Commit Graph

619 Commits

Author SHA1 Message Date
Kairui Song
b228386cf2 mm, swap: clean up plist removal and adding
When the swap device is full (inuse_pages == pages), it should be removed
from the allocation available plist.  If any slot is freed, the swap
device should be added back to the plist.  Additionally, during swapon or
swapoff, the swap device is forcefully added or removed.

Currently, the condition (inuse_pages == pages) is checked after every
counter update, then remove or add the device accordingly.  This is
serialized by si->lock.

This commit decouples it from the protection of si->lock and reworked
plist removal and adding, making it possible to get rid of the hard
dependency on si->lock in allocation path in later commits.

To achieve this, simply using another lock is not an optimal approach, as
the overhead is observable for a hot counter, and may cause complex
locking issues.  Thus, this commit manages to make it a lock-free atomic
operation, by embedding the plist state into the second highest bit of the
atomic counter.

Simply making the counter an atomic will not work, if the update and plist
status check are not performed atomically, we may miss an addition or
removal.  With the embedded info we can update the counter and check the
plist status with single atomic operations, and avoid any extra overheads:

If the counter is full (inuse_pages == pages) and the off-list bit is
unset, we attempt to remove it from the plist.  If the counter is not full
(inuse_pages != pages) and the off-list bit is set, we attempt to add it
to the plist.  Removing, adding and bit update is serialized with a lock,
which is a cold path.  Ordinary counter updates will be lock-free.

Link: https://lkml.kernel.org/r/20250113175732.48099-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:36 -08:00
Kairui Song
27701521be mm, swap: clean up device availability check
Remove highest_bit and lowest_bit.  After the HDD allocation path has been
removed, the only purpose of these two fields is to determine whether the
device is full or not, which can instead be determined by checking the
inuse_pages.

Link: https://lkml.kernel.org/r/20250113175732.48099-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:36 -08:00
Kairui Song
0b310d9cfd mm, swap: use cluster lock for HDD
Cluster lock (ci->lock) was introduced to reduce contention for certain
operations.  Using cluster lock for HDD is not helpful as HDD have a poor
performance, so locking isn't the bottleneck.  But having different set of
locks for HDD / non-HDD prevents further rework of device lock (si->lock).

This commit just changed all lock_cluster_or_swap_info to lock_cluster,
which is a safe and straight conversion since cluster info is always
allocated now, also removed all cluster_info related checks.

Link: https://lkml.kernel.org/r/20250113175732.48099-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:36 -08:00
Kairui Song
7277433096 mm, swap: remove old allocation path for HDD
We are currently using different swap allocation algorithm for HDD and
non-HDD.  This leads to the existence of a different set of locks, and the
code path is heavily bloated, causing difficulties for further
optimization and maintenance.

This commit removes all HDD swap allocation and related dead code, and
uses the cluster allocation algorithm instead.

The performance may drop temporarily, but this should be negligible: The
main advantage of the legacy HDD allocation algorithm is that it tends to
use continuous slots, but swap device gets fragmented quickly anyway, and
the attempt to use continuous slots will fail easily.

This commit also enables mTHP swap on HDD, which is expected to be
beneficial, and following commits will adapt and optimize the cluster
allocator for HDD.

Link: https://lkml.kernel.org/r/20250113175732.48099-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Suggested-by: "Huang, Ying" <ying.huang@linux.alibaba.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:36 -08:00
Kairui Song
e027ec414f mm, swap: fold swap_info_get_cont in the only caller
The name of the function is confusing, and the code is much easier to
follow after folding, also rename the confusing naming "p" to more
meaningful "si".

Link: https://lkml.kernel.org/r/20250113175732.48099-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:36 -08:00
Kairui Song
d563ced682 mm, swap: minor clean up for swap entry allocation
Patch series "mm, swap: rework of swap allocator locks", v4.

This series greatly improved swap performance by reworking the locking
design and simplify a lot of code path.  Test showed a up to 400%
vm-scalability improvement with pmem as SWAP, and up to 37% reduce of
kernel compile real time with ZRAM as SWAP (up to 60% improvement in
system time).

This is part of the new swap allocator discussed during the "Swap
Abstraction" discussion at LSF/MM 2024, and "mTHP and swap allocator"
discussion at LPC 2024.

This is a follow up of previous swap cluster allocator series:
https://lore.kernel.org/linux-mm/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org/
Also enables further optimizations which will come later.

Previous series introduced a fully cluster based allocator, this series
completely get rid of the old allocator and makes the new allocator avoid
touching the si->lock unless needed.  This bring huge performance gain and
get rid of slot cache for freeing path.

Currently, swap locking is mainly composed of two locks, cluster lock
(ci->lock) and device lock (si->lock).  The device lock is widely used to
protect many things, causing it to be the main bottleneck for SWAP.

Cluster lock is much more fine-grained, so it will be best to use ci->lock
instead of si->lock as much as possible.

`perf lock' indicates this issue clearly.  Doing linux kernel build using
tmpfs and ZRAM with limited memory (make -j64 with 1G memcg and 4k pages),
result of "perf lock contention -ab sleep 3" shows:

  contended   total wait     max wait     avg wait         type   caller
     34948     53.63 s       7.11 ms      1.53 ms     spinlock   free_swap_and_cache_nr+0x350
     16569     40.05 s       6.45 ms      2.42 ms     spinlock   get_swap_pages+0x231
     11191     28.41 s       7.03 ms      2.54 ms     spinlock   swapcache_free_entries+0x59
      4147     22.78 s     122.66 ms      5.49 ms     spinlock   page_vma_mapped_walk+0x6f3
      4595      7.17 s       6.79 ms      1.56 ms     spinlock   swapcache_free_entries+0x59
    406027      2.74 s       2.59 ms      6.74 us     spinlock   list_lru_add+0x39
  ...snip...

The top 5 caller are all users of si->lock, total wait time sums to
several minutes in the 3 seconds time window.

Following the new allocator design, many operation doesn't need to touch
si->lock at all.  We only need to take si->lock when doing operations
across multiple clusters (changing the cluster list).  So ideally
allocator should always take ci->lock first, then take si->lock only if
needed.  But due to historical reasons, ci->lock is used inside si->lock
critical section, causing lock inversion if we simply try to acquire
si->lock after acquiring ci->lock.

This series audited all si->lock usage, clean up legacy codes, eliminate
usage of si->lock as much as possible by introducing new designs based on
the new cluster allocator.

Old HDD allocation codes are removed, cluster allocator is adapted with
small changes for HDD usage, test is looking OK.

And this also removed slot cache for freeing path.  The performance is
even better without it now, and this enables other clean up and
optimizations as discussed before:

https://lore.kernel.org/all/CAMgjq7ACohT_uerSz8E_994ZZCv709Zor+43hdmesW_59W1BWw@mail.gmail.com/

After this series, lock contention on si->lock is nearly unobservable
with `perf lock` with the same test above:

  contended   total wait     max wait     avg wait         type   caller
  ... snip ...
        52    127.12 us      3.82 us      2.44 us     spinlock   move_cluster+0x2c
        56    120.77 us     12.41 us      2.16 us     spinlock   move_cluster+0x2c
  ... snip ...
        10     21.96 us      2.78 us      2.20 us     spinlock   isolate_lock_cluster+0x20
  ... snip ...
         9     19.27 us      2.70 us      2.14 us     spinlock   move_cluster+0x2c
  ... snip ...
         5     11.07 us      2.70 us      2.21 us     spinlock   isolate_lock_cluster+0x20

`move_cluster' and `isolate_lock_cluster' (two new introduced helper) are
basically the only users of si->lock now, performance gain is huge, and
LOC is reduced.

Tests Results:

vm-scalability
==============
Running `usemem --init-time -O -y -x -R -31 1G` from vm-scalability in a
12G memory cgroup using simulated pmem as SWAP backend (32G pmem, 32
CPUs).

Using 4K folio by default, 64k mTHP and sequential access (!-R) results
are also provided. 6 test runs for each case, Total Throughput:

Test             Before (KB/s) (stdev)  After (KB/s) (stdev)   Delta
---------------------------------------------------------------------------
Random (4K):     69937.11 (16449.77)    369816.17  (24476.68)  +428.78%
Random (64k):    123442.83 (13207.51)   216379.00  (25024.83)  +75.28%
Sequential (4K): 6313909.83 (148856.12) 6419860.66 (183563.38) +1.7%

Sequential access will cause lower stress for the allocator so the gain is
limited, but with random access (which is much closer to real workloads)
the performance gain is huge.

Build kernel with defconfig on tmpfs with ZRAM
==============================================
Below results shows a test matrix using different memory cgroup limit and
job numbets, and scaled up progressive for a intuitive result.  Done on a
48c96t system.

6 test run for each case, it can be seen clearly that as concurrent job
number goes higher the performance gain is higher, but even -j6 is showing
slight improvement.

   make -j<NR>     |   System Time (seconds)  |   Total Time (seconds)
 (NR / Mem / ZRAM) | (Before / After / Delta) | (Before / After / Delta)
 With 4k pages only:
  6 / 192M / 3G    |    1533 /  1522 / -0.7%  |    1420 /  1414 / -0.3%
 12 / 256M / 4G    |    2275 /  2226 / -2.2%  |     758 /   742 / -2.1%
 24 / 384M / 5G    |    3596 /  3154 / -12.3% |     476 /   422 / -11.3%
 48 / 768M / 7G    |    8159 /  3605 / -55.8% |     330 /   221 / -33.0%
 96 / 1.5G / 10G   |   18541 /  6462 / -65.1% |     283 /   180 / -36.4%
 With 64k mTHP:
 24 / 512M / 5G    |    3585 /  3469 /  -3.2% |     293 /   290 / -0.1%
 48 /   1G / 7G    |    8173 /  3607 / -55.9% |     251 /   158 / -37.0%
 96 /   2G / 10G   |   16305 /  7791 / -52.2% |     226 /   144 / -36.3%

The fragmentation are reduced too:
With: make -j96 / 1152M memcg, 64K mTHP:
(avg of 4 test run)
Before:
hugepages-64kB/stats/swpout: 1696184
hugepages-64kB/stats/swpout_fallback: 414318
After: (-63.2% mTHP swapout failure)
hugepages-64kB/stats/swpout: 1866267
hugepages-64kB/stats/swpout_fallback: 158330

There is a up to 65.1% improvement in sys time for build kernel test,
and lower fragmentation rate.

Build kernel with tinyconfig on tmpfs with HDD as swap:
=======================================================

This test is similar to above, but HDD test is very noisy and slow, the
deviation is huge, so just use tinyconfig instead and take the median test
result of 3 test run, which looks OK:

Before this series:
114.44user 29.11system 39:42.90elapsed 6%CPU
2901232inputs+0outputs (238877major+4227640minor)pagefaults

After this commit:
113.90user 23.81system 38:11.77elapsed 6%CPU
2548728inputs+0outputs (235471major+4238110minor)pagefaults

Single thread SWAP:
===================

Sequential SWAP should also be slightly faster as we removed a lot of
unnecessary parts. Test using micro benchmark for swapout/in 4G
zero memory using ZRAM, 10 test runs:

Swapout Before (avg. 3359304):
3353796 3358551 3371305 3356043 3367524 3355303 3355924 3354513 3360776

Swapin Before (avg. 1928698):
1920283 1927183 1934105 1921373 1926562 1938261 1927726 1928636 1934155

Swapout After (avg. 3347511, -0.4%):
3337863 3347948 3355235 3339081 3333134 3353006 3354917 3346055 3360359

Swapin After (avg. 1922290, -0.3%):
1919101 1925743 1916810 1917007 1923930 1935152 1917403 1923549 1921913

The gain is limited at noise level but seems slightly better.


This patch (of 13):

Direct reclaim can skip the whole folio after reclaimed a set of folio
based slots.  Also simplify the code for allocation, reduce indention.

Link: https://lkml.kernel.org/r/20250113175732.48099-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250113175732.48099-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chis Li <chrisl@kernel.org> (Google)
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25 20:22:35 -08:00
Kairui Song
0ec8bc9e88 mm, swap: fix allocation and scanning race with swapoff
There are two flags used to synchronize allocation and scanning with
swapoff: SWP_WRITEOK and SWP_SCANNING.

SWP_WRITEOK: Swapoff will first unset this flag, at this point any further
swap allocation or scanning on this device should just abort so no more
new entries will be referencing this device.  Swapoff will then unuse all
existing swap entries.

SWP_SCANNING: This flag is set when device is being scanned.  Swapoff will
wait for all scanner to stop before the final release of the swap device
structures to avoid UAF.  Note this flag is the highest used bit of
si->flags so it could be added up arithmetically, if there are multiple
scanner.

commit 5f843a9a3a ("mm: swap: separate SSD allocation from
scan_swap_map_slots()") ignored SWP_SCANNING and SWP_WRITEOK flags while
separating cluster allocation path from the old allocation path.  Add the
flags back to fix swapoff race.  The race is hard to trigger as si->lock
prevents most parallel operations, but si->lock could be dropped for
reclaim or discard.  This issue is found during code review.

This commit fixes this problem.  For SWP_SCANNING, Just like before, set
the flag before scan and remove it afterwards.

For SWP_WRITEOK, there are several places where si->lock could be dropped,
it will be error-prone and make the code hard to follow if we try to cover
these places one by one.  So just do one check before the real allocation,
which is also very similar like before.  With new cluster allocator it may
waste a bit of time iterating the clusters but won't take long, and
swapoff is not performance sensitive.

Link: https://lkml.kernel.org/r/20241112083414.78174-1-ryncsn@gmail.com
Fixes: 5f843a9a3a ("mm: swap: separate SSD allocation from scan_swap_map_slots()")
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Closes: https://lore.kernel.org/linux-mm/87a5es3f1f.fsf@yhuang6-desk2.ccr.corp.intel.com/
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-14 15:25:07 -08:00
Johannes Weiner
dcf32ea7ec mm: swapfile: fix cluster reclaim work crash on rotational devices
syzbot and Daan report a NULL pointer crash in the new full swap cluster
reclaim work:

> Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
> KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
> CPU: 1 UID: 0 PID: 51 Comm: kworker/1:1 Not tainted 6.12.0-rc6-syzkaller #0
> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
> Workqueue: events swap_reclaim_work
> RIP: 0010:__list_del_entry_valid_or_report+0x20/0x1c0 lib/list_debug.c:49
> Code: 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 48 89 fe 48 83 c7 08 48 83 ec 18 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 19 01 00 00 48 89 f2 48 8b 4e 08 48 b8 00 00 00
> RSP: 0018:ffffc90000bb7c30 EFLAGS: 00010202
> RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff88807b9ae078
> RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000008
> RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
> R10: 0000000000000001 R11: 000000000000004f R12: dffffc0000000000
> R13: ffffffffffffffb8 R14: ffff88807b9ae000 R15: ffffc90003af1000
> FS:  0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
> CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00007fffaca68fb8 CR3: 00000000791c8000 CR4: 00000000003526f0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> Call Trace:
>  <TASK>
>  __list_del_entry_valid include/linux/list.h:124 [inline]
>  __list_del_entry include/linux/list.h:215 [inline]
>  list_move_tail include/linux/list.h:310 [inline]
>  swap_reclaim_full_clusters+0x109/0x460 mm/swapfile.c:748
>  swap_reclaim_work+0x2e/0x40 mm/swapfile.c:779

The syzbot console output indicates a virtual environment where swapfile
is on a rotational device.  In this case, clusters aren't actually used,
and si->full_clusters is not initialized.  Daan's report is from qemu, so
likely rotational too.

Make sure to only schedule the cluster reclaim work when clusters are
actually in use.

Link: https://lkml.kernel.org/r/20241107142335.GB1172372@cmpxchg.org
Link: https://lore.kernel.org/lkml/672ac50b.050a0220.2edce.1517.GAE@google.com/
Link: https://github.com/systemd/systemd/issues/35044
Fixes: 5168a68eb7 ("mm, swap: avoid over reclaim of full clusters")
Reported-by: syzbot+078be8bfa863cb9e0c6b@syzkaller.appspotmail.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-12 16:01:36 -08:00
Kairui Song
5168a68eb7 mm, swap: avoid over reclaim of full clusters
When running low on usable slots, cluster allocator will try to reclaim
the full clusters aggressively to reclaim HAS_CACHE slots.  This
guarantees that as long as there are any usable slots, HAS_CACHE or not,
the swap device will be usable and workload won't go OOM early.

Before the cluster allocator, swap allocator fails easily if device is
filled up with reclaimable HAS_CACHE slots.  Which can be easily
reproduced with following simple program:

    #include <stdio.h>
    #include <string.h>
    #include <linux/mman.h>
    #include <sys/mman.h>
    #define SIZE 8192UL * 1024UL * 1024UL
    int main(int argc, char **argv) {
        long tmp;
        char *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
        memset(p, 0, SIZE);
        madvise(p, SIZE, MADV_PAGEOUT);
        for (unsigned long i = 0; i < SIZE; ++i)
            tmp += p[i];
        getchar(); /* Pause */
        return 0;
    }

Setup an 8G non ramdisk swap, the first run of the program will swapout 8G
ram successfully.  But run same program again after the first run paused,
the second run can't swapout all 8G memory as now half of the swap device
is pinned by HAS_CACHE.  There was a random scan in the old allocator that
may reclaim part of the HAS_CACHE by luck, but it's unreliable.

The new allocator's added reclaim of full clusters when device is low on
usable slots.  But when multiple CPUs are seeing the device is low on
usable slots at the same time, they ran into a thundering herd problem.

This is an observable problem on large machine with mass parallel
workload, as full cluster reclaim is slower on large swap device and
higher number of CPUs will also make things worse.

Testing using a 128G ZRAM on a 48c96t system.  When the swap device is
very close to full (eg.  124G / 128G), running build linux kernel with
make -j96 in a 1G memory cgroup will hung (not a softlockup though)
spinning in full cluster reclaim for about ~5min before go OOM.

To solve this, split the full reclaim into two parts:

- Instead of do a synchronous aggressively reclaim when device is low,
  do only one aggressively reclaim when device is strictly full with a
  kworker. This still ensures in worst case the device won't be unusable
  because of HAS_CACHE slots.

- To avoid allocation (especially higher order) suffer from HAS_CACHE
  filling up clusters and kworker not responsive enough, do one synchronous
  scan every time the free list is drained, and only scan one cluster. This
  is kind of similar to the random reclaim before, keeps the full clusters
  rotated and has a minimal latency. This should provide a fair reclaim
  strategy suitable for most workloads.

Link: https://lkml.kernel.org/r/20241022175512.10398-1-ryncsn@gmail.com
Fixes: 2cacbdfdee ("mm: swap: add a adaptive full cluster cache reclaim")
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-30 20:14:11 -07:00
Liu Shixin
7528c4fb12 mm/swapfile: skip HugeTLB pages for unuse_vma
I got a bad pud error and lost a 1GB HugeTLB when calling swapoff.  The
problem can be reproduced by the following steps:

 1. Allocate an anonymous 1GB HugeTLB and some other anonymous memory.
 2. Swapout the above anonymous memory.
 3. run swapoff and we will get a bad pud error in kernel message:

  mm/pgtable-generic.c:42: bad pud 00000000743d215d(84000001400000e7)

We can tell that pud_clear_bad is called by pud_none_or_clear_bad in
unuse_pud_range() by ftrace.  And therefore the HugeTLB pages will never
be freed because we lost it from page table.  We can skip HugeTLB pages
for unuse_vma to fix it.

Link: https://lkml.kernel.org/r/20241015014521.570237-1-liushixin2@huawei.com
Fixes: 0fe6e20b9c ("hugetlb, rmap: add reverse mapping for hugepage")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-17 00:28:11 -07:00
Jeongjun Park
818f916e3a mm: swap: prevent possible data-race in __try_to_reclaim_swap
A report [1] was uploaded from syzbot.

In the previous commit 862590ac37 ("mm: swap: allow cache reclaim to
skip slot cache"), the __try_to_reclaim_swap() function reads offset and
folio->entry from folio without folio_lock protection.

In the currently reported KCSAN log, it is assumed that the actual
data-race will not occur because the calltrace that does WRITE already
obtains the folio_lock and then writes.

However, the existing __try_to_reclaim_swap() function was already
implemented to perform reads under folio_lock protection [1], and there is
a risk of a data-race occurring through a function other than the one
shown in the KCSAN log.

Therefore, I think it is appropriate to change
read operations for folio to be performed under folio_lock.

[1]

==================================================================
BUG: KCSAN: data-race in __delete_from_swap_cache / __try_to_reclaim_swap

write to 0xffffea0004c90328 of 8 bytes by task 5186 on cpu 0:
 __delete_from_swap_cache+0x1f0/0x290 mm/swap_state.c:163
 delete_from_swap_cache+0x72/0xe0 mm/swap_state.c:243
 folio_free_swap+0x1d8/0x1f0 mm/swapfile.c:1850
 free_swap_cache mm/swap_state.c:293 [inline]
 free_pages_and_swap_cache+0x1fc/0x410 mm/swap_state.c:325
 __tlb_batch_free_encoded_pages mm/mmu_gather.c:136 [inline]
 tlb_batch_pages_flush mm/mmu_gather.c:149 [inline]
 tlb_flush_mmu_free mm/mmu_gather.c:366 [inline]
 tlb_flush_mmu+0x2cf/0x440 mm/mmu_gather.c:373
 zap_pte_range mm/memory.c:1700 [inline]
 zap_pmd_range mm/memory.c:1739 [inline]
 zap_pud_range mm/memory.c:1768 [inline]
 zap_p4d_range mm/memory.c:1789 [inline]
 unmap_page_range+0x1f3c/0x22d0 mm/memory.c:1810
 unmap_single_vma+0x142/0x1d0 mm/memory.c:1856
 unmap_vmas+0x18d/0x2b0 mm/memory.c:1900
 exit_mmap+0x18a/0x690 mm/mmap.c:1864
 __mmput+0x28/0x1b0 kernel/fork.c:1347
 mmput+0x4c/0x60 kernel/fork.c:1369
 exit_mm+0xe4/0x190 kernel/exit.c:571
 do_exit+0x55e/0x17f0 kernel/exit.c:926
 do_group_exit+0x102/0x150 kernel/exit.c:1088
 get_signal+0xf2a/0x1070 kernel/signal.c:2917
 arch_do_signal_or_restart+0x95/0x4b0 arch/x86/kernel/signal.c:337
 exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
 exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline]
 __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
 syscall_exit_to_user_mode+0x59/0x130 kernel/entry/common.c:218
 do_syscall_64+0xd6/0x1c0 arch/x86/entry/common.c:89
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

read to 0xffffea0004c90328 of 8 bytes by task 5189 on cpu 1:
 __try_to_reclaim_swap+0x9d/0x510 mm/swapfile.c:198
 free_swap_and_cache_nr+0x45d/0x8a0 mm/swapfile.c:1915
 zap_pte_range mm/memory.c:1656 [inline]
 zap_pmd_range mm/memory.c:1739 [inline]
 zap_pud_range mm/memory.c:1768 [inline]
 zap_p4d_range mm/memory.c:1789 [inline]
 unmap_page_range+0xcf8/0x22d0 mm/memory.c:1810
 unmap_single_vma+0x142/0x1d0 mm/memory.c:1856
 unmap_vmas+0x18d/0x2b0 mm/memory.c:1900
 exit_mmap+0x18a/0x690 mm/mmap.c:1864
 __mmput+0x28/0x1b0 kernel/fork.c:1347
 mmput+0x4c/0x60 kernel/fork.c:1369
 exit_mm+0xe4/0x190 kernel/exit.c:571
 do_exit+0x55e/0x17f0 kernel/exit.c:926
 __do_sys_exit kernel/exit.c:1055 [inline]
 __se_sys_exit kernel/exit.c:1053 [inline]
 __x64_sys_exit+0x1f/0x20 kernel/exit.c:1053
 x64_sys_call+0x2d46/0x2d60 arch/x86/include/generated/asm/syscalls_64.h:61
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0xc9/0x1c0 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

value changed: 0x0000000000000242 -> 0x0000000000000000

Link: https://lkml.kernel.org/r/20241007070623.23340-1-aha310510@gmail.com
Reported-by: syzbot+fa43f1b63e3aa6f66329@syzkaller.appspotmail.com
Fixes: 862590ac37 ("mm: swap: allow cache reclaim to skip slot cache")
Signed-off-by: Jeongjun Park <aha310510@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-17 00:28:11 -07:00
Matthew Wilcox (Oracle)
97b76796cc swap: convert swapon() to use a folio
Retrieve a folio from the page cache rather than a page.  Saves a couple
of conversions between page & folio.

Link: https://lkml.kernel.org/r/20240826202138.3804238-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09 16:38:58 -07:00
Usama Arif
0ca0c24e32 mm: store zero pages to be swapped out in a bitmap
Patch series "mm: store zero pages to be swapped out in a bitmap", v8.

As shown in the patch series that introduced the zswap same-filled
optimization [1], 10-20% of the pages stored in zswap are same-filled. 
This is also observed across Meta's server fleet.  By using VM counters in
swap_writepage (not included in this patchseries) it was found that less
than 1% of the same-filled pages to be swapped out are non-zero pages.

For conventional swap setup (without zswap), rather than reading/writing
these pages to flash resulting in increased I/O and flash wear, a bitmap
can be used to mark these pages as zero at write time, and the pages can
be filled at read time if the bit corresponding to the page is set.

When using zswap with swap, this also means that a zswap_entry does not
need to be allocated for zero filled pages resulting in memory savings
which would offset the memory used for the bitmap.

A similar attempt was made earlier in [2] where zswap would only track
zero-filled pages instead of same-filled.  This patchseries adds
zero-filled pages optimization to swap (hence it can be used even if zswap
is disabled) and removes the same-filled code from zswap (as only 1% of
the same-filled pages are non-zero), simplifying code.

[1] https://lore.kernel.org/all/20171018104832epcms5p1b2232e2236258de3d03d1344dde9fce0@epcms5p1/
[2] https://lore.kernel.org/lkml/20240325235018.2028408-1-yosryahmed@google.com/


This patch (of 2):

Approximately 10-20% of pages to be swapped out are zero pages [1].
Rather than reading/writing these pages to flash resulting
in increased I/O and flash wear, a bitmap can be used to mark these
pages as zero at write time, and the pages can be filled at
read time if the bit corresponding to the page is set.
With this patch, NVMe writes in Meta server fleet decreased
by almost 10% with conventional swap setup (zswap disabled).

[1] https://lore.kernel.org/all/20171018104832epcms5p1b2232e2236258de3d03d1344dde9fce0@epcms5p1/

Link: https://lkml.kernel.org/r/20240823190545.979059-1-usamaarif642@gmail.com
Link: https://lkml.kernel.org/r/20240823190545.979059-2-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:47 -07:00
Johannes Weiner
b843786b0b mm: swapfile: fix SSD detection with swapfile on btrfs
We've been noticing a trend of significant lock contention in the swap
subsystem as core counts have been increasing in our fleet.  It turns out
that our swapfiles on btrfs on flash were in fact using the old swap code
for rotational storage.

This turns out to be a detection issue in the swapon sequence: btrfs sets
si->bdev during swap activation, which currently happens *after* swapon's
SSD detection and cluster setup.  Thus, none of the SSD optimizations and
cluster lock splitting are enabled for btrfs swap.

Rearrange the swapon sequence so that filesystem activation happens
*before* determining swap behavior based on the backing device.

Afterwards, the nonrotational drive is detected correctly:

- Adding 2097148k swap on /mnt/swapfile.  Priority:-3 extents:1 across:2097148k
+ Adding 2097148k swap on /mnt/swapfile.  Priority:-3 extents:1 across:2097148k SS

Link: https://lkml.kernel.org/r/20240822112707.351844-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:46 -07:00
Baolin Wang
650180760b mm: swap: extend swap_shmem_alloc() to support batch SWAP_MAP_SHMEM flag setting
Patch series "support large folio swap-out and swap-in for shmem", v5.

Shmem will support large folio allocation [1] [2] to get a better
performance, however, the memory reclaim still splits the precious large
folios when trying to swap-out shmem, which may lead to the memory
fragmentation issue and can not take advantage of the large folio for
shmeme.

Moreover, the swap code already supports for swapping out large folio
without split, and large folio swap-in[3] series is queued into
mm-unstable branch.  Hence this patch set also supports the large folio
swap-out and swap-in for shmem.


This patch (of 9):

To support shmem large folio swap operations, add a new parameter to
swap_shmem_alloc() that allows batch SWAP_MAP_SHMEM flag setting for shmem
swap entries.

While we are at it, using folio_nr_pages() to get the number of pages of
the folio as a preparation.

Link: https://lkml.kernel.org/r/cover.1723434324.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/99f64115d04b285e009580eb177352c57119ffd0.1723434324.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Daniel Gomez <da.gomez@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:33 -07:00
Barry Song
bea67dcc5e mm: attempt to batch free swap entries for zap_pte_range()
Zhiguo reported that swap release could be a serious bottleneck during
process exits[1].  With mTHP, we have the opportunity to batch free swaps.

Thanks to the work of Chris and Kairui[2], I was able to achieve this
optimization with minimal code changes by building on their efforts.

If swap_count is 1, which is likely true as most anon memory are private,
we can free all contiguous swap slots all together.

Ran the below test program for measuring the bandwidth of munmap
using zRAM and 64KiB mTHP:

 #include <sys/mman.h>
 #include <sys/time.h>
 #include <stdlib.h>

 unsigned long long tv_to_ms(struct timeval tv)
 {
        return tv.tv_sec * 1000 + tv.tv_usec / 1000;
 }

 main()
 {
        struct timeval tv_b, tv_e;
        int i;
 #define SIZE 1024*1024*1024
        void *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
                                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
        if (!p) {
                perror("fail to get memory");
                exit(-1);
        }

        madvise(p, SIZE, MADV_HUGEPAGE);
        memset(p, 0x11, SIZE); /* write to get mem */

        madvise(p, SIZE, MADV_PAGEOUT);

        gettimeofday(&tv_b, NULL);
        munmap(p, SIZE);
        gettimeofday(&tv_e, NULL);

        printf("munmap in bandwidth: %ld bytes/ms\n",
                        SIZE/(tv_to_ms(tv_e) - tv_to_ms(tv_b)));
 }

The result is as below (munmap bandwidth):
                mm-unstable  mm-unstable-with-patch
   round1       21053761      63161283
   round2       21053761      63161283
   round3       21053761      63161283
   round4       20648881      67108864
   round5       20648881      67108864

munmap bandwidth becomes 3X faster.

[1] https://lore.kernel.org/linux-mm/20240731133318.527-1-justinjiang@vivo.com/
[2] https://lore.kernel.org/linux-mm/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org/

[v-songbaohua@oppo.com: check all swaps belong to same swap_cgroup in swap_pte_batch()]
  Link: https://lkml.kernel.org/r/20240815215308.55233-1-21cnbao@gmail.com
[hughd@google.com: add mem_cgroup_disabled() check]
  Link: https://lkml.kernel.org/r/33f34a88-0130-5444-9b84-93198eeb50e7@google.com
[21cnbao@gmail.com: add missing zswap_invalidate()]
  Link: https://lkml.kernel.org/r/20240821054921.43468-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240807215859.57491-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:33 -07:00
Barry Song
b85508d7de mm: rename instances of swap_info_struct to meaningful 'si'
Patch series "mm: batch free swaps for zap_pte_range()", v3.

Batch free swap slots for zap_pte_range(), making munmap three times
faster when the page table entries are filled with swap entries to
be freed. This is likely another advantage of using mTHP.


This patch (of 3):

"p" means "pointer to something", rename it to a more meaningful
identifier - "si".  We also have a case with the name "sis", rename it to
"si" as well.

Link: https://lkml.kernel.org/r/20240807215859.57491-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240807215859.57491-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Zhiguo Jiang <justinjiang@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:33 -07:00
Kairui Song
2cacbdfdee mm: swap: add a adaptive full cluster cache reclaim
Link all full cluster with one full list, and reclaim from it when the
allocation have ran out of all usable clusters.

There are many reason a folio can end up being in the swap cache while
having no swap count reference.  So the best way to search for such slots
is still by iterating the swap clusters.

With the list as an LRU, iterating from the oldest cluster and keep them
rotating is a very doable and clean way to free up potentially not inuse
clusters.

When any allocation failure, try reclaim and rotate only one cluster. 
This is adaptive for high order allocations they can tolerate fallback. 
So this avoids latency, and give the full cluster list an fair chance to
get reclaimed.  It release the usage stress for the fallback order 0
allocation or following up high order allocation.

If the swap device is getting very full, reclaim more aggresively to
ensure no OOM will happen.  This ensures order 0 heavy workload won't go
OOM as order 0 won't fail if any cluster still have any space.

[ryncsn@gmail.com: fix discard of full cluster]
  Link: https://lkml.kernel.org/r/CAMgjq7CWwK75_2Zi5P40K08pk9iqOcuWKL6khu=x4Yg_nXaQag@mail.gmail.com
Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-9-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:26 -07:00
Kairui Song
661383c611 mm: swap: relaim the cached parts that got scanned
This commit implements reclaim during scan for cluster allocator.

Cluster scanning were unable to reuse SWAP_HAS_CACHE slots, which could
result in low allocation success rate or early OOM.

So to ensure maximum allocation success rate, integrate reclaiming with
scanning.  If found a range of suitable swap slots but fragmented due to
HAS_CACHE, just try to reclaim the slots.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-8-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:26 -07:00
Kairui Song
477cb7ba28 mm: swap: add a fragment cluster list
Now swap cluster allocator arranges the clusters in LRU style, so the
"cold" cluster stay at the head of nonfull lists are the ones that were
used for allocation long time ago and still partially occupied.  So if
allocator can't find enough contiguous slots to satisfy an high order
allocation, it's unlikely there will be slot being free on them to satisfy
the allocation, at least in a short period.

As a result, nonfull cluster scanning will waste time repeatly scanning
the unusable head of the list.

Also, multiple CPUs could content on the same head cluster of nonfull
list.  Unlike free clusters which are removed from the list when any CPU
starts using it, nonfull cluster stays on the head.

So introduce a new list frag list, all scanned nonfull clusters will be
moved to this list.  Both for avoiding repeated scanning and contention.

Frag list is still used as fallback for allocations, so if one CPU failed
to allocate one order of slots, it can still steal other CPU's clusters. 
And order 0 will favor the fragmented clusters to better protect nonfull
clusters

If any slots on a fragment list are being freed, move the fragment list
back to nonfull list indicating it worth another scan on the cluster. 
Compared to scan upon freeing a slot, this keep the scanning lazy and save
some CPU if there are still other clusters to use.

It may seems unneccessay to keep the fragmented cluster on list at all if
they can't be used for specific order allocation.  But this will start to
make sense once reclaim dring scanning is ready.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-7-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:25 -07:00
Kairui Song
862590ac37 mm: swap: allow cache reclaim to skip slot cache
Currently we free the reclaimed slots through slot cache even if the slot
is required to be empty immediately.  As a result the reclaim caller will
see the slot still occupied even after a successful reclaim, and need to
keep reclaiming until slot cache get flushed.  This caused ineffective or
over reclaim when SWAP is under stress.

So introduce a new flag allowing the slot to be emptied bypassing the slot
cache.

[21cnbao@gmail.com: small folios should have nr_pages == 1 but not nr_page == 0]
  Link: https://lkml.kernel.org/r/20240805015324.45134-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-6-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:25 -07:00
Kairui Song
650975d2b1 mm: swap: skip slot cache on freeing for mTHP
Currently when we are freeing mTHP folios from swap cache, we free then
one by one and put each entry into swap slot cache.  Slot cache is
designed to reduce the overhead by batching the freeing, but mTHP swap
entries are already continuous so they can be batch freed without it
already, it saves litle overhead, or even increase overhead for larger
mTHP.

What's more, mTHP entries could stay in swap cache for a while. 
Contiguous swap entry is an rather rare resource so releasing them
directly can help improve mTHP allocation success rate when under
pressure.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-5-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Acked-by: Barry Song <baohua@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:25 -07:00
Kairui Song
3b2561b5da mm: swap: clean up initialization helper
At this point, alloc_cluster is never called already, and
inc_cluster_info_page is called by initialization only, a lot of dead code
can be dropped.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-4-cb9c148b9297@kernel.org
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:24 -07:00
Chris Li
5f843a9a3a mm: swap: separate SSD allocation from scan_swap_map_slots()
Previously the SSD and HDD share the same swap_map scan loop in
scan_swap_map_slots().  This function is complex and hard to flow the
execution flow.

scan_swap_map_try_ssd_cluster() can already do most of the heavy lifting
to locate the candidate swap range in the cluster.  However it needs to go
back to scan_swap_map_slots() to check conflict and then perform the
allocation.

When scan_swap_map_try_ssd_cluster() failed, it still depended on the
scan_swap_map_slots() to do brute force scanning of the swap_map.  When
the swapfile is large and almost full, it will take some CPU time to go
through the swap_map array.

Get rid of the cluster allocation dependency on the swap_map scan loop in
scan_swap_map_slots().  Streamline the cluster allocation code path.  No
more conflict checks.

For order 0 swap entry, when run out of free and nonfull list.  It will
allocate from the higher order nonfull cluster list.

Users should see less CPU time spent on searching the free swap slot when
swapfile is almost full.

[ryncsn@gmail.com: fix array-bounds error with CONFIG_THP_SWAP=n]
  Link: https://lkml.kernel.org/r/CAMgjq7Bz0DY+rY0XgCoH7-Q=uHLdo3omi8kUr4ePDweNyofsbQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-3-cb9c148b9297@kernel.org
Signed-off-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:24 -07:00
Chris Li
d07a46a4ac mm: swap: mTHP allocate swap entries from nonfull list
Track the nonfull cluster as well as the empty cluster on lists.  Each
order has one nonfull cluster list.

The cluster will remember which order it was used during new cluster
allocation.

When the cluster has free entry, add to the nonfull[order] list.   When
the free cluster list is empty, also allocate from the nonempty list of
that order.

This improves the mTHP swap allocation success rate.

There are limitations if the distribution of numbers of different orders
of mTHP changes a lot.  e.g.  there are a lot of nonfull cluster assign to
order A while later time there are a lot of order B allocation while very
little allocation in order A.  Currently the cluster used by order A will
not reused by order B unless the cluster is 100% empty.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-2-cb9c148b9297@kernel.org
Signed-off-by: Chris Li <chrisl@kernel.org>
Reported-by: Barry Song <21cnbao@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:24 -07:00
Chris Li
73ed0baae6 mm: swap: swap cluster switch to double link list
Patch series "mm: swap: mTHP swap allocator base on swap cluster order",
v5.

This is the short term solutions "swap cluster order" listed in my "Swap
Abstraction" discussion slice 8 in the recent LSF/MM conference.

When commit 845982eb26 "mm: swap: allow storage of all mTHP orders" is
introduced, it only allocates the mTHP swap entries from the new empty
cluster list.   It has a fragmentation issue reported by Barry.

https://lore.kernel.org/all/CAGsJ_4zAcJkuW016Cfi6wicRr8N9X+GJJhgMQdSMp+Ah+NSgNQ@mail.gmail.com/

The reason is that all the empty clusters have been exhausted while there
are plenty of free swap entries in the cluster that are not 100% free.

Remember the swap allocation order in the cluster.  Keep track of the per
order non full cluster list for later allocation.

This series gives the swap SSD allocation a new separate code path from
the HDD allocation.  The new allocator use cluster list only and do not
global scan swap_map[] without lock any more.

This streamline the swap allocation for SSD.  The code matches the
execution flow much better.

User impact: For users that allocate and free mix order mTHP swapping, It
greatly improves the success rate of the mTHP swap allocation after the
initial phase.

It also performs faster when the swapfile is close to full, because the
allocator can get the non full cluster from a list rather than scanning a
lot of swap_map entries. 

With Barry's mthp test program V2:

Without:
$ ./thp_swap_allocator_test -a
Iteration 1: swpout inc: 32, swpout fallback inc: 192, Fallback percentage: 85.71%
Iteration 2: swpout inc: 0, swpout fallback inc: 231, Fallback percentage: 100.00%
Iteration 3: swpout inc: 0, swpout fallback inc: 227, Fallback percentage: 100.00%
...
Iteration 98: swpout inc: 0, swpout fallback inc: 224, Fallback percentage: 100.00%
Iteration 99: swpout inc: 0, swpout fallback inc: 215, Fallback percentage: 100.00%
Iteration 100: swpout inc: 0, swpout fallback inc: 222, Fallback percentage: 100.00%

$ ./thp_swap_allocator_test -a -s
Iteration 1: swpout inc: 0, swpout fallback inc: 224, Fallback percentage: 100.00%
Iteration 2: swpout inc: 0, swpout fallback inc: 218, Fallback percentage: 100.00%
Iteration 3: swpout inc: 0, swpout fallback inc: 222, Fallback percentage: 100.00%
..
Iteration 98: swpout inc: 0, swpout fallback inc: 228, Fallback percentage: 100.00%
Iteration 99: swpout inc: 0, swpout fallback inc: 230, Fallback percentage: 100.00%
Iteration 100: swpout inc: 0, swpout fallback inc: 229, Fallback percentage: 100.00%

$ ./thp_swap_allocator_test -s
Iteration 1: swpout inc: 0, swpout fallback inc: 224, Fallback percentage: 100.00%
Iteration 2: swpout inc: 0, swpout fallback inc: 218, Fallback percentage: 100.00%
Iteration 3: swpout inc: 0, swpout fallback inc: 222, Fallback percentage: 100.00%
..
Iteration 98: swpout inc: 0, swpout fallback inc: 228, Fallback percentage: 100.00%
Iteration 99: swpout inc: 0, swpout fallback inc: 230, Fallback percentage: 100.00%
Iteration 100: swpout inc: 0, swpout fallback inc: 229, Fallback percentage: 100.00%

$ ./thp_swap_allocator_test
Iteration 1: swpout inc: 0, swpout fallback inc: 224, Fallback percentage: 100.00%
Iteration 2: swpout inc: 0, swpout fallback inc: 218, Fallback percentage: 100.00%
Iteration 3: swpout inc: 0, swpout fallback inc: 222, Fallback percentage: 100.00%
..
Iteration 98: swpout inc: 0, swpout fallback inc: 228, Fallback percentage: 100.00%
Iteration 99: swpout inc: 0, swpout fallback inc: 230, Fallback percentage: 100.00%
Iteration 100: swpout inc: 0, swpout fallback inc: 229, Fallback percentage: 100.00%

With: # with all 0.00% filter out
$ ./thp_swap_allocator_test -a | grep -v "0.00%"
$ # all result are 0.00%

$ ./thp_swap_allocator_test -a -s | grep -v "0.00%"
./thp_swap_allocator_test -a -s | grep -v "0.00%" 
Iteration 14: swpout inc: 223, swpout fallback inc: 3, Fallback percentage: 1.33%
Iteration 19: swpout inc: 219, swpout fallback inc: 7, Fallback percentage: 3.10%
Iteration 28: swpout inc: 225, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 29: swpout inc: 227, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 34: swpout inc: 220, swpout fallback inc: 8, Fallback percentage: 3.51%
Iteration 35: swpout inc: 222, swpout fallback inc: 11, Fallback percentage: 4.72%
Iteration 38: swpout inc: 217, swpout fallback inc: 4, Fallback percentage: 1.81%
Iteration 40: swpout inc: 222, swpout fallback inc: 6, Fallback percentage: 2.63%
Iteration 42: swpout inc: 221, swpout fallback inc: 2, Fallback percentage: 0.90%
Iteration 43: swpout inc: 215, swpout fallback inc: 7, Fallback percentage: 3.15%
Iteration 47: swpout inc: 226, swpout fallback inc: 2, Fallback percentage: 0.88%
Iteration 49: swpout inc: 217, swpout fallback inc: 1, Fallback percentage: 0.46%
Iteration 52: swpout inc: 221, swpout fallback inc: 8, Fallback percentage: 3.49%
Iteration 56: swpout inc: 224, swpout fallback inc: 4, Fallback percentage: 1.75%
Iteration 58: swpout inc: 214, swpout fallback inc: 5, Fallback percentage: 2.28%
Iteration 62: swpout inc: 220, swpout fallback inc: 3, Fallback percentage: 1.35%
Iteration 64: swpout inc: 224, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 67: swpout inc: 221, swpout fallback inc: 1, Fallback percentage: 0.45%
Iteration 75: swpout inc: 220, swpout fallback inc: 9, Fallback percentage: 3.93%
Iteration 82: swpout inc: 227, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 86: swpout inc: 211, swpout fallback inc: 12, Fallback percentage: 5.38%
Iteration 89: swpout inc: 226, swpout fallback inc: 2, Fallback percentage: 0.88%
Iteration 93: swpout inc: 220, swpout fallback inc: 1, Fallback percentage: 0.45%
Iteration 94: swpout inc: 224, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 96: swpout inc: 221, swpout fallback inc: 6, Fallback percentage: 2.64%
Iteration 98: swpout inc: 227, swpout fallback inc: 1, Fallback percentage: 0.44%
Iteration 99: swpout inc: 227, swpout fallback inc: 3, Fallback percentage: 1.30%

$ ./thp_swap_allocator_test      
./thp_swap_allocator_test 
Iteration 1: swpout inc: 233, swpout fallback inc: 0, Fallback percentage: 0.00%
Iteration 2: swpout inc: 131, swpout fallback inc: 101, Fallback percentage: 43.53%
Iteration 3: swpout inc: 71, swpout fallback inc: 155, Fallback percentage: 68.58%
Iteration 4: swpout inc: 55, swpout fallback inc: 168, Fallback percentage: 75.34%
Iteration 5: swpout inc: 35, swpout fallback inc: 191, Fallback percentage: 84.51%
Iteration 6: swpout inc: 25, swpout fallback inc: 199, Fallback percentage: 88.84%
Iteration 7: swpout inc: 23, swpout fallback inc: 205, Fallback percentage: 89.91%
Iteration 8: swpout inc: 9, swpout fallback inc: 219, Fallback percentage: 96.05%
Iteration 9: swpout inc: 13, swpout fallback inc: 213, Fallback percentage: 94.25%
Iteration 10: swpout inc: 12, swpout fallback inc: 216, Fallback percentage: 94.74%
Iteration 11: swpout inc: 16, swpout fallback inc: 213, Fallback percentage: 93.01%
Iteration 12: swpout inc: 10, swpout fallback inc: 210, Fallback percentage: 95.45%
Iteration 13: swpout inc: 16, swpout fallback inc: 212, Fallback percentage: 92.98%
Iteration 14: swpout inc: 12, swpout fallback inc: 212, Fallback percentage: 94.64%
Iteration 15: swpout inc: 15, swpout fallback inc: 211, Fallback percentage: 93.36%
Iteration 16: swpout inc: 15, swpout fallback inc: 200, Fallback percentage: 93.02%
Iteration 17: swpout inc: 9, swpout fallback inc: 220, Fallback percentage: 96.07%

$ ./thp_swap_allocator_test -s
 ./thp_swap_allocator_test -s
Iteration 1: swpout inc: 233, swpout fallback inc: 0, Fallback percentage: 0.00%
Iteration 2: swpout inc: 97, swpout fallback inc: 135, Fallback percentage: 58.19%
Iteration 3: swpout inc: 42, swpout fallback inc: 192, Fallback percentage: 82.05%
Iteration 4: swpout inc: 19, swpout fallback inc: 214, Fallback percentage: 91.85%
Iteration 5: swpout inc: 12, swpout fallback inc: 213, Fallback percentage: 94.67%
Iteration 6: swpout inc: 11, swpout fallback inc: 217, Fallback percentage: 95.18%
Iteration 7: swpout inc: 9, swpout fallback inc: 214, Fallback percentage: 95.96%
Iteration 8: swpout inc: 8, swpout fallback inc: 213, Fallback percentage: 96.38%
Iteration 9: swpout inc: 2, swpout fallback inc: 223, Fallback percentage: 99.11%
Iteration 10: swpout inc: 2, swpout fallback inc: 228, Fallback percentage: 99.13%
Iteration 11: swpout inc: 4, swpout fallback inc: 214, Fallback percentage: 98.17%
Iteration 12: swpout inc: 5, swpout fallback inc: 226, Fallback percentage: 97.84%
Iteration 13: swpout inc: 3, swpout fallback inc: 212, Fallback percentage: 98.60%
Iteration 14: swpout inc: 0, swpout fallback inc: 222, Fallback percentage: 100.00%
Iteration 15: swpout inc: 3, swpout fallback inc: 222, Fallback percentage: 98.67%
Iteration 16: swpout inc: 4, swpout fallback inc: 223, Fallback percentage: 98.24%

=========
Kernel compile under tmpfs with cgroup memory.max = 470M.
12 core 24 hyperthreading, 32 jobs. 10 Run each group

SSD swap 10 runs average, 20G swap partition:
With:
user    2929.064
system  1479.381 : 1376.89 1398.22 1444.64 1477.39 1479.04 1497.27
1504.47 1531.4 1532.92 1551.57
real    1441.324

Without:
user    2910.872
system  1482.732 : 1440.01 1451.4 1462.01 1467.47 1467.51 1469.3
1470.19 1496.32 1544.1 1559.01
real    1580.822

Two zram swap: zram0 3.0G zram1 20G.

The idea is forcing the zram0 almost full then overflow to zram1:

With:
user    4320.301
system  4272.403 : 4236.24 4262.81 4264.75 4269.13 4269.44 4273.06
4279.85 4285.98 4289.64 4293.13
real    431.759

Without
user    4301.393
system  4387.672 : 4374.47 4378.3 4380.95 4382.84 4383.06 4388.05
4389.76 4397.16 4398.23 4403.9
real    433.979

------ more test result from Kaiui ----------

Test with build linux kernel using a 4G ZRAM, 1G memory.max limit on top of shmem:

System info: 32 Core AMD Zen2, 64G total memory.

Test 3 times using only 4K pages:
=================================

With:
-----
1838.74user 2411.21system 2:37.86elapsed 2692%CPU (0avgtext+0avgdata 847060maxresident)k
1839.86user 2465.77system 2:39.35elapsed 2701%CPU (0avgtext+0avgdata 847060maxresident)k
1840.26user 2454.68system 2:39.43elapsed 2693%CPU (0avgtext+0avgdata 847060maxresident)k

Summary (~4.6% improment of system time):
User: 1839.62
System: 2443.89: 2465.77 2454.68 2411.21
Real: 158.88

Without:
--------
1837.99user 2575.95system 2:43.09elapsed 2706%CPU (0avgtext+0avgdata 846520maxresident)k
1838.32user 2555.15system 2:42.52elapsed 2709%CPU (0avgtext+0avgdata 846520maxresident)k
1843.02user 2561.55system 2:43.35elapsed 2702%CPU (0avgtext+0avgdata 846520maxresident)k

Summary:
User: 1839.78
System: 2564.22: 2575.95 2555.15 2561.55
Real: 162.99

Test 5 times using enabled all mTHP pages:
==========================================

With:
-----
1796.44user 2937.33system 2:59.09elapsed 2643%CPU (0avgtext+0avgdata 846936maxresident)k
1802.55user 3002.32system 2:54.68elapsed 2750%CPU (0avgtext+0avgdata 847072maxresident)k
1806.59user 2986.53system 2:55.17elapsed 2736%CPU (0avgtext+0avgdata 847092maxresident)k
1803.27user 2982.40system 2:54.49elapsed 2742%CPU (0avgtext+0avgdata 846796maxresident)k
1807.43user 3036.08system 2:56.06elapsed 2751%CPU (0avgtext+0avgdata 846488maxresident)k

Summary (~8.4% improvement of system time):
User: 1803.25
System: 2988.93: 2937.33 3002.32 2986.53 2982.40 3036.08
Real: 175.90

mTHP swapout status:
/sys/kernel/mm/transparent_hugepage/hugepages-32kB/stats/swpout:347721
/sys/kernel/mm/transparent_hugepage/hugepages-32kB/stats/swpout_fallback:3110
/sys/kernel/mm/transparent_hugepage/hugepages-512kB/stats/swpout:3365
/sys/kernel/mm/transparent_hugepage/hugepages-512kB/stats/swpout_fallback:8269
/sys/kernel/mm/transparent_hugepage/hugepages-2048kB/stats/swpout:24
/sys/kernel/mm/transparent_hugepage/hugepages-2048kB/stats/swpout_fallback:3341
/sys/kernel/mm/transparent_hugepage/hugepages-1024kB/stats/swpout:145
/sys/kernel/mm/transparent_hugepage/hugepages-1024kB/stats/swpout_fallback:5038
/sys/kernel/mm/transparent_hugepage/hugepages-64kB/stats/swpout:322737
/sys/kernel/mm/transparent_hugepage/hugepages-64kB/stats/swpout_fallback:36808
/sys/kernel/mm/transparent_hugepage/hugepages-16kB/stats/swpout:380455
/sys/kernel/mm/transparent_hugepage/hugepages-16kB/stats/swpout_fallback:1010
/sys/kernel/mm/transparent_hugepage/hugepages-256kB/stats/swpout:24973
/sys/kernel/mm/transparent_hugepage/hugepages-256kB/stats/swpout_fallback:13223
/sys/kernel/mm/transparent_hugepage/hugepages-128kB/stats/swpout:197348
/sys/kernel/mm/transparent_hugepage/hugepages-128kB/stats/swpout_fallback:80541

Without:
--------
1794.41user 3151.29system 3:05.97elapsed 2659%CPU (0avgtext+0avgdata 846704maxresident)k
1810.27user 3304.48system 3:05.38elapsed 2759%CPU (0avgtext+0avgdata 846636maxresident)k
1809.84user 3254.85system 3:03.83elapsed 2755%CPU (0avgtext+0avgdata 846952maxresident)k
1813.54user 3259.56system 3:04.28elapsed 2752%CPU (0avgtext+0avgdata 846848maxresident)k
1829.97user 3338.40system 3:07.32elapsed 2759%CPU (0avgtext+0avgdata 847024maxresident)k

Summary:
User: 1811.61
System: 3261.72 : 3151.29 3304.48 3254.85 3259.56 3338.40
Real: 185.356

mTHP swapout status:
hugepages-32kB/stats/swpout:35630
hugepages-32kB/stats/swpout_fallback:1809908
hugepages-512kB/stats/swpout:523
hugepages-512kB/stats/swpout_fallback:55235
hugepages-2048kB/stats/swpout:53
hugepages-2048kB/stats/swpout_fallback:17264
hugepages-1024kB/stats/swpout:85
hugepages-1024kB/stats/swpout_fallback:24979
hugepages-64kB/stats/swpout:30117
hugepages-64kB/stats/swpout_fallback:1825399
hugepages-16kB/stats/swpout:42775
hugepages-16kB/stats/swpout_fallback:1951123
hugepages-256kB/stats/swpout:2326
hugepages-256kB/stats/swpout_fallback:170165
hugepages-128kB/stats/swpout:17925
hugepages-128kB/stats/swpout_fallback:1309757


This patch (of 9):

Previously, the swap cluster used a cluster index as a pointer to
construct a custom single link list type "swap_cluster_list".  The next
cluster pointer is shared with the cluster->count.  It prevents puting the
non free cluster into a list.

Change the cluster to use the standard double link list instead.  This
allows tracing the nonfull cluster in the follow up patch.  That way, it
is faster to get to the nonfull cluster of that order.

Remove the cluster getter/setter for accessing the cluster struct member.

The list operation is protected by the swap_info_struct->lock.

Change cluster code to use "struct swap_cluster_info *" to reference the
cluster rather than by using index.  That is more consistent with the list
manipulation.  It avoids the repeat adding index to the cluser_info.  The
code is easier to understand.

Remove the cluster next pointer is NULL flag, the double link list can
handle the empty list pretty well.

The "swap_cluster_info" struct is two pointer bigger, because 512 swap
entries share one swap_cluster_info struct, it has very little impact on
the average memory usage per swap entry.  For 1TB swapfile, the swap
cluster data structure increases from 8MB to 24MB.

Other than the list conversion, there is no real function change in this
patch.

Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org
Link: https://lkml.kernel.org/r/20240730-swap-allocator-v5-1-cb9c148b9297@kernel.org
Signed-off-by: Chris Li <chrisl@kernel.org>
Reported-by: Barry Song <21cnbao@gmail.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03 21:15:24 -07:00
Matthew Wilcox (Oracle)
94dc8bffd8 mm: return the folio from swapin_readahead
The unuse_pte_range() caller only wants the folio while do_swap_page()
wants both the page and the folio.  Since do_swap_page() already has logic
for handling both the folio and the page, move the folio-to-page logic
there.  This also lets us allocate larger folios in the SWP_SYNCHRONOUS_IO
path in future.

Link: https://lkml.kernel.org/r/20240807193734.1865400-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:26:05 -07:00
Barry Song
9f101bef40 mm: swap: add nr argument in swapcache_prepare and swapcache_clear to support large folios
Right now, swapcache_prepare() and swapcache_clear() supports one entry
only, to support large folios, we need to handle multiple swap entries.

To optimize stack usage, we iterate twice in __swap_duplicate(): the first
time to verify that all entries are valid, and the second time to apply
the modifications to the entries.

Currently, we're using nr=1 for the existing users.

[v-songbaohua@oppo.com: clarify swap_count_continued and improve readability for  __swap_duplicate]
  Link: https://lkml.kernel.org/r/20240802071817.47081-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240730071339.107447-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:56 -07:00
Barry Song
d2539ed7ee mm: extend 'usage' parameter so that cluster_swap_free_nr() can be reused
Extend a usage parameter so that cluster_swap_free_nr() can be reused by
both swapcache_clear() and swap_free().  __swap_entry_free() is quite
similar but more tricky as it requires the return value of
__swap_entry_free_locked() which cluster_swap_free_nr() doesn't support.

Link: https://lkml.kernel.org/r/20240724020056.65838-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chuanhua Han <hanchuanhua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:46 -07:00
Barry Song
9ae2feaced mm: use folio_add_new_anon_rmap() if folio_test_anon(folio)==false
For the !folio_test_anon(folio) case, we can now invoke
folio_add_new_anon_rmap() with the rmap flags set to either EXCLUSIVE or
non-EXCLUSIVE.  This action will suppress the VM_WARN_ON_FOLIO check
within __folio_add_anon_rmap() while initiating the process of bringing up
mTHP swapin.

 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
                 struct page *page, int nr_pages, struct vm_area_struct *vma,
                 unsigned long address, rmap_t flags, enum rmap_level level)
 {
         ...
         if (unlikely(!folio_test_anon(folio))) {
                 VM_WARN_ON_FOLIO(folio_test_large(folio) &&
                                  level != RMAP_LEVEL_PMD, folio);
         }
         ...
 }

It also improves the code's readability.  Currently, all new anonymous
folios calling folio_add_anon_rmap_ptes() are order-0.  This ensures that
new folios cannot be partially exclusive; they are either entirely
exclusive or entirely shared.

A useful comment from Hugh's fix:

: Commit "mm: use folio_add_new_anon_rmap() if folio_test_anon(folio)==
: false" has extended folio_add_new_anon_rmap() to use on non-exclusive
: folios, already visible to others in swap cache and on LRU.
: 
: That renders its non-atomic __folio_set_swapbacked() unsafe: it risks
: overwriting concurrent atomic operations on folio->flags, losing bits
: added or restoring bits cleared.  Since it's only used in this risky way
: when folio_test_locked and !folio_test_anon, many such races are excluded;
: but, for example, isolations by folio_test_clear_lru() are vulnerable, and
: setting or clearing active.
: 
: It could just use the atomic folio_set_swapbacked(); but this function
: does try to avoid atomics where it can, so use a branch instead: just
: avoid setting swapbacked when it is already set, that is good enough. 
: (Swapbacked is normally stable once set: lazyfree can undo it, but only
: later, when found anon in a page table.)
: 
: This fixes a lot of instability under compaction and swapping loads:
: assorted "Bad page"s, VM_BUG_ON_FOLIO()s, apparently even page double
: frees - though I've not worked out what races could lead to the latter.

[akpm@linux-foundation.org: comment fixes, per David and akpm]
[v-songbaohua@oppo.com: lock the folio to avoid race]
  Link: https://lkml.kernel.org/r/20240622032002.53033-1-21cnbao@gmail.com
[hughd@google.com: folio_add_new_anon_rmap() careful __folio_set_swapbacked()]
  Link: https://lkml.kernel.org/r/f3599b1d-8323-0dc5-e9e0-fdb3cfc3dd5a@google.com
Link: https://lkml.kernel.org/r/20240617231137.80726-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Tested-by: Shuai Yuan <yuanshuai@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:18 -07:00
Barry Song
15bde4abab mm: extend rmap flags arguments for folio_add_new_anon_rmap
Patch series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()", v2.

This patchset is preparatory work for mTHP swapin.

folio_add_new_anon_rmap() assumes that new anon rmaps are always
exclusive.  However, this assumption doesn’t hold true for cases like
do_swap_page(), where a new anon might be added to the swapcache and is
not necessarily exclusive.

The patchset extends the rmap flags to allow folio_add_new_anon_rmap() to
handle both exclusive and non-exclusive new anon folios.  The
do_swap_page() function is updated to use this extended API with rmap
flags.  Consequently, all new anon folios now consistently use
folio_add_new_anon_rmap().  The special case for !folio_test_anon() in
__folio_add_anon_rmap() can be safely removed.

In conclusion, new anon folios always use folio_add_new_anon_rmap(),
regardless of exclusivity.  Old anon folios continue to use
__folio_add_anon_rmap() via folio_add_anon_rmap_pmd() and
folio_add_anon_rmap_ptes().


This patch (of 3):

In the case of a swap-in, a new anonymous folio is not necessarily
exclusive.  This patch updates the rmap flags to allow a new anonymous
folio to be treated as either exclusive or non-exclusive.  To maintain the
existing behavior, we always use EXCLUSIVE as the default setting.

[akpm@linux-foundation.org: cleanup and constifications per David and akpm]
[v-songbaohua@oppo.com: fix missing doc for flags of folio_add_new_anon_rmap()]
  Link: https://lkml.kernel.org/r/20240619210641.62542-1-21cnbao@gmail.com
[v-songbaohua@oppo.com: enhance doc for extend rmap flags arguments for folio_add_new_anon_rmap]
  Link: https://lkml.kernel.org/r/20240622030256.43775-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240617231137.80726-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240617231137.80726-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Tested-by: Shuai Yuan <yuanshuai@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:18 -07:00
Barry Song
54f7a49c20 mm: remove the implementation of swap_free() and always use swap_free_nr()
To streamline maintenance efforts, we propose removing the implementation
of swap_free().  Instead, we can simply invoke swap_free_nr() with nr set
to 1.  swap_free_nr() is designed with a bitmap consisting of only one
long, resulting in overhead that can be ignored for cases where nr equals
1.

A prime candidate for leveraging swap_free_nr() lies within
kernel/power/swap.c.  Implementing this change facilitates the adoption of
batch processing for hibernation.

Link: https://lkml.kernel.org/r/20240529082824.150954-3-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Len Brown <len.brown@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chuanhua Han <hanchuanhua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:01 -07:00
Chuanhua Han
ebfba00451 mm: swap: introduce swap_free_nr() for batched swap_free()
Patch series "large folios swap-in: handle refault cases first", v5.

This patchset is extracted from the large folio swapin series[1],
primarily addressing the handling of scenarios involving large folios in
the swap cache.  Currently, it is particularly focused on addressing the
refaulting of mTHP, which is still undergoing reclamation.  This approach
aims to streamline code review and expedite the integration of this
segment into the MM tree.

It relies on Ryan's swap-out series[2], leveraging the helper function
swap_pte_batch() introduced by that series.

Presently, do_swap_page only encounters a large folio in the swap cache
before the large folio is released by vmscan.  However, the code should
remain equally useful once we support large folio swap-in via
swapin_readahead().  This approach can effectively reduce page faults and
eliminate most redundant checks and early exits for MTE restoration in
recent MTE patchset[3].

The large folio swap-in for SWP_SYNCHRONOUS_IO and swapin_readahead() will
be split into separate patch sets and sent at a later time.

[1] https://lore.kernel.org/linux-mm/20240304081348.197341-1-21cnbao@gmail.com/
[2] https://lore.kernel.org/linux-mm/20240408183946.2991168-1-ryan.roberts@arm.com/
[3] https://lore.kernel.org/linux-mm/20240322114136.61386-1-21cnbao@gmail.com/ 


This patch (of 6):

While swapping in a large folio, we need to free swaps related to the
whole folio.  To avoid frequently acquiring and releasing swap locks, it
is better to introduce an API for batched free.  Furthermore, this new
function, swap_free_nr(), is designed to efficiently handle various
scenarios for releasing a specified number, nr, of swap entries.

Link: https://lkml.kernel.org/r/20240529082824.150954-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240529082824.150954-2-21cnbao@gmail.com
Signed-off-by: Chuanhua Han <hanchuanhua@oppo.com>
Co-developed-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:01 -07:00
Kairui Song
7aad25b4b4 mm/swap: reduce swap cache search space
Currently we use one swap_address_space for every 64M chunk to reduce lock
contention, this is like having a set of smaller swap files inside one
swap device.  But when doing swap cache look up or insert, we are still
using the offset of the whole large swap device.  This is OK for
correctness, as the offset (key) is unique.

But Xarray is specially optimized for small indexes, it creates the radix
tree levels lazily to be just enough to fit the largest key stored in one
Xarray.  So we are wasting tree nodes unnecessarily.

For 64M chunk it should only take at most 3 levels to contain everything. 
But if we are using the offset from the whole swap device, the offset
(key) value will be way beyond 64M, and so will the tree level.

Optimize this by using a new helper swap_cache_index to get a swap entry's
unique offset in its own 64M swap_address_space.

I see a ~1% performance gain in benchmark and actual workload with high
memory pressure.

Test with `time memhog 128G` inside a 8G memcg using 128G swap (ramdisk
with SWP_SYNCHRONOUS_IO dropped, tested 3 times, results are stable.  The
test result is similar but the improvement is smaller if
SWP_SYNCHRONOUS_IO is enabled, as swap out path can never skip swap
cache):

Before:
6.07user 250.74system 4:17.26elapsed 99%CPU (0avgtext+0avgdata 8373376maxresident)k
0inputs+0outputs (55major+33555018minor)pagefaults 0swaps

After (1.8% faster):
6.08user 246.09system 4:12.58elapsed 99%CPU (0avgtext+0avgdata 8373248maxresident)k
0inputs+0outputs (54major+33555027minor)pagefaults 0swaps

Similar result with MySQL and sysbench using swap:
Before:
94055.61 qps

After (0.8% faster):
94834.91 qps

Radix tree slab usage is also very slightly lower.

Link: https://lkml.kernel.org/r/20240521175854.96038-12-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc Dionne <marc.dionne@auristor.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:29:56 -07:00
Kairui Song
05b0c7edad mm: drop page_index and simplify folio_index
There are two helpers for retrieving the index within address space for
mixed usage of swap cache and page cache:

- page_index
- folio_index

This commit drops page_index, as we have eliminated all users, and
converts folio_index's helper __page_file_index to use folio to avoid the
page conversion.

Link: https://lkml.kernel.org/r/20240521175854.96038-11-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc Dionne <marc.dionne@auristor.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:29:55 -07:00
Linus Torvalds
5ad8b6ad9a getting rid of bogus set_blocksize() uses, switching it
to struct file * and verifying that caller has device
 opened exclusively.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZkwkfQAKCRBZ7Krx/gZQ
 62C3AQDW5vuXNx2+KDPma5YStjFpPLC0xtSyAS5D3YANjtyRFgD/TOcCarq7rvBt
 KubxHVFsfW+eu6ASeaoMRB83w5OIzwk=
 =Liix
 -----END PGP SIGNATURE-----

Merge tag 'pull-set_blocksize' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs

Pull vfs blocksize updates from Al Viro:
 "This gets rid of bogus set_blocksize() uses, switches it over
  to be based on a 'struct file *' and verifies that the caller
  has the device opened exclusively"

* tag 'pull-set_blocksize' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  make set_blocksize() fail unless block device is opened exclusive
  set_blocksize(): switch to passing struct file *
  btrfs_get_bdev_and_sb(): call set_blocksize() only for exclusive opens
  swsusp: don't bother with setting block size
  zram: don't bother with reopening - just use O_EXCL for open
  swapon(2): open swap with O_EXCL
  swapon(2)/swapoff(2): don't bother with block size
  pktcdvd: sort set_blocksize() calls out
  bcache_register(): don't bother with set_blocksize()
2024-05-21 08:34:51 -07:00
linke li
5ee9562c58 mm/swapfile: mark racy access on si->highest_bit
In scan_swap_map_slots(), si->highest_bit can by changed by
swap_range_alloc() concurrently.  All reads on si->highest_bit except one
is either protected by lock or read using READ_ONCE.  So mark the one racy
read on si->highest_bit as benign using READ_ONCE.

This patch is aimed at reducing the number of benign races reported by
KCSAN in order to focus future debugging effort on harmful races.

Link: https://lkml.kernel.org/r/tencent_912BC3E8B0291DA4A0028AB424076375DA07@qq.com
Signed-off-by: linke li <lilinke99@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:57 -07:00
Kefeng Wang
80e7502148 mm: swapfile: check usable swap device in __folio_throttle_swaprate()
Skip blk_cgroup_congested() if there is no usable swap device since no
swapin/out will occur, Thereby avoid taking swap_lock.  The difference
is shown below from perf date of CoW pagefault,

  perf report -g -i perf.data.swapon  | egrep "blk_cgroup_congested|__folio_throttle_swaprate"
      1.01%     0.16%  page_fault2_pro  [kernel.kallsyms]      [k] __folio_throttle_swaprate
      0.83%     0.80%  page_fault2_pro  [kernel.kallsyms]      [k] blk_cgroup_congested

  perf report -g -i perf.data.swapoff   | egrep  "blk_cgroup_congested|__folio_throttle_swaprate"
      0.15%     0.15%  page_fault2_pro  [kernel.kallsyms]      [k] __folio_throttle_swaprate

Link: https://lkml.kernel.org/r/20240418135644.2736748-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:42 -07:00
Huang Ying
d4a34d7fb4 mm,swap: add document about RCU read lock and swapoff interaction
During reviewing a patch to fix the race condition between
free_swap_and_cache() and swapoff() [1], it was found that the document
about how to prevent racing with swapoff isn't clear enough.  Especially
RCU read lock can prevent swapoff from freeing data structures.  So, the
document is added as comments.

[1] https://lore.kernel.org/linux-mm/c8fe62d0-78b8-527a-5bef-ee663ccdc37a@huawei.com/

Link: https://lkml.kernel.org/r/20240407065450.498821-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:26 -07:00
Al Viro
51d908b3db swapon(2): open swap with O_EXCL
... eliminating the need to reopen block devices so they could be
exclusively held.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-05-02 17:23:30 -04:00
Al Viro
798cb7f9ae swapon(2)/swapoff(2): don't bother with block size
once upon a time that used to matter; these days we do swap IO for
swap devices at the level that doesn't give a damn about block size,
buffer_head or anything of that sort - just attach the page to
bio, set the location and size (the latter to PAGE_SIZE) and feed
into queue.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2024-05-02 17:23:30 -04:00
Ryan Roberts
845982eb26 mm: swap: allow storage of all mTHP orders
Multi-size THP enables performance improvements by allocating large,
pte-mapped folios for anonymous memory.  However I've observed that on an
arm64 system running a parallel workload (e.g.  kernel compilation) across
many cores, under high memory pressure, the speed regresses.  This is due
to bottlenecking on the increased number of TLBIs added due to all the
extra folio splitting when the large folios are swapped out.

Therefore, solve this regression by adding support for swapping out mTHP
without needing to split the folio, just like is already done for
PMD-sized THP.  This change only applies when CONFIG_THP_SWAP is enabled,
and when the swap backing store is a non-rotating block device.  These are
the same constraints as for the existing PMD-sized THP swap-out support.

Note that no attempt is made to swap-in (m)THP here - this is still done
page-by-page, like for PMD-sized THP.  But swapping-out mTHP is a
prerequisite for swapping-in mTHP.

The main change here is to improve the swap entry allocator so that it can
allocate any power-of-2 number of contiguous entries between [1, (1 <<
PMD_ORDER)].  This is done by allocating a cluster for each distinct order
and allocating sequentially from it until the cluster is full.  This
ensures that we don't need to search the map and we get no fragmentation
due to alignment padding for different orders in the cluster.  If there is
no current cluster for a given order, we attempt to allocate a free
cluster from the list.  If there are no free clusters, we fail the
allocation and the caller can fall back to splitting the folio and
allocates individual entries (as per existing PMD-sized THP fallback).

The per-order current clusters are maintained per-cpu using the existing
infrastructure.  This is done to avoid interleving pages from different
tasks, which would prevent IO being batched.  This is already done for the
order-0 allocations so we follow the same pattern.

As is done for order-0 per-cpu clusters, the scanner now can steal order-0
entries from any per-cpu-per-order reserved cluster.  This ensures that
when the swap file is getting full, space doesn't get tied up in the
per-cpu reserves.

This change only modifies swap to be able to accept any order mTHP.  It
doesn't change the callers to elide doing the actual split.  That will be
done in separate changes.

Link: https://lkml.kernel.org/r/20240408183946.2991168-6-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:37 -07:00
Ryan Roberts
9faaa0f816 mm: swap: update get_swap_pages() to take folio order
We are about to allow swap storage of any mTHP size.  To prepare for that,
let's change get_swap_pages() to take a folio order parameter instead of
nr_pages.  This makes the interface self-documenting; a power-of-2 number
of pages must be provided.  We will also need the order internally so this
simplifies accessing it.

Link: https://lkml.kernel.org/r/20240408183946.2991168-5-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:37 -07:00
Ryan Roberts
14c62da21b mm: swap: simplify struct percpu_cluster
struct percpu_cluster stores the index of cpu's current cluster and the
offset of the next entry that will be allocated for the cpu.  These two
pieces of information are redundant because the cluster index is just
(offset / SWAPFILE_CLUSTER).  The only reason for explicitly keeping the
cluster index is because the structure used for it also has a flag to
indicate "no cluster".  However this data structure also contains a spin
lock, which is never used in this context, as a side effect the code
copies the spinlock_t structure, which is questionable coding practice in
my view.

So let's clean this up and store only the next offset, and use a sentinal
value (SWAP_NEXT_INVALID) to indicate "no cluster".  SWAP_NEXT_INVALID is
chosen to be 0, because 0 will never be seen legitimately; The first page
in the swap file is the swap header, which is always marked bad to prevent
it from being allocated as an entry.  This also prevents the cluster to
which it belongs being marked free, so it will never appear on the free
list.

This change saves 16 bytes per cpu.  And given we are shortly going to
extend this mechanism to be per-cpu-AND-per-order, we will end up saving
16 * 9 = 144 bytes per cpu, which adds up if you have 256 cpus in the
system.

Link: https://lkml.kernel.org/r/20240408183946.2991168-4-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:37 -07:00
Ryan Roberts
a62fb92ac1 mm: swap: free_swap_and_cache_nr() as batched free_swap_and_cache()
Now that we no longer have a convenient flag in the cluster to determine
if a folio is large, free_swap_and_cache() will take a reference and lock
a large folio much more often, which could lead to contention and (e.g.)
failure to split large folios, etc.

Let's solve that problem by batch freeing swap and cache with a new
function, free_swap_and_cache_nr(), to free a contiguous range of swap
entries together.  This allows us to first drop a reference to each swap
slot before we try to release the cache folio.  This means we only try to
release the folio once, only taking the reference and lock once - much
better than the previous 512 times for the 2M THP case.

Contiguous swap entries are gathered in zap_pte_range() and
madvise_free_pte_range() in a similar way to how present ptes are already
gathered in zap_pte_range().

While we are at it, let's simplify by converting the return type of both
functions to void.  The return value was used only by zap_pte_range() to
print a bad pte, and was ignored by everyone else, so the extra reporting
wasn't exactly guaranteed.  We will still get the warning with most of the
information from get_swap_device().  With the batch version, we wouldn't
know which pte was bad anyway so could print the wrong one.

[ryan.roberts@arm.com: fix a build warning on parisc]
  Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:37 -07:00
Ryan Roberts
d7d0d389ff mm: swap: remove CLUSTER_FLAG_HUGE from swap_cluster_info:flags
Patch series "Swap-out mTHP without splitting", v7.

This series adds support for swapping out multi-size THP (mTHP) without
needing to first split the large folio via
split_huge_page_to_list_to_order().  It closely follows the approach
already used to swap-out PMD-sized THP.

There are a couple of reasons for swapping out mTHP without splitting:

  - Performance: It is expensive to split a large folio and under
    extreme memory pressure some workloads regressed performance when
    using 64K mTHP vs 4K small folios because of this extra cost in the
    swap-out path.  This series not only eliminates the regression but
    makes it faster to swap out 64K mTHP vs 4K small folios.

  - Memory fragmentation avoidance: If we can avoid splitting a large
    folio memory is less likely to become fragmented, making it easier to
    re-allocate a large folio in future.

  - Performance: Enables a separate series [7] to swap-in whole mTHPs,
    which means we won't lose the TLB-efficiency benefits of mTHP once the
    memory has been through a swap cycle.

I've done what I thought was the smallest change possible, and as a
result, this approach is only employed when the swap is backed by a
non-rotating block device (just as PMD-sized THP is supported today). 
Discussion against the RFC concluded that this is sufficient.


Performance Testing
===================

I've run some swap performance tests on Ampere Altra VM (arm64) with 8
CPUs.  The VM is set up with a 35G block ram device as the swap device and
the test is run from inside a memcg limited to 40G memory.  I've then run
`usemem` from vm-scalability with 70 processes, each allocating and
writing 1G of memory.  I've repeated everything 6 times and taken the mean
performance improvement relative to 4K page baseline:

| alloc size |                baseline |           + this series |
|            | mm-unstable (~v6.9-rc1) |                         |
|:-----------|------------------------:|------------------------:|
| 4K Page    |                    0.0% |                    1.3% |
| 64K THP    |                  -13.6% |                   46.3% |
| 2M THP     |                   91.4% |                   89.6% |

So with this change, the 64K swap performance goes from a 14% regression to a
46% improvement. While 2M shows a small regression I'm confident that this is
just noise.

[1] https://lore.kernel.org/linux-mm/20231010142111.3997780-1-ryan.roberts@arm.com/
[2] https://lore.kernel.org/linux-mm/20231017161302.2518826-1-ryan.roberts@arm.com/
[3] https://lore.kernel.org/linux-mm/20231025144546.577640-1-ryan.roberts@arm.com/
[4] https://lore.kernel.org/linux-mm/20240311150058.1122862-1-ryan.roberts@arm.com/
[5] https://lore.kernel.org/linux-mm/20240327144537.4165578-1-ryan.roberts@arm.com/
[6] https://lore.kernel.org/linux-mm/20240403114032.1162100-1-ryan.roberts@arm.com/
[7] https://lore.kernel.org/linux-mm/20240304081348.197341-1-21cnbao@gmail.com/
[8] https://lore.kernel.org/linux-mm/CAGsJ_4yMOow27WDvN2q=E4HAtDd2PJ=OQ5Pj9DG+6FLWwNuXUw@mail.gmail.com/
[9] https://lore.kernel.org/linux-mm/579d5127-c763-4001-9625-4563a9316ac3@redhat.com/


This patch (of 7):

As preparation for supporting small-sized THP in the swap-out path,
without first needing to split to order-0, Remove the CLUSTER_FLAG_HUGE,
which, when present, always implies PMD-sized THP, which is the same as
the cluster size.

The only use of the flag was to determine whether a swap entry refers to a
single page or a PMD-sized THP in swap_page_trans_huge_swapped().  Instead
of relying on the flag, we now pass in order, which originates from the
folio's order.  This allows the logic to work for folios of any order.

The one snag is that one of the swap_page_trans_huge_swapped() call sites
does not have the folio.  But it was only being called there to shortcut a
call __try_to_reclaim_swap() in some cases.  __try_to_reclaim_swap() gets
the folio and (via some other functions) calls
swap_page_trans_huge_swapped().  So I've removed the problematic call site
and believe the new logic should be functionally equivalent.

That said, removing the fast path means that we will take a reference and
trylock a large folio much more often, which we would like to avoid.  The
next patch will solve this.

Removing CLUSTER_FLAG_HUGE also means we can remove split_swap_cluster()
which used to be called during folio splitting, since
split_swap_cluster()'s only job was to remove the flag.

Link: https://lkml.kernel.org/r/20240408183946.2991168-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:36 -07:00
Barry Song
f238b8c33c arm64: mm: swap: support THP_SWAP on hardware with MTE
Commit d0637c505f ("arm64: enable THP_SWAP for arm64") brings up
THP_SWAP on ARM64, but it doesn't enable THP_SWP on hardware with MTE as
the MTE code works with the assumption tags save/restore is always
handling a folio with only one page.

The limitation should be removed as more and more ARM64 SoCs have this
feature.  Co-existence of MTE and THP_SWAP becomes more and more
important.

This patch makes MTE tags saving support large folios, then we don't need
to split large folios into base pages for swapping out on ARM64 SoCs with
MTE any more.

arch_prepare_to_swap() should take folio rather than page as parameter
because we support THP swap-out as a whole.  It saves tags for all pages
in a large folio.

As now we are restoring tags based-on folio, in arch_swap_restore(), we
may increase some extra loops and early-exitings while refaulting a large
folio which is still in swapcache in do_swap_page().  In case a large
folio has nr pages, do_swap_page() will only set the PTE of the particular
page which is causing the page fault.  Thus do_swap_page() runs nr times,
and each time, arch_swap_restore() will loop nr times for those subpages
in the folio.  So right now the algorithmic complexity becomes O(nr^2).

Once we support mapping large folios in do_swap_page(), extra loops and
early-exitings will decrease while not being completely removed as a large
folio might get partially tagged in corner cases such as, 1.  a large
folio in swapcache can be partially unmapped, thus, MTE tags for the
unmapped pages will be invalidated; 2.  users might use mprotect() to set
MTEs on a part of a large folio.

arch_thp_swp_supported() is dropped since ARM64 MTE was the only one who
needed it.

Link: https://lkml.kernel.org/r/20240322114136.61386-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:07 -07:00
Linus Torvalds
902861e34c - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory.  Series
   "implement "memmap on memory" feature on s390".
 
 - More folio conversions from Matthew Wilcox in the series
 
 	"Convert memcontrol charge moving to use folios"
 	"mm: convert mm counter to take a folio"
 
 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes.  The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".
 
 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.
 
 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools".  Measured improvements are modest.
 
 - zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
   zswap: simplify zswap_swapoff()".
 
 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is hotplugged
   as system memory.
 
 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.
 
 - More DAMON work from SeongJae Park in the series
 
 	"mm/damon: make DAMON debugfs interface deprecation unignorable"
 	"selftests/damon: add more tests for core functionalities and corner cases"
 	"Docs/mm/damon: misc readability improvements"
 	"mm/damon: let DAMOS feeds and tame/auto-tune itself"
 
 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving policy
   wherein we allocate memory across nodes in a weighted fashion rather
   than uniformly.  This is beneficial in heterogeneous memory environments
   appearing with CXL.
 
 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
 
 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".
 
 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format.  Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.
 
 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP".  Mainly
   targeted at arm64, this significantly speeds up fork() when the process
   has a large number of pte-mapped folios.
 
 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP".  It
   implements batching during munmap() and other pte teardown situations.
   The microbenchmark improvements are nice.
 
 - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
   Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings").  Kernel build times on arm64 improved nicely.  Ryan's series
   "Address some contpte nits" provides some followup work.
 
 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page faults.
   He has also added a reproducer under the selftest code.
 
 - In the series "selftests/mm: Output cleanups for the compaction test",
   Mark Brown did what the title claims.
 
 - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
 
 - Even more zswap material from Nhat Pham.  The series "fix and extend
   zswap kselftests" does as claimed.
 
 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
   our handling of DAX on archiecctures which have virtually aliasing data
   caches.  The arm architecture is the main beneficiary.
 
 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
   improvements in worst-case mmap_lock hold times during certain
   userfaultfd operations.
 
 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series
 
 	"page_owner: print stacks and their outstanding allocations"
 	"page_owner: Fixup and cleanup"
 
 - Uladzislau Rezki has contributed some vmalloc scalability improvements
   in his series "Mitigate a vmap lock contention".  It realizes a 12x
   improvement for a certain microbenchmark.
 
 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".
 
 - Some zsmalloc maintenance work from Chengming Zhou in the series
 
 	"mm/zsmalloc: fix and optimize objects/page migration"
 	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
 
 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0.  This a step along the path to implementaton of the merging of
   large anonymous folios.  The series is named "Enable >0 order folio
   memory compaction".
 
 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages() to
   an iterator".
 
 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".
 
 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios.  The
   series is named "Split a folio to any lower order folios".
 
 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.
 
 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".
 
 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which are
   configured to use large numbers of hugetlb pages.
 
 - Matthew Wilcox's series "PageFlags cleanups" does that.
 
 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also.  S390 is affected.
 
 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".
 
 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
 
 - Also, of course, many singleton patches to many things.  Please see
   the individual changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
 joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
 TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
 =TG55
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
   from hotplugged memory rather than only from main memory. Series
   "implement "memmap on memory" feature on s390".

 - More folio conversions from Matthew Wilcox in the series

	"Convert memcontrol charge moving to use folios"
	"mm: convert mm counter to take a folio"

 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes. The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".

 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.

 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools". Measured improvements are modest.

 - zswap cleanups and simplifications from Yosry Ahmed in the series
   "mm: zswap: simplify zswap_swapoff()".

 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is
   hotplugged as system memory.

 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.

 - More DAMON work from SeongJae Park in the series

	"mm/damon: make DAMON debugfs interface deprecation unignorable"
	"selftests/damon: add more tests for core functionalities and corner cases"
	"Docs/mm/damon: misc readability improvements"
	"mm/damon: let DAMOS feeds and tame/auto-tune itself"

 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving
   policy wherein we allocate memory across nodes in a weighted fashion
   rather than uniformly. This is beneficial in heterogeneous memory
   environments appearing with CXL.

 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".

 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".

 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format. Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.

 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
   targeted at arm64, this significantly speeds up fork() when the
   process has a large number of pte-mapped folios.

 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
   implements batching during munmap() and other pte teardown
   situations. The microbenchmark improvements are nice.

 - And in the series "Transparent Contiguous PTEs for User Mappings"
   Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings"). Kernel build times on arm64 improved nicely. Ryan's
   series "Address some contpte nits" provides some followup work.

 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page
   faults. He has also added a reproducer under the selftest code.

 - In the series "selftests/mm: Output cleanups for the compaction
   test", Mark Brown did what the title claims.

 - Kinsey Ho has added the series "mm/mglru: code cleanup and
   refactoring".

 - Even more zswap material from Nhat Pham. The series "fix and extend
   zswap kselftests" does as claimed.

 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
   in our handling of DAX on archiecctures which have virtually aliasing
   data caches. The arm architecture is the main beneficiary.

 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides
   dramatic improvements in worst-case mmap_lock hold times during
   certain userfaultfd operations.

 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series

	"page_owner: print stacks and their outstanding allocations"
	"page_owner: Fixup and cleanup"

 - Uladzislau Rezki has contributed some vmalloc scalability
   improvements in his series "Mitigate a vmap lock contention". It
   realizes a 12x improvement for a certain microbenchmark.

 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".

 - Some zsmalloc maintenance work from Chengming Zhou in the series

	"mm/zsmalloc: fix and optimize objects/page migration"
	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"

 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0. This a step along the path to implementaton of the merging
   of large anonymous folios. The series is named "Enable >0 order folio
   memory compaction".

 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages()
   to an iterator".

 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".

 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios. The
   series is named "Split a folio to any lower order folios".

 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.

 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".

 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which
   are configured to use large numbers of hugetlb pages.

 - Matthew Wilcox's series "PageFlags cleanups" does that.

 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also. S390 is affected.

 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".

 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM
   Selftests".

 - Also, of course, many singleton patches to many things. Please see
   the individual changelogs for details.

* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
  mm/zswap: remove the memcpy if acomp is not sleepable
  crypto: introduce: acomp_is_async to expose if comp drivers might sleep
  memtest: use {READ,WRITE}_ONCE in memory scanning
  mm: prohibit the last subpage from reusing the entire large folio
  mm: recover pud_leaf() definitions in nopmd case
  selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
  selftests/mm: skip uffd hugetlb tests with insufficient hugepages
  selftests/mm: dont fail testsuite due to a lack of hugepages
  mm/huge_memory: skip invalid debugfs new_order input for folio split
  mm/huge_memory: check new folio order when split a folio
  mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
  mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
  mm: fix list corruption in put_pages_list
  mm: remove folio from deferred split list before uncharging it
  filemap: avoid unnecessary major faults in filemap_fault()
  mm,page_owner: drop unnecessary check
  mm,page_owner: check for null stack_record before bumping its refcount
  mm: swap: fix race between free_swap_and_cache() and swapoff()
  mm/treewide: align up pXd_leaf() retval across archs
  mm/treewide: drop pXd_large()
  ...
2024-03-14 17:43:30 -07:00
Linus Torvalds
910202f00a vfs-6.9.super
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZem4DwAKCRCRxhvAZXjc
 ooTRAQDRI6Qz6wJym5Yblta8BScMGbt/SgrdgkoCvT6y83MtqwD+Nv/AZQzi3A3l
 9NdULtniW1reuCYkc8R7dYM8S+yAwAc=
 =Y1qX
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.9.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull block handle updates from Christian Brauner:
 "Last cycle we changed opening of block devices, and opening a block
  device would return a bdev_handle. This allowed us to implement
  support for restricting and forbidding writes to mounted block
  devices. It was accompanied by converting and adding helpers to
  operate on bdev_handles instead of plain block devices.

  That was already a good step forward but ultimately it isn't necessary
  to have special purpose helpers for opening block devices internally
  that return a bdev_handle.

  Fundamentally, opening a block device internally should just be
  equivalent to opening files. So now all internal opens of block
  devices return files just as a userspace open would. Instead of
  introducing a separate indirection into bdev_open_by_*() via struct
  bdev_handle bdev_file_open_by_*() is made to just return a struct
  file. Opening and closing a block device just becomes equivalent to
  opening and closing a file.

  This all works well because internally we already have a pseudo fs for
  block devices and so opening block devices is simple. There's a few
  places where we needed to be careful such as during boot when the
  kernel is supposed to mount the rootfs directly without init doing it.
  Here we need to take care to ensure that we flush out any asynchronous
  file close. That's what we already do for opening, unpacking, and
  closing the initramfs. So nothing new here.

  The equivalence of opening and closing block devices to regular files
  is a win in and of itself. But it also has various other advantages.
  We can remove struct bdev_handle completely. Various low-level helpers
  are now private to the block layer. Other helpers were simply
  removable completely.

  A follow-up series that is already reviewed build on this and makes it
  possible to remove bdev->bd_inode and allows various clean ups of the
  buffer head code as well. All places where we stashed a bdev_handle
  now just stash a file and use simple accessors to get to the actual
  block device which was already the case for bdev_handle"

* tag 'vfs-6.9.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (35 commits)
  block: remove bdev_handle completely
  block: don't rely on BLK_OPEN_RESTRICT_WRITES when yielding write access
  bdev: remove bdev pointer from struct bdev_handle
  bdev: make struct bdev_handle private to the block layer
  bdev: make bdev_{release, open_by_dev}() private to block layer
  bdev: remove bdev_open_by_path()
  reiserfs: port block device access to file
  ocfs2: port block device access to file
  nfs: port block device access to files
  jfs: port block device access to file
  f2fs: port block device access to files
  ext4: port block device access to file
  erofs: port device access to file
  btrfs: port device access to file
  bcachefs: port block device access to file
  target: port block device access to file
  s390: port block device access to file
  nvme: port block device access to file
  block2mtd: port device access to files
  bcache: port block device access to files
  ...
2024-03-11 10:52:34 -07:00
Ryan Roberts
82b1c07a0a mm: swap: fix race between free_swap_and_cache() and swapoff()
There was previously a theoretical window where swapoff() could run and
teardown a swap_info_struct while a call to free_swap_and_cache() was
running in another thread.  This could cause, amongst other bad
possibilities, swap_page_trans_huge_swapped() (called by
free_swap_and_cache()) to access the freed memory for swap_map.

This is a theoretical problem and I haven't been able to provoke it from a
test case.  But there has been agreement based on code review that this is
possible (see link below).

Fix it by using get_swap_device()/put_swap_device(), which will stall
swapoff().  There was an extra check in _swap_info_get() to confirm that
the swap entry was not free.  This isn't present in get_swap_device()
because it doesn't make sense in general due to the race between getting
the reference and swapoff.  So I've added an equivalent check directly in
free_swap_and_cache().

Details of how to provoke one possible issue (thanks to David Hildenbrand
for deriving this):

--8<-----

__swap_entry_free() might be the last user and result in
"count == SWAP_HAS_CACHE".

swapoff->try_to_unuse() will stop as soon as soon as si->inuse_pages==0.

So the question is: could someone reclaim the folio and turn
si->inuse_pages==0, before we completed swap_page_trans_huge_swapped().

Imagine the following: 2 MiB folio in the swapcache. Only 2 subpages are
still references by swap entries.

Process 1 still references subpage 0 via swap entry.
Process 2 still references subpage 1 via swap entry.

Process 1 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE
[then, preempted in the hypervisor etc.]

Process 2 quits. Calls free_swap_and_cache().
-> count == SWAP_HAS_CACHE

Process 2 goes ahead, passes swap_page_trans_huge_swapped(), and calls
__try_to_reclaim_swap().

__try_to_reclaim_swap()->folio_free_swap()->delete_from_swap_cache()->
put_swap_folio()->free_swap_slot()->swapcache_free_entries()->
swap_entry_free()->swap_range_free()->
...
WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);

What stops swapoff to succeed after process 2 reclaimed the swap cache
but before process1 finished its call to swap_page_trans_huge_swapped()?

--8<-----

Link: https://lkml.kernel.org/r/20240306140356.3974886-1-ryan.roberts@arm.com
Fixes: 7c00bafee8 ("mm/swap: free swap slots in batch")
Closes: https://lore.kernel.org/linux-mm/65a66eb9-41f8-4790-8db2-0c70ea15979f@redhat.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:19 -08:00
Christian Brauner
16ca5dfd8d
swap: port block device usage to file
Link: https://lore.kernel.org/r/20240123-vfs-bdev-file-v2-5-adbd023e19cc@kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-25 12:05:22 +01:00
Barry Song
e26f0b939d mm/swapfile:__swap_duplicate: drop redundant WRITE_ONCE on swap_map for err cases
The code is quite hard to read, we are still writing swap_map after
errors happen. Though the written value is as before,

 has_cache = count & SWAP_HAS_CACHE;
 count &= ~SWAP_HAS_CACHE;
 [snipped]
 WRITE_ONCE(p->swap_map[offset], count | has_cache);

It would be better to entirely drop the WRITE_ONCE for both
performance and readability.

[akpm@linux-foundation.org: avoid using goto]
Link: https://lkml.kernel.org/r/20240221091028.123122-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:34 -08:00
Chengming Zhou
0827a1fb14 mm/zswap: invalidate zswap entry when swap entry free
During testing I found there are some times the zswap_writeback_entry()
return -ENOMEM, which is not we expected:

bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[-12]: 1563
@[0]: 277221

The reason is that __read_swap_cache_async() return NULL because
swapcache_prepare() failed.  The reason is that we won't invalidate zswap
entry when swap entry freed to the per-cpu pool, these zswap entries are
still on the zswap tree and lru list.

This patch moves the invalidation ahead to when swap entry freed to the
per-cpu pool, since there is no any benefit to leave trashy zswap entry on
the tree and lru list.

With this patch:
bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[0]: 259744

Note: large folio can't have zswap entry for now, so don't bother
to add zswap entry invalidation in the large folio swap free path.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-2-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Yosry Ahmed
64cf264c8f mm: swap: enforce updating inuse_pages at the end of swap_range_free()
Patch series "mm: zswap: simplify zswap_swapoff()", v2.

These patches aim to simplify zswap_swapoff() by removing the unnecessary
trees cleanup code.  Patch 1 makes sure that the order of operations
during swapoff is enforced correctly, making sure the simplification in
patch 2 is correct in a future-proof manner.


This patch (of 2):

In swap_range_free(), we update inuse_pages then do some cleanups (arch
invalidation, zswap invalidation, swap cache cleanups, etc).  During
swapoff, try_to_unuse() checks that inuse_pages is 0 to make sure all swap
entries are freed.  Make sure we only update inuse_pages after we are done
with the cleanups in swap_range_free(), and use the proper memory barriers
to enforce it.  This makes sure that code following try_to_unuse() can
safely assume that swap_range_free() ran for all entries in thr swapfile
(e.g.  swap cache cleanup, zswap_swapoff()).

In practice, this currently isn't a problem because swap_range_free() is
called with the swap info lock held, and the swapoff code happens to spin
for that after try_to_unuse().  However, this seems fragile and
unintentional, so make it more relable and future-proof.  This also
facilitates a following simplification of zswap_swapoff().

Link: https://lkml.kernel.org/r/20240124045113.415378-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20240124045113.415378-2-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:39 -08:00
Chengming Zhou
44c7c734a5 mm/zswap: split zswap rb-tree
Each swapfile has one rb-tree to search the mapping of swp_entry_t to
zswap_entry, that use a spinlock to protect, which can cause heavy lock
contention if multiple tasks zswap_store/load concurrently.

Optimize the scalability problem by splitting the zswap rb-tree into
multiple rb-trees, each corresponds to SWAP_ADDRESS_SPACE_PAGES (64M),
just like we did in the swap cache address_space splitting.

Although this method can't solve the spinlock contention completely, it
can mitigate much of that contention.  Below is the results of kernel
build in tmpfs with zswap shrinker enabled:

     linux-next  zswap-lock-optimize
real 1m9.181s    1m3.820s
user 17m44.036s  17m40.100s
sys  7m37.297s   4m54.622s

So there are clearly improvements.

Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-2-b5cc55479090@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:39 -08:00
Chengming Zhou
bb29fd7760 mm/zswap: make sure each swapfile always have zswap rb-tree
Patch series "mm/zswap: optimize the scalability of zswap rb-tree", v2.

When testing the zswap performance by using kernel build -j32 in a tmpfs
directory, I found the scalability of zswap rb-tree is not good, which is
protected by the only spinlock.  That would cause heavy lock contention if
multiple tasks zswap_store/load concurrently.

So a simple solution is to split the only one zswap rb-tree into multiple
rb-trees, each corresponds to SWAP_ADDRESS_SPACE_PAGES (64M).  This idea
is from the commit 4b3ef9daa4 ("mm/swap: split swap cache into 64MB
trunks").

Although this method can't solve the spinlock contention completely, it
can mitigate much of that contention.  Below is the results of kernel
build in tmpfs with zswap shrinker enabled:

     linux-next  zswap-lock-optimize
real 1m9.181s    1m3.820s
user 17m44.036s  17m40.100s
sys  7m37.297s   4m54.622s

So there are clearly improvements.  And it's complementary with the
ongoing zswap xarray conversion by Chris.  Anyway, I think we can also
merge this first, it's complementary IMHO.  So I just refresh and resend
this for further discussion.


This patch (of 2):

Not all zswap interfaces can handle the absence of the zswap rb-tree,
actually only zswap_store() has handled it for now.

To make things simple, we make sure each swapfile always have the zswap
rb-tree prepared before being enabled and used.  The preparation is
unlikely to fail in practice, this patch just make it explicit.

Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-0-b5cc55479090@bytedance.com
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-1-b5cc55479090@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:39 -08:00
Kairui Song
13ddaf26be mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B). 
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry. 
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem.  Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.

One possible callstack is like this:

CPU0                                 CPU1
----                                 ----
do_swap_page()                       do_swap_page() with same entry
<direct swapin path>                 <direct swapin path>
<alloc page A>                       <alloc page B>
swap_read_folio() <- read to page A  swap_read_folio() <- read to page B
<slow on later locks or interrupt>   <finished swapin first>
...                                  set_pte_at()
                                     swap_free() <- entry is free
                                     <write to page B, now page A stalled>
                                     <swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
              unchanged, but page A
              is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!

And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.

To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache.  Release the pin after
PT unlocked.

Racers just loop and wait since it's a rare and very short event.  A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics.  A similar livelock issue was described in commit
029c4628b2 ("mm: swap: get rid of livelock in swapin readahead")

Reproducer:

This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:

With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
  Polulating 32MB of memory region...
  Keep swapping out...
  Starting round 0...
  Spawning 65536 workers...
  32746 workers spawned, wait for done...
  Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
  Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
  Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
  Round 0 Failed, 15 data loss!

This reproducer spawns multiple threads sharing the same memory region
using a small swap device.  Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.

The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.

After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.

Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:

Before:     10934698 us
After:      11157121 us
Cached:     13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)

[kasong@tencent.com: v4]
  Link: https://lkml.kernel.org/r/20240219082040.7495-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20240206182559.32264-1-ryncsn@gmail.com
Fixes: 0bcac06f27 ("mm, swap: skip swapcache for swapin of synchronous device")
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Closes: https://lore.kernel.org/lkml/87bk92gqpx.fsf_-_@yhuang6-desk2.ccr.corp.intel.com/
Link: https://github.com/ryncsn/emm-test-project/tree/master/swap-stress-race [1]
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-20 14:20:48 -08:00
Linus Torvalds
78273df7f6 header cleanups for 6.8
The goal is to get sched.h down to a type only header, so the main thing
 happening in this patchset is splitting out various _types.h headers and
 dependency fixups, as well as moving some things out of sched.h to
 better locations.
 
 This is prep work for the memory allocation profiling patchset which
 adds new sched.h interdepencencies.
 
 Testing - it's been in -next, and fixes from pretty much all
 architectures have percolated in - nothing major.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
 bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
 bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
 SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
 jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
 JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
 7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
 oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
 GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
 cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
 xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
 CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
 =3tyT
 -----END PGP SIGNATURE-----

Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs

Pull header cleanups from Kent Overstreet:
 "The goal is to get sched.h down to a type only header, so the main
  thing happening in this patchset is splitting out various _types.h
  headers and dependency fixups, as well as moving some things out of
  sched.h to better locations.

  This is prep work for the memory allocation profiling patchset which
  adds new sched.h interdepencencies"

* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
  Kill sched.h dependency on rcupdate.h
  kill unnecessary thread_info.h include
  Kill unnecessary kernel.h include
  preempt.h: Kill dependency on list.h
  rseq: Split out rseq.h from sched.h
  LoongArch: signal.c: add header file to fix build error
  restart_block: Trim includes
  lockdep: move held_lock to lockdep_types.h
  sem: Split out sem_types.h
  uidgid: Split out uidgid_types.h
  seccomp: Split out seccomp_types.h
  refcount: Split out refcount_types.h
  uapi/linux/resource.h: fix include
  x86/signal: kill dependency on time.h
  syscall_user_dispatch.h: split out *_types.h
  mm_types_task.h: Trim dependencies
  Split out irqflags_types.h
  ipc: Kill bogus dependency on spinlock.h
  shm: Slim down dependencies
  workqueue: Split out workqueue_types.h
  ...
2024-01-10 16:43:55 -08:00
David Hildenbrand
da7dc0afe2 mm/swapfile: page_add_anon_rmap() -> folio_add_anon_rmap_pte()
Let's convert unuse_pte().

Link: https://lkml.kernel.org/r/20231220224504.646757-20-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:51 -08:00
Matthew Wilcox (Oracle)
69fe7d67cb mm: remove page_swap_info()
It's more efficient to get the swap_info_struct by calling
swp_swap_info() directly.

Link: https://lkml.kernel.org/r/20231213215842.671461-12-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:32 -08:00
Matthew Wilcox (Oracle)
c9bdf768dd mm: convert swap_readpage() to swap_read_folio()
All callers have a folio, so pass it in, saving two calls to
compound_head().

Link: https://lkml.kernel.org/r/20231213215842.671461-11-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:31 -08:00
Matthew Wilcox (Oracle)
3a61e6f668 mm: convert swap_page_sector() to swap_folio_sector()
All callers have a folio, so pass it in.  Saves a couple of calls to
compound_head().

Link: https://lkml.kernel.org/r/20231213215842.671461-10-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:31 -08:00
Matthew Wilcox (Oracle)
f00f48436c mm: convert unuse_pte() to use a folio throughout
Saves about eight calls to compound_head().

Link: https://lkml.kernel.org/r/20231211162214.2146080-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:25 -08:00
Matthew Wilcox (Oracle)
8d294a8c63 mm: remove PageAnonExclusive assertions in unuse_pte()
The page in question is either freshly allocated or known to be in
the swap cache; these assertions are not particularly useful.

Link: https://lkml.kernel.org/r/20231212164813.2540119-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:25 -08:00
Matthew Wilcox (Oracle)
96db66d9c8 mm: convert ksm_might_need_to_copy() to work on folios
Patch series "Finish two folio conversions".

Most callers of page_add_new_anon_rmap() and
lru_cache_add_inactive_or_unevictable() have been converted to their folio
equivalents, but there are still a few stragglers.  There's a bit of
preparatory work in ksm and unuse_pte(), but after that it's pretty
mechanical.


This patch (of 9):

Accept a folio as an argument and return a folio result.  Removes a call
to compound_head() in do_swap_page(), and prevents folio & page from
getting out of sync in unuse_pte().

Reviewed-by: David Hildenbrand <david@redhat.com>
[willy@infradead.org: fix smatch warning]
  Link: https://lkml.kernel.org/r/ZXnPtblC6A1IkyAB@casper.infradead.org
[david@redhat.com: only adjust the page if the folio changed]
  Link: https://lkml.kernel.org/r/6a8f2110-fa91-4c10-9eae-88315309a6e3@redhat.com
Link: https://lkml.kernel.org/r/20231211162214.2146080-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231211162214.2146080-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-29 11:58:25 -08:00
Kent Overstreet
8b7787a543 plist: Split out plist_types.h
Trimming down sched.h dependencies: we don't want to include more than
the base types.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-12-20 19:26:31 -05:00
Fabio M. De Francesco
829c3151f0 mm/swapfile: replace kmap_atomic() with kmap_local_page()
kmap_atomic() has been deprecated in favor of kmap_local_page().

Therefore, replace kmap_atomic() with kmap_local_page() in swapfile.c.

kmap_atomic() is implemented like a kmap_local_page() which also disables
page-faults and preemption (the latter only in !PREEMPT_RT kernels).  The
kernel virtual addresses returned by these two API are only valid in the
context of the callers (i.e., they cannot be handed to other threads).

With kmap_local_page() the mappings are per thread and CPU local like in
kmap_atomic(); however, they can handle page-faults and can be called from
any context (including interrupts).  The tasks that call kmap_local_page()
can be preempted and, when they are scheduled to run again, the kernel
virtual addresses are restored and are still valid.

In mm/swapfile.c, the blocks of code between the mappings and un-mappings
do not depend on the above-mentioned side effects of kmap_atomic(), so
that the mere replacements of the old API with the new one is all that is
required (i.e., there is no need to explicitly call pagefault_disable()
and/or preempt_disable()).

Link: https://lkml.kernel.org/r/20231127155452.586387-1-fabio.maria.de.francesco@linux.intel.com
Signed-off-by: Fabio M. De Francesco <fabio.maria.de.francesco@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 16:51:53 -08:00
Jan Kara
4c6bca43c5
mm/swap: Convert to use bdev_open_by_dev()
Convert swapping code to use bdev_open_by_dev() and pass the handle
around.

CC: linux-mm@kvack.org
CC: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-18-jack@suse.cz
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-28 13:29:19 +02:00
David Hildenbrand
3d2c908768 mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
Let's simply work on the folio directly and remove the helpers.

Link: https://lkml.kernel.org/r/20230821160849.531668-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Chris Li <chrisl@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:20:28 -07:00
David Hildenbrand
cfeed8ffe5 mm/swap: stop using page->private on tail pages for THP_SWAP
Patch series "mm/swap: stop using page->private on tail pages for THP_SWAP
+ cleanups".

This series stops using page->private on tail pages for THP_SWAP, replaces
folio->private by folio->swap for swapcache folios, and starts using
"new_folio" for tail pages that we are splitting to remove the usage of
page->private for swapcache handling completely.


This patch (of 4):

Let's stop using page->private on tail pages, making it possible to just
unconditionally reuse that field in the tail pages of large folios.

The remaining usage of the private field for THP_SWAP is in the THP
splitting code (mm/huge_memory.c), that we'll handle separately later.

Update the THP_SWAP documentation and sanity checks in mm_types.h and
__split_huge_page_tail().

[david@redhat.com: stop using page->private on tail pages for THP_SWAP]
  Link: https://lkml.kernel.org/r/6f0a82a3-6948-20d9-580b-be1dbf415701@redhat.com
Link: https://lkml.kernel.org/r/20230821160849.531668-1-david@redhat.com
Link: https://lkml.kernel.org/r/20230821160849.531668-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:20:28 -07:00
Andrew Morton
5994eabf3b merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes 2023-08-21 14:26:20 -07:00
ZhangPeng
00cde0429b mm/swapfile.c: use helper macro K()
Use helper macro K() to improve code readability.  No functional
modification involved.

Link: https://lkml.kernel.org/r/20230804012559.2617515-3-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:44 -07:00
Johannes Weiner
42c06a0e8e mm: kill frontswap
The only user of frontswap is zswap, and has been for a long time.  Have
swap call into zswap directly and remove the indirection.

[hannes@cmpxchg.org: remove obsolete comment, per Yosry]
  Link: https://lkml.kernel.org/r/20230719142832.GA932528@cmpxchg.org
[fengwei.yin@intel.com: don't warn if none swapcache folio is passed to zswap_load]
  Link: https://lkml.kernel.org/r/20230810095652.3905184-1-fengwei.yin@intel.com
Link: https://lkml.kernel.org/r/20230717160227.GA867137@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Yin Fengwei <fengwei.yin@intel.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:37:26 -07:00
Axel Rasmussen
af19487f00 mm: make PTE_MARKER_SWAPIN_ERROR more general
Patch series "add UFFDIO_POISON to simulate memory poisoning with UFFD",
v4.

This series adds a new userfaultfd feature, UFFDIO_POISON. See commit 4
for a detailed description of the feature.


This patch (of 8):

Future patches will reuse PTE_MARKER_SWAPIN_ERROR to implement
UFFDIO_POISON, so make some various preparations for that:

First, rename it to just PTE_MARKER_POISONED.  The "SWAPIN" can be
confusing since we're going to re-use it for something not really related
to swap.  This can be particularly confusing for things like hugetlbfs,
which doesn't support swap whatsoever.  Also rename some various helper
functions.

Next, fix pte marker copying for hugetlbfs.  Previously, it would WARN on
seeing a PTE_MARKER_SWAPIN_ERROR, since hugetlbfs doesn't support swap. 
But, since we're going to re-use it, we want it to go ahead and copy it
just like non-hugetlbfs memory does today.  Since the code to do this is
more complicated now, pull it out into a helper which can be re-used in
both places.  While we're at it, also make it slightly more explicit in
its handling of e.g.  uffd wp markers.

For non-hugetlbfs page faults, instead of returning VM_FAULT_SIGBUS for an
error entry, return VM_FAULT_HWPOISON.  For most cases this change doesn't
matter, e.g.  a userspace program would receive a SIGBUS either way.  But
for UFFDIO_POISON, this change will let KVM guests get an MCE out of the
box, instead of giving a SIGBUS to the hypervisor and requiring it to
somehow inject an MCE.

Finally, for hugetlbfs faults, handle PTE_MARKER_POISONED, and return
VM_FAULT_HWPOISON_LARGE in such cases.  Note that this can't happen today
because the lack of swap support means we'll never end up with such a PTE
anyway, but this behavior will be needed once such entries *can* show up
via UFFDIO_POISON.

Link: https://lkml.kernel.org/r/20230707215540.2324998-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230707215540.2324998-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gaosheng Cui <cuigaosheng1@huawei.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:16 -07:00
Peter Collingbourne
b53e24c4f6 mm: call arch_swap_restore() from unuse_pte()
We would like to move away from requiring architectures to restore
metadata from swap in the set_pte_at() implementation, as this is not only
error-prone but adds complexity to the arch-specific code.  This requires
us to call arch_swap_restore() before calling swap_free() whenever pages
are restored from swap.  We are currently doing so everywhere except in
unuse_pte(); do so there as well.

Link: https://lkml.kernel.org/r/20230523004312.1807357-3-pcc@google.com
Link: https://linux-review.googlesource.com/id/I68276653e612d64cde271ce1b5a99ae05d6bbc4f
Signed-off-by: Peter Collingbourne <pcc@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: kasan-dev <kasan-dev@googlegroups.com>
Cc: "Kuan-Ying Lee (李冠穎)" <Kuan-Ying.Lee@mediatek.com>
Cc: Qun-Wei Lin <qun-wei.lin@mediatek.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:02 -07:00
Ma Wupeng
c70699e555 swap: stop add to avail list if swap is full
Our test finds a WARN_ON in add_to_avail_list.  During add_to_avail_list,
avail_lists is already in swap_avail_heads, while leads to this WARN_ON.

Here is the simplified calltrace:

------------[ cut here ]------------
Call trace:
 add_to_avail_list+0xb8/0xc0
 swap_range_free+0x110/0x138
 swapcache_free_entries+0x100/0x1c0
 free_swap_slot+0xbc/0xe0
 put_swap_folio+0x1f0/0x2ec
 delete_from_swap_cache+0x6c/0xd0
 folio_free_swap+0xa4/0xe4
 __try_to_reclaim_swap+0x9c/0x190
 free_swap_and_cache+0x84/0x88
 unmap_page_range+0x31c/0x934
 unmap_single_vma.isra.0+0x48/0x84
 unmap_vmas+0x98/0x10c
 exit_mmap+0xa4/0x210
 mmput+0x88/0x158
 do_exit+0x284/0x970
 do_group_exit+0x34/0x90
 post_copy_siginfo_from_user32+0x0/0x1cc
 do_notify_resume+0x15c/0x470
 el0_svc+0x74/0x84
 el0t_64_sync_handler+0xb8/0xbc
 el0t_64_sync+0x190/0x194

During swapoff, try_to_unuse fails to alloc memory due to memory limit and
this leads to the failure of swapoff and causes re-insertion of swap space
back into swap_list.  During _enable_swap_info, this swap device is added
to avail list even this swap device if full.  At the same time, one entry
in this full swap device in released and we try to add this device into
avail list and find it is already in the avail list.  This causes this
WARN_ON.

To fix this.  Don't add to avail list is swap is full.

[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20230627120833.2230766-3-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:00 -07:00
Ma Wupeng
67490031e8 swap: cleanup duplicated WARN_ON in add_to_avail_list
Patch series "fix WARN_ON in add_to_avail_list".


Empty check for plist_node is checked in add_to_avail_list and plist_add. 
Drop the duplicate one in add_to_avail_list.

Link: https://lkml.kernel.org/r/20230627120833.2230766-1-mawupeng1@huawei.com
Link: https://lkml.kernel.org/r/20230627120833.2230766-2-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:00 -07:00
Miaohe Lin
f985fc3220 mm/swapfile: fix wrong swap entry type for hwpoisoned swapcache page
Patch series "A few fixup patches for mm", v2.

This series contains a few fixup patches to fix potential unexpected
return value, fix wrong swap entry type for hwpoisoned swapcache page and
so on.  More details can be found in the respective changelogs.


This patch (of 3):

Hwpoisoned dirty swap cache page is kept in the swap cache and there's
simple interception code in do_swap_page() to catch it.  But when trying
to swapoff, unuse_pte() will wrongly install a general sense of "future
accesses are invalid" swap entry for hwpoisoned swap cache page due to
unaware of such type of page.  The user will receive SIGBUS signal without
expected BUS_MCEERR_AR payload.  BTW, typo 'hwposioned' is fixed.

Link: https://lkml.kernel.org/r/20230727115643.639741-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20230727115643.639741-2-linmiaohe@huawei.com
Fixes: 6b970599e8 ("mm: hwpoison: support recovery from ksm_might_need_to_copy()")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-04 13:03:40 -07:00
Linus Torvalds
6e17c6de3d - Yosry Ahmed brought back some cgroup v1 stats in OOM logs.
- Yosry has also eliminated cgroup's atomic rstat flushing.
 
 - Nhat Pham adds the new cachestat() syscall.  It provides userspace
   with the ability to query pagecache status - a similar concept to
   mincore() but more powerful and with improved usability.
 
 - Mel Gorman provides more optimizations for compaction, reducing the
   prevalence of page rescanning.
 
 - Lorenzo Stoakes has done some maintanance work on the get_user_pages()
   interface.
 
 - Liam Howlett continues with cleanups and maintenance work to the maple
   tree code.  Peng Zhang also does some work on maple tree.
 
 - Johannes Weiner has done some cleanup work on the compaction code.
 
 - David Hildenbrand has contributed additional selftests for
   get_user_pages().
 
 - Thomas Gleixner has contributed some maintenance and optimization work
   for the vmalloc code.
 
 - Baolin Wang has provided some compaction cleanups,
 
 - SeongJae Park continues maintenance work on the DAMON code.
 
 - Huang Ying has done some maintenance on the swap code's usage of
   device refcounting.
 
 - Christoph Hellwig has some cleanups for the filemap/directio code.
 
 - Ryan Roberts provides two patch series which yield some
   rationalization of the kernel's access to pte entries - use the provided
   APIs rather than open-coding accesses.
 
 - Lorenzo Stoakes has some fixes to the interaction between pagecache
   and directio access to file mappings.
 
 - John Hubbard has a series of fixes to the MM selftesting code.
 
 - ZhangPeng continues the folio conversion campaign.
 
 - Hugh Dickins has been working on the pagetable handling code, mainly
   with a view to reducing the load on the mmap_lock.
 
 - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from
   128 to 8.
 
 - Domenico Cerasuolo has improved the zswap reclaim mechanism by
   reorganizing the LRU management.
 
 - Matthew Wilcox provides some fixups to make gfs2 work better with the
   buffer_head code.
 
 - Vishal Moola also has done some folio conversion work.
 
 - Matthew Wilcox has removed the remnants of the pagevec code - their
   functionality is migrated over to struct folio_batch.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA
 joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh
 J0qXCzqaaN8+BuEyLGDVPaXur9KirwY=
 =B7yQ
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull mm updates from Andrew Morton:

 - Yosry Ahmed brought back some cgroup v1 stats in OOM logs

 - Yosry has also eliminated cgroup's atomic rstat flushing

 - Nhat Pham adds the new cachestat() syscall. It provides userspace
   with the ability to query pagecache status - a similar concept to
   mincore() but more powerful and with improved usability

 - Mel Gorman provides more optimizations for compaction, reducing the
   prevalence of page rescanning

 - Lorenzo Stoakes has done some maintanance work on the
   get_user_pages() interface

 - Liam Howlett continues with cleanups and maintenance work to the
   maple tree code. Peng Zhang also does some work on maple tree

 - Johannes Weiner has done some cleanup work on the compaction code

 - David Hildenbrand has contributed additional selftests for
   get_user_pages()

 - Thomas Gleixner has contributed some maintenance and optimization
   work for the vmalloc code

 - Baolin Wang has provided some compaction cleanups,

 - SeongJae Park continues maintenance work on the DAMON code

 - Huang Ying has done some maintenance on the swap code's usage of
   device refcounting

 - Christoph Hellwig has some cleanups for the filemap/directio code

 - Ryan Roberts provides two patch series which yield some
   rationalization of the kernel's access to pte entries - use the
   provided APIs rather than open-coding accesses

 - Lorenzo Stoakes has some fixes to the interaction between pagecache
   and directio access to file mappings

 - John Hubbard has a series of fixes to the MM selftesting code

 - ZhangPeng continues the folio conversion campaign

 - Hugh Dickins has been working on the pagetable handling code, mainly
   with a view to reducing the load on the mmap_lock

 - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
   from 128 to 8

 - Domenico Cerasuolo has improved the zswap reclaim mechanism by
   reorganizing the LRU management

 - Matthew Wilcox provides some fixups to make gfs2 work better with the
   buffer_head code

 - Vishal Moola also has done some folio conversion work

 - Matthew Wilcox has removed the remnants of the pagevec code - their
   functionality is migrated over to struct folio_batch

* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
  mm/hugetlb: remove hugetlb_set_page_subpool()
  mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
  hugetlb: revert use of page_cache_next_miss()
  Revert "page cache: fix page_cache_next/prev_miss off by one"
  mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
  mm: memcg: rename and document global_reclaim()
  mm: kill [add|del]_page_to_lru_list()
  mm: compaction: convert to use a folio in isolate_migratepages_block()
  mm: zswap: fix double invalidate with exclusive loads
  mm: remove unnecessary pagevec includes
  mm: remove references to pagevec
  mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
  mm: remove struct pagevec
  net: convert sunrpc from pagevec to folio_batch
  i915: convert i915_gpu_error to use a folio_batch
  pagevec: rename fbatch_count()
  mm: remove check_move_unevictable_pages()
  drm: convert drm_gem_put_pages() to use a folio_batch
  i915: convert shmem_sg_free_table() to use a folio_batch
  scatterlist: add sg_set_folio()
  ...
2023-06-28 10:28:11 -07:00
Hugh Dickins
3fda49e89f mm/swapfile: delete outdated pte_offset_map() comment
Delete a triply out-of-date comment from add_swap_count_continuation():
1. vmalloc_to_page() changed from pte_offset_map() to pte_offset_kernel()
2. pte_offset_map() changed from using kmap_atomic() to kmap_local_page()
3. kmap_atomic() changed from using fixed FIX_KMAP addresses in 2.6.37.

Link: https://lkml.kernel.org/r/9022632b-ba9d-8cb0-c25-4be9786481b5@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-23 16:59:27 -07:00
Ryan Roberts
c33c794828 mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper.  This means that by default, the accesses change from a
C dereference to a READ_ONCE().  This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.

But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte.  Arch code
is deliberately not converted, as the arch code knows best.  It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.

Conversion was done using Coccinelle:

----

// $ make coccicheck \
//          COCCI=ptepget.cocci \
//          SPFLAGS="--include-headers" \
//          MODE=patch

virtual patch

@ depends on patch @
pte_t *v;
@@

- *v
+ ptep_get(v)

----

Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so.  This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.

Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot.  The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get().  HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined.  Fix by continuing to do a direct dereference
when MMU=n.  This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.

Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:25 -07:00
Hugh Dickins
d850fa7298 mm/swapoff: allow pte_offset_map[_lock]() to fail
Adjust unuse_pte() and unuse_pte_range() to allow pte_offset_map_lock()
and pte_offset_map() failure; remove pmd_none_or_trans_huge_or_clear_bad()
from unuse_pmd_range() now that pte_offset_map() does all that itself.

Link: https://lkml.kernel.org/r/c4d831-13c3-9dfd-70c2-64514ad951fd@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:16 -07:00
Christoph Hellwig
05bdb99653 block: replace fmode_t with a block-specific type for block open flags
The only overlap between the block open flags mapped into the fmode_t and
other uses of fmode_t are FMODE_READ and FMODE_WRITE.  Define a new
blk_mode_t instead for use in blkdev_get_by_{dev,path}, ->open and
->ioctl and stop abusing fmode_t.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jack Wang <jinpu.wang@ionos.com>		[rnbd]
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/r/20230608110258.189493-28-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-06-12 08:04:05 -06:00
Christoph Hellwig
2736e8eeb0 block: use the holder as indication for exclusive opens
The current interface for exclusive opens is rather confusing as it
requires both the FMODE_EXCL flag and a holder.  Remove the need to pass
FMODE_EXCL and just key off the exclusive open off a non-NULL holder.

For blkdev_put this requires adding the holder argument, which provides
better debug checking that only the holder actually releases the hold,
but at the same time allows removing the now superfluous mode argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: David Sterba <dsterba@suse.com>		[btrfs]
Acked-by: Jack Wang <jinpu.wang@ionos.com>		[rnbd]
Link: https://lore.kernel.org/r/20230608110258.189493-16-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-06-12 08:04:04 -06:00
Huang Ying
a95722a047 swap: comments get_swap_device() with usage rule
The general rule to use a swap entry is as follows.

When we get a swap entry, if there aren't some other ways to prevent
swapoff, such as the folio in swap cache is locked, page table lock is
held, etc., the swap entry may become invalid because of swapoff.
Then, we need to enclose all swap related functions with
get_swap_device() and put_swap_device(), unless the swap functions
call get/put_swap_device() by themselves.

Add the rule as comments of get_swap_device().

Link: https://lkml.kernel.org/r/20230529061355.125791-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chris Li (Google) <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:50 -07:00
Huang Ying
c07aee4f82 swap: remove get/put_swap_device() in __swap_duplicate()
__swap_duplicate() is called by

- swap_shmem_alloc(): the folio in swap cache is locked.

- copy_nonpresent_pte() -> swap_duplicate() and try_to_unmap_one() ->
  swap_duplicate(): the page table lock is held.

- __read_swap_cache_async() -> swapcache_prepare(): enclosed with
  get/put_swap_device() in __read_swap_cache_async() already.

So, it's safe to remove get/put_swap_device() in __swap_duplicate().

Link: https://lkml.kernel.org/r/20230529061355.125791-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Chris Li (Google) <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:50 -07:00
Huang Ying
3ecdeb0f87 swap: remove __swp_swapcount()
__swp_swapcount() just encloses the calling to swap_swapcount() with
get/put_swap_device().  It is called in __read_swap_cache_async() only,
which encloses the calling with get/put_swap_device() already.  So,
__read_swap_cache_async() can call swap_swapcount() directly.

Link: https://lkml.kernel.org/r/20230529061355.125791-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Chris Li (Google) <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:49 -07:00
Huang Ying
f9f956b550 swap: remove get/put_swap_device() in __swap_count()
Patch series "swap: cleanup get/put_swap_device() usage", v3.

The general rule to use a swap entry is as follows.

When we get a swap entry, if there aren't some other ways to prevent
swapoff, such as the folio in swap cache is locked, page table lock is
held, etc., the swap entry may become invalid because of swapoff.  Then,
we need to enclose all swap related functions with get_swap_device() and
put_swap_device(), unless the swap functions call get/put_swap_device() by
themselves.

Based on the above rule, all get/put_swap_device() usage are checked and
cleaned up if necessary.


This patch (of 5):

get/put_swap_device() are added to __swap_count() in commit
eb085574a7 ("mm, swap: fix race between swapoff and some swap
operations").  Later, in commit 2799e77529 ("swap: fix
do_swap_page() race with swapoff"), get/put_swap_device() are added to
do_swap_page().  And they enclose the only call site of
__swap_count().  So, it's safe to remove get/put_swap_device() in
__swap_count() now.

Link: https://lkml.kernel.org/r/20230529061355.125791-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20230529061355.125791-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Chris Li (Google) <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:49 -07:00
Kefeng Wang
07f44ac3c9 mm: page_alloc: move pm_* function into power
pm_restrict_gfp_mask()/pm_restore_gfp_mask() only used in power, let's
move them out of page_alloc.c.

Adding a general gfp_has_io_fs() function which return true if gfp with
both __GFP_IO and __GFP_FS flags, then use it inside of
pm_suspended_storage(), also the pm_suspended_storage() is moved into
suspend.h.

Link: https://lkml.kernel.org/r/20230516063821.121844-11-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:24 -07:00
Christoph Hellwig
0718afd47f block: introduce holder ops
Add a new blk_holder_ops structure, which is passed to blkdev_get_by_* and
installed in the block_device for exclusive claims.  It will be used to
allow the block layer to call back into the user of the block device for
thing like notification of a removed device or a device resize.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20230601094459.1350643-10-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-06-05 10:53:04 -06:00
Andrew Morton
e492cd61b9 sync mm-stable with mm-hotfixes-stable to pick up depended-upon upstream changes 2023-04-16 12:31:58 -07:00
Christoph Hellwig
66dabbb65d mm: return an ERR_PTR from __filemap_get_folio
Instead of returning NULL for all errors, distinguish between:

 - no entry found and not asked to allocated (-ENOENT)
 - failed to allocate memory (-ENOMEM)
 - would block (-EAGAIN)

so that callers don't have to guess the error based on the passed in
flags.

Also pass through the error through the direct callers: filemap_get_folio,
filemap_lock_folio filemap_grab_folio and filemap_get_incore_folio.

[hch@lst.de: fix null-pointer deref]
  Link: https://lkml.kernel.org/r/20230310070023.GA13563@lst.de
  Link: https://lkml.kernel.org/r/20230310043137.GA1624890@u2004
Link: https://lkml.kernel.org/r/20230307143410.28031-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs2]
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 19:42:42 -07:00
Rongwei Wang
6fe7d6b992 mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
The si->lock must be held when deleting the si from the available list. 
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption.  The only place we have found where this
happens is in the swapoff path.  This case can be described as below:

core 0                       core 1
swapoff

del_from_avail_list(si)      waiting

try lock si->lock            acquire swap_avail_lock
                             and re-add si into
                             swap_avail_head

acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.

It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g.  stress-ng-swap).

However, in the worst case, panic can be caused by the above scene.  In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap.  This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path. 
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)

------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
 plist_check_prev_next_node+0x50/0x70
 plist_check_head+0x80/0xf0
 plist_add+0x28/0x140
 add_to_avail_list+0x9c/0xf0
 _enable_swap_info+0x78/0xb4
 __do_sys_swapon+0x918/0xa10
 __arm64_sys_swapon+0x20/0x30
 el0_svc_common+0x8c/0x220
 do_el0_svc+0x2c/0x90
 el0_svc+0x1c/0x30
 el0_sync_handler+0xa8/0xb0
 el0_sync+0x148/0x180
irq event stamp: 2082270

Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.

This problem exists in versions after stable 5.10.y.

Link: https://lkml.kernel.org/r/20230404154716.23058-1-rongwei.wang@linux.alibaba.com
Fixes: a2468cc9bf ("swap: choose swap device according to numa node") 
Tested-by: Yongchen Yin <wb-yyc939293@alibaba-inc.com>
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05 18:06:24 -07:00
Kefeng Wang
3e4fb13ac3 mm: swap: remove unneeded cgroup_throttle_swaprate()
All the callers of cgroup_throttle_swaprate() are converted to
folio_throttle_swaprate(), so make __cgroup_throttle_swaprate() to take a
folio, and rename it to __folio_throttle_swaprate(), also rename gfp_mask
to gfp and drop redundant extern keyword.  finally, drop unused
cgroup_throttle_swaprate().

Link: https://lkml.kernel.org/r/20230302115835.105364-8-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-03-28 16:20:10 -07:00
Linus Torvalds
3822a7c409 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X bit.
 
 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.
 
 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes
 
 - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
   does perform some memcg maintenance and cleanup work.
 
 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".  These filters provide users
   with finer-grained control over DAMOS's actions.  SeongJae has also done
   some DAMON cleanup work.
 
 - Kairui Song adds a series ("Clean up and fixes for swap").
 
 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".
 
 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series.  It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.
 
 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".
 
 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".
 
 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".
 
 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".
 
 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series "mm:
   support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
   PTEs".
 
 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".
 
 - Sergey Senozhatsky has improved zsmalloc's memory utilization with his
   series "zsmalloc: make zspage chain size configurable".
 
 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.  The previous BPF-based approach had
   shortcomings.  See "mm: In-kernel support for memory-deny-write-execute
   (MDWE)".
 
 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
 
 - T.J.  Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".
 
 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a per-node
   basis.  See the series "Introduce per NUMA node memory error
   statistics".
 
 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage during
   compaction".
 
 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".
 
 - Christoph Hellwig has removed block_device_operations.rw_page() in ths
   series "remove ->rw_page".
 
 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".
 
 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier functions".
 
 - Some pagemap cleanup and generalization work in Mike Rapoport's series
   "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
   "fixups for generic implementation of pfn_valid()"
 
 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
 
 - Jason Gunthorpe rationalized the GUP system's interface to the rest of
   the kernel in the series "Simplify the external interface for GUP".
 
 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface.  To support this, we'll temporarily be
   printing warnings when people use the debugfs interface.  See the series
   "mm/damon: deprecate DAMON debugfs interface".
 
 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.
 
 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".
 
 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
 jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
 DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
 =MlGs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Daniel Verkamp has contributed a memfd series ("mm/memfd: add
   F_SEAL_EXEC") which permits the setting of the memfd execute bit at
   memfd creation time, with the option of sealing the state of the X
   bit.

 - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
   thread-safe for pmd unshare") which addresses a rare race condition
   related to PMD unsharing.

 - Several folioification patch serieses from Matthew Wilcox, Vishal
   Moola, Sidhartha Kumar and Lorenzo Stoakes

 - Johannes Weiner has a series ("mm: push down lock_page_memcg()")
   which does perform some memcg maintenance and cleanup work.

 - SeongJae Park has added DAMOS filtering to DAMON, with the series
   "mm/damon/core: implement damos filter".

   These filters provide users with finer-grained control over DAMOS's
   actions. SeongJae has also done some DAMON cleanup work.

 - Kairui Song adds a series ("Clean up and fixes for swap").

 - Vernon Yang contributed the series "Clean up and refinement for maple
   tree".

 - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
   adds to MGLRU an LRU of memcgs, to improve the scalability of global
   reclaim.

 - David Hildenbrand has added some userfaultfd cleanup work in the
   series "mm: uffd-wp + change_protection() cleanups".

 - Christoph Hellwig has removed the generic_writepages() library
   function in the series "remove generic_writepages".

 - Baolin Wang has performed some maintenance on the compaction code in
   his series "Some small improvements for compaction".

 - Sidhartha Kumar is doing some maintenance work on struct page in his
   series "Get rid of tail page fields".

 - David Hildenbrand contributed some cleanup, bugfixing and
   generalization of pte management and of pte debugging in his series
   "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
   swap PTEs".

 - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
   flag in the series "Discard __GFP_ATOMIC".

 - Sergey Senozhatsky has improved zsmalloc's memory utilization with
   his series "zsmalloc: make zspage chain size configurable".

 - Joey Gouly has added prctl() support for prohibiting the creation of
   writeable+executable mappings.

   The previous BPF-based approach had shortcomings. See "mm: In-kernel
   support for memory-deny-write-execute (MDWE)".

 - Waiman Long did some kmemleak cleanup and bugfixing in the series
   "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".

 - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
   "mm: multi-gen LRU: improve".

 - Jiaqi Yan has provided some enhancements to our memory error
   statistics reporting, mainly by presenting the statistics on a
   per-node basis. See the series "Introduce per NUMA node memory error
   statistics".

 - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
   regression in compaction via his series "Fix excessive CPU usage
   during compaction".

 - Christoph Hellwig does some vmalloc maintenance work in the series
   "cleanup vfree and vunmap".

 - Christoph Hellwig has removed block_device_operations.rw_page() in
   ths series "remove ->rw_page".

 - We get some maple_tree improvements and cleanups in Liam Howlett's
   series "VMA tree type safety and remove __vma_adjust()".

 - Suren Baghdasaryan has done some work on the maintainability of our
   vm_flags handling in the series "introduce vm_flags modifier
   functions".

 - Some pagemap cleanup and generalization work in Mike Rapoport's
   series "mm, arch: add generic implementation of pfn_valid() for
   FLATMEM" and "fixups for generic implementation of pfn_valid()"

 - Baoquan He has done some work to make /proc/vmallocinfo and
   /proc/kcore better represent the real state of things in his series
   "mm/vmalloc.c: allow vread() to read out vm_map_ram areas".

 - Jason Gunthorpe rationalized the GUP system's interface to the rest
   of the kernel in the series "Simplify the external interface for
   GUP".

 - SeongJae Park wishes to migrate people from DAMON's debugfs interface
   over to its sysfs interface. To support this, we'll temporarily be
   printing warnings when people use the debugfs interface. See the
   series "mm/damon: deprecate DAMON debugfs interface".

 - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
   and clean-ups" series.

 - Huang Ying has provided a dramatic reduction in migration's TLB flush
   IPI rates with the series "migrate_pages(): batch TLB flushing".

 - Arnd Bergmann has some objtool fixups in "objtool warning fixes".

* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
  include/linux/migrate.h: remove unneeded externs
  mm/memory_hotplug: cleanup return value handing in do_migrate_range()
  mm/uffd: fix comment in handling pte markers
  mm: change to return bool for isolate_movable_page()
  mm: hugetlb: change to return bool for isolate_hugetlb()
  mm: change to return bool for isolate_lru_page()
  mm: change to return bool for folio_isolate_lru()
  objtool: add UACCESS exceptions for __tsan_volatile_read/write
  kmsan: disable ftrace in kmsan core code
  kasan: mark addr_has_metadata __always_inline
  mm: memcontrol: rename memcg_kmem_enabled()
  sh: initialize max_mapnr
  m68k/nommu: add missing definition of ARCH_PFN_OFFSET
  mm: percpu: fix incorrect size in pcpu_obj_full_size()
  maple_tree: reduce stack usage with gcc-9 and earlier
  mm: page_alloc: call panic() when memoryless node allocation fails
  mm: multi-gen LRU: avoid futile retries
  migrate_pages: move THP/hugetlb migration support check to simplify code
  migrate_pages: batch flushing TLB
  migrate_pages: share more code between _unmap and _move
  ...
2023-02-23 17:09:35 -08:00
Linus Torvalds
5b0ed59649 for-6.3/block-2023-02-16
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmPvfncQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpob2EADXJxcr2jjYHm/7cjKkyuVX8fr80dNdMeuY
 JFdsjG1k6Uj73BVhQQWYTcs/PsrWBHWRsv6uz4WgOELj55eXmf5Q0kJszyUeJW33
 /DjqLvtoppVcYf80xE13wKvCfn73BjwQo6xkGM0qAYn15eaXiD/Ax3xC6eJlsBeK
 PEw7EJyhacbSxZa/1D2B6+mqII1jUQWProTCc3udZ4JHi3WvdWa3Rda0qCqHl4a1
 +K2aP2YTFIRPxBzfMNa/CafWVIFubTdht+4Ds6R60RImzB9e0VUBfcsiUyW5Zg7L
 Fwv7ptXuWrALwVNdW56Oz1QikBxn2pdRR2HMLwKJW1MD8kP9r8LMm2jV5Rhiwe0B
 OQsGRYkOzBvw+bxeP5fvk0iPGVMz6ActH4gkraA5QdLqayDaFYOadlhqz0uRo5SH
 Fb42Vl658K/MHDSIk8U58TNkmrsIJsBGohXI9DOGINPPvv3XOPi4Q1HmXkGRmii0
 y+lNU/QEGh7xXXew29SPP76uQpQaYfC7NxXCMw/OpOMwehzjsjshmM2lpxi8zsgt
 PJUmfHv5qxCplNmTJXmUpmX7sS7550HUdu9FJb13DM+gzKg8bk9jWVuLrzqrVlG5
 1hKWEl1+heg1heRfaIuJVLbPI0au6Sb4uqhih/PHyrP9TWIoAruDbDJM65GKTxyE
 2uEgcHzHQw==
 =poRc
 -----END PGP SIGNATURE-----

Merge tag 'for-6.3/block-2023-02-16' of git://git.kernel.dk/linux

Pull block updates from Jens Axboe:

 - NVMe updates via Christoph:
      - Small improvements to the logging functionality (Amit Engel)
      - Authentication cleanups (Hannes Reinecke)
      - Cleanup and optimize the DMA mapping cod in the PCIe driver
        (Keith Busch)
      - Work around the command effects for Format NVM (Keith Busch)
      - Misc cleanups (Keith Busch, Christoph Hellwig)
      - Fix and cleanup freeing single sgl (Keith Busch)

 - MD updates via Song:
      - Fix a rare crash during the takeover process
      - Don't update recovery_cp when curr_resync is ACTIVE
      - Free writes_pending in md_stop
      - Change active_io to percpu

 - Updates to drbd, inching us closer to unifying the out-of-tree driver
   with the in-tree one (Andreas, Christoph, Lars, Robert)

 - BFQ update adding support for multi-actuator drives (Paolo, Federico,
   Davide)

 - Make brd compliant with REQ_NOWAIT (me)

 - Fix for IOPOLL and queue entering, fixing stalled IO waiting on
   timeouts (me)

 - Fix for REQ_NOWAIT with multiple bios (me)

 - Fix memory leak in blktrace cleanup (Greg)

 - Clean up sbitmap and fix a potential hang (Kemeng)

 - Clean up some bits in BFQ, and fix a bug in the request injection
   (Kemeng)

 - Clean up the request allocation and issue code, and fix some bugs
   related to that (Kemeng)

 - ublk updates and fixes:
      - Add support for unprivileged ublk (Ming)
      - Improve device deletion handling (Ming)
      - Misc (Liu, Ziyang)

 - s390 dasd fixes (Alexander, Qiheng)

 - Improve utility of request caching and fixes (Anuj, Xiao)

 - zoned cleanups (Pankaj)

 - More constification for kobjs (Thomas)

 - blk-iocost cleanups (Yu)

 - Remove bio splitting from drivers that don't need it (Christoph)

 - Switch blk-cgroups to use struct gendisk. Some of this is now
   incomplete as select late reverts were done. (Christoph)

 - Add bvec initialization helpers, and convert callers to use that
   rather than open-coding it (Christoph)

 - Misc fixes and cleanups (Jinke, Keith, Arnd, Bart, Li, Martin,
   Matthew, Ulf, Zhong)

* tag 'for-6.3/block-2023-02-16' of git://git.kernel.dk/linux: (169 commits)
  brd: use radix_tree_maybe_preload instead of radix_tree_preload
  block: use proper return value from bio_failfast()
  block: bio-integrity: Copy flags when bio_integrity_payload is cloned
  block: Fix io statistics for cgroup in throttle path
  brd: mark as nowait compatible
  brd: check for REQ_NOWAIT and set correct page allocation mask
  brd: return 0/-error from brd_insert_page()
  block: sync mixed merged request's failfast with 1st bio's
  Revert "blk-cgroup: pin the gendisk in struct blkcg_gq"
  Revert "blk-cgroup: pass a gendisk to blkg_lookup"
  Revert "blk-cgroup: delay blk-cgroup initialization until add_disk"
  Revert "blk-cgroup: delay calling blkcg_exit_disk until disk_release"
  Revert "blk-cgroup: move the cgroup information to struct gendisk"
  nvme-pci: remove iod use_sgls
  nvme-pci: fix freeing single sgl
  block: ublk: check IO buffer based on flag need_get_data
  s390/dasd: Fix potential memleak in dasd_eckd_init()
  s390/dasd: sort out physical vs virtual pointers usage
  block: Remove the ALLOC_CACHE_SLACK constant
  block: make kobj_type structures constant
  ...
2023-02-20 14:27:21 -08:00
Andrew Morton
f67d6b2664 Merge branch 'mm-hotfixes-stable' into mm-stable
To pick up depended-upon changes
2023-02-10 15:34:48 -08:00
Longlong Xia
1d693a3e69 mm/swapfile: remove pr_debug in get_swap_pages()
It's known that get_swap_pages() may fail to find available space under
some extreme case, but pr_debug() provides useless information.  Let's
remove it.

Link: https://lkml.kernel.org/r/20230131071035.1085968-1-xialonglong1@huawei.com
Signed-off-by: Longlong Xia <xialonglong1@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Chen Wandun <chenwandun@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-09 16:51:41 -08:00
Kefeng Wang
6b970599e8 mm: hwpoison: support recovery from ksm_might_need_to_copy()
When the kernel copies a page from ksm_might_need_to_copy(), but runs into
an uncorrectable error, it will crash since poisoned page is consumed by
kernel, this is similar to the issue recently fixed by Copy-on-write
poison recovery.

When an error is detected during the page copy, return VM_FAULT_HWPOISON
in do_swap_page(), and install a hwpoison entry in unuse_pte() when
swapoff, which help us to avoid system crash.  Note, memory failure on a
KSM page will be skipped, but still call memory_failure_queue() to be
consistent with general memory failure process, and we could support KSM
page recovery in the feature.

[wangkefeng.wang@huawei.com: enhance unuse_pte(), fix issue found by lkp]
  Link: https://lkml.kernel.org/r/20221213120523.141588-1-wangkefeng.wang@huawei.com
[wangkefeng.wang@huawei.com: update changelog, alter ksm_might_need_to_copy(), restore unlikely() in unuse_pte()]
  Link: https://lkml.kernel.org/r/20230201074433.96641-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20221209072801.193221-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-09 15:56:51 -08:00
Christoph Hellwig
f05837ed73 blk-cgroup: store a gendisk to throttle in struct task_struct
Switch from a request_queue pointer and reference to a gendisk once
for the throttle information in struct task_struct.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Herrmann <aherrmann@suse.de>
Link: https://lore.kernel.org/r/20230203150400.3199230-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-02-03 08:20:05 -07:00