-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXMewsACgkQxWXV+ddt
WDtFUBAAkEU/hxB4YsLn2JEdp3wc80w5/qKkPaYHsI2ncvc3RFiG+tqSY7BakMgE
Kkdl8ouNX3p/S62ykIBQTKZnOTk7FgKlClAQtgKn1afexqABsP2mifnh40Dzf7eA
VvEl7chnRT6oeivtQkB+BtgOzaOUp4j/8oAivRN8NKNwTxojV4g9PErKSOWfVQSq
3zlrLJbe6era43SpnexkjZHn4Fy4CN+C7FMm+pT/yKzZi2oBZs9BvNZGhIkdnzcK
MftrY9dSGO3CDD2Kvrz3lEm7ZB83wCpm+GTDN7iJx2y+yeW+aHjshFkJr1ApEZQa
lsWTnj3hk3yHoOPUuLlchw5JcFb/dFZ1Ztdwkunf8nmt5a3O/5Zf+Csgze8c+Iii
MJQKi0B/bNQ7cSEwRt36s75kROBItZmHCZmSBlOpT1LXSDQMJ9lvEnv/fPQdcHHF
WMEmk5O5IoGYv5kx5wIoWv27HKE/bDwH6RjkxEd/n17XP+PcfHY4K0o0CGtfwS8g
hdy9RI9X8dbf3ZPrxtsgQ2T8btWs68A4S6nwcSuY5HK0WNmvRh47eLfCI6S6XGJs
hHkppLcc+WTXOskCA+ABdm9hgeAPZkCSpuQSmC2HBt8gRv8XqO7z4cZ/up2N+tES
ZOJSrJb97nusOcxY0pLexnD6eI3pQxzGMiPONlC1Re8CdjZ0l+4=
=RRGT
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few regular fixes and one fix for space reservation regression since
6.7 that users have been reporting:
- fix over-reservation of metadata chunks due to not keeping proper
balance between global block reserve and delayed refs reserve; in
practice this leaves behind empty metadata block groups, the
workaround is to reclaim them by using the '-musage=1' balance
filter
- other space reservation fixes:
- do not delete unused block group if it may be used soon
- do not reserve space for checksums for NOCOW files
- fix extent map assertion failure when writing out free space inode
- reject encoded write if inode has nodatasum flag set
- fix chunk map leak when loading block group zone info"
* tag 'for-6.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: don't refill whole delayed refs block reserve when starting transaction
btrfs: zoned: fix chunk map leak when loading block group zone info
btrfs: reject encoded write if inode has nodatasum flag set
btrfs: don't reserve space for checksums when writing to nocow files
btrfs: add new unused block groups to the list of unused block groups
btrfs: do not delete unused block group if it may be used soon
btrfs: add and use helper to check if block group is used
btrfs: don't drop extent_map for free space inode on write error
At btrfs_load_block_group_zone_info() we never drop a reference on the
chunk map we have looked up, therefore leaking a reference on it. So
add the missing btrfs_free_chunk_map() at the end of the function.
Fixes: 7dc66abb5a ("btrfs: use a dedicated data structure for chunk maps")
Reported-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers pass in GFP_KERNEL to blkdev_zone_mgmt() and use
memalloc_no{io,fs}_{save,restore}() to define the allocation scope, we can
drop the gfp_mask parameter from blkdev_zone_mgmt() as well as
blkdev_zone_reset_all() and blkdev_zone_reset_all_emulated().
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Mike Snitzer <snitzer@kernel.org>
Link: https://lore.kernel.org/r/20240128-zonefs_nofs-v3-5-ae3b7c8def61@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add a memalloc_nofs scope around all calls to blkdev_zone_mgmt(). This
allows us to further get rid of the GFP_NOFS argument for
blkdev_zone_mgmt().
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Link: https://lore.kernel.org/r/20240128-zonefs_nofs-v3-3-ae3b7c8def61@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmWurp4ACgkQxWXV+ddt
WDsqSg/+OS5/1Cr2W6/3ns2hannEeAzYUeoRDNhNHluHOSufXS52QTckQdiA62BO
iMKGoIxZIn9BQPlvil1hi+jIEt/9qsRt/Qc6oBnzvlto21tJCoS486PJAShu6Sj5
jXKxtR7d6WrJEfk65uzatk1SbRguRKFxSrFlkaOeOHAmWsD54p/BnsZ/pqxPjF8W
LOFvwdhbTw3pzQ873b+hJg16rm4IenAnuazZNmXRdSufgdPEcArv0l7fMr4xTBvO
DBQXoM5GBGVHV2+IsrZiK39p7khz9ej2Ob4rps/x6PduC+GPxGtm6iLy8dZts+hV
D1FOHh3fqWmV2LQIzLNNu9N7sj5sF5dNFRZHSkq4qFNVNQYfvyFg43iJKfUnMY/s
puUm7ElSF3tLC2pRys0m/jDfkykZVFFZzbayfYQn+jRKuUASyXnWqmCKlljkLJD5
ekFXPpor+SQzQso9x0OpAjkSIUmmYFqSvoJCCczPFoo/3EDPv4C6VGOPEQyN6dDH
nBjn7fLXmn4hpdEKia+LU1MhajFis+SUlmjaoTh7UfCCzXDosDOPThRC1Kx0rNlY
t4KON8pMUCK3iGEce+7iOSwEImDDU4B7DUARey/sF0C8cs7jRsX8bf8eFTrEId8M
4C2sLmTw0JJ5n2I2soyTi9fHrGJnJamUlzp/hLrp8JyMzy6qBrs=
=38MW
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- zoned mode fixes:
- fix slowdown when writing large file sequentially by looking up
block groups with enough space faster
- locking fixes when activating a zone
- new mount API fixes:
- preserve mount options for a ro/rw mount of the same subvolume
- scrub fixes:
- fix use-after-free in case the chunk length is not aligned to
64K, this does not happen normally but has been reported on
images converted from ext4
- similar alignment check was missing with raid-stripe-tree
- subvolume deletion fixes:
- prevent calling ioctl on already deleted subvolume
- properly track flag tracking a deleted subvolume
- in subpage mode, fix decompression of an inline extent (zlib, lzo,
zstd)
- fix crash when starting writeback on a folio, after integration with
recent MM changes this needs to be started conditionally
- reject unknown flags in defrag ioctl
- error handling, API fixes, minor warning fixes
* tag 'for-6.8-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: scrub: limit RST scrub to chunk boundary
btrfs: scrub: avoid use-after-free when chunk length is not 64K aligned
btrfs: don't unconditionally call folio_start_writeback in subpage
btrfs: use the original mount's mount options for the legacy reconfigure
btrfs: don't warn if discard range is not aligned to sector
btrfs: tree-checker: fix inline ref size in error messages
btrfs: zstd: fix and simplify the inline extent decompression
btrfs: lzo: fix and simplify the inline extent decompression
btrfs: zlib: fix and simplify the inline extent decompression
btrfs: defrag: reject unknown flags of btrfs_ioctl_defrag_range_args
btrfs: avoid copying BTRFS_ROOT_SUBVOL_DEAD flag to snapshot of subvolume being deleted
btrfs: don't abort filesystem when attempting to snapshot deleted subvolume
btrfs: zoned: fix lock ordering in btrfs_zone_activate()
btrfs: fix unbalanced unlock of mapping_tree_lock
btrfs: ref-verify: free ref cache before clearing mount opt
btrfs: fix kvcalloc() arguments order in btrfs_ioctl_send()
btrfs: zoned: optimize hint byte for zoned allocator
btrfs: zoned: factor out prepare_allocation_zoned()
The btrfs CI reported a lockdep warning as follows by running generic
generic/129.
WARNING: possible circular locking dependency detected
6.7.0-rc5+ #1 Not tainted
------------------------------------------------------
kworker/u5:5/793427 is trying to acquire lock:
ffff88813256d028 (&cache->lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x5e/0x130
but task is already holding lock:
ffff88810a23a318 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x34/0x130
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}:
...
-> #0 (&cache->lock){+.+.}-{2:2}:
...
This is because we take fs_info->zone_active_bgs_lock after a block_group's
lock in btrfs_zone_activate() while doing the opposite in other places.
Fix the issue by expanding the fs_info->zone_active_bgs_lock's critical
section and taking it before a block_group's lock.
Fixes: a7e1ac7bdc ("btrfs: zoned: reserve zones for an active metadata/system block group")
CC: stable@vger.kernel.org # 6.6
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmWcIOIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpn6hD/9oO7U75PuxUwYYHZ9Uzxpw6gQ0LEmeyJmE
NQYCkfYHVq3IsgOdF7elI9v3qtr6v8V8CdB7cByrnn3DgwsMuiTKZZ0dK7vH37PO
DX+/xn349e8oH7RdRo7f3m95g1YbHfpfnj0Rc4mjTDV72Jr/HlLTVgGTQg8DEnCR
wBIFmeuBHHgeeLh87gsWLAP7ReReiy9V1uqpDFsko2/4BxRAM/8eedkwcAxD8aEy
rd+dT/SBQj2cOdQMUeExT3gWjwzHh6ZHx3f1WCLK5fdck6BogH2hBUeri6F/H98L
HoaXjBZYBTH68hB/mnO5I4g1ZlrVM74Vp7JPa3e1SFFtyEi6lsyrk2J3GoNh0E7r
pXqH5kAcaJwBsBrbRGuvEyGbn9RLTaN5Gvseud0VE4oMruyodTniQaHXuIGackgz
sMavMho4486EUWPaF7gIBdLNK1hO13w+IDZ4+3oBxhudMqdgZbk4iYpOCqQ7QY5G
2vkzAE/sZ+aVNXeaIQOI8dE5clBy8gJ+6+t8dm3DY1r1xdbcnU40iZ8/fri3h69r
vHs9bpQnVWZF0gEyEflY1pkcAPpIkvMmWCR7Ehy5YCkIfa+qfSL05o3dicpWovLP
N+gCtpkhTK2AvmUWsUMypMLRvoSOImyCIiobrr3qNBaUdgRP8xKfUa72RuRp8cGl
Vrj5oAiE3w==
=YAfp
-----END PGP SIGNATURE-----
Merge tag 'for-6.8/block-2024-01-08' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
"Pretty quiet round this time around. This contains:
- NVMe updates via Keith:
- nvme fabrics spec updates (Guixin, Max)
- nvme target udpates (Guixin, Evan)
- nvme attribute refactoring (Daniel)
- nvme-fc numa fix (Keith)
- MD updates via Song:
- Fix/Cleanup RCU usage from conf->disks[i].rdev (Yu Kuai)
- Fix raid5 hang issue (Junxiao Bi)
- Add Yu Kuai as Reviewer of the md subsystem
- Remove deprecated flavors (Song Liu)
- raid1 read error check support (Li Nan)
- Better handle events off-by-1 case (Alex Lyakas)
- Efficiency improvements for passthrough (Kundan)
- Support for mapping integrity data directly (Keith)
- Zoned write fix (Damien)
- rnbd fixes (Kees, Santosh, Supriti)
- Default to a sane discard size granularity (Christoph)
- Make the default max transfer size naming less confusing
(Christoph)
- Remove support for deprecated host aware zoned model (Christoph)
- Misc fixes (me, Li, Matthew, Min, Ming, Randy, liyouhong, Daniel,
Bart, Christoph)"
* tag 'for-6.8/block-2024-01-08' of git://git.kernel.dk/linux: (78 commits)
block: Treat sequential write preferred zone type as invalid
block: remove disk_clear_zoned
sd: remove the !ZBC && blk_queue_is_zoned case in sd_read_block_characteristics
drivers/block/xen-blkback/common.h: Fix spelling typo in comment
blk-cgroup: fix rcu lockdep warning in blkg_lookup()
blk-cgroup: don't use removal safe list iterators
block: floor the discard granularity to the physical block size
mtd_blkdevs: use the default discard granularity
bcache: use the default discard granularity
zram: use the default discard granularity
null_blk: use the default discard granularity
nbd: use the default discard granularity
ubd: use the default discard granularity
block: default the discard granularity to sector size
bcache: discard_granularity should not be smaller than a sector
block: remove two comments in bio_split_discard
block: rename and document BLK_DEF_MAX_SECTORS
loop: don't abuse BLK_DEF_MAX_SECTORS
aoe: don't abuse BLK_DEF_MAX_SECTORS
null_blk: don't cap max_hw_sectors to BLK_DEF_MAX_SECTORS
...
When zones were first added the SCSI and ATA specs, two different
models were supported (in addition to the drive managed one that
is invisible to the host):
- host managed where non-conventional zones there is strict requirement
to write at the write pointer, or else an error is returned
- host aware where a write point is maintained if writes always happen
at it, otherwise it is left in an under-defined state and the
sequential write preferred zones behave like conventional zones
(probably very badly performing ones, though)
Not surprisingly this lukewarm model didn't prove to be very useful and
was finally removed from the ZBC and SBC specs (NVMe never implemented
it). Due to to the easily disappearing write pointer host software
could never rely on the write pointer to actually be useful for say
recovery.
Fortunately only a few HDD prototypes shipped using this model which
never made it to mass production. Drop the support before it is too
late. Note that any such host aware prototype HDD can still be used
with Linux as we'll now treat it as a conventional HDD.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20231217165359.604246-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is what is used to remount the file system with the new mount API.
Because the mount options are parsed separately and one at a time I've
added a helper to emit the mount options after the fact once the mount
is configured, this matches the dmesg output for what happens with the
old mount API.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're not clearing the dirty flag off of extent_buffers in zoned mode,
all that is left of btrfs_redirty_list_add() is a memzero() and some
ASSERT()ions.
As we're also memzero()ing the buffer on write-out btrfs_redirty_list_add()
has become obsolete and can be removed.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One a zoned filesystem, never clear the dirty flag of an extent buffer,
but instead mark it as zeroout.
On writeout, when encountering a marked extent_buffer, zero it out.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_ZONED_ZEROOUT better describes the state of the extent buffer,
namely it is written as all zeros. This is needed in zoned mode, to
preserve I/O ordering.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a check of the write pointer vs the zone size to reject an invalid
write pointer. However, as of now, we have RAID0/RAID10 on the zoned
mode, we can have a block group whose size is larger than the zone size.
As an equivalent check against the block group's zone_capacity is already
there, we can just drop this invalid check.
Fixes: 568220fa96 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we have a raid-stripe-tree, we can do RAID0/1/10 on zoned devices
for data block groups. For metadata block groups, we don't actually
need anything special, as all metadata I/O is protected by the
btrfs_zoned_meta_io_lock() already.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Split the code handling a type DUP block group from
btrfs_load_block_group_zone_info to make the code more readable.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Split the code handling a type single block group from
btrfs_load_block_group_zone_info to make the code more readable.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Split out a helper for the body of the per-zone loop in
btrfs_load_block_group_zone_info to make the function easier to read and
modify.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new zone_info structure to hold per-zone information in
btrfs_load_block_group_zone_info and prepare for breaking out helpers
from it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter @need_raid_map is mostly a legacy from the old days where
we don't yet have a solid definition on the @mirror_num, and only
check-integrity was using that parameter, while all other call sites
just pass 1 for that parameter.
Now since we have removed check-integrity functionality, we can also
remove the @need_raid_map parameter.
This change will also remove the ability to read P/Q stripe directly
when passing 0 as @need_raid_map.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The flag EXTENT_NOWAIT is a special flag to notify extent-io-tree code
that this operation should not sleep for the extent state preallocation.
However for btrfs_redirty_list_add(), all callers are able to sleep:
- clean_log_buffer()
Just 2 lines before, we call btrfs_pin_reserved_extent(), which calls
pin_down_extent(), and that function does not require EXTENT_NOWAIT.
Thus we're safe to call it without EXTENT_NOWAIT.
- btrfs_free_tree_block()
This function have several call sites which trigger tree read, e.g.
walk_up_proc(), thus we're safe to call it without EXTENT_NOWAIT.
Thus there is no need to require EXTENT_NOWAIT flag.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a relocation, there is a chance that at the time of
btrfs_reloc_clone_csums(), there is no checksum for the corresponding
region.
In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item
and so ordered_extent's logical is set to some invalid value. Then,
btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a
block group and will hit an assert or a null pointer dereference as
following.
This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16
times) with a null_blk setup. The device's zone size and capacity is set to
32 MB and the storage size is set to 5 GB on my setup.
KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1
Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00
> 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00
RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088
RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827
R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000
R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0
Call Trace:
<TASK>
? die_addr+0x3c/0xa0
? exc_general_protection+0x148/0x220
? asm_exc_general_protection+0x22/0x30
? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs]
btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs]
? rcu_is_watching+0x11/0xb0
? lock_release+0x47a/0x620
? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs]
? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs]
? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs]
? __smp_call_single_queue+0x124/0x350
? rcu_is_watching+0x11/0xb0
btrfs_work_helper+0x19f/0xc60 [btrfs]
? __pfx_try_to_wake_up+0x10/0x10
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
process_one_work+0x8c1/0x1430
? __pfx_lock_acquire+0x10/0x10
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? _raw_spin_lock_irq+0x52/0x60
worker_thread+0x100/0x12c0
? __kthread_parkme+0xc1/0x1f0
? __pfx_worker_thread+0x10/0x10
kthread+0x2ea/0x3c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
On the zoned mode, writing to pre-allocated region means data relocation
write. Such write always uses WRITE command so there is no need of splitting
and rewriting logical address. Thus, we can just skip the function for the
case.
Fixes: cbfce4c7fb ("btrfs: optimize the logical to physical mapping for zoned writes")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When multiple writes happen at once, we may need to sacrifice a currently
active block group to be zone finished for a new allocation. We choose a
block group with the least free space left, and zone finish it.
To do the finishing, we need to send IOs for already allocated region
and wait for them and on-going IOs. Otherwise, these IOs fail because the
zone is already finished at the time the IO reach a device.
However, if a block group dedicated to the data relocation is zone
finished, there is a chance that finishing it before an ongoing write IO
reaches the device. That is because there is timing gap between an
allocation is done (block_group->reservations == 0, as pre-allocation is
done) and an ordered extent is created when the relocation IO starts.
Thus, if we finish the zone between them, we can fail the IOs.
We cannot simply use "fs_info->data_reloc_bg == block_group->start" to
avoid the zone finishing. Because, the data_reloc_bg may already switch to
a new block group, while there are still ongoing write IOs to the old
data_reloc_bg.
So, this patch reworks the BLOCK_GROUP_FLAG_ZONED_DATA_RELOC bit to
indicate there is a data relocation allocation and/or ongoing write to the
block group. The bit is set on allocation and cleared in end_io function of
the last IO for the currently allocated region.
To change the timing of the bit setting also solves the issue that the bit
being left even after there is no IO going on. With the current code, if
the data_reloc_bg switches after the last IO to the current data_reloc_bg,
the bit is set at this timing and there is no one clearing that bit. As a
result, that block group is kept unallocatable for anything.
Fixes: 343d8a3085 ("btrfs: zoned: prevent allocation from previous data relocation BG")
Fixes: 74e91b12b1 ("btrfs: zoned: zone finish unused block group")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we switched to write time activation, we no longer need to (and
must not) count the fresh region as zone unusable. This commit is similar
to revert of commit fa2068d7e9 ("btrfs: zoned: count fresh BG
region as zone unusable").
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the current implementation, block groups are activated at reservation
time to ensure that all reserved bytes can be written to an active metadata
block group. However, this approach has proven to be less efficient, as it
activates block groups more frequently than necessary, putting pressure on
the active zone resource and leading to potential issues such as early
ENOSPC or hung_task.
Another drawback of the current method is that it hampers metadata
over-commit, and necessitates additional flush operations and block group
allocations, resulting in decreased overall performance.
To address these issues, this commit introduces a write-time activation of
metadata and system block group. This involves reserving at least one
active block group specifically for a metadata and system block group.
Since metadata write-out is always allocated sequentially, when we need to
write to a non-active block group, we can wait for the ongoing IOs to
complete, activate a new block group, and then proceed with writing to the
new block group.
Fixes: b093151391 ("btrfs: zoned: activate metadata block group on flush_space")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Ensure a metadata and system block group can be activated on write time, by
leaving a certain number of active zones when trying to activate a data
block group.
Zones for two metadata block groups (normal and tree-log) and one system
block group are reserved, according to the profile type: two zones per
block group on the DUP profile and one zone per block group otherwise.
The reservation must be freed once a non-data block group is allocated. If
not, we over-reserve the active zones and data block group activation will
suffer. For the dynamic reservation count, we need to manage the
reservation count per device.
The reservation count variable is protected by
fs_info->zone_active_bgs_lock.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On finishing a zone, the meta_write_pointer should be set of the end of the
zone to reflect the actual write pointer position.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently advance the meta_write_pointer in
btrfs_check_meta_write_pointer(). That makes it necessary to revert it
when locking the buffer failed. Instead, we can advance it just before
sending the buffer.
Also, this is necessary for the following commit. In the commit, it needs
to release the zoned_meta_io_lock to allow IOs to come in and wait for them
to fill the currently active block group. If we advance the
meta_write_pointer before locking the extent buffer, the following extent
buffer can pass the meta_write_pointer check, resulting in an unaligned
write failure.
Advancing the pointer is still thread-safe as the extent buffer is locked.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have writeback_control passed to
btrfs_check_meta_write_pointer(), we can move the wbc condition in
submit_eb_page() to btrfs_check_meta_write_pointer() and return int.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For metadata write out on the zoned mode, we call
btrfs_check_meta_write_pointer() to check if an extent buffer to be written
is aligned to the write pointer.
We look up a block group containing the extent buffer for every extent
buffer, which takes unnecessary effort as the writing extent buffers are
mostly contiguous.
Introduce "zoned_bg" to cache the block group working on. Also, while
at it, rename "cache" to "block_group".
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use vcalloc that checks potential multiplication overflows. The changes
were done using Coccinelle semantic patch.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The zoned mode need to reset a zone before using it. We rely on btrfs's
original discard functionality (discarding unused block group range) to do
the resetting.
While the commit 63a7cb1307 ("btrfs: auto enable discard=async when
possible") made the discard done in an async manner, a zoned reset do not
need to be async, as it is fast enough.
Even worth, delaying zone rests prevents using those zones again. So, let's
disable async discard on the zoned mode.
Fixes: 63a7cb1307 ("btrfs: auto enable discard=async when possible")
CC: stable@vger.kernel.org # 6.3+
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update message text ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_sblock just hard codes three arguments and calls
btrfs_map_sblock. Remove it as it doesn't provide any real value, but
makes following the btrfs_map_block call chains harder.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
split_extent_map splits off the first chunk of an extent map into a new
one. One of the two users is the zoned I/O completion code that wants to
rewrite the logical block start address right after this split. Pass in
the logical address to be set in the split off first extent_map as an
argument to avoid an extra extent tree lookup for this case.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs zoned completion code currently needs an ordered_extent and
extent_map per bio so that it can account for the non-predictable
write location from Zone Append. To archive that it currently splits
the ordered_extent and extent_map at I/O submission time, and then
records the actual physical address in the ->physical field of the
ordered_extent.
This patch instead switches to record the "original" physical address
that the btrfs allocator assigned in spare space in the btrfs_bio,
and then rewrites the logical address in the btrfs_ordered_sum
structure at I/O completion time. This allows the ordered extent
completion handler to simply walk the list of ordered csums and
split the ordered extent as needed. This removes an extra ordered
extent and extent_map lookup and manipulation during the I/O
submission path, and instead batches it in the I/O completion path
where we need to touch these anyway.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The current code to store the final logical to physical mapping for a
zone append write in the extent tree is rather inefficient. It first has
to split the ordered extent so that there is one ordered extent per bio,
so that it can look up the ordered extent on I/O completion in
btrfs_record_physical_zoned and store the physical LBA returned by the
block driver in the ordered extent.
btrfs_rewrite_logical_zoned then has to do a lookup in the chunk tree to
see what physical address the logical address for this bio / ordered
extent is mapped to, and then rewrite it in the extent tree.
To optimize this process, we can store the physical address assigned in
the chunk tree to the original logical address and a pointer to
btrfs_ordered_sum structure the in the btrfs_bio structure, and then use
this information to rewrite the logical address in the btrfs_ordered_sum
structure directly at I/O completion time in btrfs_record_physical_zoned.
btrfs_rewrite_logical_zoned then simply updates the logical address in
the extent tree and the ordered_extent itself.
The code in btrfs_rewrite_logical_zoned now runs for all data I/O
completions in zoned file systems, which is fine as there is no remapping
to do for non-append writes to conventional zones or for relocation, and
the overhead for quickly breaking out of the loop is very low.
Because zoned file systems now need the ordered_sums structure to
record the actual write location returned by zone append, allocate dummy
structures without the csum array for them when the I/O doesn't use
checksums, and free them when completing the ordered_extent.
Note that the btrfs_bio doesn't grow as the new field are places into
a union that is so far not used for data writes and has plenty of space
left in it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ordered_sum::bytendr stores a logical address. Make that clear by
renaming it to ->logical.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all extent state bit helpers effectively take the GFP_NOFS mask
(and GFP_NOWAIT is encoded in the bits) we can remove the parameter.
This reduces stack consumption in many functions and simplifies a lot of
code.
Net effect on module on a release build:
text data bss dec hex filename
1250432 20985 16088 1287505 13a551 pre/btrfs.ko
1247074 20985 16088 1284147 139833 post/btrfs.ko
DELTA: -3358
Signed-off-by: David Sterba <dsterba@suse.com>
The only flags we now pass to set_extent_bit/__clear_extent_bit are
GFP_NOFS and GFP_NOWAIT (a few functions handling mappings). This
requires an extra parameter to be passed everywhere but is almost always
the same.
Encode the GFP_NOWAIT as an artificial extent bit and extract the
real bits and gfp mask in the lowest level helpers. Now the passed
gfp mask is not actually used and can be removed.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper only passes GFP_NOWAIT as gfp flags and is used two times.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs_redirty_list_add redirties a buffer, it also acquires
an extra reference that is released on transaction commit. But
this is not required as buffers that are dirty or under writeback
are never freed (look for calls to extent_buffer_under_io())).
Remove the extra reference and the infrastructure used to drop it
again.
History behind redirty logic:
In the first place, it used releasing_list to hold all the
to-be-released extent buffers, and decided which buffers to re-dirty at
the commit time. Then, in a later version, the behaviour got changed to
re-dirty a necessary buffer and add re-dirtied one to the list in
btrfs_free_tree_block(). In short, the list was there mostly for the
patch series' historical reason.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[ add Naohiro's comment regarding history ]
Signed-off-by: David Sterba <dsterba@suse.com>
bitmap_test_range_all_{set,zero} defined in subpage.c are useful for other
components. Move them to misc.h and use them in zoned.c. Also, as
find_next{,_zero}_bit take/return "unsigned long" instead of "unsigned
int", convert the type to "unsigned long".
While at it, also rewrite the "if (...) return true; else return false;"
pattern and add const to the input bitmap.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_redirty_list_add zeroes the buffer data and sets the
EXTENT_BUFFER_NO_CHECK to make sure writeback is fine with a bogus
header. But it does that after already marking the buffer dirty, which
means that writeback could already be looking at the buffer.
Switch the order of operations around so that the buffer is only marked
dirty when we're ready to write it.
Fixes: d3575156f6 ("btrfs: zoned: redirty released extent buffers")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When both of the superblock zones are full, we need to check which
superblock is newer. The calculation of last superblock position is wrong
as it does not consider zone_capacity and uses the length.
Fixes: 9658b72ef3 ("btrfs: zoned: locate superblock position using zone capacity")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
find_next_bit and find_next_zero_bit take @size as the second parameter and
@offset as the third parameter. They are specified opposite in
btrfs_ensure_empty_zones(). Thanks to the later loop, it never failed to
detect the empty zones. Fix them and (maybe) return the result a bit
faster.
Note: the naming is a bit confusing, size has two meanings here, bitmap
and our range size.
Fixes: 1cd6121f2a ("btrfs: zoned: implement zoned chunk allocator")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we're doing a lot of work for btrfs_bio:
- Checksum verification for data read bios
- Bio splits if it crosses stripe boundary
- Read repair for data read bios
However for the incoming scrub patches, we don't want this extra
functionality at all, just plain logical + mirror -> physical mapping
ability.
Thus here we do the following changes:
- Introduce btrfs_bio::fs_info
This is for the new scrub specific btrfs_bio, which would not populate
btrfs_bio::inode.
Thus we need such new member to grab a fs_info
This new member will always be populated.
- Replace @inode argument with @fs_info for btrfs_bio_init() and its
caller
Since @inode is no longer a mandatory member, replace it with
@fs_info, and let involved users populate @inode.
- Skip checksum verification and generation if @bbio->inode is NULL
- Add extra ASSERT()s
To make sure:
* bbio->inode is properly set for involved read repair path
* if @file_offset is set, bbio->inode is also populated
- Grab @fs_info from @bbio directly
We can no longer go @bbio->inode->root->fs_info, as bbio->inode can be
NULL. This involves:
* btrfs_simple_end_io()
* should_async_write()
* btrfs_wq_submit_bio()
* btrfs_use_zone_append()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The space_info->active_total_bytes is no longer necessary as we now
count the region of newly allocated block group as zone_unusable. Drop
its usage.
Fixes: 6a921de589 ("btrfs: zoned: introduce space_info->active_total_bytes")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The naming of space_info->active_total_bytes is misleading. It counts
not only active block groups but also full ones which are previously
active but now inactive. That confusion results in a bug not counting
the full BGs into active_total_bytes on mount time.
For a background, there are three kinds of block groups in terms of
activation.
1. Block groups never activated
2. Block groups currently active
3. Block groups previously active and currently inactive (due to fully
written or zone finish)
What we really wanted to exclude from "total_bytes" is the total size of
BGs #1. They seem empty and allocatable but since they are not activated,
we cannot rely on them to do the space reservation.
And, since BGs #1 never get activated, they should have no "used",
"reserved" and "pinned" bytes.
OTOH, BGs #3 can be counted in the "total", since they are already full
we cannot allocate from them anyway. For them, "total_bytes == used +
reserved + pinned + zone_unusable" should hold.
Tracking #2 and #3 as "active_total_bytes" (current implementation) is
confusing. And, tracking #1 and subtract that properly from "total_bytes"
every time you need space reservation is cumbersome.
Instead, we can count the whole region of a newly allocated block group as
zone_unusable. Then, once that block group is activated, release
[0 .. zone_capacity] from the zone_unusable counters. With this, we can
eliminate the confusing ->active_total_bytes and the code will be common
among regular and the zoned mode. Also, no additional counter is needed
with this approach.
Fixes: 6a921de589 ("btrfs: zoned: introduce space_info->active_total_bytes")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This flag only gets set when we're doing active zone tracking, and we're
going to need to use this flag for things related to this behavior.
Rename the flag to represent what it actually means for the file system
so it can be used in other ways and still make sense.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_can_activate_zone() returns true if at least one device has one zone
available for activation. This is OK for the single profile, but not OK for
DUP profile. We need two zones to create a DUP block group. Fix it by
properly handling the case with the profile flags.
Fixes: 265f7237dd ("btrfs: zoned: allow DUP on meta-data block groups")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_physical_zoned relies on a bio->bi_bdev samples in the
bio_end_io handler to find the reverse map for remapping the zone append
write, but stacked block device drivers can and usually do change bi_bdev
when sending on the bio to a lower device. This can happen e.g. with the
nvme-multipath driver when a NVMe SSD sets the shared namespace bit.
But there is no real need for the bdev in btrfs_record_physical_zoned,
as it is only passed to btrfs_rmap_block, which uses it to pick the
mapping to report if there are multiple reverse mappings. As zone
writes can only do simple non-mirror writes right now, and anything
more complex will use the stripe tree there is no chance of the multiple
mappings case actually happening.
Instead open code the subset of btrfs_rmap_block in
btrfs_record_physical_zoned, which also removes a memory allocation and
remove the bdev field in the ordered extent.
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Using Zone Append only makes sense for writes to the device, so check
that in btrfs_use_zone_append. This avoids the possibility of
artificially limited read size on zoned file systems.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
struct btrfs_bio has all the information needed for btrfs_use_append, so
pass that instead of a btrfs_inode and file_offset.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current btrfs zoned device support is a little cumbersome in the data
I/O path as it requires the callers to not issue I/O larger than the
supported ZONE_APPEND size of the underlying device. This leads to a lot
of extra accounting. Instead change btrfs_submit_bio so that it can take
write bios of arbitrary size and form from the upper layers, and just
split them internally to the ZONE_APPEND queue limits. Then remove all
the upper layer warts catering to limited write sized on zoned devices,
including the extra refcount in the compressed_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
To be able to split a write into properly sized zone append commands,
we need a queue_limits structure that contains the least common
denominator suitable for all devices.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the code that splits the ordered extents and records the physical
location for them to the storage layer so that the higher level consumers
don't have to care about physical block numbers at all. This will also
allow to eventually remove accounting for the zone append write sizes in
the upper layer with a little bit more block layer work.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix an uninitialized warning we get with -Wmaybe-uninitialized where it
thought zno may have been uninitialized, in both cases it depends on
zinfo->zone_cache but we know the value won't change between checks.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Link: https://lore.kernel.org/linux-btrfs/af6c527cbd8bdc782e50bd33996ee83acc3a16fb.1671221596.git.josef@toxicpanda.com/
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only have 3 possible mirrors, and we have ASSERT()'s to make sure
we're not passing in an invalid super mirror into this function, so
technically this value isn't uninitialized. However
-Wmaybe-uninitialized will complain, so set it to U64_MAX so if we don't
have ASSERT()'s turned on it'll error out later on when it see's the
zone is beyond our maximum zones.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit 79417d040f ("btrfs: zoned: disable metadata overcommit for
zoned") disabled the metadata over-commit to track active zones properly.
However, it also introduced a heavy overhead by allocating new metadata
block groups and/or flushing dirty buffers to release the space
reservations. Specifically, a workload (write only without any sync
operations) worsen its performance from 343.77 MB/sec (v5.19) to 182.89
MB/sec (v6.0).
The performance is still bad on current misc-next which is 187.95 MB/sec.
And, with this patch applied, it improves back to 326.70 MB/sec (+73.82%).
This patch introduces a new fs_info->flag BTRFS_FS_NO_OVERCOMMIT to
indicate it needs to disable the metadata over-commit. The flag is enabled
when a device with max active zones limit is loaded into a file-system.
Fixes: 79417d040f ("btrfs: zoned: disable metadata overcommit for zoned")
CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In zoned mode the sequential status of zone can be also tracked in the
runtime flags of block group.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a 64bit compatible helper to check if a value is a power of two,
use it instead of open coding it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update, reformat or reword function comments. This also removes the kdoc
marker so we don't get reports when the function name is missing.
Changes made:
- remove kdoc markers
- reformat the brief description to be a proper sentence
- reword to imperative voice
- align parameter list
- fix typos
Signed-off-by: David Sterba <dsterba@suse.com>
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
generation is an on-disk __le64 value, so use btrfs_super_generation to
convert it to host endian before comparing it.
Fixes: 12659251ca ("btrfs: implement log-structured superblock for ZONED mode")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When cloning a btrfs_device, we're not cloning the associated
btrfs_zoned_device_info structure of the device in case of a zoned
filesystem.
Later on this leads to a NULL pointer dereference when accessing the
device's zone_info for instance when setting a zone as active.
This was uncovered by fstests' testcase btrfs/161.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_check_zoned_mode is really hard to follow, mostly due to the
fact that a lot of the checks use duplicate conditions after support
for zone emulation for conventional devices on file systems with the
ZONED flag was added. Fix this by factoring out the check for host
managed devices for !ZONED file systems into a separate helper and
then simplifying the rest of the code.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
struct btrfs_caching_ctl::progress and struct
btrfs_block_group::last_byte_to_unpin were previously needed to ensure
that unpin_extent_range() didn't return a range to the free space cache
before the caching thread had a chance to cache that range. However, the
commit "btrfs: fix space cache corruption and potential double
allocations" made it so that we always synchronously cache the block
group at the time that we pin the extent, so this machinery is no longer
necessary.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use a bit field in the btrfs_block_group for different flags, however
this is awkward because we have to hold the block_group->lock for any
modification of any of these fields, and makes the code clunky for a few
of these flags. Convert these to a properly flags setup so we can
utilize the bit helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before sending REQ_OP_ZONE_FINISH to a zone, we need to ensure that
ongoing IOs already finished. Or, we will see a "Zone Is Full" error for
the IOs, as the ZONE_FINISH command makes the zone full.
We ensure that with btrfs_wait_block_group_reservations() and
btrfs_wait_ordered_roots() for a data block group. And, for a metadata
block group, the comparison of alloc_offset vs meta_write_pointer mostly
ensures IOs for the allocated region already sent. However, there still
can be a little time frame where the IOs are sent but not yet completed.
Introduce wait_eb_writebacks() to ensure such IOs are completed for a
metadata block group. It walks the buffer_radix to find extent buffers in
the block group and calls wait_on_extent_buffer_writeback() on them.
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
CC: stable@vger.kernel.org # 5.19+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 6a921de589 ("btrfs: zoned: introduce
space_info->active_total_bytes"), we're only counting the bytes of a
block group on an active zone as usable for metadata writes. But on a
SMR drive, we don't have active zones and short circuit some of the
logic.
This leads to an error on mount, because we cannot reserve space for
metadata writes.
Fix this by also setting the BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE bit in the
block-group's runtime flag if the zone is a conventional zone.
Fixes: 6a921de589 ("btrfs: zoned: introduce space_info->active_total_bytes")
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit 7d7672bc5d ("btrfs: convert count_max_extents() to use
fs_info->max_extent_size") introduced a division by
fs_info->max_extent_size. This max_extent_size is initialized with max
zone append limit size of the device btrfs runs on. However, in zone
emulation mode, the device is not zoned then its zone append limit is
zero. This resulted in zero value of fs_info->max_extent_size and caused
zero division error.
Fix the error by setting non-zero pseudo value to max append zone limit
in zone emulation mode. Set the pseudo value based on max_segments as
suggested in the commit c2ae7b772e ("btrfs: zoned: revive
max_zone_append_bytes").
Fixes: 7d7672bc5d ("btrfs: convert count_max_extents() to use fs_info->max_extent_size")
CC: stable@vger.kernel.org # 5.12+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit 2ce543f478 ("btrfs: zoned: wait until zone is finished when
allocation didn't progress") implemented a zone finish waiting mechanism
to the write path of zoned mode. However, using
wait_var_event()/wake_up_all() on fs_info->zone_finish_wait is wrong and
wait_var_event() just hangs because no one ever wakes it up once it goes
into sleep.
Instead, we can simply use wait_on_bit_io() and clear_and_wake_up_bit()
on fs_info->flags with a proper barrier installed.
Fixes: 2ce543f478 ("btrfs: zoned: wait until zone is finished when allocation didn't progress")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the allocated position doesn't progress, we cannot submit IOs to
finish a block group, but there should be ongoing IOs that will finish a
block group. So, in that case, we wait for a zone to be finished and retry
the allocation after that.
Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to
indicate we need a zone finish to have proceeded. The flag is set when the
allocator detected it cannot activate a new block group. And, it is cleared
once a zone is finished.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For metadata space on zoned filesystem, reaching ALLOC_CHUNK{,_FORCE}
means we don't have enough space left in the active_total_bytes. Before
allocating a new chunk, we can try to activate an existing block group
in this case.
Also, allocating a chunk is not enough to grant a ticket for metadata
space on zoned filesystem we need to activate the block group to
increase the active_total_bytes.
btrfs_zoned_activate_one_bg() implements the activation feature. It will
activate a block group by (maybe) finishing a block group. It will give up
activating a block group if it cannot finish any block group.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The active_total_bytes, like the total_bytes, accounts for the total bytes
of active block groups in the space_info.
With an introduction of active_total_bytes, we can check if the reserved
bytes can be written to the block groups without activating a new block
group. The check is necessary for metadata allocation on zoned
filesystem. We cannot finish a block group, which may require waiting
for the current transaction, from the metadata allocation context.
Instead, we need to ensure the ongoing allocation (reserved bytes) fits
in active block groups.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we run out of active zones and no sufficient space is left in any
block groups, we need to finish one block group to make room to activate a
new block group.
However, we cannot do this for metadata block groups because we can cause a
deadlock by waiting for a running transaction commit. So, do that only for
a data block group.
Furthermore, the block group to be finished has two requirements. First,
the block group must not have reserved bytes left. Having reserved bytes
means we have an allocated region but did not yet send bios for it. If that
region is allocated by the thread calling btrfs_zone_finish(), it results
in a deadlock.
Second, the block group to be finished must not be a SYSTEM block
group. Finishing a SYSTEM block group easily breaks further chunk
allocation by nullifying the SYSTEM free space.
In a certain case, we cannot find any zone finish candidate or
btrfs_zone_finish() may fail. In that case, we fall back to split the
allocation bytes and fill the last spaces left in the block groups.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu_read_lock_sched_held+0x16/0x80
[75721.969111] ? lock_acquire+0x41b/0x4c0
[75721.974982] finish_ordered_fn+0x15/0x20 [btrfs]
[75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs]
[75721.988184] ? _raw_spin_unlock_irq+0x28/0x50
[75721.994643] process_one_work+0x815/0x1460
[75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250
[75722.006643] ? do_raw_spin_trylock+0xbb/0x190
[75722.013086] worker_thread+0x59a/0xeb0
[75722.018511] kthread+0x2ac/0x360
[75722.023428] ? process_one_work+0x1460/0x1460
[75722.029431] ? kthread_complete_and_exit+0x30/0x30
[75722.036044] ret_from_fork+0x22/0x30
[75722.041255] </TASK>
[75722.045047] irq event stamp: 0
[75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0
[75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0
[75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0
[75722.085335] ---[ end trace 0000000000000000 ]---
To fix the estimation, we need to introduce fs_info->max_extent_size to
replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for
regular vs zoned filesystem.
Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned
filesystem, it is set to fs_info->max_zone_append_size.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch is basically a revert of commit 5a80d1c6a2 ("btrfs: zoned:
remove max_zone_append_size logic"), but without unnecessary ASSERT and
check. The max_zone_append_size will be used as a hint to estimate the
number of extents to cover delalloc/writeback region in the later commits.
The size of a ZONE APPEND bio is also limited by queue_max_segments(), so
this commit considers it to calculate max_zone_append_size. Technically, a
bio can be larger than queue_max_segments() * PAGE_SIZE if the pages are
contiguous. But, it is safe to consider "queue_max_segments() * PAGE_SIZE"
as an upper limit of an extent size to calculate the number of extents
needed to write data.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix the comment to represent the actual logic used for sb_write_pointer
- Empty[0] && In use[1] should be an invalid state instead of returning
zone 0 wp
- Empty[0] && Full[1] should be returning zone 0 wp instead of zone 1 wp
- In use[0] && Empty[1] should be returning zone 0 wp instead of being an
invalid state
- In use[0] && Full[1] should be returning zone 0 wp instead of returning
zone 1 wp
- Full[0] && Empty[1] should be returning zone 1 wp instead of returning
zone 0 wp
- Full[0] && In use[1] should be returning zone 1 wp instead of returning
zone 0 wp
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLMiQQACgkQxWXV+ddt
WDvBQg/+I1ebfW2DFY8kBwy7c1qKZWIhNx1VVk2AegIXvrW/Tos7wp5O6fi7p/jL
d6k8zO/zFLlfiI4Ckmz3gt7cxaMTNXxr6+GQpNNm1b92Wdcy1a+3gquzcehT9Q10
ZB4ecPWzEDXgORvdBYG2eD2Z8PrsF0Wu88XRDiiJOBQLjZ+k2sVp8QvJlOllLDoC
m7rPoq98jC6VpZwFJ+fGk2jC7y4+1QXrOuQMy7LRTe59Thp6wUFDDPtkKfr5scDC
UxkctlUdInD7A6DVvPzwaBFNoT8UeEByGHcMd3KjjrTdmqSWW6k8FiF4ckZwA3zJ
oPdJVzdC5a2W7t6BHw+t7VNmkKd+swnr2sVSGQ8eIzF7z3/JSqyYVwziOD1YzAdU
QUmawWm4/SFvsbO8aoLrEKNbUiTgQwVbKzJh4Dhu9VJ43jeCwCX7pa/uZI4evgyG
T0tuwm58bWCk4y1o1fcFYgf4JcVgK23F2vKckUFZeHoV3Q8R0DnPCCGTqs1qT5vY
irZ9AIawmaR09JptMjjsAEjDA9qb16Ut/J6/anukyCgL610EyYZG7zb1WH1cUD1o
zNXY6O/iKyNdiXj7V1fTMiG/M8hGDcFu4pOpBk3hFjHEXX9BefoVC0J5YzvCecPz
isqboD5Lt1I4mrzac1X+serMYfVbFH6+tsEPBQBZf/o/a0u43jI=
=Cxvn
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A more fixes that seem to me to be important enough to get merged
before release:
- in zoned mode, fix leak of a structure when reading zone info, this
happens on normal path so this can be significant
- in zoned mode, revert an optimization added in 5.19-rc1 to finish a
zone when the capacity is full, but this is not reliable in all
cases
- try to avoid short reads for compressed data or inline files when
it's a NOWAIT read, applications should handle that but there are
two, qemu and mariadb, that are affected"
* tag 'for-5.19-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: drop optimization of zone finish
btrfs: zoned: fix a leaked bioc in read_zone_info
btrfs: return -EAGAIN for NOWAIT dio reads/writes on compressed and inline extents
We have an optimization in do_zone_finish() to send REQ_OP_ZONE_FINISH only
when necessary, i.e. we don't send REQ_OP_ZONE_FINISH when we assume we
wrote fully into the zone.
The assumption is determined by "alloc_offset == capacity". This condition
won't work if the last ordered extent is canceled due to some errors. In
that case, we consider the zone is deactivated without sending the finish
command while it's still active.
This inconstancy results in activating another block group while we cannot
really activate the underlying zone, which causes the active zone exceeds
errors like below.
BTRFS error (device nvme3n2): allocation failed flags 1, wanted 520192 tree-log 0, relocation: 0
nvme3n2: I/O Cmd(0x7d) @ LBA 160432128, 127 blocks, I/O Error (sct 0x1 / sc 0xbd) MORE DNR
active zones exceeded error, dev nvme3n2, sector 0 op 0xd:(ZONE_APPEND) flags 0x4800 phys_seg 1 prio class 0
nvme3n2: I/O Cmd(0x7d) @ LBA 160432128, 127 blocks, I/O Error (sct 0x1 / sc 0xbd) MORE DNR
active zones exceeded error, dev nvme3n2, sector 0 op 0xd:(ZONE_APPEND) flags 0x4800 phys_seg 1 prio class 0
Fix the issue by removing the optimization for now.
Fixes: 8376d9e1ed ("btrfs: zoned: finish superblock zone once no space left for new SB")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bioc would leak on the normal completion path and also on the RAID56
check (but that one won't happen in practice due to the invalid
combination with zoned mode).
Fixes: 7db1c5d14d ("btrfs: zoned: support dev-replace in zoned filesystems")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmK4dV4ACgkQxWXV+ddt
WDs4uQ/7B0XqPK05NJntJfwnuIoT/yOreKf47wt/6DyFV3CDMFte/qzaZwthwu6P
F0GMpSYAlVszLlML5elvF9VXymlV+e+QROtbD6QCNLNW1IwHA7ZiF5fV/a1Rj930
XSuaDyVFPAK7892RR6yMQ20IeMBuvqiAhXWEzaIJ2tIcAHn+fP+VkY8Nc0aZj3iC
mI+ep4n93karDxmnHVGUxJTxAe0l/uNopx+fYBWQDj7HuoMLo0Cu+rAdv0gRIxi2
RWUBkR4e4PBwV1OFScwNCsljjt6bHdUHrtdB3fo5Hzu9cO5hHdL7NEsKB1K2w7rV
bgNuNqfj6Y4xUBchAfQO5CCJ9ISci5KoJ4RBpk6EprZR3QN40kN8GPlhi2519K7w
F3d8jolDDHlkqxIsqoe47MYOcSepNEadVNsiYKb0rM6doilfxyXiu6dtTFMrC8Vy
K2HDCdTyuIgw+TnwqT1puaUwxiIL8DFJf1CVyjwGuQ4UgaIEkHXKIsCssyyJ76Jh
QkWX1aeRldbfkVArJWHQWqDQopx9pFBz1gjlws0YjAsU5YijOOXva464P9Rxg+Gq
4pRlgnO48joQam9bRirP2Z6yhqa4O6jkzKDOXSYduAUYD7IMfpsYnz09wKS95jj+
QCrR7VmKnpQdsXg5a/mqyacfIH30ph002VywRxPiFM89Syd25yo=
=rUrf
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- zoned relocation fixes:
- fix critical section end for extent writeback, this could lead
to out of order write
- prevent writing to previous data relocation block group if space
gets low
- reflink fixes:
- fix race between reflinking and ordered extent completion
- proper error handling when block reserve migration fails
- add missing inode iversion/mtime/ctime updates on each iteration
when replacing extents
- fix deadlock when running fsync/fiemap/commit at the same time
- fix false-positive KCSAN report regarding pid tracking for read locks
and data race
- minor documentation update and link to new site
* tag 'for-5.19-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Documentation: update btrfs list of features and link to readthedocs.io
btrfs: fix deadlock with fsync+fiemap+transaction commit
btrfs: don't set lock_owner when locking extent buffer for reading
btrfs: zoned: fix critical section of relocation inode writeback
btrfs: zoned: prevent allocation from previous data relocation BG
btrfs: do not BUG_ON() on failure to migrate space when replacing extents
btrfs: add missing inode updates on each iteration when replacing extents
btrfs: fix race between reflinking and ordered extent completion
After commit 5f0addf7b8 ("btrfs: zoned: use dedicated lock for data
relocation"), we observe IO errors on e.g, btrfs/232 like below.
[09.0][T4038707] WARNING: CPU: 3 PID: 4038707 at fs/btrfs/extent-tree.c:2381 btrfs_cross_ref_exist+0xfc/0x120 [btrfs]
<snip>
[09.9][T4038707] Call Trace:
[09.5][T4038707] <TASK>
[09.3][T4038707] run_delalloc_nocow+0x7f1/0x11a0 [btrfs]
[09.6][T4038707] ? test_range_bit+0x174/0x320 [btrfs]
[09.2][T4038707] ? fallback_to_cow+0x980/0x980 [btrfs]
[09.3][T4038707] ? find_lock_delalloc_range+0x33e/0x3e0 [btrfs]
[09.5][T4038707] btrfs_run_delalloc_range+0x445/0x1320 [btrfs]
[09.2][T4038707] ? test_range_bit+0x320/0x320 [btrfs]
[09.4][T4038707] ? lock_downgrade+0x6a0/0x6a0
[09.2][T4038707] ? orc_find.part.0+0x1ed/0x300
[09.5][T4038707] ? __module_address.part.0+0x25/0x300
[09.0][T4038707] writepage_delalloc+0x159/0x310 [btrfs]
<snip>
[09.4][ C3] sd 10:0:1:0: [sde] tag#2620 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_OK cmd_age=0s
[09.5][ C3] sd 10:0:1:0: [sde] tag#2620 Sense Key : Illegal Request [current]
[09.9][ C3] sd 10:0:1:0: [sde] tag#2620 Add. Sense: Unaligned write command
[09.5][ C3] sd 10:0:1:0: [sde] tag#2620 CDB: Write(16) 8a 00 00 00 00 00 02 f3 63 87 00 00 00 2c 00 00
[09.4][ C3] critical target error, dev sde, sector 396041272 op 0x1:(WRITE) flags 0x800 phys_seg 3 prio class 0
[09.9][ C3] BTRFS error (device dm-1): bdev /dev/mapper/dml_102_2 errs: wr 1, rd 0, flush 0, corrupt 0, gen 0
The IO errors occur when we allocate a regular extent in previous data
relocation block group.
On zoned btrfs, we use a dedicated block group to relocate a data
extent. Thus, we allocate relocating data extents (pre-alloc) only from
the dedicated block group and vice versa. Once the free space in the
dedicated block group gets tight, a relocating extent may not fit into
the block group. In that case, we need to switch the dedicated block
group to the next one. Then, the previous one is now freed up for
allocating a regular extent. The BG is already not enough to allocate
the relocating extent, but there is still room to allocate a smaller
extent. Now the problem happens. By allocating a regular extent while
nocow IOs for the relocation is still on-going, we will issue WRITE IOs
(for relocation) and ZONE APPEND IOs (for the regular writes) at the
same time. That mixed IOs confuses the write pointer and arises the
unaligned write errors.
This commit introduces a new bit 'zoned_data_reloc_ongoing' to the
btrfs_block_group. We set this bit before releasing the dedicated block
group, and no extent are allocated from a block group having this bit
set. This bit is similar to setting block_group->ro, but is different from
it by allowing nocow writes to start.
Once all the nocow IO for relocation is done (hooked from
btrfs_finish_ordered_io), we reset the bit to release the block group for
further allocation.
Fixes: c2707a2556 ("btrfs: zoned: add a dedicated data relocation block group")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmKLxJAACgkQxWXV+ddt
WDvC4BAAnSNwZ15FJKe5Y423f6PS6EXjyMuc5t/fW6UumTTbI+tsS+Glkis+JNBf
BiDZSlVQmiK9WoQSJe04epZgHaK8MaCARyZaRaxjDC4Nvfq4DlD9mbAU9D6e7tZY
Mo8M99D8wDW+SB+P8RBpNjwB/oGCMmE3nKC83g+1ObmA0FVRCyQ1Kazf8RzNT1rZ
DiaJoKTvU1/wDN3/1rw5yG+EfW2m9A14gRCihslhFYaDV7jhpuabl8wLT7MftZtE
MtJ6EOOQbgIDjnp5BEIrPmowW/N0tKDT/gorF7cWgLG2R1cbSlKgqSH1Sq7CjFUE
AKj/DwfqZArPLpqMThWklCwy2B9qDEezrQSy7renP/vkeFLbOp8hQuIY5KRzohdG
oDI8ThlQGtCVjbny6NX/BbCnWRAfTz0TquCgag3Xl8NbkRFgFJtkf/cSxzb+3LW1
tFeiUyTVLXVDS1cZLwgcb29Rrtp4bjd5/v3uECQlVD+or5pcAqSMkQgOBlyQJGbE
Xb0nmPRihzQ8D4vINa63WwRyq0+QczVjvBxKj1daas0VEKGd32PIBS/0Qha+EpGl
uFMiHBMSfqyl8QcShFk0cCbcgPMcNc7I6IAbXCE/WhhFG0ytqm9vpmlLqsTrXmHH
z7/Eye/waqgACNEXoA8C4pyYzduQ4i1CeLDOdcsvBU6XQSuicSM=
=lv6P
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Features:
- subpage:
- support for PAGE_SIZE > 4K (previously only 64K)
- make it work with raid56
- repair super block num_devices automatically if it does not match
the number of device items
- defrag can convert inline extents to regular extents, up to now
inline files were skipped but the setting of mount option
max_inline could affect the decision logic
- zoned:
- minimal accepted zone size is explicitly set to 4MiB
- make zone reclaim less aggressive and don't reclaim if there are
enough free zones
- add per-profile sysfs tunable of the reclaim threshold
- allow automatic block group reclaim for non-zoned filesystems, with
sysfs tunables
- tree-checker: new check, compare extent buffer owner against owner
rootid
Performance:
- avoid blocking on space reservation when doing nowait direct io
writes (+7% throughput for reads and writes)
- NOCOW write throughput improvement due to refined locking (+3%)
- send: reduce pressure to page cache by dropping extent pages right
after they're processed
Core:
- convert all radix trees to xarray
- add iterators for b-tree node items
- support printk message index
- user bulk page allocation for extent buffers
- switch to bio_alloc API, use on-stack bios where convenient, other
bio cleanups
- use rw lock for block groups to favor concurrent reads
- simplify workques, don't allocate high priority threads for all
normal queues as we need only one
- refactor scrub, process chunks based on their constraints and
similarity
- allocate direct io structures on stack and pass around only
pointers, avoids allocation and reduces potential error handling
Fixes:
- fix count of reserved transaction items for various inode
operations
- fix deadlock between concurrent dio writes when low on free data
space
- fix a few cases when zones need to be finished
VFS, iomap:
- add helper to check if sb write has started (usable for assertions)
- new helper iomap_dio_alloc_bio, export iomap_dio_bio_end_io"
* tag 'for-5.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (173 commits)
btrfs: zoned: introduce a minimal zone size 4M and reject mount
btrfs: allow defrag to convert inline extents to regular extents
btrfs: add "0x" prefix for unsupported optional features
btrfs: do not account twice for inode ref when reserving metadata units
btrfs: zoned: fix comparison of alloc_offset vs meta_write_pointer
btrfs: send: avoid trashing the page cache
btrfs: send: keep the current inode open while processing it
btrfs: allocate the btrfs_dio_private as part of the iomap dio bio
btrfs: move struct btrfs_dio_private to inode.c
btrfs: remove the disk_bytenr in struct btrfs_dio_private
btrfs: allocate dio_data on stack
iomap: add per-iomap_iter private data
iomap: allow the file system to provide a bio_set for direct I/O
btrfs: add a btrfs_dio_rw wrapper
btrfs: zoned: zone finish unused block group
btrfs: zoned: properly finish block group on metadata write
btrfs: zoned: finish block group when there are no more allocatable bytes left
btrfs: zoned: consolidate zone finish functions
btrfs: zoned: introduce btrfs_zoned_bg_is_full
btrfs: improve error reporting in lookup_inline_extent_backref
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmKKrUsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpgDjD/44hY9h0JsOLoRH1IvFtuaH6n718JXuqG17
hHCfmnAUVqj2jT00IUbVlUTd905bCGpfrodBL3PAmPev1zZHOUd/MnJKrSynJ+/s
NJEMZQaHxLmocNDpJ1sZo7UbAFErsZXB0gVYUO8cH2bFYNu84H1mhRCOReYyqmvQ
aIAASX5qRB/ciBQCivzAJl2jTdn4WOn5hWi9RLidQB7kSbaXGPmgKAuN88WI4H7A
zQgAkEl2EEquyMI5tV1uquS7engJaC/4PsenF0S9iTyrhJLjneczJBJZKMLeMR8d
sOm6sKJdpkrfYDyaA4PIkgmLoEGTtwGpqGHl4iXTyinUAxJoca5tmPvBb3wp66GE
2Mr7pumxc1yJID2VHbsERXlOAX3aZNCowx2gum2MTRIO8g11Eu3aaVn2kv37MBJ2
4R2a/cJFl5zj9M8536cG+Yqpy0DDVCCQKUIqEupgEu1dyfpznyWH5BTAHXi1E8td
nxUin7uXdD0AJkaR0m04McjS/Bcmc1dc6I8xvkdUFYBqYCZWpKOTiEpIBlHg0XJA
sxdngyz5lSYTGVA4o4QCrdR0Tx1n36A1IYFuQj0wzxBJYZ02jEZuII/A3dd+8hiv
EY+VeUQeVIXFFuOcY+e0ScPpn7Nr17hAd1en/j2Hcoe4ZE8plqG2QTcnwgflcbis
iomvJ4yk0Q==
=0Rw1
-----END PGP SIGNATURE-----
Merge tag 'for-5.19/block-2022-05-22' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Here are the core block changes for 5.19. This contains:
- blk-throttle accounting fix (Laibin)
- Series removing redundant assignments (Michal)
- Expose bio cache via the bio_set, so that DM can use it (Mike)
- Finish off the bio allocation interface cleanups by dealing with
the weirdest member of the family. bio_kmalloc combines a kmalloc
for the bio and bio_vecs with a hidden bio_init call and magic
cleanup semantics (Christoph)
- Clean up the block layer API so that APIs consumed by file systems
are (almost) only struct block_device based, so that file systems
don't have to poke into block layer internals like the
request_queue (Christoph)
- Clean up the blk_execute_rq* API (Christoph)
- Clean up various lose end in the blk-cgroup code to make it easier
to follow in preparation of reworking the blkcg assignment for bios
(Christoph)
- Fix use-after-free issues in BFQ when processes with merged queues
get moved to different cgroups (Jan)
- BFQ fixes (Jan)
- Various fixes and cleanups (Bart, Chengming, Fanjun, Julia, Ming,
Wolfgang, me)"
* tag 'for-5.19/block-2022-05-22' of git://git.kernel.dk/linux-block: (83 commits)
blk-mq: fix typo in comment
bfq: Remove bfq_requeue_request_body()
bfq: Remove superfluous conversion from RQ_BIC()
bfq: Allow current waker to defend against a tentative one
bfq: Relax waker detection for shared queues
blk-cgroup: delete rcu_read_lock_held() WARN_ON_ONCE()
blk-throttle: Set BIO_THROTTLED when bio has been throttled
blk-cgroup: Remove unnecessary rcu_read_lock/unlock()
blk-cgroup: always terminate io.stat lines
block, bfq: make bfq_has_work() more accurate
block, bfq: protect 'bfqd->queued' by 'bfqd->lock'
block: cleanup the VM accounting in submit_bio
block: Fix the bio.bi_opf comment
block: reorder the REQ_ flags
blk-iocost: combine local_stat and desc_stat to stat
block: improve the error message from bio_check_eod
block: allow passing a NULL bdev to bio_alloc_clone/bio_init_clone
block: remove superfluous calls to blkcg_bio_issue_init
kthread: unexport kthread_blkcg
blk-cgroup: cleanup blkcg_maybe_throttle_current
...
Zoned devices are expected to have zone sizes in the range of 1-2GB for
ZNS SSDs and SMR HDDs have zone sizes of 256MB, so there is no need to
allow arbitrarily small zone sizes on btrfs.
But for testing purposes with emulated devices it is sometimes desirable
to create devices with as small as 4MB zone size to uncover errors.
So use 4MB as the smallest possible zone size and reject mounts of devices
with a smaller zone size.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block_group->alloc_offset is an offset from the start of the block
group. OTOH, the ->meta_write_pointer is an address in the logical
space. So, we should compare the alloc_offset shifted with the
block_group->start.
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit be1a1d7a5d ("btrfs: zoned: finish fully written block group")
introduced zone finishing code both for data and metadata end_io path.
However, the metadata side is not working as it should. First, it
compares logical address (eb->start + eb->len) with offset within a
block group (cache->zone_capacity) in submit_eb_page(). That essentially
disabled zone finishing on metadata end_io path.
Furthermore, fixing the issue above revealed we cannot call
btrfs_zone_finish_endio() in end_extent_buffer_writeback(). We cannot
call btrfs_lookup_block_group() which require spin lock inside end_io
context.
Introduce btrfs_schedule_zone_finish_bg() to wait for the extent buffer
writeback and do the zone finish IO in a workqueue.
Also, drop EXTENT_BUFFER_ZONE_FINISH as it is no longer used.
Fixes: be1a1d7a5d ("btrfs: zoned: finish fully written block group")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, btrfs_zone_finish_endio() finishes a block group only when the
written region reaches the end of the block group. We can also finish the
block group when no more allocation is possible.
Fixes: be1a1d7a5d ("btrfs: zoned: finish fully written block group")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_zone_finish() and btrfs_zone_finish_endio() have similar code.
Introduce do_zone_finish() to factor out the common code.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a wrapper to check if all the space in a block group is
allocated or not.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current auto-reclaim algorithm starts reclaiming all block groups
with a zone_unusable value above a configured threshold. This is causing
a lot of reclaim IO even if there would be enough free zones on the
device.
Instead of only accounting a block groups zone_unusable value, also take
the ratio of free and not usable (written as well as zone_unusable)
bytes a device has into account.
Tested-by: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_zone_activate() checks if it activated all the underlying zones in
the loop. However, that check never hit on an unlimited activate zone
device (max_active_zones == 0).
Fortunately, it still works without ENOSPC because btrfs_zone_activate()
returns true in the end, even if block_group->zone_is_active == 0. But, it
is confusing to have non zone_is_active block group still usable for
allocation. Also, we are wasting CPU time to iterate the loop every time
btrfs_zone_activate() is called for the blog groups.
Since error case in the loop is handled by out_unlock, we can just set
zone_is_active and do the list stuff after the loop.
Fixes: f9a912a3c4 ("btrfs: zoned: make zone activation multi stripe capable")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_zone_activate() checks if block_group->alloc_offset ==
block_group->zone_capacity every time it iterates the loop. But, it is
not depending on the index. Move out the check and do it only once.
Fixes: f9a912a3c4 ("btrfs: zoned: make zone activation multi stripe capable")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With commit dcf5652291f6 ("btrfs: zoned: allow DUP on meta-data block
groups") we started allowing DUP on metadata block groups, so the
ASSERT()s in btrfs_can_activate_zone() and btrfs_zoned_get_device() are
no longer valid and in fact even harmful.
Fixes: dcf5652291f6 ("btrfs: zoned: allow DUP on meta-data block groups")
CC: stable@vger.kernel.org # 5.17
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_can_activate_zone() can be called with the device_list_mutex already
held, which will lead to a deadlock:
insert_dev_extents() // Takes device_list_mutex
`-> insert_dev_extent()
`-> btrfs_insert_empty_item()
`-> btrfs_insert_empty_items()
`-> btrfs_search_slot()
`-> btrfs_cow_block()
`-> __btrfs_cow_block()
`-> btrfs_alloc_tree_block()
`-> btrfs_reserve_extent()
`-> find_free_extent()
`-> find_free_extent_update_loop()
`-> can_allocate_chunk()
`-> btrfs_can_activate_zone() // Takes device_list_mutex again
Instead of using the RCU on fs_devices->device_list we
can use fs_devices->alloc_list, protected by the chunk_mutex to traverse
the list of active devices.
We are in the chunk allocation thread. The newer chunk allocation
happens from the devices in the fs_device->alloc_list protected by the
chunk_mutex.
btrfs_create_chunk()
lockdep_assert_held(&info->chunk_mutex);
gather_device_info
list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list)
Also, a device that reappears after the mount won't join the alloc_list
yet and, it will be in the dev_list, which we don't want to consider in
the context of the chunk alloc.
[15.166572] WARNING: possible recursive locking detected
[15.167117] 5.17.0-rc6-dennis #79 Not tainted
[15.167487] --------------------------------------------
[15.167733] kworker/u8:3/146 is trying to acquire lock:
[15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: find_free_extent+0x15a/0x14f0 [btrfs]
[15.167733]
[15.167733] but task is already holding lock:
[15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
[15.167733]
[15.167733] other info that might help us debug this:
[15.167733] Possible unsafe locking scenario:
[15.167733]
[15.171834] CPU0
[15.171834] ----
[15.171834] lock(&fs_devs->device_list_mutex);
[15.171834] lock(&fs_devs->device_list_mutex);
[15.171834]
[15.171834] *** DEADLOCK ***
[15.171834]
[15.171834] May be due to missing lock nesting notation
[15.171834]
[15.171834] 5 locks held by kworker/u8:3/146:
[15.171834] #0: ffff888100050938 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
[15.171834] #1: ffffc9000067be80 ((work_completion)(&fs_info->async_data_reclaim_work)){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
[15.176244] #2: ffff88810521e620 (sb_internal){.+.+}-{0:0}, at: flush_space+0x335/0x600 [btrfs]
[15.176244] #3: ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
[15.176244] #4: ffff8881152e4b78 (btrfs-dev-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x130 [btrfs]
[15.179641]
[15.179641] stack backtrace:
[15.179641] CPU: 1 PID: 146 Comm: kworker/u8:3 Not tainted 5.17.0-rc6-dennis #79
[15.179641] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1.fc35 04/01/2014
[15.179641] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
[15.179641] Call Trace:
[15.179641] <TASK>
[15.179641] dump_stack_lvl+0x45/0x59
[15.179641] __lock_acquire.cold+0x217/0x2b2
[15.179641] lock_acquire+0xbf/0x2b0
[15.183838] ? find_free_extent+0x15a/0x14f0 [btrfs]
[15.183838] __mutex_lock+0x8e/0x970
[15.183838] ? find_free_extent+0x15a/0x14f0 [btrfs]
[15.183838] ? find_free_extent+0x15a/0x14f0 [btrfs]
[15.183838] ? lock_is_held_type+0xd7/0x130
[15.183838] ? find_free_extent+0x15a/0x14f0 [btrfs]
[15.183838] find_free_extent+0x15a/0x14f0 [btrfs]
[15.183838] ? _raw_spin_unlock+0x24/0x40
[15.183838] ? btrfs_get_alloc_profile+0x106/0x230 [btrfs]
[15.187601] btrfs_reserve_extent+0x131/0x260 [btrfs]
[15.187601] btrfs_alloc_tree_block+0xb5/0x3b0 [btrfs]
[15.187601] __btrfs_cow_block+0x138/0x600 [btrfs]
[15.187601] btrfs_cow_block+0x10f/0x230 [btrfs]
[15.187601] btrfs_search_slot+0x55f/0xbc0 [btrfs]
[15.187601] ? lock_is_held_type+0xd7/0x130
[15.187601] btrfs_insert_empty_items+0x2d/0x60 [btrfs]
[15.187601] btrfs_create_pending_block_groups+0x2b3/0x560 [btrfs]
[15.187601] __btrfs_end_transaction+0x36/0x2a0 [btrfs]
[15.192037] flush_space+0x374/0x600 [btrfs]
[15.192037] ? find_held_lock+0x2b/0x80
[15.192037] ? btrfs_async_reclaim_data_space+0x49/0x180 [btrfs]
[15.192037] ? lock_release+0x131/0x2b0
[15.192037] btrfs_async_reclaim_data_space+0x70/0x180 [btrfs]
[15.192037] process_one_work+0x24c/0x5a0
[15.192037] worker_thread+0x4a/0x3d0
Fixes: a85f05e59b ("btrfs: zoned: avoid chunk allocation if active block group has enough space")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>