![]() |
444f03645f |
tools headers x86 cpufeatures: Sync with the kernel sources to pick ZEN6 and Indirect Target Selection (ITS) bits
To pick the changes from: |
||
![]() |
24035886d7 |
Linux 6.15-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCgA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmgX1CgeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGxiIH/A7LHlVatGEQgRFi 0JALDgcuGTMtMU1qD43rv8Z1GXqTpCAlaBt9D1C9cUH/86MGyBTVRWgVy0wkaU2U 8QSfFWQIbrdaIzelHtzmAv5IDtb+KrcX1iYGLcMb6ZYaWkv8/CMzMX1nkgxEr1QT 37Xo3/F17yJumAdNQxdRhVLGy2d3X5rScecpufwh97sMwoddllMCDs2LIoeSAYpG 376/wzni09G2fADa8MEKqcaMue4qcf0FOo/gOkT8YwFGSZLKa6uumlBLg04QoCt0 foK2vfcci1q4H4ZbCu3uQESYGLQHY0f2ICDCwC3m25VF9a81TmlbC3MLum3vhmKe RtLDcXg= =xyaI -----END PGP SIGNATURE----- Merge tag 'v6.15-rc5' into x86/cpu, to resolve conflicts Conflicts: tools/arch/x86/include/asm/cpufeatures.h Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
9a7cb00a8f |
x86/cpufeatures: Define X86_FEATURE_AMD_IBRS_SAME_MODE
Per the APM [1]: Some processors, identified by CPUID Fn8000_0008_EBX[IbrsSameMode] (bit 19) = 1, provide additional speculation limits. For these processors, when IBRS is set, indirect branch predictions are not influenced by any prior indirect branches, regardless of mode (CPL and guest/host) and regardless of whether the prior indirect branches occurred before or after the setting of IBRS. This is referred to as Same Mode IBRS. Define this feature bit, which will be used by KVM to determine if an IBPB is required on nested VM-exits in SVM. [1] AMD64 Architecture Programmer's Manual Pub. 40332, Rev 4.08 - April 2024, Volume 2, 3.2.9 Speculation Control MSRs Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Reviewed-by: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20250221163352.3818347-2-yosry.ahmed@linux.dev Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
3aba0b40ca |
x86/cpufeatures: Shorten X86_FEATURE_AMD_HETEROGENEOUS_CORES
Shorten X86_FEATURE_AMD_HETEROGENEOUS_CORES to X86_FEATURE_AMD_HTR_CORES to make the last column aligned consistently in the whole file. No functional changes. Suggested-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/20250415175410.2944032-4-xin@zytor.com |
||
![]() |
13327fada7 |
x86/cpufeatures: Shorten X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT
Shorten X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT to X86_FEATURE_CLEAR_BHB_VMEXIT to make the last column aligned consistently in the whole file. There's no need to explain in the name what the mitigation does. No functional changes. Suggested-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/20250415175410.2944032-3-xin@zytor.com |
||
![]() |
282cc5b676 |
x86/cpufeatures: Clean up formatting
It is a special file with special formatting so remove one whitespace damage and format newer defines like the rest. No functional changes. [ Xin: Do the same to tools/arch/x86/include/asm/cpufeatures.h. ] Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/20250415175410.2944032-2-xin@zytor.com |
||
![]() |
dd86a1d013 |
x86/bugs: Remove X86_BUG_MMIO_UNKNOWN
Whack this thing because: - the "unknown" handling is done only for this vuln and not for the others - it doesn't do anything besides reporting things differently. It doesn't apply any mitigations - it is simply causing unnecessary complications to the code which don't bring anything besides maintenance overhead to what is already a very nasty spaghetti pile - all the currently unaffected CPUs can also be in "unknown" status so there's no need for special handling here so get rid of it. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: David Kaplan <david.kaplan@amd.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Link: https://lore.kernel.org/r/20250414150951.5345-1-bp@kernel.org |
||
![]() |
847f1403d3 |
tools headers: Update the x86 headers with the kernel sources
To pick up the changes in: |
||
![]() |
906174776c |
- Some preparatory work to convert the mitigations machinery to mitigating
attack vectors instead of single vulnerabilities - Untangle and remove a now unneeded X86_FEATURE_USE_IBPB flag - Add support for a Zen5-specific SRSO mitigation - Cleanups and minor improvements -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmfixS0ACgkQEsHwGGHe VUpi1xAAgvH2u8Eo8ibT5dABQpD65w3oQiykO+9aDpObG9w9beDVGlld8DJE61Rz 6tcE0Clp2H/tMcCbn8zXIJ92TQ3wIX/85uZwLi1VEM1Tx7A6VtAbPv8WKfZE3FCX 9v92HRKnK3ql+A2ZR+oyy+/8RedUmia7y7/bXH1H7Zf2uozoKkmq5cQnwfq5iU4A qNiKuvSlQwjZ8Zz6Ax1ugHUkE4R7mlKh8rccLXl4+mVr63/lkPHSY3OFTjcYf4HW Ir92N86Spfo0/l0vsOOsWoYKmoaiVP7ouJh7YbKR3B0BGN0pt2MT476mehkEs427 m4J6XhRKhIrsYmzEkLvvpsg12zO4/PKk8BEYNS7YPYlRaOwjV4ivyFS2aY6e55rh yUHyo9s+16f/Mp+/fNFXll3mdMxYBioPWh3M191nJkdfyKMrtf0MdKPRibaJB8wH yMF4D1gMx+hFbs0/VOS6dtqD9DKW7VgPg0LW+RysfhnLTuFFb5iBcH6Of7l7Z/Ca vVK+JxrhB1EDVI1+MKnESKPF9c6j3DRa2xrQHi/XYje1TGqnQ1v4CmsEObYBuJDN 9M9t4QLzNuA/DA5tS7cxxtQ3YUthuJjPLcO4EVHOCvnqCAxkzp0i3dVMUr+YISl+ 2yFqaZdTt8s8FjTI21LOyuloCo30ZLlzaorFa0lp2cIyYup+1vg= =btX/ -----END PGP SIGNATURE----- Merge tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 speculation mitigation updates from Borislav Petkov: - Some preparatory work to convert the mitigations machinery to mitigating attack vectors instead of single vulnerabilities - Untangle and remove a now unneeded X86_FEATURE_USE_IBPB flag - Add support for a Zen5-specific SRSO mitigation - Cleanups and minor improvements * tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/bugs: Make spectre user default depend on MITIGATION_SPECTRE_V2 x86/bugs: Use the cpu_smt_possible() helper instead of open-coded code x86/bugs: Add AUTO mitigations for mds/taa/mmio/rfds x86/bugs: Relocate mds/taa/mmio/rfds defines x86/bugs: Add X86_BUG_SPECTRE_V2_USER x86/bugs: Remove X86_FEATURE_USE_IBPB KVM: nVMX: Always use IBPB to properly virtualize IBRS x86/bugs: Use a static branch to guard IBPB on vCPU switch x86/bugs: Remove the X86_FEATURE_USE_IBPB check in ib_prctl_set() x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation() x86/bugs: Move the X86_FEATURE_USE_IBPB check into callers x86/bugs: KVM: Add support for SRSO_MSR_FIX |
||
![]() |
8f97566c8a |
x86/cpufeatures: Remove {disabled,required}-features.h
The functionalities of {disabled,required}-features.h have been replaced with the auto-generated generated/<asm/cpufeaturemasks.h> header. Thus they are no longer needed and can be removed. None of the macros defined in {disabled,required}-features.h is used in tools, delete them too. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250305184725.3341760-4-xin@zytor.com |
||
![]() |
8f64eee70c |
x86/bugs: Remove X86_FEATURE_USE_IBPB
X86_FEATURE_USE_IBPB was introduced in:
|
||
![]() |
e120829dbf |
tools headers: Sync x86 kvm and cpufeature headers with the kernel
To pick up the changes in this cset: |
||
![]() |
104edc6efc |
x86/cpufeatures: Rename X86_FEATURE_FAST_CPPC to have AMD prefix
This feature is an AMD unique feature of some processors, so put AMD into the name. Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20241025171459.1093-2-mario.limonciello@amd.com |
||
![]() |
f6d9883f8e |
tools/include: Sync x86 headers with the kernel sources
To pick up changes from: |
||
![]() |
8f21164321 |
tools headers x86 cpufeatures: Sync with the kernel sources to pick BHI mitigation changes
To pick the changes from: |
||
![]() |
58e1b92df4 |
tools/include: Sync x86 CPU feature headers with the kernel sources
To pick up the changes from: |
||
![]() |
38b334fc76 |
- Add the x86 part of the SEV-SNP host support. This will allow the
kernel to be used as a KVM hypervisor capable of running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal of the AMD confidential computing side, providing the most comprehensive confidential computing environment up to date. This is the x86 part and there is a KVM part which did not get ready in time for the merge window so latter will be forthcoming in the next cycle. - Rework the early code's position-dependent SEV variable references in order to allow building the kernel with clang and -fPIE/-fPIC and -mcmodel=kernel - The usual set of fixes, cleanups and improvements all over the place -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvH0wACgkQEsHwGGHe VUrzmA//VS/n6dhHRnm/nAGngr4PeegkgV1OhyKYFfiZ272rT6P9QvblQrgcY0dc Ij1DOhEKlke51pTHvMOQ33B3P4Fuc0mx3dpCLY0up5V26kzQiKCjRKEkC4U1bcw8 W4GqMejaR89bE14bYibmwpSib9T/uVsV65eM3xf1iF5UvsnoUaTziymDoy+nb43a B1pdd5vcl4mBNqXeEvt0qjg+xkMLpWUI9tJDB8mbMl/cnIFGgMZzBaY8oktHSROK QpuUnKegOgp1RXpfLbNjmZ2Q4Rkk4MNazzDzWq3EIxaRjXL3Qp507ePK7yeA2qa0 J3jCBQc9E2j7lfrIkUgNIzOWhMAXM2YH5bvH6UrIcMi1qsWJYDmkp2MF1nUedjdf Wj16/pJbeEw1aKKIywJGwsmViSQju158vY3SzXG83U/A/Iz7zZRHFmC/ALoxZptY Bi7VhfcOSpz98PE3axnG8CvvxRDWMfzBr2FY1VmQbg6VBNo1Xl1aP/IH1I8iQNKg /laBYl/qP+1286TygF1lthYROb1lfEIJprgi2xfO6jVYUqPb7/zq2sm78qZRfm7l 25PN/oHnuidfVfI/H3hzcGubjOG9Zwra8WWYBB2EEmelf21rT0OLqq+eS4T6pxFb GNVfc0AzG77UmqbrpkAMuPqL7LrGaSee4NdU3hkEdSphlx1/YTo= =c1ps -----END PGP SIGNATURE----- Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Add the x86 part of the SEV-SNP host support. This will allow the kernel to be used as a KVM hypervisor capable of running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal of the AMD confidential computing side, providing the most comprehensive confidential computing environment up to date. This is the x86 part and there is a KVM part which did not get ready in time for the merge window so latter will be forthcoming in the next cycle. - Rework the early code's position-dependent SEV variable references in order to allow building the kernel with clang and -fPIE/-fPIC and -mcmodel=kernel - The usual set of fixes, cleanups and improvements all over the place * tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/sev: Disable KMSAN for memory encryption TUs x86/sev: Dump SEV_STATUS crypto: ccp - Have it depend on AMD_IOMMU iommu/amd: Fix failure return from snp_lookup_rmpentry() x86/sev: Fix position dependent variable references in startup code crypto: ccp: Make snp_range_list static x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT Documentation: virt: Fix up pre-formatted text block for SEV ioctls crypto: ccp: Add the SNP_SET_CONFIG command crypto: ccp: Add the SNP_COMMIT command crypto: ccp: Add the SNP_PLATFORM_STATUS command x86/cpufeatures: Enable/unmask SEV-SNP CPU feature KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown crypto: ccp: Handle legacy SEV commands when SNP is enabled crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled crypto: ccp: Handle the legacy TMR allocation when SNP is enabled x86/sev: Introduce an SNP leaked pages list crypto: ccp: Provide an API to issue SEV and SNP commands ... |
||
![]() |
720c857907 |
Support for x86 Fast Return and Event Delivery (FRED):
FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs. the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are know outstanding problems. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3 V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ 8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU 6/O8nwZy49ckmQ== =Ib7w -----END PGP SIGNATURE----- Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 FRED support from Thomas Gleixner: "Support for x86 Fast Return and Event Delivery (FRED). FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are no outstanding problems" * tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/fred: Fix init_task thread stack pointer initialization MAINTAINERS: Add a maintainer entry for FRED x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly x86/fred: Invoke FRED initialization code to enable FRED x86/fred: Add FRED initialization functions x86/syscall: Split IDT syscall setup code into idt_syscall_init() KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled x86/traps: Add sysvec_install() to install a system interrupt handler x86/fred: FRED entry/exit and dispatch code x86/fred: Add a machine check entry stub for FRED x86/fred: Add a NMI entry stub for FRED x86/fred: Add a debug fault entry stub for FRED x86/idtentry: Incorporate definitions/declarations of the FRED entries x86/fred: Make exc_page_fault() work for FRED x86/fred: Allow single-step trap and NMI when starting a new task x86/fred: No ESPFIX needed when FRED is enabled ... |
||
![]() |
15d6daad8f |
tools headers x86 cpufeatures: Sync with the kernel sources to pick TDX, Zen, APIC MSR fence changes
To pick the changes from: |
||
![]() |
b6e0f6666f |
x86/cpufeatures: Add SEV-SNP CPU feature
Add CPU feature detection for Secure Encrypted Virtualization with Secure Nested Paging. This feature adds a strong memory integrity protection to help prevent malicious hypervisor-based attacks like data replay, memory re-mapping, and more. Since enabling the SNP CPU feature imposes a number of additional requirements on host initialization and handling legacy firmware APIs for SEV/SEV-ES guests, only introduce the CPU feature bit so that the relevant handling can be added, but leave it disabled via a disabled-features mask. Once all the necessary changes needed to maintain legacy SEV/SEV-ES support are introduced in subsequent patches, the SNP feature bit will be unmasked/enabled. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Jarkko Sakkinen <jarkko@profian.com> Signed-off-by: Ashish Kalra <Ashish.Kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-2-michael.roth@amd.com |
||
![]() |
51c158f7aa |
x86/cpufeatures: Add the CPU feature bit for FRED
Any FRED enabled CPU will always have the following features as its baseline: 1) LKGS, load attributes of the GS segment but the base address into the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor cache. 2) WRMSRNS, non-serializing WRMSR for faster MSR writes. Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20231205105030.8698-7-xin3.li@intel.com |
||
![]() |
a4cb5ece14 |
x86/cpufeatures,opcode,msr: Add the WRMSRNS instruction support
WRMSRNS is an instruction that behaves exactly like WRMSR, with the only difference being that it is not a serializing instruction by default. Under certain conditions, WRMSRNS may replace WRMSR to improve performance. Add its CPU feature bit, opcode to the x86 opcode map, and an always inline API __wrmsrns() to embed WRMSRNS into the code. Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Shan Kang <shan.kang@intel.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231205105030.8698-2-xin3.li@intel.com |
||
![]() |
bef91c28f2 |
- Add synthetic X86_FEATURE flags for the different AMD Zen generations
and use them everywhere instead of ad-hoc family/model checks. Drop an ancient AMD errata checking facility as a result - Fix a fragile initcall ordering in intel_epb - Do not issue the MFENCE+LFENCE barrier for the TSC deadline and X2APIC MSRs on AMD as it is not needed there -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmWalaEACgkQEsHwGGHe VUrDYg/+LjqjJv3OcVZZkx9WVds0kmBCajrf9JxRYgiSTIpiL/usH0QOms8FjHQ6 tYcukj+RJDk2nP5ho3Vs1WNA0mvU0nxC+99u0Ph4zugSMSl0XGOA+YxxTBPXmDGB 1IxH9IloMFPhwDoQ4/ear0IvjIrfE4ESV2Dafe45WzVSdG7/0ijurisaH1kPYraP wzuNn142Tk0eicaam30sdThXZraO9Paz5MOYbpYEAU4lxNtdH85sQa+Xk0tqJcjD IwEcQJLE6n3r8t/lNMIlhAsmOVGrD5WltDH9HvEmKT4mzTumSc9DLu3YHHRWyx2K TMpRYHlVuvGJkJV3CYXi8fhTsV6uMsHEe1+xZ/Rf0iQzOG25v+zen8WK4REWOr/o VmprG3j7LkEFeeH3CqSOtVSbYmxFILQb6pAbzSlI907b5C6PaEYuudjVXuX01urN IG3krWHGMJ3AWKDV2Z3hW1TYtbLJyqKPNhqcBJiOuWyCe8cQXfKQBTpP5HuAEZEd UXc4QpStMvuPqxyQhlPSTAtY7L/UVhBH8oHoXPYiBmcCo7VtJYW6HH9z1ISUc1av FgKdkpx6vaJiXlD/wI/B5T1oViWQ8udhHpit99rhKl623e7WC2rdguAOVDLn/YIe cZB+R05yknBWOavH0kcuz9R9xYKMSBcEsRnBKmeOg9R+tTK/7BM= =afTN -----END PGP SIGNATURE----- Merge tag 'x86_cpu_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu feature updates from Borislav Petkov: - Add synthetic X86_FEATURE flags for the different AMD Zen generations and use them everywhere instead of ad-hoc family/model checks. Drop an ancient AMD errata checking facility as a result - Fix a fragile initcall ordering in intel_epb - Do not issue the MFENCE+LFENCE barrier for the TSC deadline and X2APIC MSRs on AMD as it is not needed there * tag 'x86_cpu_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/CPU/AMD: Add X86_FEATURE_ZEN1 x86/CPU/AMD: Drop now unused CPU erratum checking function x86/CPU/AMD: Get rid of amd_erratum_1485[] x86/CPU/AMD: Get rid of amd_erratum_400[] x86/CPU/AMD: Get rid of amd_erratum_383[] x86/CPU/AMD: Get rid of amd_erratum_1054[] x86/CPU/AMD: Move the DIV0 bug detection to the Zen1 init function x86/CPU/AMD: Move Zenbleed check to the Zen2 init function x86/CPU/AMD: Rename init_amd_zn() to init_amd_zen_common() x86/CPU/AMD: Call the spectral chicken in the Zen2 init function x86/CPU/AMD: Move erratum 1076 fix into the Zen1 init function x86/CPU/AMD: Move the Zen3 BTC_NO detection to the Zen3 init function x86/CPU/AMD: Carve out the erratum 1386 fix x86/CPU/AMD: Add ZenX generations flags x86/cpu/intel_epb: Don't rely on link order x86/barrier: Do not serialize MSR accesses on AMD |
||
![]() |
232afb5578 |
x86/CPU/AMD: Add X86_FEATURE_ZEN1
Add a synthetic feature flag specifically for first generation Zen
machines. There's need to have a generic flag for all Zen generations so
make X86_FEATURE_ZEN be that flag.
Fixes:
|
||
![]() |
c23708f376 |
tools headers: Update tools's copy of x86/asm headers
tldr; Just FYI, I'm carrying this on the perf tools tree. Full explanation: There used to be no copies, with tools/ code using kernel headers directly. From time to time tools/perf/ broke due to legitimate kernel hacking. At some point Linus complained about such direct usage. Then we adopted the current model. The way these headers are used in perf are not restricted to just including them to compile something. There are sometimes used in scripts that convert defines into string tables, etc, so some change may break one of these scripts, or new MSRs may use some different #define pattern, etc. E.g.: $ ls -1 tools/perf/trace/beauty/*.sh | head -5 tools/perf/trace/beauty/arch_errno_names.sh tools/perf/trace/beauty/drm_ioctl.sh tools/perf/trace/beauty/fadvise.sh tools/perf/trace/beauty/fsconfig.sh tools/perf/trace/beauty/fsmount.sh $ $ tools/perf/trace/beauty/fadvise.sh static const char *fadvise_advices[] = { [0] = "NORMAL", [1] = "RANDOM", [2] = "SEQUENTIAL", [3] = "WILLNEED", [4] = "DONTNEED", [5] = "NOREUSE", }; $ The tools/perf/check-headers.sh script, part of the tools/ build process, points out changes in the original files. So its important not to touch the copies in tools/ when doing changes in the original kernel headers, that will be done later, when check-headers.sh inform about the change to the perf tools hackers. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20231121225650.390246-8-namhyung@kernel.org |
||
![]() |
bd7fe98b35 |
KVM: x86: SVM changes for 6.6:
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTue8YSHHNlYW5qY0Bn b29nbGUuY29tAAoJEGCRIgFNDBL5aqUP/jF7DyMXyQGYMKoQhFxWyGRhfqV8Ov8i 7sUpEKSx5WTxOsFHBgdGeNU+m9eBJHWVmrJM9imI4OCUvJmxasRRsnyhvEUvBIUE amQT45aVm2xqjRNRUkOCUUHiDKtUdwpSRlOSyhnDTKmlMbNoH+fO3SLJ1oB/fsae wnmyiF98j2vT/5mD6F/F87hlNMq4CqG/OZWJ9Kk8GfvfJpUcC8r/H0NsMgSMF2/L Q+Hn+r/XDfMSrBiyEzevWyPbJi7nL+WF9EQDJASf+aAkmFMHK6AU4XNITwVw3XcZ FGtSP/NzvnePhd5gqtbiW9hRQkWcKjqnydtyI3ZDVVBpEbJ6OJn3+UFoLZ8NoSE+ D3EDs1PA7Qjty6kYx9/NZpXz5BAMd9mikkTL7PTrlrAZAEimToqoHx7mBjmLp4E+ diKrpG2w1OTtO/Pafi0z0zZN6Yc9MJOyZVK78DpIiLey3rNip9SawWGh+wV14WNC nbn7Wpf8EGE1E8n00mwrGMRCuRm7LQhLbcVXITiGKrbpxUzam6sqDIgt73Q7xma2 NWcPizeFNy47uurNOA2V9xHkbEAYjWaM12uyzmGzILvvmvNnpU0NuZ78cgV5ZWMk 4US53CAQbG4+qUCJWhIDoriluaLXjL9tLiZgJW0T6cus3nL5NWYqvlq6TWYyK00J zjiK7vky77Pq =WC5V -----END PGP SIGNATURE----- Merge tag 'kvm-x86-svm-6.6' of https://github.com/kvm-x86/linux into HEAD KVM: x86: SVM changes for 6.6: - Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) |
||
![]() |
d1f85fbe83 |
KVM: SEV: Enable data breakpoints in SEV-ES
Add support for "DebugSwap for SEV-ES guests", which provides support for swapping DR[0-3] and DR[0-3]_ADDR_MASK on VMRUN and VMEXIT, i.e. allows KVM to expose debug capabilities to SEV-ES guests. Without DebugSwap support, the CPU doesn't save/load most _guest_ debug registers (except DR6/7), and KVM cannot manually context switch guest DRs due the VMSA being encrypted. Enable DebugSwap if and only if the CPU also supports NoNestedDataBp, which causes the CPU to ignore nested #DBs, i.e. #DBs that occur when vectoring a #DB. Without NoNestedDataBp, a malicious guest can DoS the host by putting the CPU into an infinite loop of vectoring #DBs (see https://bugzilla.redhat.com/show_bug.cgi?id=1278496) Set the features bit in sev_es_sync_vmsa() which is the last point when VMSA is not encrypted yet as sev_(es_)init_vmcb() (where the most init happens) is called not only when VCPU is initialised but also on intrahost migration when VMSA is encrypted. Eliminate DR7 intercepts as KVM can't modify guest DR7, and intercepting DR7 would completely defeat the purpose of enabling DebugSwap. Make X86_FEATURE_DEBUG_SWAP appear in /proc/cpuinfo (by not adding "") to let the operator know if the VM can debug. Signed-off-by: Alexey Kardashevskiy <aik@amd.com> Link: https://lore.kernel.org/r/20230615063757.3039121-7-aik@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com> |
||
![]() |
0e52740ffd |
x86/bugs: Increase the x86 bugs vector size to two u32s
There was never a doubt in my mind that they would not fit into a single u32 eventually. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> |
||
![]() |
9bc83d6e38 |
tools headers x86 cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
49be4fb281 |
perf tools fixes for v6.3:
- Add Adrian Hunter to MAINTAINERS as a perf tools reviewer. - Sync various tools/ copies of kernel headers with the kernel sources, this time trying to avoid first merging with upstream to then update but instead copy from upstream so that a merge is avoided and the end result after merging this pull request is the one expected, tools/perf/check-headers.sh (mostly) happy, less warnings while building tools/perf/. - Fix counting when initial delay configured by setting perf_attr.enable_on_exec when starting workloads from the perf command line. - Don't avoid emitting a PERF_RECORD_MMAP2 in 'perf inject --buildid-all' when that record comes with a build-id, otherwise we end up not being able to resolve symbols. - Don't use comma as the CSV output separator the "stat+csv_output" test, as comma can appear on some tests as a modifier for an event, use @ instead, ditto for the JSON linter test. - The offcpu test was looking for some bits being set on task_struct->prev_state without masking other bits not important for this specific 'perf test', fix it. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCZApKjQAKCRCyPKLppCJ+ JzdfAQDRnwDCxhb4cvx7lVR32L1XMIFW6qLWRBJWoxC2SJi6lgD/SoQgKswkxrJv XnBP7jEaIsh3M3ak82MxLKbjSAEvnwk= =jup7 -----END PGP SIGNATURE----- Merge tag 'perf-tools-fixes-for-v6.3-1-2023-03-09' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux Pull perf tools fixes from Arnaldo Carvalho de Melo: - Add Adrian Hunter to MAINTAINERS as a perf tools reviewer - Sync various tools/ copies of kernel headers with the kernel sources, this time trying to avoid first merging with upstream to then update but instead copy from upstream so that a merge is avoided and the end result after merging this pull request is the one expected, tools/perf/check-headers.sh (mostly) happy, less warnings while building tools/perf/ - Fix counting when initial delay configured by setting perf_attr.enable_on_exec when starting workloads from the perf command line - Don't avoid emitting a PERF_RECORD_MMAP2 in 'perf inject --buildid-all' when that record comes with a build-id, otherwise we end up not being able to resolve symbols - Don't use comma as the CSV output separator the "stat+csv_output" test, as comma can appear on some tests as a modifier for an event, use @ instead, ditto for the JSON linter test - The offcpu test was looking for some bits being set on task_struct->prev_state without masking other bits not important for this specific 'perf test', fix it * tag 'perf-tools-fixes-for-v6.3-1-2023-03-09' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux: perf tools: Add Adrian Hunter to MAINTAINERS as a reviewer tools headers UAPI: Sync linux/perf_event.h with the kernel sources tools headers x86 cpufeatures: Sync with the kernel sources tools include UAPI: Sync linux/vhost.h with the kernel sources tools arch x86: Sync the msr-index.h copy with the kernel sources tools headers kvm: Sync uapi/{asm/linux} kvm.h headers with the kernel sources tools include UAPI: Synchronize linux/fcntl.h with the kernel sources tools headers: Synchronize {linux,vdso}/bits.h with the kernel sources tools headers UAPI: Sync linux/prctl.h with the kernel sources tools headers: Update the copy of x86's mem{cpy,set}_64.S used in 'perf bench' perf stat: Fix counting when initial delay configured tools headers svm: Sync svm headers with the kernel sources perf test: Avoid counting commas in json linter perf tests stat+csv_output: Switch CSV separator to @ perf inject: Fix --buildid-all not to eat up MMAP2 tools arch x86: Sync the msr-index.h copy with the kernel sources perf test: Fix offcpu test prev_state check |
||
![]() |
7d0930647c |
tools headers x86 cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
660569472d |
x86/cpufeature: Add the CPU feature bit for LKGS
Add the CPU feature bit for LKGS (Load "Kernel" GS). LKGS instruction is introduced with Intel FRED (flexible return and event delivery) specification. Search for the latest FRED spec in most search engines with this search pattern: site:intel.com FRED (flexible return and event delivery) specification LKGS behaves like the MOV to GS instruction except that it loads the base address into the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor cache, which is exactly what Linux kernel does to load a user level GS base. Thus, with LKGS, there is no need to SWAPGS away from the kernel GS base. [ mingo: Minor tweaks to the description. ] Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230112072032.35626-2-xin3.li@intel.com |
||
![]() |
51c4f2bf53 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
74455fd7e4 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
356edeca2e |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
62ed93d199 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
2b12993220 |
x86/speculation: Add RSB VM Exit protections
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
553de6e115 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
f098addbdb |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
4b3f7644ae |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
5180218615 |
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For more details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst Add the Processor MMIO Stale Data bug enumeration. A microcode update adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> |
||
![]() |
5ced812435 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
d16d30f48c |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from: |
||
![]() |
ec9d50ace3 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|
||
![]() |
d45476d983 |
x86/speculation: Rename RETPOLINE_AMD to RETPOLINE_LFENCE
The RETPOLINE_AMD name is unfortunate since it isn't necessarily AMD only, in fact Hygon also uses it. Furthermore it will likely be sufficient for some Intel processors. Therefore rename the thing to RETPOLINE_LFENCE to better describe what it is. Add the spectre_v2=retpoline,lfence option as an alias to spectre_v2=retpoline,amd to preserve existing setups. However, the output of /sys/devices/system/cpu/vulnerabilities/spectre_v2 will be changed. [ bp: Fix typos, massage. ] Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> |
||
![]() |
d5381cc9f1 |
tools headers cpufeatures: Sync with the kernel sources
To pick the changes from:
|