mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-08-26 09:40:28 +00:00
master
4884 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
875d742cf5 |
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
Fixes:
|
||
![]() |
ca0f4fe7cf |
arm64: Handle .ARM.attributes section in linker scripts
A recent LLVM commit [1] started generating an .ARM.attributes section similar to the one that exists for 32-bit, which results in orphan section warnings (or errors if CONFIG_WERROR is enabled) from the linker because it is not handled in the arm64 linker scripts. ld.lld: error: arch/arm64/kernel/vdso/vgettimeofday.o:(.ARM.attributes) is being placed in '.ARM.attributes' ld.lld: error: arch/arm64/kernel/vdso/vgetrandom.o:(.ARM.attributes) is being placed in '.ARM.attributes' ld.lld: error: vmlinux.a(lib/vsprintf.o):(.ARM.attributes) is being placed in '.ARM.attributes' ld.lld: error: vmlinux.a(lib/win_minmax.o):(.ARM.attributes) is being placed in '.ARM.attributes' ld.lld: error: vmlinux.a(lib/xarray.o):(.ARM.attributes) is being placed in '.ARM.attributes' Discard the new sections in the necessary linker scripts to resolve the warnings, as the kernel and vDSO do not need to retain it, similar to the .note.gnu.property section. Cc: stable@vger.kernel.org Fixes: |
||
![]() |
21fed7c223 |
arm64/hwcap: Remove stray references to SF8MMx
Due to SME currently being disabled when removing the SF8MMx support it
wasn't noticed that there were some stray references in the hwcap table,
delete them.
Fixes:
|
||
![]() |
af13ff1c33 |
Summary:
All ctl_table declared outside of functions and that remain unmodified after initialization are const qualified. This prevents unintended modifications to proc_handler function pointers by placing them in the .rodata section. This is a continuation of the tree-wide effort started a few releases ago with the constification of the ctl_table struct arguments in the sysctl API done in |
||
![]() |
e2ee2e9b15 |
KVM/arm64 updates for 6.14
* New features: - Support for non-protected guest in protected mode, achieving near feature parity with the non-protected mode - Support for the EL2 timers as part of the ongoing NV support - Allow control of hardware tracing for nVHE/hVHE * Improvements, fixes and cleanups: - Massive cleanup of the debug infrastructure, making it a bit less awkward and definitely easier to maintain. This should pave the way for further optimisations - Complete rewrite of pKVM's fixed-feature infrastructure, aligning it with the rest of KVM and making the code easier to follow - Large simplification of pKVM's memory protection infrastructure - Better handling of RES0/RES1 fields for memory-backed system registers - Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer from a pretty nasty timer bug - Small collection of cleanups and low-impact fixes -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmeYqJcQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNLUhCACxUTMVQXhfW3qbh0UQxPd7XXvjI+Hm7SPS wDuVTle4jrFVGHxuZqtgWLmx8hD7bqO965qmFgbevKlwsRY33onH2nbH4i4AcwbA jcdM4yMHZI4+Qmnb4G5ZJ89IwjAhHPZTBOV5KRhyHQ/qtRciHHtOgJde7II9fd68 uIESg4SSSyUzI47YSEHmGVmiBIhdQhq2qust0m6NPFalEGYstPbpluPQ6R1CsDqK v14TIAW7t0vSPucBeODxhA5gEa2JsvNi+sqA+DF/ELH2ZqpkuR7rofgMGblaXCSD JXa5xamRB9dI5zi8vatwfOzYlog+/gzmPqMh/9JXpiDGHxJe0vlz =tQ8F -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull KVM/arm64 updates from Will Deacon: "New features: - Support for non-protected guest in protected mode, achieving near feature parity with the non-protected mode - Support for the EL2 timers as part of the ongoing NV support - Allow control of hardware tracing for nVHE/hVHE Improvements, fixes and cleanups: - Massive cleanup of the debug infrastructure, making it a bit less awkward and definitely easier to maintain. This should pave the way for further optimisations - Complete rewrite of pKVM's fixed-feature infrastructure, aligning it with the rest of KVM and making the code easier to follow - Large simplification of pKVM's memory protection infrastructure - Better handling of RES0/RES1 fields for memory-backed system registers - Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer from a pretty nasty timer bug - Small collection of cleanups and low-impact fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (87 commits) arm64/sysreg: Get rid of TRFCR_ELx SysregFields KVM: arm64: nv: Fix doc header layout for timers KVM: arm64: nv: Apply RESx settings to sysreg reset values KVM: arm64: nv: Always evaluate HCR_EL2 using sanitising accessors KVM: arm64: Fix selftests after sysreg field name update coresight: Pass guest TRFCR value to KVM KVM: arm64: Support trace filtering for guests KVM: arm64: coresight: Give TRBE enabled state to KVM coresight: trbe: Remove redundant disable call arm64/sysreg/tools: Move TRFCR definitions to sysreg tools: arm64: Update sysreg.h header files KVM: arm64: Drop pkvm_mem_transition for host/hyp donations KVM: arm64: Drop pkvm_mem_transition for host/hyp sharing KVM: arm64: Drop pkvm_mem_transition for FF-A KVM: arm64: Explicitly handle BRBE traps as UNDEFINED KVM: arm64: vgic: Use str_enabled_disabled() in vgic_v3_probe() arm64: kvm: Introduce nvhe stack size constants KVM: arm64: Fix nVHE stacktrace VA bits mask KVM: arm64: Fix FEAT_MTE in pKVM Documentation: Update the behaviour of "kvm-arm.mode" ... |
||
![]() |
1751f872cc |
treewide: const qualify ctl_tables where applicable
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit
|
||
![]() |
9c5968db9e |
The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs. - "Allocate and free frozen pages" from Matthew Wilcox reorganizes the page allocator so we end up with the ability to allocate and free zero-refcount pages. So that callers (ie, slab) can avoid a refcount inc & dec. - "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to use large folios other than PMD-sized ones. - "Fix mm/rodata_test" from Petr Tesarik performs some maintenance and fixes for this small built-in kernel selftest. - "mas_anode_descend() related cleanup" from Wei Yang tidies up part of the mapletree code. - "mm: fix format issues and param types" from Keren Sun implements a few minor code cleanups. - "simplify split calculation" from Wei Yang provides a few fixes and a test for the mapletree code. - "mm/vma: make more mmap logic userland testable" from Lorenzo Stoakes continues the work of moving vma-related code into the (relatively) new mm/vma.c. - "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David Hildenbrand cleans up and rationalizes handling of gfp flags in the page allocator. - "readahead: Reintroduce fix for improper RA window sizing" from Jan Kara is a second attempt at fixing a readahead window sizing issue. It should reduce the amount of unnecessary reading. - "synchronously scan and reclaim empty user PTE pages" from Qi Zheng addresses an issue where "huge" amounts of pte pagetables are accumulated (https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/). Qi's series addresses this windup by synchronously freeing PTE memory within the context of madvise(MADV_DONTNEED). - "selftest/mm: Remove warnings found by adding compiler flags" from Muhammad Usama Anjum fixes some build warnings in the selftests code when optional compiler warnings are enabled. - "mm: don't use __GFP_HARDWALL when migrating remote pages" from David Hildenbrand tightens the allocator's observance of __GFP_HARDWALL. - "pkeys kselftests improvements" from Kevin Brodsky implements various fixes and cleanups in the MM selftests code, mainly pertaining to the pkeys tests. - "mm/damon: add sample modules" from SeongJae Park enhances DAMON to estimate application working set size. - "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn provides some cleanups to memcg's hugetlb charging logic. - "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song removes the global swap cgroup lock. A speedup of 10% for a tmpfs-based kernel build was demonstrated. - "zram: split page type read/write handling" from Sergey Senozhatsky has several fixes and cleaups for zram in the area of zram_write_page(). A watchdog softlockup warning was eliminated. - "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin Brodsky cleans up the pagetable destructor implementations. A rare use-after-free race is fixed. - "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes simplifies and cleans up the debugging code in the VMA merging logic. - "Account page tables at all levels" from Kevin Brodsky cleans up and regularizes the pagetable ctor/dtor handling. This results in improvements in accounting accuracy. - "mm/damon: replace most damon_callback usages in sysfs with new core functions" from SeongJae Park cleans up and generalizes DAMON's sysfs file interface logic. - "mm/damon: enable page level properties based monitoring" from SeongJae Park increases the amount of information which is presented in response to DAMOS actions. - "mm/damon: remove DAMON debugfs interface" from SeongJae Park removes DAMON's long-deprecated debugfs interfaces. Thus the migration to sysfs is completed. - "mm/hugetlb: Refactor hugetlb allocation resv accounting" from Peter Xu cleans up and generalizes the hugetlb reservation accounting. - "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino removes a never-used feature of the alloc_pages_bulk() interface. - "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park extends DAMOS filters to support not only exclusion (rejecting), but also inclusion (allowing) behavior. - "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi "introduces a new memory descriptor for zswap.zpool that currently overlaps with struct page for now. This is part of the effort to reduce the size of struct page and to enable dynamic allocation of memory descriptors." - "mm, swap: rework of swap allocator locks" from Kairui Song redoes and simplifies the swap allocator locking. A speedup of 400% was demonstrated for one workload. As was a 35% reduction for kernel build time with swap-on-zram. - "mm: update mips to use do_mmap(), make mmap_region() internal" from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that mmap_region() can be made MM-internal. - "mm/mglru: performance optimizations" from Yu Zhao fixes a few MGLRU regressions and otherwise improves MGLRU performance. - "Docs/mm/damon: add tuning guide and misc updates" from SeongJae Park updates DAMON documentation. - "Cleanup for memfd_create()" from Isaac Manjarres does that thing. - "mm: hugetlb+THP folio and migration cleanups" from David Hildenbrand provides various cleanups in the areas of hugetlb folios, THP folios and migration. - "Uncached buffered IO" from Jens Axboe implements the new RWF_DONTCACHE flag which provides synchronous dropbehind for pagecache reading and writing. To permite userspace to address issues with massive buildup of useless pagecache when reading/writing fast devices. - "selftests/mm: virtual_address_range: Reduce memory" from Thomas Weißschuh fixes and optimizes some of the MM selftests. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ5a+cwAKCRDdBJ7gKXxA jtoyAP9R58oaOKPJuTizEKKXvh/RpMyD6sYcz/uPpnf+cKTZxQEAqfVznfWlw/Lz uC3KRZYhmd5YrxU4o+qjbzp9XWX/xAE= =Ib2s -----END PGP SIGNATURE----- Merge tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "The various patchsets are summarized below. Plus of course many indivudual patches which are described in their changelogs. - "Allocate and free frozen pages" from Matthew Wilcox reorganizes the page allocator so we end up with the ability to allocate and free zero-refcount pages. So that callers (ie, slab) can avoid a refcount inc & dec - "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to use large folios other than PMD-sized ones - "Fix mm/rodata_test" from Petr Tesarik performs some maintenance and fixes for this small built-in kernel selftest - "mas_anode_descend() related cleanup" from Wei Yang tidies up part of the mapletree code - "mm: fix format issues and param types" from Keren Sun implements a few minor code cleanups - "simplify split calculation" from Wei Yang provides a few fixes and a test for the mapletree code - "mm/vma: make more mmap logic userland testable" from Lorenzo Stoakes continues the work of moving vma-related code into the (relatively) new mm/vma.c - "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David Hildenbrand cleans up and rationalizes handling of gfp flags in the page allocator - "readahead: Reintroduce fix for improper RA window sizing" from Jan Kara is a second attempt at fixing a readahead window sizing issue. It should reduce the amount of unnecessary reading - "synchronously scan and reclaim empty user PTE pages" from Qi Zheng addresses an issue where "huge" amounts of pte pagetables are accumulated: https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/ Qi's series addresses this windup by synchronously freeing PTE memory within the context of madvise(MADV_DONTNEED) - "selftest/mm: Remove warnings found by adding compiler flags" from Muhammad Usama Anjum fixes some build warnings in the selftests code when optional compiler warnings are enabled - "mm: don't use __GFP_HARDWALL when migrating remote pages" from David Hildenbrand tightens the allocator's observance of __GFP_HARDWALL - "pkeys kselftests improvements" from Kevin Brodsky implements various fixes and cleanups in the MM selftests code, mainly pertaining to the pkeys tests - "mm/damon: add sample modules" from SeongJae Park enhances DAMON to estimate application working set size - "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn provides some cleanups to memcg's hugetlb charging logic - "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song removes the global swap cgroup lock. A speedup of 10% for a tmpfs-based kernel build was demonstrated - "zram: split page type read/write handling" from Sergey Senozhatsky has several fixes and cleaups for zram in the area of zram_write_page(). A watchdog softlockup warning was eliminated - "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin Brodsky cleans up the pagetable destructor implementations. A rare use-after-free race is fixed - "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes simplifies and cleans up the debugging code in the VMA merging logic - "Account page tables at all levels" from Kevin Brodsky cleans up and regularizes the pagetable ctor/dtor handling. This results in improvements in accounting accuracy - "mm/damon: replace most damon_callback usages in sysfs with new core functions" from SeongJae Park cleans up and generalizes DAMON's sysfs file interface logic - "mm/damon: enable page level properties based monitoring" from SeongJae Park increases the amount of information which is presented in response to DAMOS actions - "mm/damon: remove DAMON debugfs interface" from SeongJae Park removes DAMON's long-deprecated debugfs interfaces. Thus the migration to sysfs is completed - "mm/hugetlb: Refactor hugetlb allocation resv accounting" from Peter Xu cleans up and generalizes the hugetlb reservation accounting - "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino removes a never-used feature of the alloc_pages_bulk() interface - "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park extends DAMOS filters to support not only exclusion (rejecting), but also inclusion (allowing) behavior - "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi introduces a new memory descriptor for zswap.zpool that currently overlaps with struct page for now. This is part of the effort to reduce the size of struct page and to enable dynamic allocation of memory descriptors - "mm, swap: rework of swap allocator locks" from Kairui Song redoes and simplifies the swap allocator locking. A speedup of 400% was demonstrated for one workload. As was a 35% reduction for kernel build time with swap-on-zram - "mm: update mips to use do_mmap(), make mmap_region() internal" from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that mmap_region() can be made MM-internal - "mm/mglru: performance optimizations" from Yu Zhao fixes a few MGLRU regressions and otherwise improves MGLRU performance - "Docs/mm/damon: add tuning guide and misc updates" from SeongJae Park updates DAMON documentation - "Cleanup for memfd_create()" from Isaac Manjarres does that thing - "mm: hugetlb+THP folio and migration cleanups" from David Hildenbrand provides various cleanups in the areas of hugetlb folios, THP folios and migration - "Uncached buffered IO" from Jens Axboe implements the new RWF_DONTCACHE flag which provides synchronous dropbehind for pagecache reading and writing. To permite userspace to address issues with massive buildup of useless pagecache when reading/writing fast devices - "selftests/mm: virtual_address_range: Reduce memory" from Thomas Weißschuh fixes and optimizes some of the MM selftests" * tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits) mm/compaction: fix UBSAN shift-out-of-bounds warning s390/mm: add missing ctor/dtor on page table upgrade kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags() tools: add VM_WARN_ON_VMG definition mm/damon/core: use str_high_low() helper in damos_wmark_wait_us() seqlock: add missing parameter documentation for raw_seqcount_try_begin() mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh mm/page_alloc: remove the incorrect and misleading comment zram: remove zcomp_stream_put() from write_incompressible_page() mm: separate move/undo parts from migrate_pages_batch() mm/kfence: use str_write_read() helper in get_access_type() selftests/mm/mkdirty: fix memory leak in test_uffdio_copy() kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags() selftests/mm: virtual_address_range: avoid reading from VM_IO mappings selftests/mm: vm_util: split up /proc/self/smaps parsing selftests/mm: virtual_address_range: unmap chunks after validation selftests/mm: virtual_address_range: mmap() without PROT_WRITE selftests/memfd/memfd_test: fix possible NULL pointer dereference mm: add FGP_DONTCACHE folio creation flag mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue ... |
||
![]() |
c6f239796b |
mm/memblock: add memblock_alloc_or_panic interface
Before SLUB initialization, various subsystems used memblock_alloc to allocate memory. In most cases, when memory allocation fails, an immediate panic is required. To simplify this behavior and reduce repetitive checks, introduce `memblock_alloc_or_panic`. This function ensures that memory allocation failures result in a panic automatically, improving code readability and consistency across subsystems that require this behavior. [guoweikang.kernel@gmail.com: arch/s390: save_area_alloc default failure behavior changed to panic] Link: https://lkml.kernel.org/r/20250109033136.2845676-1-guoweikang.kernel@gmail.com Link: https://lore.kernel.org/lkml/Z2fknmnNtiZbCc7x@kernel.org/ Link: https://lkml.kernel.org/r/20250102072528.650926-1-guoweikang.kernel@gmail.com Signed-off-by: Guo Weikang <guoweikang.kernel@gmail.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> [s390] Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
1d6d399223 |
Kthreads affinity follow either of 4 existing different patterns:
1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: _ kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: * Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() * Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware * Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. * Default affine kthread to its preferred node. * Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation * Implement kthreads preferred affinity * Unify kthread worker and kthread API's style * Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2 eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5 wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/ AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ= =g8In -----END PGP SIGNATURE----- Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull kthread updates from Frederic Weisbecker: "Kthreads affinity follow either of 4 existing different patterns: 1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: - kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: - Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() - Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware - Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. - Default affine kthread to its preferred node. - Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation - Implement kthreads preferred affinity - Unify kthread worker and kthread API's style - Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation" * tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: kthread: modify kernel-doc function name to match code rcu: Use kthread preferred affinity for RCU exp kworkers treewide: Introduce kthread_run_worker[_on_cpu]() kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format rcu: Use kthread preferred affinity for RCU boost kthread: Implement preferred affinity mm: Create/affine kswapd to its preferred node mm: Create/affine kcompactd to its preferred node kthread: Default affine kthread to its preferred NUMA node kthread: Make sure kthread hasn't started while binding it sched,arm64: Handle CPU isolation on last resort fallback rq selection arm64: Exclude nohz_full CPUs from 32bits el0 support lib: test_objpool: Use kthread_run_on_cpu() kallsyms: Use kthread_run_on_cpu() soc/qman: test: Use kthread_run_on_cpu() arm/bL_switcher: Use kthread_run_on_cpu() |
||
![]() |
2e04247f7c |
ftrace updates for v6.14:
- Have fprobes built on top of function graph infrastructure The fprobe logic is an optimized kprobe that uses ftrace to attach to functions when a probe is needed at the start or end of the function. The fprobe and kretprobe logic implements a similar method as the function graph tracer to trace the end of the function. That is to hijack the return address and jump to a trampoline to do the trace when the function exits. To do this, a shadow stack needs to be created to store the original return address. Fprobes and function graph do this slightly differently. Fprobes (and kretprobes) has slots per callsite that are reserved to save the return address. This is fine when just a few points are traced. But users of fprobes, such as BPF programs, are starting to add many more locations, and this method does not scale. The function graph tracer was created to trace all functions in the kernel. In order to do this, when function graph tracing is started, every task gets its own shadow stack to hold the return address that is going to be traced. The function graph tracer has been updated to allow multiple users to use its infrastructure. Now have fprobes be one of those users. This will also allow for the fprobe and kretprobe methods to trace the return address to become obsolete. With new technologies like CFI that need to know about these methods of hijacking the return address, going toward a solution that has only one method of doing this will make the kernel less complex. - Cleanup with guard() and free() helpers There were several places in the code that had a lot of "goto out" in the error paths to either unlock a lock or free some memory that was allocated. But this is error prone. Convert the code over to use the guard() and free() helpers that let the compiler unlock locks or free memory when the function exits. - Remove disabling of interrupts in the function graph tracer When function graph tracer was first introduced, it could race with interrupts and NMIs. To prevent that race, it would disable interrupts and not trace NMIs. But the code has changed to allow NMIs and also interrupts. This change was done a long time ago, but the disabling of interrupts was never removed. Remove the disabling of interrupts in the function graph tracer is it is not needed. This greatly improves its performance. - Allow the :mod: command to enable tracing module functions on the kernel command line. The function tracer already has a way to enable functions to be traced in modules by writing ":mod:<module>" into set_ftrace_filter. That will enable either all the functions for the module if it is loaded, or if it is not, it will cache that command, and when the module is loaded that matches <module>, its functions will be enabled. This also allows init functions to be traced. But currently events do not have that feature. Because enabling function tracing can be done very early at boot up (before scheduling is enabled), the commands that can be done when function tracing is started is limited. Having the ":mod:" command to trace module functions as they are loaded is very useful. Update the kernel command line function filtering to allow it. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ42E2RQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qqXSAPwOMxuhye8tb1GYG62QD9+w7e6nOmlC 2GCPj4detnEM2QD/ciivkhespVKhHpZHRewAuSnJgHPSM45NQ3EVESzjWQ4= =snbx -----END PGP SIGNATURE----- Merge tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull ftrace updates from Steven Rostedt: - Have fprobes built on top of function graph infrastructure The fprobe logic is an optimized kprobe that uses ftrace to attach to functions when a probe is needed at the start or end of the function. The fprobe and kretprobe logic implements a similar method as the function graph tracer to trace the end of the function. That is to hijack the return address and jump to a trampoline to do the trace when the function exits. To do this, a shadow stack needs to be created to store the original return address. Fprobes and function graph do this slightly differently. Fprobes (and kretprobes) has slots per callsite that are reserved to save the return address. This is fine when just a few points are traced. But users of fprobes, such as BPF programs, are starting to add many more locations, and this method does not scale. The function graph tracer was created to trace all functions in the kernel. In order to do this, when function graph tracing is started, every task gets its own shadow stack to hold the return address that is going to be traced. The function graph tracer has been updated to allow multiple users to use its infrastructure. Now have fprobes be one of those users. This will also allow for the fprobe and kretprobe methods to trace the return address to become obsolete. With new technologies like CFI that need to know about these methods of hijacking the return address, going toward a solution that has only one method of doing this will make the kernel less complex. - Cleanup with guard() and free() helpers There were several places in the code that had a lot of "goto out" in the error paths to either unlock a lock or free some memory that was allocated. But this is error prone. Convert the code over to use the guard() and free() helpers that let the compiler unlock locks or free memory when the function exits. - Remove disabling of interrupts in the function graph tracer When function graph tracer was first introduced, it could race with interrupts and NMIs. To prevent that race, it would disable interrupts and not trace NMIs. But the code has changed to allow NMIs and also interrupts. This change was done a long time ago, but the disabling of interrupts was never removed. Remove the disabling of interrupts in the function graph tracer is it is not needed. This greatly improves its performance. - Allow the :mod: command to enable tracing module functions on the kernel command line. The function tracer already has a way to enable functions to be traced in modules by writing ":mod:<module>" into set_ftrace_filter. That will enable either all the functions for the module if it is loaded, or if it is not, it will cache that command, and when the module is loaded that matches <module>, its functions will be enabled. This also allows init functions to be traced. But currently events do not have that feature. Because enabling function tracing can be done very early at boot up (before scheduling is enabled), the commands that can be done when function tracing is started is limited. Having the ":mod:" command to trace module functions as they are loaded is very useful. Update the kernel command line function filtering to allow it. * tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (26 commits) ftrace: Implement :mod: cache filtering on kernel command line tracing: Adopt __free() and guard() for trace_fprobe.c bpf: Use ftrace_get_symaddr() for kprobe_multi probes ftrace: Add ftrace_get_symaddr to convert fentry_ip to symaddr Documentation: probes: Update fprobe on function-graph tracer selftests/ftrace: Add a test case for repeating register/unregister fprobe selftests: ftrace: Remove obsolate maxactive syntax check tracing/fprobe: Remove nr_maxactive from fprobe fprobe: Add fprobe_header encoding feature fprobe: Rewrite fprobe on function-graph tracer s390/tracing: Enable HAVE_FTRACE_GRAPH_FUNC ftrace: Add CONFIG_HAVE_FTRACE_GRAPH_FUNC bpf: Enable kprobe_multi feature if CONFIG_FPROBE is enabled tracing/fprobe: Enable fprobe events with CONFIG_DYNAMIC_FTRACE_WITH_ARGS tracing: Add ftrace_fill_perf_regs() for perf event tracing: Add ftrace_partial_regs() for converting ftrace_regs to pt_regs fprobe: Use ftrace_regs in fprobe exit handler fprobe: Use ftrace_regs in fprobe entry handler fgraph: Pass ftrace_regs to retfunc fgraph: Replace fgraph_ret_regs with ftrace_regs ... |
||
![]() |
4c551165e7 |
Updates for the interrupt subsystem:
- Consolidation of the machine_kexec_mask_interrupts() by providing a generic implementation and replacing the copy & pasta orgy in the relevant architectures. - Prevent unconditional operations on interrupt chips during kexec shutdown, which can trigger warnings in certain cases when the underlying interrupt has been shut down before. - Make the enforcement of interrupt handling in interrupt context unconditionally available, so that it actually works for non x86 related interrupt chips. The earlier enablement for ARM GIC chips set the required chip flag, but did not notice that the check was hidden behind a config switch which is not selected by ARM[64]. - Decrapify the handling of deferred interrupt affinity setting. Some interrupt chips require that affinity changes are made from the context of handling an interrupt to avoid certain race conditions. For x86 this was the default, but with interrupt remapping this requirement was lifted and a flag was introduced which tells the core code that affinity changes can be done in any context. Unrestricted affinity changes are the default for the majority of interrupt chips. RISCV has the requirement to add the deferred mode to one of it's interrupt controllers, but with the original implementation this would require to add the any context flag to all other RISC-V interrupt chips. That's backwards, so reverse the logic and require that chips, which need the deferred mode have to be marked accordingly. That avoids chasing the 'sane' chips and marking them. - Add multi-node support to the Loongarch AVEC interrupt controller driver. - The usual tiny cleanups, fixes and improvements all over the place. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmePkVITHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoRbQD/9bHVph/V9Ekl7JAX3aY4gG4JbRhOc7 dp1VAcHRhktRfoTztYRbjsbMu2nvZ58GKA8bkOS2jHSF/m3PbkIJfOhwk0YdIAoa +kdy5yDgqCGfkqW43DN4Cr+CnzGjWMitw67tFp3fhwehMDpDjdt2L28IjtanSS0f hO6FV7o65MWeJwxk4Isb2/nvkO+X23Lrp6RrWS8SXBnF9FFXxiPIg/fiOPTizhCh 1W/bSGxLLb9WwsVzmlGAKVFlXDij0QGaIUug2fdVZ63OsELXD7tJrLSPG133yk92 ppIa0s6BT4IBsfM00us4hG15PkLuJmP3yWWcoquG0rP8Wq58VOXiN6+rcJIyvB+5 mWceTH6IKfZGoRQKwXC7BxeBAIb147reiJtb06meq1/8ADIvzafiNy0c8x9i/UaV QiyhPVENjaGCGDomZmJQqN7Yb02Wge1k8InQnodDrHxZNl/bX/B1Z8Bxd0n6hPHg NSJXYif2AxgaddpohsdygqRDbT6SNyQdj7YjJFY5qAGJ3yFyJ4JB6WTqkWW4o1vH 3FVqdAnJmejAmmYSkah0Hkem2T5QASQmTWb93PLxiV6q+d0NM8stWAujjyVdIV/B W4Uj9mQ20cz54TjLtxqX+A1k6KcqOWRgh1l2QbUlFsgsOP3V8yz47yqYdR9qMWlO 9kNEjI3sw+G/IQ== =q4rj -----END PGP SIGNATURE----- Merge tag 'irq-core-2025-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull interrupt subsystem updates from Thomas Gleixner: - Consolidate the machine_kexec_mask_interrupts() by providing a generic implementation and replacing the copy & pasta orgy in the relevant architectures. - Prevent unconditional operations on interrupt chips during kexec shutdown, which can trigger warnings in certain cases when the underlying interrupt has been shut down before. - Make the enforcement of interrupt handling in interrupt context unconditionally available, so that it actually works for non x86 related interrupt chips. The earlier enablement for ARM GIC chips set the required chip flag, but did not notice that the check was hidden behind a config switch which is not selected by ARM[64]. - Decrapify the handling of deferred interrupt affinity setting. Some interrupt chips require that affinity changes are made from the context of handling an interrupt to avoid certain race conditions. For x86 this was the default, but with interrupt remapping this requirement was lifted and a flag was introduced which tells the core code that affinity changes can be done in any context. Unrestricted affinity changes are the default for the majority of interrupt chips. RISCV has the requirement to add the deferred mode to one of it's interrupt controllers, but with the original implementation this would require to add the any context flag to all other RISC-V interrupt chips. That's backwards, so reverse the logic and require that chips, which need the deferred mode have to be marked accordingly. That avoids chasing the 'sane' chips and marking them. - Add multi-node support to the Loongarch AVEC interrupt controller driver. - The usual tiny cleanups, fixes and improvements all over the place. * tag 'irq-core-2025-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: genirq/generic_chip: Export irq_gc_mask_disable_and_ack_set() genirq/timings: Add kernel-doc for a function parameter genirq: Remove IRQ_MOVE_PCNTXT and related code x86/apic: Convert to IRQCHIP_MOVE_DEFERRED genirq: Provide IRQCHIP_MOVE_DEFERRED hexagon: Remove GENERIC_PENDING_IRQ leftover ARC: Remove GENERIC_PENDING_IRQ genirq: Remove handle_enforce_irqctx() wrapper genirq: Make handle_enforce_irqctx() unconditionally available irqchip/loongarch-avec: Add multi-nodes topology support irqchip/ts4800: Replace seq_printf() by seq_puts() irqchip/ti-sci-inta : Add module build support irqchip/ti-sci-intr: Add module build support irqchip/irq-brcmstb-l2: Replace brcmstb_l2_mask_and_ack() by generic function irqchip: keystone: Use syscon_regmap_lookup_by_phandle_args genirq/kexec: Prevent redundant IRQ masking by checking state before shutdown kexec: Consolidate machine_kexec_mask_interrupts() implementation genirq: Reuse irq_thread_fn() for forced thread case genirq: Move irq_thread_fn() further up in the code |
||
![]() |
9ad09c4f28 |
arm64 updates for 6.14
Confidential Computing: * Register a platform device when running in CCA realm mode to enable automatic loading of dependent modules. CPU Features: * Update a bunch of system register definitions to pick up new field encodings from the architectural documentation. * Add hwcaps and selftests for the new (2024) dpISA extensions. Documentation: * Update EL3 (firmware) requirements for booting Linux on modern arm64 designs. * Remove stale information about the kernel virtual memory map. Miscellaneous: * Minor cleanups and typo fixes. Memory management: * Fix vmemmap_check_pmd() to look at the PMD type bits * LPA2 (52-bit physical addressing) cleanups and minor fixes. * Adjust physical address space depending upon whether or not LPA2 is enabled. Perf and PMUs: * Add port filtering support for NVIDIA's NVLINK-C2C Coresight PMU * Extend AXI filtering support for the DDR PMU on NXP IMX SoCs * Fix Designware PCIe PMU event numbering. * Add generic branch events for the Apple M1 CPU PMU. * Add support for Marvell Odyssey DDR and LLC-TAD PMUs. * Cleanups to the Hisilicon DDRC and Uncore PMU code. * Advertise discard mode for the SPE PMU. * Add the perf users mailing list to our MAINTAINERS entry. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmeKZLcQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNEQzB/0X2U89ZiqxIkTPQvfFrjN/uUGybkq59rEL DfeoGukTgJIwc3GHWXXtQ//wuuYKdTeCXaIz5NFK3+7/wmKSLvjkexmue8pta6EY 5rx9bAPr/D8lAUvhKIN2l3pF/ygoRwDz+nT2yVQ1xlZxYJWX7ZIsMj7W7ceb5kdx HRrTSQuhEEPREAWWO4oCMWl5SQZSrIflSE3Be/PsP0OhW6k//ZmWbcJTgUcHbKam o2WtNjITyGzxMpRCcrGEZKoe9YcwSxiut/PoD7JuoB4C/rbsf1cdJ6uLmtvGJcZj qsdRHhVfBzP1+ahONrDbiT3C2+s1UZySKdCDIxiYy6lB39wpP0dd =E7Mf -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "We've got a little less than normal thanks to the holidays in December, but there's the usual summary below. The highlight is probably the 52-bit physical addressing (LPA2) clean-up from Ard. Confidential Computing: - Register a platform device when running in CCA realm mode to enable automatic loading of dependent modules CPU Features: - Update a bunch of system register definitions to pick up new field encodings from the architectural documentation - Add hwcaps and selftests for the new (2024) dpISA extensions Documentation: - Update EL3 (firmware) requirements for booting Linux on modern arm64 designs - Remove stale information about the kernel virtual memory map Miscellaneous: - Minor cleanups and typo fixes Memory management: - Fix vmemmap_check_pmd() to look at the PMD type bits - LPA2 (52-bit physical addressing) cleanups and minor fixes - Adjust physical address space depending upon whether or not LPA2 is enabled Perf and PMUs: - Add port filtering support for NVIDIA's NVLINK-C2C Coresight PMU - Extend AXI filtering support for the DDR PMU on NXP IMX SoCs - Fix Designware PCIe PMU event numbering - Add generic branch events for the Apple M1 CPU PMU - Add support for Marvell Odyssey DDR and LLC-TAD PMUs - Cleanups to the Hisilicon DDRC and Uncore PMU code - Advertise discard mode for the SPE PMU - Add the perf users mailing list to our MAINTAINERS entry" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits) Documentation: arm64: Remove stale and redundant virtual memory diagrams perf docs: arm_spe: Document new discard mode perf: arm_spe: Add format option for discard mode MAINTAINERS: Add perf list for drivers/perf/ arm64: Remove duplicate included header drivers/perf: apple_m1: Map generic branch events arm64: rsi: Add automatic arm-cca-guest module loading kselftest/arm64: Add 2024 dpISA extensions to hwcap test KVM: arm64: Allow control of dpISA extensions in ID_AA64ISAR3_EL1 arm64/hwcap: Describe 2024 dpISA extensions to userspace arm64/sysreg: Update ID_AA64SMFR0_EL1 to DDI0601 2024-12 arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented drivers/perf: hisi: Set correct IRQ affinity for PMUs with no association arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu() arm64: mm: Test for pmd_sect() in vmemmap_check_pmd() arm64/mm: Replace open encodings with PXD_TABLE_BIT arm64/mm: Rename pte_mkpresent() as pte_mkvalid() arm64/sysreg: Update ID_AA64ISAR2_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64ZFR0_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64FPFR0_EL1 to DDI0601 2024-09 ... |
||
![]() |
602ffd4ce3 |
Merge branch 'for-next/mm' into for-next/core
* for-next/mm: arm64: mm: Test for pmd_sect() in vmemmap_check_pmd() arm64/mm: Replace open encodings with PXD_TABLE_BIT arm64/mm: Rename pte_mkpresent() as pte_mkvalid() arm64: Kconfig: force ARM64_PAN=y when enabling TTBR0 sw PAN arm64/kvm: Avoid invalid physical addresses to signal owner updates arm64/kvm: Configure HYP TCR.PS/DS based on host stage1 arm64/mm: Override PARange for !LPA2 and use it consistently arm64/mm: Reduce PA space to 48 bits when LPA2 is not enabled |
||
![]() |
763d584c5b |
Merge branch 'for-next/cpufeature' into for-next/core
* for-next/cpufeature: kselftest/arm64: Add 2024 dpISA extensions to hwcap test KVM: arm64: Allow control of dpISA extensions in ID_AA64ISAR3_EL1 arm64/hwcap: Describe 2024 dpISA extensions to userspace arm64/sysreg: Update ID_AA64SMFR0_EL1 to DDI0601 2024-12 arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu() arm64/sysreg: Update ID_AA64ISAR2_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64ZFR0_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64FPFR0_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64ISAR3_EL1 to DDI0601 2024-09 arm64/sysreg: Update ID_AA64PFR2_EL1 to DDI0601 2024-09 arm64/sysreg: Get rid of CPACR_ELx SysregFields arm64/sysreg: Convert *_EL12 accessors to Mapping arm64/sysreg: Get rid of the TCR2_EL1x SysregFields arm64/sysreg: Allow a 'Mapping' descriptor for system registers arm64/cpufeature: Refactor conditional logic in init_cpu_ftr_reg() arm64: cpufeature: Add HAFT to cpucap_is_possible() |
||
![]() |
080612b294 |
Merge branch kvm-arm64/nv-timers into kvmarm-master/next
* kvm-arm64/nv-timers: : . : Nested Virt support for the EL2 timers. From the initial cover letter: : : "Here's another batch of NV-related patches, this time bringing in most : of the timer support for EL2 as well as nested guests. : : The code is pretty convoluted for a bunch of reasons: : : - FEAT_NV2 breaks the timer semantics by redirecting HW controls to : memory, meaning that a guest could setup a timer and never see it : firing until the next exit : : - We go try hard to reflect the timer state in memory, but that's not : great. : : - With FEAT_ECV, we can finally correctly emulate the virtual timer, : but this emulation is pretty costly : : - As a way to make things suck less, we handle timer reads as early as : possible, and only defer writes to the normal trap handling : : - Finally, some implementations are badly broken, and require some : hand-holding, irrespective of NV support. So we try and reuse the NV : infrastructure to make them usable. This could be further optimised, : but I'm running out of patience for this sort of HW. : : [...]" : . KVM: arm64: nv: Fix doc header layout for timers KVM: arm64: nv: Document EL2 timer API KVM: arm64: Work around x1e's CNTVOFF_EL2 bogosity KVM: arm64: nv: Sanitise CNTHCTL_EL2 KVM: arm64: nv: Propagate CNTHCTL_EL2.EL1NV{P,V}CT bits KVM: arm64: nv: Add trap routing for CNTHCTL_EL2.EL1{NVPCT,NVVCT,TVT,TVCT} KVM: arm64: Handle counter access early in non-HYP context KVM: arm64: nv: Accelerate EL0 counter accesses from hypervisor context KVM: arm64: nv: Accelerate EL0 timer read accesses when FEAT_ECV in use KVM: arm64: nv: Use FEAT_ECV to trap access to EL0 timers KVM: arm64: nv: Publish emulated timer interrupt state in the in-memory state KVM: arm64: nv: Sync nested timer state with FEAT_NV2 KVM: arm64: nv: Add handling of EL2-specific timer registers Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
4e26de25d2 |
Merge remote-tracking branch 'arm64/for-next/cpufeature' into kvm-arm64/pkvm-fixed-features-6.14
Merge arm64/for-next/cpufeature to solve extensive conflicts caused by the CPACR_ELx->CPACR_EL1 repainting. Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
3a5446612a |
sched,arm64: Handle CPU isolation on last resort fallback rq selection
When a kthread or any other task has an affinity mask that is fully offline or unallowed, the scheduler reaffines the task to all possible CPUs as a last resort. This default decision doesn't mix up very well with nohz_full CPUs that are part of the possible cpumask but don't want to be disturbed by unbound kthreads or even detached pinned user tasks. Make the fallback affinity setting aware of nohz_full. Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
4a1567b466 |
arm64: Exclude nohz_full CPUs from 32bits el0 support
Nohz full CPUs are not a desirable fallback target to run 32bits el0 applications. If present, prefer a set of housekeeping CPUs that can do the job instead. Otherwise just don't support el0 32 bits. Should the need arise, appropriate support can be introduced in the future. Suggested-by: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
a1edec2245 |
arm64: rsi: Add automatic arm-cca-guest module loading
The TSM module provides guest identification and attestation when a guest runs in CCA realm mode. By creating a dummy platform device, let's ensure the module is automatically loaded. The udev daemon loads the TSM module after it receives a device addition event. Once that happens, it can be used earlier in the boot process to decrypt the rootfs. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241220181236.172060-2-jeremy.linton@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
819935464c |
arm64/hwcap: Describe 2024 dpISA extensions to userspace
The 2024 dpISA introduces a number of architecture features all of which only add new instructions so only require the addition of hwcaps and ID register visibility. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20250107-arm64-2024-dpisa-v5-3-7578da51fc3d@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
064737920b |
arm64: Filter out SVE hwcaps when FEAT_SVE isn't implemented
The hwcaps code that exposes SVE features to userspace only
considers ID_AA64ZFR0_EL1, while this is only valid when
ID_AA64PFR0_EL1.SVE advertises that SVE is actually supported.
The expectations are that when ID_AA64PFR0_EL1.SVE is 0, the
ID_AA64ZFR0_EL1 register is also 0. So far, so good.
Things become a bit more interesting if the HW implements SME.
In this case, a few ID_AA64ZFR0_EL1 fields indicate *SME*
features. And these fields overlap with their SVE interpretations.
But the architecture says that the SME and SVE feature sets must
match, so we're still hunky-dory.
This goes wrong if the HW implements SME, but not SVE. In this
case, we end-up advertising some SVE features to userspace, even
if the HW has none. That's because we never consider whether SVE
is actually implemented. Oh well.
Fix it by restricting all SVE capabilities to ID_AA64PFR0_EL1.SVE
being non-zero. The HWCAPS documentation is amended to reflect the
actually checks performed by the kernel.
Fixes:
|
||
![]() |
d3c7c48d00 |
arm64/sme: Move storage of reg_smidr to __cpuinfo_store_cpu()
In commit |
||
![]() |
0bc9a9e85f |
KVM: arm64: Work around x1e's CNTVOFF_EL2 bogosity
It appears that on Qualcomm's x1e CPU, CNTVOFF_EL2 doesn't really work, specially with HCR_EL2.E2H=1. A non-zero offset results in a screaming virtual timer interrupt, to the tune of a few 100k interrupts per second on a 4 vcpu VM. This is also evidenced by this CPU's inability to correctly run any of the timer selftests. The only case this doesn't break is when this register is set to 0, which breaks VM migration. When HCR_EL2.E2H=0, the timer seems to behave normally, and does not result in an interrupt storm. As a workaround, use the fact that this CPU implements FEAT_ECV, and trap all accesses to the virtual timer and counter, keeping CNTVOFF_EL2 set to zero, and emulate accesses to CVAL/TVAL/CTL and the counter itself, fixing up the timer to account for the missing offset. And if you think this is disgusting, you'd probably be right. Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20241217142321.763801-12-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
2bc56fdae1 |
ftrace: Add ftrace_get_symaddr to convert fentry_ip to symaddr
This introduces ftrace_get_symaddr() which tries to convert fentry_ip passed by ftrace or fgraph callback to symaddr without calling kallsyms API. It returns the symbol address or 0 if it fails to convert it. Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/173519011487.391279.5450806886342723151.stgit@devnote2 Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202412061423.K79V55Hd-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202412061804.5VRzF14E-lkp@intel.com/ Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
a3ed4157b7 |
fgraph: Replace fgraph_ret_regs with ftrace_regs
Use ftrace_regs instead of fgraph_ret_regs for tracing return value on function_graph tracer because of simplifying the callback interface. The CONFIG_HAVE_FUNCTION_GRAPH_RETVAL is also replaced by CONFIG_HAVE_FUNCTION_GRAPH_FREGS. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/173518991508.391279.16635322774382197642.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
41705c4262 |
fgraph: Pass ftrace_regs to entryfunc
Pass ftrace_regs to the fgraph_ops::entryfunc(). If ftrace_regs is not available, it passes a NULL instead. User callback function can access some registers (including return address) via this ftrace_regs. Note that the ftrace_regs can be NULL when the arch does NOT define: HAVE_DYNAMIC_FTRACE_WITH_ARGS or HAVE_DYNAMIC_FTRACE_WITH_REGS. More specifically, if HAVE_DYNAMIC_FTRACE_WITH_REGS is defined but not the HAVE_DYNAMIC_FTRACE_WITH_ARGS, and the ftrace ops used to register the function callback does not set FTRACE_OPS_FL_SAVE_REGS. In this case, ftrace_regs can be NULL in user callback. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/173518990044.391279.17406984900626078579.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
499551201b |
Fix a sparse warning in the arm64 signal code dealing with the user
shadow stack register, GCSPR_EL0. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmdlufgACgkQa9axLQDI XvHS9Q//WmBcPgp99ZgmHwV4x9VZz4lBiZphBp2+WYNmYFjkEcNDggs8nWs+JwgR Y1isI5fLEuNYCqjoejtT5iPY3i9YAtiOtq8J7xnlZ35r3Ycur28f4C28ZxQnpHGH xaFO7deNTGhUkLvHaxIDxAyu8iHcJL+Q4XwuuTozedHPGwCHb5uyYHZB1fvYTrB0 x4yxJDBehsN9x/xQPNYlaaXpYG3i0as/1DQod7kKIDckxnGOOk1s1sTPPMTsOMAv W9xvUPUmzoRvn7nH1ErT7X3O8LzbACy6RDg1iGzdMINTuLDDM9n55i2tl0TToqqq 9h5IQ7ZSsPPixrPGarSZMhKnRKLHd0psFwfzhaWdPSGn4MHQInhkIP4vK05ycpxc E3AzbQMTb8ABVwW57XeJYnJJ28wY2QvQp0mm96xjSHfhYwafx4heTAM/4jzw5ZwC JsIbQsy603Ir7JhSV3rNozAUPI8GdQzXBYZ5PtW0AIbyJHAWP2R+/Q5kGK2IJd7a T5fzCLNSd0u7soY/4J856HYsDYw0SC0f6ua9BbaIC99vOlG9PhO/MJIkr+FsPeQq O3zH/xg/LGWQYudAoXYJhY6YuQ18mpdMw++/cNci2wWdhApf2sQLrhkO1Kz1numd WDDO13hyQZQMeulTeTrkS0teQmhuVeGvgb3vxLJzYi4OIEr8Iv4= =sJbw -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fix from Catalin Marinas: "Fix a sparse warning in the arm64 signal code dealing with the user shadow stack register, GCSPR_EL0" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/signal: Silence sparse warning storing GCSPR_EL0 |
||
![]() |
926e862058 |
arm64/signal: Silence sparse warning storing GCSPR_EL0
We are seeing a sparse warning in gcs_restore_signal(): arch/arm64/kernel/signal.c:1054:9: sparse: sparse: cast removes address space '__user' of expression when storing the final GCSPR_EL0 value back into the register, caused by the fact that write_sysreg_s() casts the value it writes to a u64 which sparse sees as discarding the __userness of the pointer. Avoid this by treating the address as an integer, casting to a pointer only when using it to write to userspace. While we're at it also inline gcs_signal_cap_valid() into it's one user and make equivalent updates to gcs_signal_entry(). Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202412082005.OBJ0BbWs-lkp@intel.com/ Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241214-arm64-gcs-signal-sparse-v3-1-5e8d18fffc0c@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e5ecedcd7c |
arm64/sysreg: Get rid of CPACR_ELx SysregFields
There is no such thing as CPACR_ELx in the architecture. What we have is CPACR_EL1, for which CPTR_EL12 is an accessor. Rename CPACR_ELx_* to CPACR_EL1_*, and fix the bit of code using these names. Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241219173351.1123087-5-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7052e808c4 |
arm64/sysreg: Get rid of the TCR2_EL1x SysregFields
TCR2_EL1x is a pretty bizarre construct, as it is shared between TCR2_EL1 and TCR2_EL12. But the latter is obviously only an accessor to the former. In order to make things more consistent, upgrade TCR2_EL1x to a full-blown sysreg definition for TCR2_EL1, and describe TCR2_EL12 as a mapping to TCR2_EL1. This results in a couple of minor changes to the actual code. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241219173351.1123087-3-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
62cffa496a |
arm64/mm: Override PARange for !LPA2 and use it consistently
When FEAT_LPA{,2} are not implemented, the ID_AA64MMFR0_EL1.PARange and
TCR.IPS values corresponding with 52-bit physical addressing are
reserved.
Setting the TCR.IPS field to 0b110 (52-bit physical addressing) has side
effects, such as how the TTBRn_ELx.BADDR fields are interpreted, and so
it is important that disabling FEAT_LPA2 (by overriding the
ID_AA64MMFR0.TGran fields) also presents a PARange field consistent with
that.
So limit the field to 48 bits unless LPA2 is enabled, and update
existing references to use the override consistently.
Fixes:
|
||
![]() |
81576a9a27 |
ARM64:
* Fix confusion with implicitly-shifted MDCR_EL2 masks breaking SPE/TRBE initialization. * Align nested page table walker with the intended memory attribute combining rules of the architecture. * Prevent userspace from constraining the advertised ASID width, avoiding horrors of guest TLBIs not matching the intended context in hardware. * Don't leak references on LPIs when insertion into the translation cache fails. RISC-V: * Replace csr_write() with csr_set() for HVIEN PMU overflow bit. x86: * Cache CPUID.0xD XSTATE offsets+sizes during module init - On Intel's Emerald Rapids CPUID costs hundreds of cycles and there are a lot of leaves under 0xD. Getting rid of the CPUIDs during nested VM-Enter and VM-Exit is planned for the next release, for now just cache them: even on Skylake that is 40% faster. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmdcibgUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroOQsgf+NwNdfNQ0V5vU7YNeVxyhkCyYvNiA njvBTd1Lwh7EDtJ2NLKzwHktH2ymQI8qykxKr/qY3Jxkow+vcvsK0LacAaJdIzGo jnMGxXxRCFpxdkNb1kDJk4Cd6GSSAxYwgPj3wj7whsMcVRjPlFcjuHf02bRUU0Gt yulzBOZJ/7QTquKSnwt1kZQ1i/mJ8wCh4vJArZqtcImrDSK7oh+BaQ44h+lNe8qa Xiw6Fw3tYXgHy5WlnUU/OyFs+bZbcVzPM75qYgdGIWSo0TdL69BeIw8S4K2Ri4eL EoEBigwAd8PiF16Q1wO4gXWcNwinMTs3LIftxYpENTHA5gnrS5hgWWDqHw== =4v2y -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm fixes from Paolo Bonzini: "ARM64: - Fix confusion with implicitly-shifted MDCR_EL2 masks breaking SPE/TRBE initialization - Align nested page table walker with the intended memory attribute combining rules of the architecture - Prevent userspace from constraining the advertised ASID width, avoiding horrors of guest TLBIs not matching the intended context in hardware - Don't leak references on LPIs when insertion into the translation cache fails RISC-V: - Replace csr_write() with csr_set() for HVIEN PMU overflow bit x86: - Cache CPUID.0xD XSTATE offsets+sizes during module init On Intel's Emerald Rapids CPUID costs hundreds of cycles and there are a lot of leaves under 0xD. Getting rid of the CPUIDs during nested VM-Enter and VM-Exit is planned for the next release, for now just cache them: even on Skylake that is 40% faster" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: Cache CPUID.0xD XSTATE offsets+sizes during module init RISC-V: KVM: Fix csr_write -> csr_set for HVIEN PMU overflow bit KVM: arm64: vgic-its: Add error handling in vgic_its_cache_translation KVM: arm64: Do not allow ID_AA64MMFR0_EL1.ASIDbits to be overridden KVM: arm64: Fix S1/S2 combination when FWB==1 and S2 has Device memory type arm64: Fix usage of new shifted MDCR_EL2 values |
||
![]() |
a3b4647e2f |
arm64: signal: Ensure signal delivery failure is recoverable
Commit |
||
![]() |
65ac33bed8 |
arm64: stacktrace: Don't WARN when unwinding other tasks
The arm64 stacktrace code has a few error conditions where a WARN_ON_ONCE() is triggered before the stacktrace is terminated and an error is returned to the caller. The conditions shouldn't be triggered when unwinding the current task, but it is possible to trigger these when unwinding another task which is not blocked, as the stack of that task is concurrently modified. Kent reports that these warnings can be triggered while running filesystem tests on bcachefs, which calls the stacktrace code directly. To produce a meaningful stacktrace of another task, the task in question should be blocked, but the stacktrace code is expected to be robust to cases where it is not blocked. Note that this is purely about not unuduly scaring the user and/or crashing the kernel; stacktraces in such cases are meaningless and may leak kernel secrets from the stack of the task being unwound. Ideally we'd pin the task in a blocked state during the unwind, as we do for /proc/${PID}/wchan since commit: |
||
![]() |
32ed120568 |
arm64: stacktrace: Skip reporting LR at exception boundaries
Aishwarya reports that warnings are sometimes seen when running the ftrace kselftests, e.g. | WARNING: CPU: 5 PID: 2066 at arch/arm64/kernel/stacktrace.c:141 arch_stack_walk+0x4a0/0x4c0 | Modules linked in: | CPU: 5 UID: 0 PID: 2066 Comm: ftracetest Not tainted 6.13.0-rc2 #2 | Hardware name: linux,dummy-virt (DT) | pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : arch_stack_walk+0x4a0/0x4c0 | lr : arch_stack_walk+0x248/0x4c0 | sp : ffff800083643d20 | x29: ffff800083643dd0 x28: ffff00007b891400 x27: ffff00007b891928 | x26: 0000000000000001 x25: 00000000000000c0 x24: ffff800082f39d80 | x23: ffff80008003ee8c x22: ffff80008004baa8 x21: ffff8000800533e0 | x20: ffff800083643e10 x19: ffff80008003eec8 x18: 0000000000000000 | x17: 0000000000000000 x16: ffff800083640000 x15: 0000000000000000 | x14: 02a37a802bbb8a92 x13: 00000000000001a9 x12: 0000000000000001 | x11: ffff800082ffad60 x10: ffff800083643d20 x9 : ffff80008003eed0 | x8 : ffff80008004baa8 x7 : ffff800086f2be80 x6 : ffff0000057cf000 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff800086f2b690 | x2 : ffff80008004baa8 x1 : ffff80008004baa8 x0 : ffff80008004baa8 | Call trace: | arch_stack_walk+0x4a0/0x4c0 (P) | arch_stack_walk+0x248/0x4c0 (L) | profile_pc+0x44/0x80 | profile_tick+0x50/0x80 (F) | tick_nohz_handler+0xcc/0x160 (F) | __hrtimer_run_queues+0x2ac/0x340 (F) | hrtimer_interrupt+0xf4/0x268 (F) | arch_timer_handler_virt+0x34/0x60 (F) | handle_percpu_devid_irq+0x88/0x220 (F) | generic_handle_domain_irq+0x34/0x60 (F) | gic_handle_irq+0x54/0x140 (F) | call_on_irq_stack+0x24/0x58 (F) | do_interrupt_handler+0x88/0x98 | el1_interrupt+0x34/0x68 (F) | el1h_64_irq_handler+0x18/0x28 | el1h_64_irq+0x6c/0x70 | queued_spin_lock_slowpath+0x78/0x460 (P) The warning in question is: WARN_ON_ONCE(state->common.pc == orig_pc)) ... in kunwind_recover_return_address(), which is triggered when return_to_handler() is encountered in the trace, but ftrace_graph_ret_addr() cannot find a corresponding original return address on the fgraph return stack. This happens because the stacktrace code encounters an exception boundary where the LR was not live at the time of the exception, but the LR happens to contain return_to_handler(); either because the task recently returned there, or due to unfortunate usage of the LR at a scratch register. In such cases attempts to recover the return address via ftrace_graph_ret_addr() may fail, triggering the WARN_ON_ONCE() above and aborting the unwind (hence the stacktrace terminating after reporting the PC at the time of the exception). Handling unreliable LR values in these cases is likely to require some larger rework, so for the moment avoid this problem by restoring the old behaviour of skipping the LR at exception boundaries, which the stacktrace code did prior to commit: |
||
![]() |
bad6722e47 |
kexec: Consolidate machine_kexec_mask_interrupts() implementation
Consolidate the machine_kexec_mask_interrupts implementation into a common function located in a new file: kernel/irq/kexec.c. This removes duplicate implementations from architecture-specific files in arch/arm, arch/arm64, arch/powerpc, and arch/riscv, reducing code duplication and improving maintainability. The new implementation retains architecture-specific behavior for CONFIG_GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD, which was previously implemented for ARM64. When enabled (currently for ARM64), it clears the active state of interrupts forwarded to virtual machines (VMs) before handling other interrupt masking operations. Signed-off-by: Eliav Farber <farbere@amazon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20241204142003.32859-2-farbere@amazon.com |
||
![]() |
3154bddf8c |
KVM/arm64 fixes for 6.13, part #2
- Fix confusion with implicitly-shifted MDCR_EL2 masks breaking SPE/TRBE initialization - Align nested page table walker with the intended memory attribute combining rules of the architecture - Prevent userspace from constraining the advertised ASID width, avoiding horrors of guest TLBIs not matching the intended context in hardware - Don't leak references on LPIs when insertion into the translation cache fails -----BEGIN PGP SIGNATURE----- iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZ0+mZhccb2xpdmVyLnVw dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFuKcAQDnFcLru8MVor4zjloe25oPPeuW iBocGpgKwJMioHrAdwEAoq8v0eqfxrUpwr5KJ7iN9CTo9oANJYhVACC8jPHEowI= =fLPh -----END PGP SIGNATURE----- Merge tag 'kvmarm-fixes-6.13-2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.13, part #2 - Fix confusion with implicitly-shifted MDCR_EL2 masks breaking SPE/TRBE initialization - Align nested page table walker with the intended memory attribute combining rules of the architecture - Prevent userspace from constraining the advertised ASID width, avoiding horrors of guest TLBIs not matching the intended context in hardware - Don't leak references on LPIs when insertion into the translation cache fails |
||
![]() |
e52163df77 |
arm64/cpufeature: Refactor conditional logic in init_cpu_ftr_reg()
Unnecessarily checks ftr_ovr == tmp in an extra else if, which is not needed because that condition would already be true by default if the previous conditions are not satisfied. if (ftr_ovr != tmp) { } else if (ftr_new != tmp) { } else if (ftr_ovr == tmp) { Logic: The first and last conditions are inverses of each other, so the last condition must be true if the first two conditions are false. Additionally, all branches set the variable str, making the subsequent "if (str)" check redundant Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Hardevsinh Palaniya <hardevsinh.palaniya@siliconsignals.io> Link: https://lore.kernel.org/r/20241115053740.20523-1-hardevsinh.palaniya@siliconsignals.io Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d60624f72d |
arm64: ptrace: fix partial SETREGSET for NT_ARM_GCS
Currently gcs_set() doesn't initialize the temporary 'user_gcs'
variable, and a SETREGSET call with a length of 0, 8, or 16 will leave
some portion of this uninitialized. Consequently some arbitrary
uninitialized values may be written back to the relevant fields in task
struct, potentially leaking up to 192 bits of memory from the kernel
stack. The read is limited to a specific slot on the stack, and the
issue does not provide a write mechanism.
As gcs_set() rejects cases where user_gcs::features_enabled has bits set
other than PR_SHADOW_STACK_SUPPORTED_STATUS_MASK, a SETREGSET call with
a length of zero will randomly succeed or fail depending on the value of
the uninitialized value, it isn't possible to leak the full 192 bits.
With a length of 8 or 16, user_gcs::features_enabled can be initialized
to an accepted value, making it practical to leak 128 or 64 bits.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length or partial write, the
existing contents of the fields which are not written to will be
retained.
To ensure that the extraction and insertion of fields is consistent
across the GETREGSET and SETREGSET calls, new task_gcs_to_user() and
task_gcs_from_user() helpers are added, matching the style of
pac_address_keys_to_user() and pac_address_keys_from_user().
Before this patch:
| # ./gcs-test
| Attempting to write NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x0000000000000000,
| .gcspr_el0 = 0x900d900d900d900d,
| }
| SETREGSET(nt=0x410, len=24) wrote 24 bytes
|
| Attempting to read NT_ARM_GCS::user_gcs
| GETREGSET(nt=0x410, len=24) read 24 bytes
| Read NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x0000000000000000,
| .gcspr_el0 = 0x900d900d900d900d,
| }
|
| Attempting partial write NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x1de7ec7edbadc0de,
| .gcspr_el0 = 0x1de7ec7edbadc0de,
| }
| SETREGSET(nt=0x410, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_GCS::user_gcs
| GETREGSET(nt=0x410, len=24) read 24 bytes
| Read NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x000000000093e780,
| .gcspr_el0 = 0xffff800083a63d50,
| }
After this patch:
| # ./gcs-test
| Attempting to write NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x0000000000000000,
| .gcspr_el0 = 0x900d900d900d900d,
| }
| SETREGSET(nt=0x410, len=24) wrote 24 bytes
|
| Attempting to read NT_ARM_GCS::user_gcs
| GETREGSET(nt=0x410, len=24) read 24 bytes
| Read NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x0000000000000000,
| .gcspr_el0 = 0x900d900d900d900d,
| }
|
| Attempting partial write NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x1de7ec7edbadc0de,
| .gcspr_el0 = 0x1de7ec7edbadc0de,
| }
| SETREGSET(nt=0x410, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_GCS::user_gcs
| GETREGSET(nt=0x410, len=24) read 24 bytes
| Read NT_ARM_GCS::user_gcs = {
| .features_enabled = 0x0000000000000000,
| .features_locked = 0x0000000000000000,
| .gcspr_el0 = 0x900d900d900d900d,
| }
Fixes:
|
||
![]() |
594bfc4947 |
arm64: ptrace: fix partial SETREGSET for NT_ARM_POE
Currently poe_set() doesn't initialize the temporary 'ctrl' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.por_el0, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of POR_EL1 will be retained.
Before this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0xffff8000839c3d50
After this patch:
| # ./poe-test
| Attempting to write NT_ARM_POE::por_el0 = 0x900d900d900d900d
| SETREGSET(nt=0x40f, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
|
| Attempting to write NT_ARM_POE (zero length)
| SETREGSET(nt=0x40f, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_POE::por_el0
| GETREGSET(nt=0x40f, len=8) read 8 bytes
| Read NT_ARM_POE::por_el0 = 0x900d900d900d900d
Fixes:
|
||
![]() |
f5d7129184 |
arm64: ptrace: fix partial SETREGSET for NT_ARM_FPMR
Currently fpmr_set() doesn't initialize the temporary 'fpmr' variable,
and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently an arbitrary value will be written back to
target->thread.uw.fpmr, potentially leaking up to 64 bits of memory from
the kernel stack. The read is limited to a specific slot on the stack,
and the issue does not provide a write mechanism.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
contents of FPMR will be retained.
Before this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0xffff800083963d50
After this patch:
| # ./fpmr-test
| Attempting to write NT_ARM_FPMR::fpmr = 0x900d900d900d900d
| SETREGSET(nt=0x40e, len=8) wrote 8 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
|
| Attempting to write NT_ARM_FPMR (zero length)
| SETREGSET(nt=0x40e, len=0) wrote 0 bytes
|
| Attempting to read NT_ARM_FPMR::fpmr
| GETREGSET(nt=0x40e, len=8) read 8 bytes
| Read NT_ARM_FPMR::fpmr = 0x900d900d900d900d
Fixes:
|
||
![]() |
ca62d90085 |
arm64: ptrace: fix partial SETREGSET for NT_ARM_TAGGED_ADDR_CTRL
Currently tagged_addr_ctrl_set() doesn't initialize the temporary 'ctrl'
variable, and a SETREGSET call with a length of zero will leave this
uninitialized. Consequently tagged_addr_ctrl_set() will consume an
arbitrary value, potentially leaking up to 64 bits of memory from the
kernel stack. The read is limited to a specific slot on the stack, and
the issue does not provide a write mechanism.
As set_tagged_addr_ctrl() only accepts values where bits [63:4] zero and
rejects other values, a partial SETREGSET attempt will randomly succeed
or fail depending on the value of the uninitialized value, and the
exposure is significantly limited.
Fix this by initializing the temporary value before copying the regset
from userspace, as for other regsets (e.g. NT_PRSTATUS, NT_PRFPREG,
NT_ARM_SYSTEM_CALL). In the case of a zero-length write, the existing
value of the tagged address ctrl will be retained.
The NT_ARM_TAGGED_ADDR_CTRL regset is only visible in the
user_aarch64_view used by a native AArch64 task to manipulate another
native AArch64 task. As get_tagged_addr_ctrl() only returns an error
value when called for a compat task, tagged_addr_ctrl_get() and
tagged_addr_ctrl_set() should never observe an error value from
get_tagged_addr_ctrl(). Add a WARN_ON_ONCE() to both to indicate that
such an error would be unexpected, and error handlnig is not missing in
either case.
Fixes:
|
||
![]() |
8d09e2d569 |
arm64: patching: avoid early page_to_phys()
When arm64 is configured with CONFIG_DEBUG_VIRTUAL=y, a warning is printed from the patching code because patch_map(), e.g. | ------------[ cut here ]------------ | WARNING: CPU: 0 PID: 0 at arch/arm64/kernel/patching.c:45 patch_map.constprop.0+0x120/0xd00 | CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 6.13.0-rc1-00002-ge1a5d6c6be55 #1 | Hardware name: linux,dummy-virt (DT) | pstate: 800003c5 (Nzcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : patch_map.constprop.0+0x120/0xd00 | lr : patch_map.constprop.0+0x120/0xd00 | sp : ffffa9bb312a79a0 | x29: ffffa9bb312a79a0 x28: 0000000000000001 x27: 0000000000000001 | x26: 0000000000000000 x25: 0000000000000000 x24: 00000000000402e8 | x23: ffffa9bb2c94c1c8 x22: ffffa9bb2c94c000 x21: ffffa9bb222e883c | x20: 0000000000000002 x19: ffffc1ffc100ba40 x18: ffffa9bb2cf0f21c | x17: 0000000000000006 x16: 0000000000000000 x15: 0000000000000004 | x14: 1ffff5376625b4ac x13: ffff753766a67fb8 x12: ffff753766919cd1 | x11: 0000000000000003 x10: 1ffff5376625b4c3 x9 : 1ffff5376625b4af | x8 : ffff753766254f0a x7 : 0000000041b58ab3 x6 : ffff753766254f18 | x5 : ffffa9bb312d9bc0 x4 : 0000000000000000 x3 : ffffa9bb29bd90e4 | x2 : 0000000000000002 x1 : ffffa9bb312d9bc0 x0 : 0000000000000000 | Call trace: | patch_map.constprop.0+0x120/0xd00 (P) | patch_map.constprop.0+0x120/0xd00 (L) | __aarch64_insn_write+0xa8/0x120 | aarch64_insn_patch_text_nosync+0x4c/0xb8 | arch_jump_label_transform_queue+0x7c/0x100 | jump_label_update+0x154/0x460 | static_key_enable_cpuslocked+0x1d8/0x280 | static_key_enable+0x2c/0x48 | early_randomize_kstack_offset+0x104/0x168 | do_early_param+0xe4/0x148 | parse_args+0x3a4/0x838 | parse_early_options+0x50/0x68 | parse_early_param+0x58/0xe0 | setup_arch+0x78/0x1f0 | start_kernel+0xa0/0x530 | __primary_switched+0x8c/0xa0 | irq event stamp: 0 | hardirqs last enabled at (0): [<0000000000000000>] 0x0 | hardirqs last disabled at (0): [<0000000000000000>] 0x0 | softirqs last enabled at (0): [<0000000000000000>] 0x0 | softirqs last disabled at (0): [<0000000000000000>] 0x0 | ---[ end trace 0000000000000000 ]--- The warning has been produced since commit: |
||
![]() |
d798bc6f3c |
arm64: Fix usage of new shifted MDCR_EL2 values
Since the linked fixes commit, these masks are already shifted so remove
the shifts. One issue that this fixes is SPE and TRBE not being
available anymore:
arm_spe_pmu arm,spe-v1: profiling buffer owned by higher exception level
Fixes:
|
||
![]() |
9f16d5e6f2 |
The biggest change here is eliminating the awful idea that KVM had, of
essentially guessing which pfns are refcounted pages. The reason to do so was that KVM needs to map both non-refcounted pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain refcounted pages. However, the result was security issues in the past, and more recently the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by struct page but is not refcounted. In particular this broke virtio-gpu blob resources (which directly map host graphics buffers into the guest as "vram" for the virtio-gpu device) with the amdgpu driver, because amdgpu allocates non-compound higher order pages and the tail pages could not be mapped into KVM. This requires adjusting all uses of struct page in the per-architecture code, to always work on the pfn whenever possible. The large series that did this, from David Stevens and Sean Christopherson, also cleaned up substantially the set of functions that provided arch code with the pfn for a host virtual addresses. The previous maze of twisty little passages, all different, is replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages) saving almost 200 lines of code. ARM: * Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker * Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI * Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps * PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest * Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM * Avoid emulated MMIO completion if userspace has requested synchronous external abort injection * Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests LoongArch: * Add iocsr and mmio bus simulation in kernel. * Add in-kernel interrupt controller emulation. * Add support for virtualization extensions to the eiointc irqchip. PPC: * Drop lingering and utterly obsolete references to PPC970 KVM, which was removed 10 years ago. * Fix incorrect documentation references to non-existing ioctls RISC-V: * Accelerate KVM RISC-V when running as a guest * Perf support to collect KVM guest statistics from host side s390: * New selftests: more ucontrol selftests and CPU model sanity checks * Support for the gen17 CPU model * List registers supported by KVM_GET/SET_ONE_REG in the documentation x86: * Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve documentation, harden against unexpected changes. Even if the hardware A/D tracking is disabled, it is possible to use the hardware-defined A/D bits to track if a PFN is Accessed and/or Dirty, and that removes a lot of special cases. * Elide TLB flushes when aging secondary PTEs, as has been done in x86's primary MMU for over 10 years. * Recover huge pages in-place in the TDP MMU when dirty page logging is toggled off, instead of zapping them and waiting until the page is re-accessed to create a huge mapping. This reduces vCPU jitter. * Batch TLB flushes when dirty page logging is toggled off. This reduces the time it takes to disable dirty logging by ~3x. * Remove the shrinker that was (poorly) attempting to reclaim shadow page tables in low-memory situations. * Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE. * Advertise CPUIDs for new instructions in Clearwater Forest * Quirk KVM's misguided behavior of initialized certain feature MSRs to their maximum supported feature set, which can result in KVM creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero value results in the vCPU having invalid state if userspace hides PDCM from the guest, which in turn can lead to save/restore failures. * Fix KVM's handling of non-canonical checks for vCPUs that support LA57 to better follow the "architecture", in quotes because the actual behavior is poorly documented. E.g. most MSR writes and descriptor table loads ignore CR4.LA57 and operate purely on whether the CPU supports LA57. * Bypass the register cache when querying CPL from kvm_sched_out(), as filling the cache from IRQ context is generally unsafe; harden the cache accessors to try to prevent similar issues from occuring in the future. The issue that triggered this change was already fixed in 6.12, but was still kinda latent. * Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM over-advertises SPEC_CTRL when trying to support cross-vendor VMs. * Minor cleanups * Switch hugepage recovery thread to use vhost_task. These kthreads can consume significant amounts of CPU time on behalf of a VM or in response to how the VM behaves (for example how it accesses its memory); therefore KVM tried to place the thread in the VM's cgroups and charge the CPU time consumed by that work to the VM's container. However the kthreads did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM instances inside could not complete freezing. Fix this by replacing the kthread with a PF_USER_WORKER thread, via the vhost_task abstraction. Another 100+ lines removed, with generally better behavior too like having these threads properly parented in the process tree. * Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't really work; there was really nothing to work around anyway: the broken patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the erratum. * Fix 6.12 regression where CONFIG_KVM will be built as a module even if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'. x86 selftests: * x86 selftests can now use AVX. Documentation: * Use rST internal links * Reorganize the introduction to the API document Generic: * Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead of RCU, so that running a vCPU on a different task doesn't encounter long due to having to wait for all CPUs become quiescent. In general both reads and writes are rare, but userspace that supports confidential computing is introducing the use of "helper" vCPUs that may jump from one host processor to another. Those will be very happy to trigger a synchronize_rcu(), and the effect on performance is quite the disaster. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmc9MRYUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroP00QgArxqxBIGLCW5t7bw7vtNq63QYRyh4 dTiDguLiYQJ+AXmnRu11R6aPC7HgMAvlFCCmH+GEce4WEgt26hxCmncJr/aJOSwS letCS7TrME16PeZvh25A1nhPBUw6mTF1qqzgcdHMrqXG8LuHoGcKYGSRVbkf3kfI 1ZoMq1r8ChXbVVmCx9DQ3gw1TVr5Dpjs2voLh8rDSE9Xpw0tVVabHu3/NhQEz/F+ t8/nRaqH777icCHIf9PCk5HnarHxLAOvhM2M0Yj09PuBcE5fFQxpxltw/qiKQqqW ep4oquojGl87kZnhlDaac2UNtK90Ws+WxxvCwUmbvGN0ZJVaQwf4FvTwig== =lWpE -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "The biggest change here is eliminating the awful idea that KVM had of essentially guessing which pfns are refcounted pages. The reason to do so was that KVM needs to map both non-refcounted pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain refcounted pages. However, the result was security issues in the past, and more recently the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by struct page but is not refcounted. In particular this broke virtio-gpu blob resources (which directly map host graphics buffers into the guest as "vram" for the virtio-gpu device) with the amdgpu driver, because amdgpu allocates non-compound higher order pages and the tail pages could not be mapped into KVM. This requires adjusting all uses of struct page in the per-architecture code, to always work on the pfn whenever possible. The large series that did this, from David Stevens and Sean Christopherson, also cleaned up substantially the set of functions that provided arch code with the pfn for a host virtual addresses. The previous maze of twisty little passages, all different, is replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages) saving almost 200 lines of code. ARM: - Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps - PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest - Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM - Avoid emulated MMIO completion if userspace has requested synchronous external abort injection - Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests LoongArch: - Add iocsr and mmio bus simulation in kernel. - Add in-kernel interrupt controller emulation. - Add support for virtualization extensions to the eiointc irqchip. PPC: - Drop lingering and utterly obsolete references to PPC970 KVM, which was removed 10 years ago. - Fix incorrect documentation references to non-existing ioctls RISC-V: - Accelerate KVM RISC-V when running as a guest - Perf support to collect KVM guest statistics from host side s390: - New selftests: more ucontrol selftests and CPU model sanity checks - Support for the gen17 CPU model - List registers supported by KVM_GET/SET_ONE_REG in the documentation x86: - Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve documentation, harden against unexpected changes. Even if the hardware A/D tracking is disabled, it is possible to use the hardware-defined A/D bits to track if a PFN is Accessed and/or Dirty, and that removes a lot of special cases. - Elide TLB flushes when aging secondary PTEs, as has been done in x86's primary MMU for over 10 years. - Recover huge pages in-place in the TDP MMU when dirty page logging is toggled off, instead of zapping them and waiting until the page is re-accessed to create a huge mapping. This reduces vCPU jitter. - Batch TLB flushes when dirty page logging is toggled off. This reduces the time it takes to disable dirty logging by ~3x. - Remove the shrinker that was (poorly) attempting to reclaim shadow page tables in low-memory situations. - Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE. - Advertise CPUIDs for new instructions in Clearwater Forest - Quirk KVM's misguided behavior of initialized certain feature MSRs to their maximum supported feature set, which can result in KVM creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero value results in the vCPU having invalid state if userspace hides PDCM from the guest, which in turn can lead to save/restore failures. - Fix KVM's handling of non-canonical checks for vCPUs that support LA57 to better follow the "architecture", in quotes because the actual behavior is poorly documented. E.g. most MSR writes and descriptor table loads ignore CR4.LA57 and operate purely on whether the CPU supports LA57. - Bypass the register cache when querying CPL from kvm_sched_out(), as filling the cache from IRQ context is generally unsafe; harden the cache accessors to try to prevent similar issues from occuring in the future. The issue that triggered this change was already fixed in 6.12, but was still kinda latent. - Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM over-advertises SPEC_CTRL when trying to support cross-vendor VMs. - Minor cleanups - Switch hugepage recovery thread to use vhost_task. These kthreads can consume significant amounts of CPU time on behalf of a VM or in response to how the VM behaves (for example how it accesses its memory); therefore KVM tried to place the thread in the VM's cgroups and charge the CPU time consumed by that work to the VM's container. However the kthreads did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM instances inside could not complete freezing. Fix this by replacing the kthread with a PF_USER_WORKER thread, via the vhost_task abstraction. Another 100+ lines removed, with generally better behavior too like having these threads properly parented in the process tree. - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't really work; there was really nothing to work around anyway: the broken patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the erratum. - Fix 6.12 regression where CONFIG_KVM will be built as a module even if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'. x86 selftests: - x86 selftests can now use AVX. Documentation: - Use rST internal links - Reorganize the introduction to the API document Generic: - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead of RCU, so that running a vCPU on a different task doesn't encounter long due to having to wait for all CPUs become quiescent. In general both reads and writes are rare, but userspace that supports confidential computing is introducing the use of "helper" vCPUs that may jump from one host processor to another. Those will be very happy to trigger a synchronize_rcu(), and the effect on performance is quite the disaster" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits) KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD KVM: x86: add back X86_LOCAL_APIC dependency Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()" KVM: x86: switch hugepage recovery thread to vhost_task KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest Documentation: KVM: fix malformed table irqchip/loongson-eiointc: Add virt extension support LoongArch: KVM: Add irqfd support LoongArch: KVM: Add PCHPIC user mode read and write functions LoongArch: KVM: Add PCHPIC read and write functions LoongArch: KVM: Add PCHPIC device support LoongArch: KVM: Add EIOINTC user mode read and write functions LoongArch: KVM: Add EIOINTC read and write functions LoongArch: KVM: Add EIOINTC device support LoongArch: KVM: Add IPI user mode read and write function LoongArch: KVM: Add IPI read and write function LoongArch: KVM: Add IPI device support LoongArch: KVM: Add iocsr and mmio bus simulation in kernel KVM: arm64: Pass on SVE mapping failures ... |
||
![]() |
5c00ff742b |
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq xyyenpibWgUoShU2wZ/Ha8FE5WDINwg= =JfWR -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ... |
||
![]() |
79caa6c88a |
asm-generic updates for 6.13
These are a number of unrelated cleanups, generally simplifying the architecture specific header files: - A series from Al Viro simplifies asm/vga.h, after it turns out that most of it can be generalized. - A series from Julian Vetter adds a common version of memcpy_{to,from}io() and memset_io() and changes most architectures to use that instead of their own implementation - A series from Niklas Schnelle concludes his work to make PC style inb()/outb() optional - Nicolas Pitre contributes improvements for the generic do_div() helper - Christoph Hellwig adds a generic version of page_to_phys() and phys_to_page(), replacing the slightly different architecture specific definitions. - Uwe Kleine-Koenig has a minor cleanup for ioctl definitions -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmc+Z0gACgkQYKtH/8kJ UicqzA/8CcqVdcWKlFAyiFI62DCkd3iYm/joNK3/JhvUIvVFvY+HI0+XpTeOEN1r dfYBNg/KTVSbia5MEEy28Lk5WdoA3X7p9E8NuYC1ik/qvH3Y0kXDU2NiRcJDwalq u56tGUwDITFUzRo47a4Z53JpV60FlGaUVjuKp1jJiOQkcs/iussVYuti8mNVb1ud 1tf21TEAIywq43IC8CxevIRsBkJBqMhalaGWYgKw3ZTwXdiKaXed6RH7IjPodanN 6b7R6aFEqlT7usFX9vLOYNRGzd3HIueXOT1iqiiGI1lm5u/iutxKH+8eS4q381oN WJL0jQdo4sv2MxtSHYrjpzPRQpSp/qrin29h3PVjwBjZF3i5WvFeTYgfjQEEkqe0 fpTXjUsr5n1F1pGV90DtJHwaD5TxKD4VYFLDRCDGUiAnWPkZ7EYUBL3SA6GqEkXB 1lVRPsEBo0y867/WQcoCZA/x7ANZDI6bDZ6fjumwx8OCZOHZeN6FGtqQJHcVZR5O +nu/j3I8YH1tZGKbA+wliyQwt/T60Oxs62HHcFzFLGakARwUEDYO53IGCJUByFwk kCrgNVvzFklwWpqqyTADqb5lkQKpZr5gIdpst185qttCQkb+EFWiCi9w2inXTjHl 2oCc7Uf0cvoxnhVlJAw73eGTtpqS37KCWK+iNyrQbOfy+hgIv+w= =zEHk -----END PGP SIGNATURE----- Merge tag 'asm-generic-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic updates from Arnd Bergmann: "These are a number of unrelated cleanups, generally simplifying the architecture specific header files: - A series from Al Viro simplifies asm/vga.h, after it turns out that most of it can be generalized. - A series from Julian Vetter adds a common version of memcpy_{to,from}io() and memset_io() and changes most architectures to use that instead of their own implementation - A series from Niklas Schnelle concludes his work to make PC style inb()/outb() optional - Nicolas Pitre contributes improvements for the generic do_div() helper - Christoph Hellwig adds a generic version of page_to_phys() and phys_to_page(), replacing the slightly different architecture specific definitions. - Uwe Kleine-Koenig has a minor cleanup for ioctl definitions" * tag 'asm-generic-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (24 commits) empty include/asm-generic/vga.h sparc: get rid of asm/vga.h asm/vga.h: don't bother with scr_mem{cpy,move}v() unless we need to vt_buffer.h: get rid of dead code in default scr_...() instances tty: serial: export serial_8250_warn_need_ioport lib/iomem_copy: fix kerneldoc format style hexagon: simplify asm/io.h for !HAS_IOPORT loongarch: Use new fallback IO memcpy/memset csky: Use new fallback IO memcpy/memset arm64: Use new fallback IO memcpy/memset New implementation for IO memcpy and IO memset watchdog: Add HAS_IOPORT dependency for SBC8360 and SBC7240 __arch_xprod64(): make __always_inline when optimizing for performance ARM: div64: improve __arch_xprod_64() asm-generic/div64: optimize/simplify __div64_const32() lib/math/test_div64: add some edge cases relevant to __div64_const32() asm-generic: add an optional pfn_valid check to page_to_phys asm-generic: provide generic page_to_phys and phys_to_page implementations asm-generic/io.h: Remove I/O port accessors for HAS_IOPORT=n tty: serial: handle HAS_IOPORT dependencies ... |
||
![]() |
e6de688e93 |
Devicetree updates for v6.13:
Bindings: - Enable dtc "interrupt_provider" warnings for binding examples. Fix the warnings in fsl,mu-msi and ti,sci-inta due to this. - Convert zii,rave-sp-wdt, zii,rave-sp-pwrbutton, and altr,fpga-passive-serial to DT schema format - Add some documentation on the different forms of YAML text blocks which are a constant source of review comments - Fix some schema errors in constraints for arrays - Add compatibles for qcom,sar2130p-pdc and onnn,adt7462 DT core: - Allow overlay kunit tests to run CONFIG_OF_OVERLAY=n - Add some warnings on deprecated address handling - Rework early_init_dt_scan() so the arch can pass in the phys address of the DTB as __pa() is not always valid to use. This fixes a warning for arm64 with kexec. - Add and use some new DT graph iterators for iterating over ports and endpoints - Rework reserved-memory handling to be sized dynamically for fixed regions - Optimize of_modalias() to avoid a strlen() call - Constify struct device_node and property pointers where ever possible -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEktVUI4SxYhzZyEuo+vtdtY28YcMFAmc7qaoACgkQ+vtdtY28 YcN54g/+Ifz4hQTSWV+VBhihovMMPiQUdxZ+MfJfPnPcZ7NJzaTf+zqhZyS4wQou v0pdtyR0B1fCM/EvKaYD+1aTTAQFEIT5Dqac+9ePwqaYqSk+yCTxyzW9m+P3rTPV THo8SGRss7T+Rs+2WaUGxphTJItMGIRdbBvoqK+82EdKFXXKw2BSD8tlJTWwbTam 9xkrpUzw7f4FvVY8vVhRyOd5i8/v+FH8D65DMIT6ME9zRn4MzKVzCg6udgYeCBld C2XbV+wnyewtjrN2IX+2uQ2mheb7yJu3AEI3iFR5x/sRrsSLpisxrUl38xOOpxrM XxYtHgE3omjagQ+y+L2PMthlKvhFrXVXIvhUH8xxje5z1Vyq3VMfiABkHlMpAnys 5LY4xEhvqDkPNo65UmjMiHxGW/xtcKsmAZBOp+HLerZfCJIFvl380fi8mNg/Sjvz 7ExCSpzCPsHASZg7QCTplU3BUtg+067Ch/k8Hsn/Og73Pqm3xH4IezQZKwweN9ZT LC6OQBI7C3Yt1hom9qgUcA4H4/aaPxTVV7i0DGuAKh8Lon6SaoX2yFpweUBgbsL/ c9DIW4vbYBIGASxxUbHlNMKvPCKACKmpFXhsnH5Waj+VWSOwsJ8bjGpH8PfMKdFW dyJB/r94GqCGpCW7+FC1qGmXiQJGkCo89pKBVjSf4Kj45ht/76o= =NCYS -----END PGP SIGNATURE----- Merge tag 'devicetree-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux Pull devicetree updates from Rob Herring: "Bindings: - Enable dtc "interrupt_provider" warnings for binding examples. Fix the warnings in fsl,mu-msi and ti,sci-inta due to this. - Convert zii,rave-sp-wdt, zii,rave-sp-pwrbutton, and altr,fpga-passive-serial to DT schema format - Add some documentation on the different forms of YAML text blocks which are a constant source of review comments - Fix some schema errors in constraints for arrays - Add compatibles for qcom,sar2130p-pdc and onnn,adt7462 DT core: - Allow overlay kunit tests to run CONFIG_OF_OVERLAY=n - Add some warnings on deprecated address handling - Rework early_init_dt_scan() so the arch can pass in the phys address of the DTB as __pa() is not always valid to use. This fixes a warning for arm64 with kexec. - Add and use some new DT graph iterators for iterating over ports and endpoints - Rework reserved-memory handling to be sized dynamically for fixed regions - Optimize of_modalias() to avoid a strlen() call - Constify struct device_node and property pointers where ever possible" * tag 'devicetree-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (36 commits) of: Allow overlay kunit tests to run CONFIG_OF_OVERLAY=n dt-bindings: interrupt-controller: qcom,pdc: Add SAR2130P compatible of/address: Rework bus matching to avoid warnings of: WARN on deprecated #address-cells/#size-cells handling of/fdt: Don't use default address cell sizes for address translation dt-bindings: Enable dtc "interrupt_provider" warnings of/fdt: add dt_phys arg to early_init_dt_scan and early_init_dt_verify dt-bindings: cache: qcom,llcc: Fix X1E80100 reg entries dt-bindings: watchdog: convert zii,rave-sp-wdt.txt to yaml format dt-bindings: input: convert zii,rave-sp-pwrbutton.txt to yaml media: xilinx-tpg: use new of_graph functions fbdev: omapfb: use new of_graph functions gpu: drm: omapdrm: use new of_graph functions ASoC: audio-graph-card2: use new of_graph functions ASoC: audio-graph-card: use new of_graph functions ASoC: test-component: use new of_graph functions of: property: use new of_graph functions of: property: add of_graph_get_next_port_endpoint() of: property: add of_graph_get_next_port() of: module: remove strlen() call in of_modalias() ... |
||
![]() |
aad3a0d084 |
ftrace updates for v6.13:
- Merged tag ftrace-v6.12-rc4 There was a fix to locking in register_ftrace_graph() for shadow stacks that was sent upstream. But this code was also being rewritten, and the locking fix was needed. Merging this fix was required to continue the work. - Restructure the function graph shadow stack to prepare it for use with kretprobes With the goal of merging the shadow stack logic of function graph and kretprobes, some more restructuring of the function shadow stack is required. Move out function graph specific fields from the fgraph infrastructure and store it on the new stack variables that can pass data from the entry callback to the exit callback. Hopefully, with this change, the merge of kretprobes to use fgraph shadow stacks will be ready by the next merge window. - Make shadow stack 4k instead of using PAGE_SIZE. Some architectures have very large PAGE_SIZE values which make its use for shadow stacks waste a lot of memory. - Give shadow stacks its own kmem cache. When function graph is started, every task on the system gets a shadow stack. In the future, shadow stacks may not be 4K in size. Have it have its own kmem cache so that whatever size it becomes will still be efficient in allocations. - Initialize profiler graph ops as it will be needed for new updates to fgraph - Convert to use guard(mutex) for several ftrace and fgraph functions - Add more comments and documentation - Show function return address in function graph tracer Add an option to show the caller of a function at each entry of the function graph tracer, similar to what the function tracer does. - Abstract out ftrace_regs from being used directly like pt_regs ftrace_regs was created to store a partial pt_regs. It holds only the registers and stack information to get to the function arguments and return values. On several archs, it is simply a wrapper around pt_regs. But some users would access ftrace_regs directly to get the pt_regs which will not work on all archs. Make ftrace_regs an abstract structure that requires all access to its fields be through accessor functions. - Show how long it takes to do function code modifications When code modification for function hooks happen, it always had the time recorded in how long it took to do the conversion. But this value was never exported. Recently the code was touched due to new ROX modification handling that caused a large slow down in doing the modifications and had a significant impact on boot times. Expose the timings in the dyn_ftrace_total_info file. This file was created a while ago to show information about memory usage and such to implement dynamic function tracing. It's also an appropriate file to store the timings of this modification as well. This will make it easier to see the impact of changes to code modification on boot up timings. - Other clean ups and small fixes -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZztrUxQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qnnNAQD6w4q9VQ7oOE2qKLqtnj87h4c1GqKn SPkpEfC3n/ATEAD/fnYjT/eOSlHiGHuD/aTA+U/bETrT99bozGM/4mFKEgY= =6nCa -----END PGP SIGNATURE----- Merge tag 'ftrace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull ftrace updates from Steven Rostedt: - Restructure the function graph shadow stack to prepare it for use with kretprobes With the goal of merging the shadow stack logic of function graph and kretprobes, some more restructuring of the function shadow stack is required. Move out function graph specific fields from the fgraph infrastructure and store it on the new stack variables that can pass data from the entry callback to the exit callback. Hopefully, with this change, the merge of kretprobes to use fgraph shadow stacks will be ready by the next merge window. - Make shadow stack 4k instead of using PAGE_SIZE. Some architectures have very large PAGE_SIZE values which make its use for shadow stacks waste a lot of memory. - Give shadow stacks its own kmem cache. When function graph is started, every task on the system gets a shadow stack. In the future, shadow stacks may not be 4K in size. Have it have its own kmem cache so that whatever size it becomes will still be efficient in allocations. - Initialize profiler graph ops as it will be needed for new updates to fgraph - Convert to use guard(mutex) for several ftrace and fgraph functions - Add more comments and documentation - Show function return address in function graph tracer Add an option to show the caller of a function at each entry of the function graph tracer, similar to what the function tracer does. - Abstract out ftrace_regs from being used directly like pt_regs ftrace_regs was created to store a partial pt_regs. It holds only the registers and stack information to get to the function arguments and return values. On several archs, it is simply a wrapper around pt_regs. But some users would access ftrace_regs directly to get the pt_regs which will not work on all archs. Make ftrace_regs an abstract structure that requires all access to its fields be through accessor functions. - Show how long it takes to do function code modifications When code modification for function hooks happen, it always had the time recorded in how long it took to do the conversion. But this value was never exported. Recently the code was touched due to new ROX modification handling that caused a large slow down in doing the modifications and had a significant impact on boot times. Expose the timings in the dyn_ftrace_total_info file. This file was created a while ago to show information about memory usage and such to implement dynamic function tracing. It's also an appropriate file to store the timings of this modification as well. This will make it easier to see the impact of changes to code modification on boot up timings. - Other clean ups and small fixes * tag 'ftrace-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (22 commits) ftrace: Show timings of how long nop patching took ftrace: Use guard to take ftrace_lock in ftrace_graph_set_hash() ftrace: Use guard to take the ftrace_lock in release_probe() ftrace: Use guard to lock ftrace_lock in cache_mod() ftrace: Use guard for match_records() fgraph: Use guard(mutex)(&ftrace_lock) for unregister_ftrace_graph() fgraph: Give ret_stack its own kmem cache fgraph: Separate size of ret_stack from PAGE_SIZE ftrace: Rename ftrace_regs_return_value to ftrace_regs_get_return_value selftests/ftrace: Fix check of return value in fgraph-retval.tc test ftrace: Use arch_ftrace_regs() for ftrace_regs_*() macros ftrace: Consolidate ftrace_regs accessor functions for archs using pt_regs ftrace: Make ftrace_regs abstract from direct use fgragh: No need to invoke the function call_filter_check_discard() fgraph: Simplify return address printing in function graph tracer function_graph: Remove unnecessary initialization in ftrace_graph_ret_addr() function_graph: Support recording and printing the function return address ftrace: Have calltime be saved in the fgraph storage ftrace: Use a running sleeptime instead of saving on shadow stack fgraph: Use fgraph data to store subtime for profiler ... |
||
![]() |
0352387523 |
First step of consolidating the VDSO data page handling:
The VDSO data page handling is architecture specific for historical reasons, but there is no real technical reason to do so. Aside of that VDSO data has become a dump ground for various mechanisms and fail to provide a clear separation of the functionalities. Clean this up by: * consolidating the VDSO page data by getting rid of architecture specific warts especially in x86 and PowerPC. * removing the last includes of header files which are pulling in other headers outside of the VDSO namespace. * seperating timekeeping and other VDSO data accordingly. Further consolidation of the VDSO page handling is done in subsequent changes scheduled for the next merge window. This also lays the ground for expanding the VDSO time getters for independent PTP clocks in a generic way without making every architecture add support seperately. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kyoTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoVBjD/9awdN2YeCGIM9rlHIktUdNRmRSL2SL 6av1CPffN5DenONYTXWrDYPkC4yfjUwIs8H57uzFo10yA7RQ/Qfq+O68k5GnuFew jvpmmYSZ6TT21AmAaCIhn+kdl9YbEJFvN2AWH85Bl29k9FGB04VzJlQMMjfEZ1a5 Mhwv+cfYNuPSZmU570jcxW2XgbyTWlLZBByXX/Tuz9bwpmtszba507bvo45x6gIP twaWNzrsyJpdXfMrfUnRiChN8jHlDN7I6fgQvpsoRH5FOiVwIFo0Ip2rKbk+ONfD W/rcU5oeqRIxRVDHzf2Sv8WPHMCLRv01ZHBcbJOtgvZC3YiKgKYoeEKabu9ZL1BH 6VmrxjYOBBFQHOYAKPqBuS7BgH5PmtMbDdSZXDfRaAKaCzhCRysdlWW7z48r2R// zPufb7J6Tle23AkuZWhFjvlGgSBl4zxnTFn31HYOyQps3TMI4y50Z2DhE/EeU8a6 DRl8/k1KQVDUZ6udJogS5kOr1J8pFtUPrA2uhR8UyLdx7YKiCzcdO1qWAjtXlVe8 oNpzinU+H9bQqGe9IyS7kCG9xNaCRZNkln5Q1WfnkTzg5f6ihfaCvIku3l4bgVpw 3HmcxYiC6RxQB+ozwN7hzCCKT4L9aMhr/457TNOqRkj2Elw3nvJ02L4aI86XAKLE jwO9Fkp9qcCxCw== =q5eD -----END PGP SIGNATURE----- Merge tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull vdso data page handling updates from Thomas Gleixner: "First steps of consolidating the VDSO data page handling. The VDSO data page handling is architecture specific for historical reasons, but there is no real technical reason to do so. Aside of that VDSO data has become a dump ground for various mechanisms and fail to provide a clear separation of the functionalities. Clean this up by: - consolidating the VDSO page data by getting rid of architecture specific warts especially in x86 and PowerPC. - removing the last includes of header files which are pulling in other headers outside of the VDSO namespace. - seperating timekeeping and other VDSO data accordingly. Further consolidation of the VDSO page handling is done in subsequent changes scheduled for the next merge window. This also lays the ground for expanding the VDSO time getters for independent PTP clocks in a generic way without making every architecture add support seperately" * tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits) x86/vdso: Add missing brackets in switch case vdso: Rename struct arch_vdso_data to arch_vdso_time_data powerpc: Split systemcfg struct definitions out from vdso powerpc: Split systemcfg data out of vdso data page powerpc: Add kconfig option for the systemcfg page powerpc/pseries/lparcfg: Use num_possible_cpus() for potential processors powerpc/pseries/lparcfg: Fix printing of system_active_processors powerpc/procfs: Propagate error of remap_pfn_range() powerpc/vdso: Remove offset comment from 32bit vdso_arch_data x86/vdso: Split virtual clock pages into dedicated mapping x86/vdso: Delete vvar.h x86/vdso: Access vdso data without vvar.h x86/vdso: Move the rng offset to vsyscall.h x86/vdso: Access rng vdso data without vvar.h x86/vdso: Access timens vdso data without vvar.h x86/vdso: Allocate vvar page from C code x86/vdso: Access rng data from kernel without vvar x86/vdso: Place vdso_data at beginning of vvar page x86/vdso: Use __arch_get_vdso_data() to access vdso data x86/mm/mmap: Remove arch_vma_name() ... |
||
![]() |
f41dac3efb |
Performance events changes for v6.13:
- Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) - Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) - VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) - New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) - Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov) Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmc7eKERHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1i57A/+KQ6TrIoICVTE+BPlDfUw8NU+N3DagVb0 dzoyDxlDRsnsYzeXZipPn+3IitX1w+DrGxBNIojSoiFVCLnHIKgo4uHbj7cVrR7J fBTVSnoJ94SGAk5ySebvLwMLce/YhXBeHK2lx6W/pI6acNcxzDfIabjjETeqltUo g7hmT9lo10pzZEZyuUfYX9khlWBxda1dKHc9pMIq7baeLe4iz/fCGlJ0K4d4M4z3 NPZw239Np6iHUwu3Lcs4gNKe4rcDe7Bt47hpedemHe0Y+7c4s2HaPxbXWxvDtE76 mlsg93i28f8SYxeV83pREn0EOCptXcljhiek+US+GR7NSbltMnV+uUiDfPKIE9+Y vYP/DYF9hx73FsOucEFrHxYYcePorn3pne5/khBYWdQU6TnlrBYWpoLQsjgCKTTR 4JhCFlBZ5cDpc6ihtpwCwVTQ4Q/H7vM1XOlDwx0hPhcIPPHDreaQD/wxo61jBdXf PY0EPAxh3BcQxfPYuDS+XiYjQ8qO8MtXMKz5bZyHBZlbHwccV6T4ExjsLKxFk5As 6BG8pkBWLg7drXAgVdleIY0ux+34w/Zzv7gemdlQxvWLlZrVvpjiG93oU3PTpZeq A2UD9eAOuXVD6+HsF/dmn88sFmcLWbrMskFWujkvhEUmCvSGAnz3YSS/mLEawBiT 2xI8xykNWSY= =ItOT -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: "Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov)" * tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) perf/core: Correct perf sampling with guest VMs perf/x86: Refactor misc flag assignments perf/powerpc: Use perf_arch_instruction_pointer() perf/core: Hoist perf_instruction_pointer() and perf_misc_flags() perf/arm: Drop unused functions uprobes: Re-order struct uprobe_task to save some space perf/x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init perf/x86/intel: Do not enable large PEBS for events with aux actions or aux sampling perf/x86/intel/pt: Add support for pause / resume perf/core: Add aux_pause, aux_resume, aux_start_paused perf/x86/intel/pt: Fix buffer full but size is 0 case uprobes: SRCU-protect uretprobe lifetime (with timeout) uprobes: allow put_uprobe() from non-sleepable softirq context perf/x86/rapl: Clean up cpumask and hotplug perf/x86/rapl: Move the pmu allocation out of CPU hotplug uprobe: Add support for session consumer uprobe: Add data pointer to consumer handlers perf/x86/amd: Warn only on new bits set uprobes: fold xol_take_insn_slot() into xol_get_insn_slot() uprobes: kill xol_area->slot_count ... |
||
![]() |
ba1f9c8fe3 |
arm64 updates for 6.13:
* Support for running Linux in a protected VM under the Arm Confidential Compute Architecture (CCA) * Guarded Control Stack user-space support. Current patches follow the x86 ABI of implicitly creating a shadow stack on clone(). Subsequent patches (already on the list) will add support for clone3() allowing finer-grained control of the shadow stack size and placement from libc * AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are getting close with the upcoming dpISA support) * Other arch features: - In-kernel use of the memcpy instructions, FEAT_MOPS (previously only exposed to user; uaccess support not merged yet) - MTE: hugetlbfs support and the corresponding kselftests - Optimise CRC32 using the PMULL instructions - Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG - Optimise the kernel TLB flushing to use the range operations - POE/pkey (permission overlays): further cleanups after bringing the signal handler in line with the x86 behaviour for 6.12 * arm64 perf updates: - Support for the NXP i.MX91 PMU in the existing IMX driver - Support for Ampere SoCs in the Designware PCIe PMU driver - Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC - Support for Samsung's 'Mongoose' CPU PMU - Support for PMUv3.9 finer-grained userspace counter access control - Switch back to platform_driver::remove() now that it returns 'void' - Add some missing events for the CXL PMU driver * Miscellaneous arm64 fixes/cleanups: - Page table accessors cleanup: type updates, drop unused macros, reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity check addresses before runtime P4D/PUD folding - Command line override for ID_AA64MMFR0_EL1.ECV (advertising the FEAT_ECV for the generic timers) allowing Linux to boot with firmware deployments that don't set SCTLR_EL3.ECVEn - ACPI/arm64: tighten the check for the array of platform timer structures and adjust the error handling procedure in gtdt_parse_timer_block() - Optimise the cache flush for the uprobes xol slot (skip if no change) and other uprobes/kprobes cleanups - Fix the context switching of tpidrro_el0 when kpti is enabled - Dynamic shadow call stack fixes - Sysreg updates - Various arm64 kselftest improvements -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmc5POIACgkQa9axLQDI XvEDYA//a3eeNkgMuGdnSCVcLz+zy+oNwAwboG/4X1DqL8jiCbI4npwugPx95RIA YZOUvo9T2aL3OyefpUHll4gFHqx9OwoZIig2F70TEUmlPsGUbh0KBkdfQF3xZPdl EwV0kHSGEqMWMBwsGJGwgCYrUaf1MUQzh1GBl7VJ2ts5XsJBaBeOyKkysij26wtZ V+aHq2IUx7qQS7+HC/4P6IoHxKziFcsCMovaKaynP4cw9xXBQbDMcNlHEwndOMyk pu2zrv7GG0j3KQuVP/2Alf5FKhmI0GVGP/6Nc/zsOmw96w8Kf7HfzEtkHawr2aRq rqg/c9ivzDn1p+fUBo4ZYtrRk4IAY+yKu6hdzdLTP5+bQrBTWTO9rjQVBm9FAGYT sCdEj1NqzvExvNHD7X6ut/GJ05lmce3K+qeSXSEysN9gqiT3eomYWMXrD2V2lxzb rIDDcb/icfaqjt14Mksh19r/rzNeq7noj9CGSmcqw0BHZfHzl38Lai6pdfYzCNyn vCM/c4c1D/WWX8/lifO1JZVbhDk1jy82Iphg2KEhL8iKPxDsKBBZLmYuU1oa7tMo WryGAz9+GQwd+W9chFuaOEtMnzvW2scEJ5Eb2fEf0Qj0aEurkL+C9dZR6o1GN77V DBUxtU628Ef4PJJGfbNCwZzdd8UPYG3a/mKfQQ3dz0oz2LySlW4= =wDot -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Support for running Linux in a protected VM under the Arm Confidential Compute Architecture (CCA) - Guarded Control Stack user-space support. Current patches follow the x86 ABI of implicitly creating a shadow stack on clone(). Subsequent patches (already on the list) will add support for clone3() allowing finer-grained control of the shadow stack size and placement from libc - AT_HWCAP3 support (not running out of HWCAP2 bits yet but we are getting close with the upcoming dpISA support) - Other arch features: - In-kernel use of the memcpy instructions, FEAT_MOPS (previously only exposed to user; uaccess support not merged yet) - MTE: hugetlbfs support and the corresponding kselftests - Optimise CRC32 using the PMULL instructions - Support for FEAT_HAFT enabling ARCH_HAS_NONLEAF_PMD_YOUNG - Optimise the kernel TLB flushing to use the range operations - POE/pkey (permission overlays): further cleanups after bringing the signal handler in line with the x86 behaviour for 6.12 - arm64 perf updates: - Support for the NXP i.MX91 PMU in the existing IMX driver - Support for Ampere SoCs in the Designware PCIe PMU driver - Support for Marvell's 'PEM' PCIe PMU present in the 'Odyssey' SoC - Support for Samsung's 'Mongoose' CPU PMU - Support for PMUv3.9 finer-grained userspace counter access control - Switch back to platform_driver::remove() now that it returns 'void' - Add some missing events for the CXL PMU driver - Miscellaneous arm64 fixes/cleanups: - Page table accessors cleanup: type updates, drop unused macros, reorganise arch_make_huge_pte() and clean up pte_mkcont(), sanity check addresses before runtime P4D/PUD folding - Command line override for ID_AA64MMFR0_EL1.ECV (advertising the FEAT_ECV for the generic timers) allowing Linux to boot with firmware deployments that don't set SCTLR_EL3.ECVEn - ACPI/arm64: tighten the check for the array of platform timer structures and adjust the error handling procedure in gtdt_parse_timer_block() - Optimise the cache flush for the uprobes xol slot (skip if no change) and other uprobes/kprobes cleanups - Fix the context switching of tpidrro_el0 when kpti is enabled - Dynamic shadow call stack fixes - Sysreg updates - Various arm64 kselftest improvements * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (168 commits) arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled kselftest/arm64: Try harder to generate different keys during PAC tests kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all() arm64/ptrace: Clarify documentation of VL configuration via ptrace kselftest/arm64: Corrupt P0 in the irritator when testing SSVE acpi/arm64: remove unnecessary cast arm64/mm: Change protval as 'pteval_t' in map_range() kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c kselftest/arm64: Add FPMR coverage to fp-ptrace kselftest/arm64: Expand the set of ZA writes fp-ptrace does kselftets/arm64: Use flag bits for features in fp-ptrace assembler code kselftest/arm64: Enable build of PAC tests with LLVM=1 kselftest/arm64: Check that SVCR is 0 in signal handlers selftests/mm: Fix unused function warning for aarch64_write_signal_pkey() kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests kselftest/arm64: Fix build with stricter assemblers arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux() arm64/scs: Deal with 64-bit relative offsets in FDE frames ... |
||
![]() |
83ef4a378e |
Merge branch 'for-next/pkey-signal' into for-next/core
* for-next/pkey-signal: : Bring arm64 pkey signal delivery in line with the x86 behaviour selftests/mm: Fix unused function warning for aarch64_write_signal_pkey() selftests/mm: Define PKEY_UNRESTRICTED for pkey_sighandler_tests selftests/mm: Enable pkey_sighandler_tests on arm64 selftests/mm: Use generic pkey register manipulation arm64: signal: Remove unused macro arm64: signal: Remove unnecessary check when saving POE state arm64: signal: Improve POR_EL0 handling to avoid uaccess failures firmware: arm_sdei: Fix the input parameter of cpuhp_remove_state() Revert "kasan: Disable Software Tag-Based KASAN with GCC" kasan: Fix Software Tag-Based KASAN with GCC kasan: Disable Software Tag-Based KASAN with GCC Documentation/protection-keys: add AArch64 to documentation arm64: set POR_EL0 for kernel threads # Conflicts: # arch/arm64/kernel/signal.c |
||
![]() |
437330d90c |
Merge branch 'for-next/mops' into for-next/core
* for-next/mops: : More FEAT_MOPS (memcpy instructions) uses - in-kernel routines arm64: mops: Document requirements for hypervisors arm64: lib: Use MOPS for copy_page() and clear_page() arm64: lib: Use MOPS for memcpy() routines arm64: mops: Document booting requirement for HCR_EL2.MCE2 arm64: mops: Handle MOPS exceptions from EL1 arm64: probes: Disable kprobes/uprobes on MOPS instructions # Conflicts: # arch/arm64/kernel/entry-common.c |
||
![]() |
5a4332062e |
Merge branches 'for-next/gcs', 'for-next/probes', 'for-next/asm-offsets', 'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: Switch back to struct platform_driver::remove() perf: arm_pmuv3: Add support for Samsung Mongoose PMU dt-bindings: arm: pmu: Add Samsung Mongoose core compatible perf/dwc_pcie: Fix typos in event names perf/dwc_pcie: Add support for Ampere SoCs ARM: pmuv3: Add missing write_pmuacr() perf/marvell: Marvell PEM performance monitor support perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control perf/dwc_pcie: Convert the events with mixed case to lowercase perf/cxlpmu: Support missing events in 3.1 spec perf: imx_perf: add support for i.MX91 platform dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible drivers perf: remove unused field pmu_node * for-next/gcs: (42 commits) : arm64 Guarded Control Stack user-space support kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c arm64/gcs: Fix outdated ptrace documentation kselftest/arm64: Ensure stable names for GCS stress test results kselftest/arm64: Validate that GCS push and write permissions work kselftest/arm64: Enable GCS for the FP stress tests kselftest/arm64: Add a GCS stress test kselftest/arm64: Add GCS signal tests kselftest/arm64: Add test coverage for GCS mode locking kselftest/arm64: Add a GCS test program built with the system libc kselftest/arm64: Add very basic GCS test program kselftest/arm64: Always run signals tests with GCS enabled kselftest/arm64: Allow signals tests to specify an expected si_code kselftest/arm64: Add framework support for GCS to signal handling tests kselftest/arm64: Add GCS as a detected feature in the signal tests kselftest/arm64: Verify the GCS hwcap arm64: Add Kconfig for Guarded Control Stack (GCS) arm64/ptrace: Expose GCS via ptrace and core files arm64/signal: Expose GCS state in signal frames arm64/signal: Set up and restore the GCS context for signal handlers arm64/mm: Implement map_shadow_stack() ... * for-next/probes: : Various arm64 uprobes/kprobes cleanups arm64: insn: Simulate nop instruction for better uprobe performance arm64: probes: Remove probe_opcode_t arm64: probes: Cleanup kprobes endianness conversions arm64: probes: Move kprobes-specific fields arm64: probes: Fix uprobes for big-endian kernels arm64: probes: Fix simulate_ldr*_literal() arm64: probes: Remove broken LDR (literal) uprobe support * for-next/asm-offsets: : arm64 asm-offsets.c cleanup (remove unused offsets) arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE arm64: asm-offsets: remove VM_EXEC and PAGE_SZ arm64: asm-offsets: remove MM_CONTEXT_ID arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET arm64: asm-offsets: remove VMA_VM_* arm64: asm-offsets: remove TSK_ACTIVE_MM * for-next/tlb: : TLB flushing optimisations arm64: optimize flush tlb kernel range arm64: tlbflush: add __flush_tlb_range_limit_excess() * for-next/misc: : Miscellaneous patches arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled arm64/ptrace: Clarify documentation of VL configuration via ptrace acpi/arm64: remove unnecessary cast arm64/mm: Change protval as 'pteval_t' in map_range() arm64: uprobes: Optimize cache flushes for xol slot acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block() arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings arm64/mm: Sanity check PTE address before runtime P4D/PUD folding arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont() ACPI: GTDT: Tighten the check for the array of platform timer structures arm64/fpsimd: Fix a typo arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers arm64: Return early when break handler is found on linked-list arm64/mm: Re-organize arch_make_huge_pte() arm64/mm: Drop _PROT_SECT_DEFAULT arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV arm64: head: Drop SWAPPER_TABLE_SHIFT arm64: cpufeature: add POE to cpucap_is_possible() arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t * for-next/mte: : Various MTE improvements selftests: arm64: add hugetlb mte tests hugetlb: arm64: add mte support * for-next/sysreg: : arm64 sysreg updates arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09 * for-next/stacktrace: : arm64 stacktrace improvements arm64: preserve pt_regs::stackframe during exec*() arm64: stacktrace: unwind exception boundaries arm64: stacktrace: split unwind_consume_stack() arm64: stacktrace: report recovered PCs arm64: stacktrace: report source of unwind data arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk() arm64: use a common struct frame_record arm64: pt_regs: swap 'unused' and 'pmr' fields arm64: pt_regs: rename "pmr_save" -> "pmr" arm64: pt_regs: remove stale big-endian layout arm64: pt_regs: assert pt_regs is a multiple of 16 bytes * for-next/hwcap3: : Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4) arm64: Support AT_HWCAP3 binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4 * for-next/kselftest: (30 commits) : arm64 kselftest fixes/cleanups kselftest/arm64: Try harder to generate different keys during PAC tests kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all() kselftest/arm64: Corrupt P0 in the irritator when testing SSVE kselftest/arm64: Add FPMR coverage to fp-ptrace kselftest/arm64: Expand the set of ZA writes fp-ptrace does kselftets/arm64: Use flag bits for features in fp-ptrace assembler code kselftest/arm64: Enable build of PAC tests with LLVM=1 kselftest/arm64: Check that SVCR is 0 in signal handlers kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests kselftest/arm64: Fix build with stricter assemblers kselftest/arm64: Test signal handler state modification in fp-stress kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test kselftest/arm64: Implement irritators for ZA and ZT kselftest/arm64: Remove unused ADRs from irritator handlers kselftest/arm64: Correct misleading comments on fp-stress irritators kselftest/arm64: Poll less often while waiting for fp-stress children kselftest/arm64: Increase frequency of signal delivery in fp-stress kselftest/arm64: Fix encoding for SVE B16B16 test ... * for-next/crc32: : Optimise CRC32 using PMULL instructions arm64/crc32: Implement 4-way interleave using PMULL arm64/crc32: Reorganize bit/byte ordering macros arm64/lib: Handle CRC-32 alternative in C code * for-next/guest-cca: : Support for running Linux as a guest in Arm CCA arm64: Document Arm Confidential Compute virt: arm-cca-guest: TSM_REPORT support for realms arm64: Enable memory encrypt for Realms arm64: mm: Avoid TLBI when marking pages as valid arm64: Enforce bounce buffers for realm DMA efi: arm64: Map Device with Prot Shared arm64: rsi: Map unprotected MMIO as decrypted arm64: rsi: Add support for checking whether an MMIO is protected arm64: realm: Query IPA size from the RMM arm64: Detect if in a realm and set RIPAS RAM arm64: rsi: Add RSI definitions * for-next/haft: : Support for arm64 FEAT_HAFT arm64: pgtable: Warn unexpected pmdp_test_and_clear_young() arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG arm64: Add support for FEAT_HAFT arm64: setup: name 'tcr2' register arm64/sysreg: Update ID_AA64MMFR1_EL1 register * for-next/scs: : Dynamic shadow call stack fixes arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux() arm64/scs: Deal with 64-bit relative offsets in FDE frames arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames |
||
![]() |
0586ade9e7 |
LoongArch KVM changes for v6.13
1. Add iocsr and mmio bus simulation in kernel. 2. Add in-kernel interrupt controller emulation. 3. Add virt extension support for eiointc irqchip. -----BEGIN PGP SIGNATURE----- iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmc0otUWHGNoZW5odWFj YWlAa2VybmVsLm9yZwAKCRAChivD8uImega1D/0Q91hUlKVp55QXDZrnpW7Z71v+ I9u8avjRiISDMLkjku/HE9eoD7lVYndzkDDSH32W+UVpBharJvuR+MIoH4jtLf3k IImybEaBwXru0+8YxbMqIzqcUEbQda0U5u31Ju1U6xcp+y1PGJJJDVPk4vBXOQB3 +wnLE6Q7orddw3s6G0QYtTv8jPDPOOL0Jv2ClqBaM8mTr2dIEpMjbZg2yGPMQVlE mVEgoked9OS5blkoxz2rEfUMQX5CVs20lyhfr05Qk2mTbeKITceqVlx183CyLMUO /9uJl7sD1ctxmQtU7ezeM7n7ItP9ehdAPECkt8WWSHM6mGbwHVTAtJoQGZjgoc6O pL1aSzhfGH3mdbwUCjhGsov6cZ4hliDQ76H3dlxrSr0JJX3zOPY5qDegmfDlxlyT uoKOAsx5D2N+WgshDPApZonkh38agaeTWposamseJbVNZXHmQV8Q8ipiNhgcgtVe mAReWfoYHL2mFIQNrfKS2i9J8mRj9SrjcQyNxgeU3L1s5Mr1p11yYXrkfVrZiHVk 0KzPfNJZvHO7zvgAIbyqyXEAY2Cq6F2r7UIELUOzY2zayoZwbn2jIZrsUVVbUsWp G4FbTRQDK1UR1cCVqe9jLmf5BzlSZ+jXOgcg+CxGIAelZ0qRcK/IgkX6/KygSlgY 49W45xpHtVUycsWDNA== =Jov3 -----END PGP SIGNATURE----- Merge tag 'loongarch-kvm-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.13 1. Add iocsr and mmio bus simulation in kernel. 2. Add in-kernel interrupt controller emulation. 3. Add virt extension support for eiointc irqchip. |
||
![]() |
7b541d557f |
KVM/arm64 changes for 6.13, part #1
- Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps - PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest - Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM - Avoid emulated MMIO completion if userspace has requested synchronous external abort injection - Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests -----BEGIN PGP SIGNATURE----- iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZzTZXRccb2xpdmVyLnVw dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFioUAP0cs2pYcwuCqLgmeHqfz6L5Xsw3 hKBCNuvr5mjU0hZfLAEA5ml2eUKD7OnssAOmUZ/K/NoCdJFCe8mJWQDlURvr9g4= =u2/3 -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.13' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.13, part #1 - Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps - PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest - Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM - Avoid emulated MMIO completion if userspace has requested synchronous external abort injection - Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests |
||
![]() |
67ab51cbdf |
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
Commit |
||
![]() |
2c47e7a74f |
perf/core: Correct perf sampling with guest VMs
Previously any PMU overflow interrupt that fired while a VCPU was loaded was recorded as a guest event whether it truly was or not. This resulted in nonsense perf recordings that did not honor perf_event_attr.exclude_guest and recorded guest IPs where it should have recorded host IPs. Rework the sampling logic to only record guest samples for events with exclude_guest = 0. This way any host-only events with exclude_guest set will never see unexpected guest samples. The behaviour of events with exclude_guest = 0 is unchanged. Note that events configured to sample both host and guest may still misattribute a PMI that arrived in the host as a guest event depending on KVM arch and vendor behavior. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20241113190156.2145593-6-coltonlewis@google.com |
||
![]() |
04782e6391 |
perf/core: Hoist perf_instruction_pointer() and perf_misc_flags()
For clarity, rename the arch-specific definitions of these functions to perf_arch_* to denote they are arch-specifc. Define the generic-named functions in one place where they can call the arch-specific ones as needed. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Madhavan Srinivasan <maddy@linux.ibm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20241113190156.2145593-3-coltonlewis@google.com |
||
![]() |
c0139f6cbb |
arm64/ptrace: Clarify documentation of VL configuration via ptrace
When we configure SVE, SSVE or ZA via ptrace we allow the user to configure the vector length and specify any of the flags that are accepted when configuring via prctl(). This includes the S[VM]E_SET_VL_ONEXEC flag which defers the configuration of the VL until an exec(). We don't do anything to limit the provision of register data as part of configuring the _ONEXEC VL but as a function of the VL enumeration support we do this will be interpreted using the vector length currently configured for the process. This is all a bit surprising, and probably we should just not have allowed register data to be specified with _ONEXEC, but it's our ABI so let's add some explicit documentation in both the ABI documents and the source calling out what happens. The comments are also missing the fact that since SME does not have a mandatory 128 bit VL it is possible for VL enumeration to result in the configuration of a higher VL than was requested, cover that too. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241106-arm64-sve-ptrace-vl-set-v1-1-3b164e8b559c@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
de7fb8d3a2 |
arm64/mm: Change protval as 'pteval_t' in map_range()
pgprot_t has been defined as an encapsulated structure with pteval_t as its element. Hence it is prudent to use pteval_t as the type instead of via the size based u64. Besides pteval_t type might be different size later on with FEAT_D128. Cc: Will Deacon <will@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Link: https://lore.kernel.org/r/20241111075249.609493-1-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9ea7edac83 |
arm64 fixes for -rc7
- Fix handling of SVE traps from userspace on preemptible kernels when converting the saved floating point state into SVE state. - Remove broken support for the SMCCCv1.3 "SVE discard hint" optimisation. - Disable SME support, as the current support code suffers from numerous issues around signal delivery, ptrace access and context-switch which can lead to user-visible corruption of the register state. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmcsr4EQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNPPiCACg3kva9wv7Rs1BQa+dJKiTQ7e5rcaEQ2dK 3v86vxvyl/UJIx/AmGS3ydKlmBwQYOHlBGHH7Iw3XphZK6YQCsgbvmTHiE7UoimZ IgWod1HRh8RN5sPctkgS+fg9ebD/BPQ/RW6HPUp6ZBwb4hxmaYW236FGWppienOn W1hO8gz64uXig+UCSjxdSDnOPhPwvrw05DVkAdMF2HFxUgAr96T+BD+Bpcco+r+k 0cqlaCzsRgf9OKGPeFxTrfO1t02CsVvjfzEQMaj0Jd0f+2XNFlrGsMEZw3PCoiXv zizjflLoVTzc0AAZWdFJXUPlRshmRFJj/R2HuXvb1m9shqU3NieO =Z7Ls -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "Here is a (hopefully) final round of arm64 fixes for 6.12 that address some user-visible floating point register corruption. Both of the Marks have been working on this for a couple of weeks and we've ended up in a position where SVE is solid but SME still has enough pending issues that the most pragmatic solution for the release and stable backports is to disable the feature. Yes, it's a shame, but the hardware is rare as hen's teeth at the moment and we're better off getting back to a known good state before fixing it all properly. We're also improving the selftests for 6.13 to help avoid merging broken code in the future. Anyway, the good news is that we're removing a lot more code than we're adding. Summary: - Fix handling of SVE traps from userspace on preemptible kernels when converting the saved floating point state into SVE state. - Remove broken support for the SMCCCv1.3 "SVE discard hint" optimisation. - Disable SME support, as the current support code suffers from numerous issues around signal delivery, ptrace access and context-switch which can lead to user-visible corruption of the register state" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Kconfig: Make SME depend on BROKEN for now arm64: smccc: Remove broken support for SMCCCv1.3 SVE discard hint arm64/sve: Discard stale CPU state when handling SVE traps |
||
![]() |
60de7a647f |
arm64/scs: Deal with 64-bit relative offsets in FDE frames
In some cases, the compiler may decide to emit DWARF FDE frames with 64-bit signed fields for the code offset and range fields. This may happen when using the large code model, for instance, which permits an executable to be spread out over more than 4 GiB of address space. Whether this is the case can be inferred from the augmentation data in the CIE frame, so decode this data before processing the FDE frames. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20241106185513.3096442-7-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ccf54058f5 |
arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
The dynamic SCS patching code pretends to parse the DWARF augmentation data in the CIE (header) frame, and handle accordingly when processing the individual FDE frames based on this CIE frame. However, the boolean variable is defined inside the loop, and so the parsed value is ignored. The same applies to the code alignment field, which is also read from the header but then discarded. This was never spotted before because Clang is the only compiler that supports dynamic SCS patching (which is essentially an Android feature), and the unwind tables it produces are highly uniform, and match the de facto defaults. So instead of testing for the 'z' flag in the augmentation data field, require a fixed augmentation data string of 'zR', and simplify the rest of the code accordingly. Also introduce some error codes to specify why the patching failed, and log it to the kernel console on failure when this happens when loading a module. (Doing so for vmlinux is infeasible, as the patching is done extremely early in the boot.) Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20241106185513.3096442-6-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bdf94836c2 |
arm64: uprobes: Optimize cache flushes for xol slot
The profiling of single-thread selftests bench reveals a bottlenect in caches_clean_inval_pou() on ARM64. On my local testing machine, this function takes approximately 34% of CPU cycles for trig-uprobe-nop and trig-uprobe-push. This patch add a check to avoid unnecessary cache flush when writing instruction to the xol slot. If the instruction is same with the existing instruction in slot, there is no need to synchronize D/I cache. Since xol slot allocation and updates occur on the hot path of uprobe handling, The upstream kernel running on Kunpeng916 (Hi1616), 4 NUMA nodes, 64 cores@ 2.4GHz reveals this optimization has obvious gain for nop and push testcases. Before (next-20240918) ---------------------- uprobe-nop ( 1 cpus): 0.418 ± 0.001M/s ( 0.418M/s/cpu) uprobe-push ( 1 cpus): 0.411 ± 0.005M/s ( 0.411M/s/cpu) uprobe-ret ( 1 cpus): 2.052 ± 0.002M/s ( 2.052M/s/cpu) uretprobe-nop ( 1 cpus): 0.350 ± 0.000M/s ( 0.350M/s/cpu) uretprobe-push ( 1 cpus): 0.353 ± 0.000M/s ( 0.353M/s/cpu) uretprobe-ret ( 1 cpus): 1.074 ± 0.001M/s ( 1.074M/s/cpu) After ----- uprobe-nop ( 1 cpus): 0.926 ± 0.000M/s ( 0.926M/s/cpu) uprobe-push ( 1 cpus): 0.910 ± 0.001M/s ( 0.910M/s/cpu) uprobe-ret ( 1 cpus): 2.056 ± 0.001M/s ( 2.056M/s/cpu) uretprobe-nop ( 1 cpus): 0.653 ± 0.001M/s ( 0.653M/s/cpu) uretprobe-push ( 1 cpus): 0.645 ± 0.000M/s ( 0.645M/s/cpu) uretprobe-ret ( 1 cpus): 1.093 ± 0.001M/s ( 1.093M/s/cpu) Signed-off-by: Liao Chang <liaochang1@huawei.com> Link: https://lore.kernel.org/r/20240919121719.2148361-1-liaochang1@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0c3beacf68 |
asm-generic: introduce text-patching.h
Several architectures support text patching, but they name the header files that declare patching functions differently. Make all such headers consistently named text-patching.h and add an empty header in asm-generic for architectures that do not support text patching. Link: https://lkml.kernel.org/r/20241023162711.2579610-4-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
340fd66c85 |
arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
Commit |
||
![]() |
8c462d5648 |
arm64: smccc: Remove broken support for SMCCCv1.3 SVE discard hint
SMCCCv1.3 added a hint bit which callers can set in an SMCCC function ID (AKA "FID") to indicate that it is acceptable for the SMCCC implementation to discard SVE and/or SME state over a specific SMCCC call. The kernel support for using this hint is broken and SMCCC calls may clobber the SVE and/or SME state of arbitrary tasks, though FPSIMD state is unaffected. The kernel support is intended to use the hint when there is no SVE or SME state to save, and to do this it checks whether TIF_FOREIGN_FPSTATE is set or TIF_SVE is clear in assembly code: | ldr <flags>, [<current_task>, #TSK_TI_FLAGS] | tbnz <flags>, #TIF_FOREIGN_FPSTATE, 1f // Any live FP state? | tbnz <flags>, #TIF_SVE, 2f // Does that state include SVE? | | 1: orr <fid>, <fid>, ARM_SMCCC_1_3_SVE_HINT | 2: | << SMCCC call using FID >> This is not safe as-is: (1) SMCCC calls can be made in a preemptible context and preemption can result in TIF_FOREIGN_FPSTATE being set or cleared at arbitrary points in time. Thus checking for TIF_FOREIGN_FPSTATE provides no guarantee. (2) TIF_FOREIGN_FPSTATE only indicates that the live FP/SVE/SME state in the CPU does not belong to the current task, and does not indicate that clobbering this state is acceptable. When the live CPU state is clobbered it is necessary to update fpsimd_last_state.st to ensure that a subsequent context switch will reload FP/SVE/SME state from memory rather than consuming the clobbered state. This and the SMCCC call itself must happen in a critical section with preemption disabled to avoid races. (3) Live SVE/SME state can exist with TIF_SVE clear (e.g. with only TIF_SME set), and checking TIF_SVE alone is insufficient. Remove the broken support for the SMCCCv1.3 SVE saving hint. This is effectively a revert of commits: * |
||
![]() |
751ecf6afd |
arm64/sve: Discard stale CPU state when handling SVE traps
The logic for handling SVE traps manipulates saved FPSIMD/SVE state
incorrectly, and a race with preemption can result in a task having
TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SVE traps enabled). This has been observed to result
in warnings from do_sve_acc() where SVE traps are not expected while
TIF_SVE is set:
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
Warnings of this form have been reported intermittently, e.g.
https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/
https://lore.kernel.org/linux-arm-kernel/000000000000511e9a060ce5a45c@google.com/
The race can occur when the SVE trap handler is preempted before and
after manipulating the saved FPSIMD/SVE state, starting and ending on
the same CPU, e.g.
| void do_sve_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
|
| sve_init_regs() {
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| ...
| } else {
| fpsimd_to_sve(current);
| current->thread.fp_type = FP_STATE_SVE;
| }
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SVE traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| }
Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace.
Fixes:
|
||
![]() |
efe7254135 |
arm64: Add support for FEAT_HAFT
Armv8.9/v9.4 introduces the feature Hardware managed Access Flag for Table descriptors (FEAT_HAFT). The feature is indicated by ID_AA64MMFR1_EL1.HAFDBS == 0b0011 and can be enabled by TCR2_EL1.HAFT so it has a dependency on FEAT_TCR2. Adds the Kconfig for FEAT_HAFT and support detecting and enabling the feature. The feature is enabled in __cpu_setup() before MMU on just like HA. A CPU capability is added to notify the user of the feature. Add definition of P{G,4,U,M}D_TABLE_AF bit and set the AF bit when creating the page table, which will save the hardware from having to update them at runtime. This will be ignored if FEAT_HAFT is not enabled. The AF bit of table descriptors cannot be managed by the software per spec, unlike the HA. So this should be used only if it's supported system wide by system_supports_haft(). Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Link: https://lore.kernel.org/r/20241102104235.62560-4-yangyicong@huawei.com Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> [catalin.marinas@arm.com: added the ID check back to __cpu_setup in case of future CPU errata] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8edbbfcc1e |
arm64: signal: Remove unused macro
Commit
|
||
![]() |
466ece4c6e |
arm64: signal: Remove unnecessary check when saving POE state
The POE frame record is allocated unconditionally if POE is supported. If the allocation fails, a SIGSEGV is delivered before setup_sigframe() can be reached. As a result there is no need to consider poe_offset before saving POR_EL0; just remove that check. This is in line with other frame records (FPMR, TPIDR2). Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> Link: https://lore.kernel.org/r/20241029144539.111155-3-kevin.brodsky@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
525fd6a1b3 |
arm64/fpsimd: Fix a typo
s/FPSMID/FPSIMD/ M and I swapped. Fix it. Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Link: https://lore.kernel.org/r/2cbcb42615e9265bccc9b746465d7998382e605d.1730539907.git.christophe.jaillet@wanadoo.fr Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
461c966866 |
arm64: vdso: Use only one single vvar mapping
The vvar mapping is the same for all processes. Use a single mapping to simplify the logic and align it with the other architectures. In addition this will enable the move of the vvar handling into generic code. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-5-b64f0842d512@linutronix.de |
||
![]() |
0973fed6a5 |
arm64: vdso: Drop LBASE_VDSO
This constant is always "0", providing no value and making the logic harder to understand. Also prepare for a consolidation of the vdso linkerscript logic by aligning it with other architectures. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/all/20241010-vdso-generic-base-v1-4-b64f0842d512@linutronix.de |
||
![]() |
3dfffd506e |
arm64 fixes for -rc6
- Fix handling of POR_EL0 during signal delivery so that pushing the signal context doesn't fail based on the pkey configuration of the interrupted context and align our user-visible behaviour with that of x86. - Fix a bogus pointer being passed to the CPU hotplug code from the Arm SDEI driver. - Re-enable software tag-based KASAN with GCC by using an alternative implementation of '__no_sanitize_address'. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmcjr8wQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNL2DB/4tNl7feCA2V4fW/Eu3RzXrHTdJbZvTjLDl JjeXPZr4WdGQQMgQ0DPZtpnmeBzd5nswx9WHG9VSsUxc5g+rzWxwvMnUeplDvEXo Y/QMUq4JZN3eqDZWPs0mEN4fMI+QOihInErVHvFXaJLcbxYrU5BvfwExgfY53AjT ZJEPmF291OL6V4UCWVWggk44BQaTBeWmc4itJcYm6z6mIgAgh84MZGK5M0e582ip CRAImDiAPqLxRO9kzKcYthI3FDyyVi1HtiSL1CiNktOXMNz19qPelq1XAnDEyvBt TEUitTLTwbUJ0nqi4u7ve09aebneAq8nsGucteYTrBU4U/PRjvQO =LTB9 -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "The important one is a change to the way in which we handle protection keys around signal delivery so that we're more closely aligned with the x86 behaviour, however there is also a revert of the previous fix to disable software tag-based KASAN with GCC, since a workaround materialised shortly afterwards. I'd love to say we're done with 6.12, but we're aware of some longstanding fpsimd register corruption issues that we're almost at the bottom of resolving. Summary: - Fix handling of POR_EL0 during signal delivery so that pushing the signal context doesn't fail based on the pkey configuration of the interrupted context and align our user-visible behaviour with that of x86. - Fix a bogus pointer being passed to the CPU hotplug code from the Arm SDEI driver. - Re-enable software tag-based KASAN with GCC by using an alternative implementation of '__no_sanitize_address'" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: signal: Improve POR_EL0 handling to avoid uaccess failures firmware: arm_sdei: Fix the input parameter of cpuhp_remove_state() Revert "kasan: Disable Software Tag-Based KASAN with GCC" kasan: Fix Software Tag-Based KASAN with GCC |
||
![]() |
2287a4c1e1 |
arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
Despite KVM now being able to deal with XS-tagged TLBIs, we still don't
expose these feature bits to KVM.
Plumb in the feature in ID_AA64ISAR1_EL1.
Fixes:
|
||
![]() |
9a0e3b92b0 |
arm64: Return early when break handler is found on linked-list
The search for breakpoint handlers iterate through the entire linked list. Given that all registered hook has a valid fn field, and no registered hooks share the same mask and imm. This commit optimize the efficiency slightly by returning early as a matching handler is found. Signed-off-by: Liao Chang <liaochang1@huawei.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241024034120.3814224-1-liaochang1@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
09e6b306f3 |
arm64: cpufeature: discover CPU support for MPAM
ARMv8.4 adds support for 'Memory Partitioning And Monitoring' (MPAM) which describes an interface to cache and bandwidth controls wherever they appear in the system. Add support to detect MPAM. Like SVE, MPAM has an extra id register that describes some more properties, including the virtualisation support, which is optional. Detect this separately so we can detect mismatched/insane systems, but still use MPAM on the host even if the virtualisation support is missing. MPAM needs enabling at the highest implemented exception level, otherwise the register accesses trap. The 'enabled' flag is accessible to lower exception levels, but its in a register that traps when MPAM isn't enabled. The cpufeature 'matches' hook is extended to test this on one of the CPUs, so that firmware can emulate MPAM as disabled if it is reserved for use by secure world. Secondary CPUs that appear late could trip cpufeature's 'lower safe' behaviour after the MPAM properties have been advertised to user-space. Add a verify call to ensure late secondaries match the existing CPUs. (If you have a boot failure that bisects here its likely your CPUs advertise MPAM in the id registers, but firmware failed to either enable or MPAM, or emulate the trap as if it were disabled) Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241030160317.2528209-4-joey.gouly@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
b2473a3597 |
of/fdt: add dt_phys arg to early_init_dt_scan and early_init_dt_verify
__pa() is only intended to be used for linear map addresses and using
it for initial_boot_params which is in fixmap for arm64 will give an
incorrect value. Hence save the physical address when it is known at
boot time when calling early_init_dt_scan for arm64 and use it at kexec
time instead of converting the virtual address using __pa().
Note that arm64 doesn't need the FDT region reserved in the DT as the
kernel explicitly reserves the passed in FDT. Therefore, only a debug
warning is fixed with this change.
Reported-by: Breno Leitao <leitao@debian.org>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Fixes:
|
||
![]() |
2e8a1acea8 |
arm64: signal: Improve POR_EL0 handling to avoid uaccess failures
Reset POR_EL0 to "allow all" before writing the signal frame, preventing
spurious uaccess failures.
When POE is supported, the POR_EL0 register constrains memory
accesses based on the target page's POIndex (pkey). This raises the
question: what constraints should apply to a signal handler? The
current answer is that POR_EL0 is reset to POR_EL0_INIT when
invoking the handler, giving it full access to POIndex 0. This is in
line with x86's MPK support and remains unchanged.
This is only part of the story, though. POR_EL0 constrains all
unprivileged memory accesses, meaning that uaccess routines such as
put_user() are also impacted. As a result POR_EL0 may prevent the
signal frame from being written to the signal stack (ultimately
causing a SIGSEGV). This is especially concerning when an alternate
signal stack is used, because userspace may want to prevent access
to it outside of signal handlers. There is currently no provision
for that: POR_EL0 is reset after writing to the stack, and
POR_EL0_INIT only enables access to POIndex 0.
This patch ensures that POR_EL0 is reset to its most permissive
state before the signal stack is accessed. Once the signal frame has
been fully written, POR_EL0 is still set to POR_EL0_INIT - it is up
to the signal handler to enable access to additional pkeys if
needed. As to sigreturn(), it expects having access to the stack
like any other syscall; we only need to ensure that POR_EL0 is
restored from the signal frame after all uaccess calls. This
approach is in line with the recent x86/pkeys series [1].
Resetting POR_EL0 early introduces some complications, in that we
can no longer read the register directly in preserve_poe_context().
This is addressed by introducing a struct (user_access_state)
and helpers to manage any such register impacting user accesses
(uaccess and accesses in userspace). Things look like this on signal
delivery:
1. Save original POR_EL0 into struct [save_reset_user_access_state()]
2. Set POR_EL0 to "allow all" [save_reset_user_access_state()]
3. Create signal frame
4. Write saved POR_EL0 value to the signal frame [preserve_poe_context()]
5. Finalise signal frame
6. If all operations succeeded:
a. Set POR_EL0 to POR_EL0_INIT [set_handler_user_access_state()]
b. Else reset POR_EL0 to its original value [restore_user_access_state()]
If any step fails when setting up the signal frame, the process will
be sent a SIGSEGV, which it may be able to handle. Step 6.b ensures
that the original POR_EL0 is saved in the signal frame when
delivering that SIGSEGV (so that the original value is restored by
sigreturn).
The return path (sys_rt_sigreturn) doesn't strictly require any change
since restore_poe_context() is already called last. However, to
avoid uaccess calls being accidentally added after that point, we
use the same approach as in the delivery path, i.e. separating
uaccess from writing to the register:
1. Read saved POR_EL0 value from the signal frame [restore_poe_context()]
2. Set POR_EL0 to the saved value [restore_user_access_state()]
[1] https://lore.kernel.org/lkml/20240802061318.2140081-1-aruna.ramakrishna@oracle.com/
Fixes:
|
||
![]() |
0110feaaf6
|
arm64: Use new fallback IO memcpy/memset
Use the new fallback memcpy_{from,to}io and memset_io functions from lib/iomem_copy.c on the arm64 processor architecture. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Yann Sionneau <ysionneau@kalrayinc.com> Signed-off-by: Julian Vetter <jvetter@kalrayinc.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
358dd4a9bd |
arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
It appears that relatively popular hardware out there implements the CNTPOFF_EL2 variant of FEAT_ECV, advertises it via ID_AA64MMFR0_EL1, but cannot be bothered to set SCR_EL3.ECVEn to 1. You would probably think that "this is fine, EL3 will take the trap on access to CNTPOFF_EL2 and flip the ECVEn bit", as that's what a semi-decent firmware implementation would do. But no. None of that. This particular implementation takes the trap, considers its purpose in life, decides that it has none, and *RESETS* the system. Yes, x1e001de, I'm talking about you. In order to allow this machine to be promoted slightly above the level of a glorified door-stop, add a new "id_aa64mmfr0.ecv" override. allowing the kernel to pretend this option was never there. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241021181434.1052974-1-maz@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
42be24a417 |
arm64: Enable memory encrypt for Realms
Use the memory encryption APIs to trigger a RSI call to request a transition between protected memory and shared memory (or vice versa) and updating the kernel's linear map of modified pages to flip the top bit of the IPA. This requires that block mappings are not used in the direct map for realm guests. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Co-developed-by: Steven Price <steven.price@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-10-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
fbf979a013 |
arm64: Enforce bounce buffers for realm DMA
Within a realm guest it's not possible for a device emulated by the VMM to access arbitrary guest memory. So force the use of bounce buffers to ensure that the memory the emulated devices are accessing is in memory which is explicitly shared with the host. This adds a call to swiotlb_update_mem_attributes() which calls set_memory_decrypted() to ensure the bounce buffer memory is shared with the host. For non-realm guests or hosts this is a no-op. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Co-developed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-8-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
491db21d82 |
efi: arm64: Map Device with Prot Shared
Device mappings need to be emulated by the VMM so must be mapped shared with the host. Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-7-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3c6c706139 |
arm64: rsi: Map unprotected MMIO as decrypted
Instead of marking every MMIO as shared, check if the given region is "Protected" and apply the permissions accordingly. Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-6-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3715894376 |
arm64: rsi: Add support for checking whether an MMIO is protected
On Arm CCA, with RMM-v1.0, all MMIO regions are shared. However, in the future, an Arm CCA-v1.0 compliant guest may be run in a lesser privileged partition in the Realm World (with Arm CCA-v1.1 Planes feature). In this case, some of the MMIO regions may be emulated by a higher privileged component in the Realm world, i.e, protected. Thus the guest must decide today, whether a given MMIO region is shared vs Protected and create the stage1 mapping accordingly. On Arm CCA, this detection is based on the "IPA State" (RIPAS == RIPAS_IO). Provide a helper to run this check on a given range of MMIO. Also, provide a arm64 helper which may be hooked in by other solutions. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-5-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3993069549 |
arm64: realm: Query IPA size from the RMM
The top bit of the configured IPA size is used as an attribute to control whether the address is protected or shared. Query the configuration from the RMM to assertain which bit this is. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Co-developed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-4-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c077711f71 |
arm64: Detect if in a realm and set RIPAS RAM
Detect that the VM is a realm guest by the presence of the RSI interface. This is done after PSCI has been initialised so that we can check the SMCCC conduit before making any RSI calls. If in a realm then iterate over all memory ensuring that it is marked as RIPAS RAM. The loader is required to do this for us, however if some memory is missed this will cause the guest to receive a hard to debug external abort at some random point in the future. So for a belt-and-braces approach set all memory to RIPAS RAM. Any failure here implies that the RAM regions passed to Linux are incorrect so panic() promptly to make the situation clear. Reviewed-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Co-developed-by: Steven Price <steven.price@arm.com> Signed-off-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20241017131434.40935-3-steven.price@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d129377639 |
ARM64:
* Fix the guest view of the ID registers, making the relevant fields writable from userspace (affecting ID_AA64DFR0_EL1 and ID_AA64PFR1_EL1) * Correcly expose S1PIE to guests, fixing a regression introduced in 6.12-rc1 with the S1POE support * Fix the recycling of stage-2 shadow MMUs by tracking the context (are we allowed to block or not) as well as the recycling state * Address a couple of issues with the vgic when userspace misconfigures the emulation, resulting in various splats. Headaches courtesy of our Syzkaller friends * Stop wasting space in the HYP idmap, as we are dangerously close to the 4kB limit, and this has already exploded in -next * Fix another race in vgic_init() * Fix a UBSAN error when faking the cache topology with MTE enabled RISCV: * RISCV: KVM: use raw_spinlock for critical section in imsic x86: * A bandaid for lack of XCR0 setup in selftests, which causes trouble if the compiler is configured to have x86-64-v3 (with AVX) as the default ISA. Proper XCR0 setup will come in the next merge window. * Fix an issue where KVM would not ignore low bits of the nested CR3 and potentially leak up to 31 bytes out of the guest memory's bounds * Fix case in which an out-of-date cached value for the segments could by returned by KVM_GET_SREGS. * More cleanups for KVM_X86_QUIRK_SLOT_ZAP_ALL * Override MTRR state for KVM confidential guests, making it WB by default as is already the case for Hyper-V guests. Generic: * Remove a couple of unused functions -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmcVK54UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroOfrgf7BRyihd28OGaqVuv2BqGYrxqfOkd6 ZqpJDOy+X7UE3iG5NhTxw4mghCJFhOwIL7gDSZwPLe6D2k01oqPSP2pLMqXb5oOv /EkltRvzG0YIH3sjZY5PROrMMxnvSKkJKxETFxFQQzMKRym2v/T5LAzrium58YIT vWZXxo2HTPXOw/U5upAqqMYJMeeJEL3kurVHtOsPytUFjrIOl0BfeKvgjOwonDIh Awm4JZwk0+1d8sYfkuzsSrTQmtshDCx1jkFN1juirt90s1EwgmOvVKiHo3gMsVP9 veDRoLTx2fM/r7TrhoHo46DTA2vbfmCltWcT0cn5x8P24BFGXXe/IDJIHA== =IVlI -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm fixes from Paolo Bonzini: "ARM64: - Fix the guest view of the ID registers, making the relevant fields writable from userspace (affecting ID_AA64DFR0_EL1 and ID_AA64PFR1_EL1) - Correcly expose S1PIE to guests, fixing a regression introduced in 6.12-rc1 with the S1POE support - Fix the recycling of stage-2 shadow MMUs by tracking the context (are we allowed to block or not) as well as the recycling state - Address a couple of issues with the vgic when userspace misconfigures the emulation, resulting in various splats. Headaches courtesy of our Syzkaller friends - Stop wasting space in the HYP idmap, as we are dangerously close to the 4kB limit, and this has already exploded in -next - Fix another race in vgic_init() - Fix a UBSAN error when faking the cache topology with MTE enabled RISCV: - RISCV: KVM: use raw_spinlock for critical section in imsic x86: - A bandaid for lack of XCR0 setup in selftests, which causes trouble if the compiler is configured to have x86-64-v3 (with AVX) as the default ISA. Proper XCR0 setup will come in the next merge window. - Fix an issue where KVM would not ignore low bits of the nested CR3 and potentially leak up to 31 bytes out of the guest memory's bounds - Fix case in which an out-of-date cached value for the segments could by returned by KVM_GET_SREGS. - More cleanups for KVM_X86_QUIRK_SLOT_ZAP_ALL - Override MTRR state for KVM confidential guests, making it WB by default as is already the case for Hyper-V guests. Generic: - Remove a couple of unused functions" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (27 commits) RISCV: KVM: use raw_spinlock for critical section in imsic KVM: selftests: Fix out-of-bounds reads in CPUID test's array lookups KVM: selftests: x86: Avoid using SSE/AVX instructions KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory KVM: VMX: reset the segment cache after segment init in vmx_vcpu_reset() KVM: x86: Clean up documentation for KVM_X86_QUIRK_SLOT_ZAP_ALL KVM: x86/mmu: Add lockdep assert to enforce safe usage of kvm_unmap_gfn_range() KVM: x86/mmu: Zap only SPs that shadow gPTEs when deleting memslot x86/kvm: Override default caching mode for SEV-SNP and TDX KVM: Remove unused kvm_vcpu_gfn_to_pfn_atomic KVM: Remove unused kvm_vcpu_gfn_to_pfn KVM: arm64: Ensure vgic_ready() is ordered against MMIO registration KVM: arm64: vgic: Don't check for vgic_ready() when setting NR_IRQS KVM: arm64: Fix shift-out-of-bounds bug KVM: arm64: Shave a few bytes from the EL2 idmap code KVM: arm64: Don't eagerly teardown the vgic on init error KVM: arm64: Expose S1PIE to guests KVM: arm64: nv: Clarify safety of allowing TLBI unmaps to reschedule KVM: arm64: nv: Punt stage-2 recycling to a vCPU request KVM: arm64: nv: Do not block when unmapping stage-2 if disallowed ... |
||
![]() |
ddadbcdaae |
arm64: Support AT_HWCAP3
We have filled all 64 bits of AT_HWCAP2 so in order to support discovery of further features provide the framework to use the already defined AT_HWCAP3 for further CPU features. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20241004-arm64-elf-hwcap3-v2-2-799d1daad8b0@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c2c6b27b5a |
arm64: stacktrace: unwind exception boundaries
When arm64's stack unwinder encounters an exception boundary, it uses the pt_regs::stackframe created by the entry code, which has a copy of the PC and FP at the time the exception was taken. The unwinder doesn't know anything about pt_regs, and reports the PC from the stackframe, but does not report the LR. The LR is only guaranteed to contain the return address at function call boundaries, and can be used as a scratch register at other times, so the LR at an exception boundary may or may not be a legitimate return address. It would be useful to report the LR value regardless, as it can be helpful when debugging, and in future it will be helpful for reliable stacktrace support. This patch changes the way we unwind across exception boundaries, allowing both the PC and LR to be reported. The entry code creates a frame_record_meta structure embedded within pt_regs, which the unwinder uses to find the pt_regs. The unwinder can then extract pt_regs::pc and pt_regs::lr as two separate unwind steps before continuing with a regular walk of frame records. When a PC is unwound from pt_regs::lr, dump_backtrace() will log this with an "L" marker so that it can be identified easily. For example, an unwind across an exception boundary will appear as follows: | el1h_64_irq+0x6c/0x70 | _raw_spin_unlock_irqrestore+0x10/0x60 (P) | __aarch64_insn_write+0x6c/0x90 (L) | aarch64_insn_patch_text_nosync+0x28/0x80 ... with a (P) entry for pt_regs::pc, and an (L) entry for pt_regs:lr. Note that the LR may be stale at the point of the exception, for example, shortly after a return: | el1h_64_irq+0x6c/0x70 | default_idle_call+0x34/0x180 (P) | default_idle_call+0x28/0x180 (L) | do_idle+0x204/0x268 ... where the LR points a few instructions before the current PC. This plays nicely with all the other unwind metadata tracking. With the ftrace_graph profiler enabled globally, and kretprobes installed on generic_handle_domain_irq() and do_interrupt_handler(), a backtrace triggered by magic-sysrq + L reports: | Call trace: | show_stack+0x20/0x40 (CF) | dump_stack_lvl+0x60/0x80 (F) | dump_stack+0x18/0x28 | nmi_cpu_backtrace+0xfc/0x140 | nmi_trigger_cpumask_backtrace+0x1c8/0x200 | arch_trigger_cpumask_backtrace+0x20/0x40 | sysrq_handle_showallcpus+0x24/0x38 (F) | __handle_sysrq+0xa8/0x1b0 (F) | handle_sysrq+0x38/0x50 (F) | pl011_int+0x460/0x5a8 (F) | __handle_irq_event_percpu+0x60/0x220 (F) | handle_irq_event+0x54/0xc0 (F) | handle_fasteoi_irq+0xa8/0x1d0 (F) | generic_handle_domain_irq+0x34/0x58 (F) | gic_handle_irq+0x54/0x140 (FK) | call_on_irq_stack+0x24/0x58 (F) | do_interrupt_handler+0x88/0xa0 | el1_interrupt+0x34/0x68 (FK) | el1h_64_irq_handler+0x18/0x28 | el1h_64_irq+0x6c/0x70 | default_idle_call+0x34/0x180 (P) | default_idle_call+0x28/0x180 (L) | do_idle+0x204/0x268 | cpu_startup_entry+0x3c/0x50 (F) | rest_init+0xe4/0xf0 | start_kernel+0x744/0x750 | __primary_switched+0x88/0x98 Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-11-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8094df1cf0 |
arm64: stacktrace: report recovered PCs
When analysing a stacktrace it can be useful to know whether an unwound PC has been rewritten by fgraph or kretprobes, as in some situations these may be suspect or be known to be unreliable. This patch adds flags to track when an unwind entry has recovered the PC from fgraph and/or kretprobes, and updates dump_backtrace() to log when this is the case. The flags recorded are: "F" - the PC was recovered from fgraph "K" - the PC was recovered from kretprobes These flags are recorded and logged in addition to the original source of the unwound PC. For example, with the ftrace_graph profiler enabled globally, and kretprobes installed on generic_handle_domain_irq() and do_interrupt_handler(), a backtrace triggered by magic-sysrq + L reports: | Call trace: | show_stack+0x20/0x40 (CF) | dump_stack_lvl+0x60/0x80 (F) | dump_stack+0x18/0x28 | nmi_cpu_backtrace+0xfc/0x140 | nmi_trigger_cpumask_backtrace+0x1c8/0x200 | arch_trigger_cpumask_backtrace+0x20/0x40 | sysrq_handle_showallcpus+0x24/0x38 (F) | __handle_sysrq+0xa8/0x1b0 (F) | handle_sysrq+0x38/0x50 (F) | pl011_int+0x460/0x5a8 (F) | __handle_irq_event_percpu+0x60/0x220 (F) | handle_irq_event+0x54/0xc0 (F) | handle_fasteoi_irq+0xa8/0x1d0 (F) | generic_handle_domain_irq+0x34/0x58 (F) | gic_handle_irq+0x54/0x140 (FK) | call_on_irq_stack+0x24/0x58 (F) | do_interrupt_handler+0x88/0xa0 | el1_interrupt+0x34/0x68 (FK) | el1h_64_irq_handler+0x18/0x28 | el1h_64_irq+0x64/0x68 | default_idle_call+0x34/0x180 | do_idle+0x204/0x268 | cpu_startup_entry+0x40/0x50 (F) | rest_init+0xe4/0xf0 | start_kernel+0x744/0x750 | __primary_switched+0x80/0x90 Note that as these flags are reported next to the recovered PC value, they appear on the callers of instrumented functions. For example gic_handle_irq() has a "K" marker because generic_handle_domain_irq() was instrumented with kretprobes and had its return address rewritten. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bdf8eafbf7 |
arm64: stacktrace: report source of unwind data
When analysing a stacktrace it can be useful to know where an unwound PC came from, as in some situations certain sources may be suspect or known to be unreliable. In future it would also be useful to track this so that certain unwind steps can be performed in a stateful manner. For example when unwinding across an exception boundary, we'd ideally unwind pt_regs::pc, then pt_regs::lr, then the next frame record. This patch adds an enumerated set of unwind sources, tracks this during the unwind, and updates dump_backtrace() to log these for interesting unwind steps. The interesting sources recorded are: "C" - the PC came from the caller of an unwind function. "T" - the PC came from thread_saved_pc() for a blocked task. "P" - the PC came from a pt_regs::pc. "U" - the PC came from an unknown source (indicates an unwinder error). ... with nothing recorded when the PC came from a frame_record::pc as this is the vastly common case and logging this would make it difficult to spot the more interesting cases. For example, when triggering a backtrace via magic-sysrq + L, the CPU handling the sysrq will have a backtrace whose first element is the caller (C) of dump_backtrace(): | Call trace: | show_stack+0x18/0x30 (C) | dump_stack_lvl+0x60/0x80 | dump_stack+0x18/0x24 | nmi_cpu_backtrace+0xfc/0x140 | ... ... and other CPUs will have a backtrace whose first element is their pt_regs::pc (P) at the instant the backtrace IPI was taken: | Call trace: | _raw_spin_unlock_irqrestore+0x8/0x50 (P) | wake_up_process+0x18/0x24 | process_timeout+0x14/0x20 | call_timer_fn.isra.0+0x24/0x80 | ... Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-8-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b7794795c9 |
arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
Currently dump_backtrace() can only print the PC value at each step of the unwind, as this is all the information that arch_stack_walk() passes to the dump_backtrace_entry() callback. In future we'd like to print some additional information, such as the origin of entries (e.g. PC, LR, FP) and/or the reliability thereof. In preparation for doing so, this patch moves dump_backtrace() over to kunwind_stack_walk(), which passes the full kunwind_state to the callback. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
886c2b0ba8 |
arm64: use a common struct frame_record
Currently the signal handling code has its own struct frame_record, the definition of struct pt_regs open-codes a frame record as an array, and the kernel unwinder hard-codes frame record offsets. Move to a common struct frame_record that can be used throughout the kernel. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
1454363098 |
arm64: pt_regs: swap 'unused' and 'pmr' fields
In subsequent patches we'll want to add an additional u64 to struct pt_regs. To make space, this patch swaps the 'unused' and 'pmr' fields, as the 'pmr' value only requires bits[7:0] and can safely fit into a u32, which frees up a 64-bit unused field. The 'lockdep_hardirqs' and 'exit_rcu' fields should eventually be moved out of pt_regs and managed locally within entry-common.c, so I've left those as-is for the moment. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
00d9597903 |
arm64: pt_regs: rename "pmr_save" -> "pmr"
The pt_regs::pmr_save field is weirdly named relative to all other pt_regs fields, with a '_save' suffix that doesn't make anything clearer and only leads to more typing to access the field. Remove the '_save' suffix. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241017092538.1859841-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
13840229d6 |
arm64: mops: Handle MOPS exceptions from EL1
We will soon be using MOPS instructions in the kernel, so wire up the exception handler to handle exceptions from EL1 caused by the copy/set operation being stopped and resumed on a different type of CPU. Add a helper for advancing the single step state machine, similarly to what the EL0 exception handler does. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20240930161051.3777828-3-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c56c599d90 |
arm64: probes: Disable kprobes/uprobes on MOPS instructions
FEAT_MOPS instructions require that all three instructions (prologue,
main and epilogue) appear consecutively in memory. Placing a
kprobe/uprobe on one of them doesn't work as only a single instruction
gets executed out-of-line or simulated. So don't allow placing a probe
on a MOPS instruction.
Fixes:
|
||
![]() |
afa9b48f32 |
KVM: arm64: Shave a few bytes from the EL2 idmap code
Our idmap is becoming too big, to the point where it doesn't fit in a 4kB page anymore. There are some low-hanging fruits though, such as the el2_init_state horror that is expanded 3 times in the kernel. Let's at least limit ourselves to two copies, which makes the kernel link again. At some point, we'll have to have a better way of doing this. Reported-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20241009204903.GA3353168@thelio-3990X |
||
![]() |
25c17c4b55 |
hugetlb: arm64: add mte support
Enable MTE support for hugetlb. The MTE page flags will be set on the folio only. When copying hugetlb folio (for example, CoW), the tags for all subpages will be copied when copying the first subpage. When freeing hugetlb folio, the MTE flags will be cleared. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Yang Shi <yang@os.amperecomputing.com> Link: https://lore.kernel.org/r/20241001225220.271178-1-yang@os.amperecomputing.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ac4ad5c09b |
arm64: insn: Simulate nop instruction for better uprobe performance
v2->v1: 1. Remove the simuation of STP and the related bits. 2. Use arm64_skip_faulting_instruction for single-stepping or FEAT_BTI scenario. As Andrii pointed out, the uprobe/uretprobe selftest bench run into a counterintuitive result that nop and push variants are much slower than ret variant [0]. The root cause lies in the arch_probe_analyse_insn(), which excludes 'nop' and 'stp' from the emulatable instructions list. This force the kernel returns to userspace and execute them out-of-line, then trapping back to kernel for running uprobe callback functions. This leads to a significant performance overhead compared to 'ret' variant, which is already emulated. Typicall uprobe is installed on 'nop' for USDT and on function entry which starts with the instrucion 'stp x29, x30, [sp, #imm]!' to push lr and fp into stack regardless kernel or userspace binary. In order to improve the performance of handling uprobe for common usecases. This patch supports the emulation of Arm64 equvialents instructions of 'nop' and 'push'. The benchmark results below indicates the performance gain of emulation is obvious. On Kunpeng916 (Hi1616), 4 NUMA nodes, 64 Arm64 cores@2.4GHz. xol (1 cpus) ------------ uprobe-nop: 0.916 ± 0.001M/s (0.916M/prod) uprobe-push: 0.908 ± 0.001M/s (0.908M/prod) uprobe-ret: 1.855 ± 0.000M/s (1.855M/prod) uretprobe-nop: 0.640 ± 0.000M/s (0.640M/prod) uretprobe-push: 0.633 ± 0.001M/s (0.633M/prod) uretprobe-ret: 0.978 ± 0.003M/s (0.978M/prod) emulation (1 cpus) ------------------- uprobe-nop: 1.862 ± 0.002M/s (1.862M/prod) uprobe-push: 1.743 ± 0.006M/s (1.743M/prod) uprobe-ret: 1.840 ± 0.001M/s (1.840M/prod) uretprobe-nop: 0.964 ± 0.004M/s (0.964M/prod) uretprobe-push: 0.936 ± 0.004M/s (0.936M/prod) uretprobe-ret: 0.940 ± 0.001M/s (0.940M/prod) As shown above, the performance gap between 'nop/push' and 'ret' variants has been significantly reduced. Due to the emulation of 'push' instruction needs to access userspace memory, it spent more cycles than the other. As Mark suggested [1], it is painful to emulate the correct atomicity and ordering properties of STP, especially when it interacts with MTE, POE, etc. So this patch just focus on the simuation of 'nop'. The simluation of STP and related changes will be addressed in a separate patch. [0] https://lore.kernel.org/all/CAEf4BzaO4eG6hr2hzXYpn+7Uer4chS0R99zLn02ezZ5YruVuQw@mail.gmail.com/ [1] https://lore.kernel.org/all/Zr3RN4zxF5XPgjEB@J2N7QTR9R3/ CC: Andrii Nakryiko <andrii.nakryiko@gmail.com> CC: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Liao Chang <liaochang1@huawei.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240909071114.1150053-1-liaochang1@huawei.com [catalin.marinas@arm.com: small tweaks following MarkR's comments] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7bb32dc788 |
arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
The PREEMPT_DISABLE_OFFSET definition was added in commit: |
||
![]() |
b129125e1f |
arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
The DMA_TO_DEVICE and DMA_FROM_DEVICE defintitons in asm-offsets
duplicate the common defintions from <linux/dma-direction.h> (which used
to live in <linux/dma-mapping.h>), and haven't been used from asseembly
code since commit:
|
||
![]() |
4ce689b448 |
arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
The VM_EXEC definition duplicates the common VM_EXEC definition from <linux/mm.h>. The common definition cannot safely be included by assembly code but currently we don't need to use VM_EXEC in assembly. The PAGE_SZ definition duplicates arm64's definition of PAGE_SIZE from <asm/page-def.h> which can safely be included from assembly code and should be used directly. Remove the duplicate definitions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241007123921.549340-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
1abc7c1e59 |
arm64: asm-offsets: remove MM_CONTEXT_ID
The only user of the MM_CONTEXT_ID defintion was removed in commit:
|
||
![]() |
4c92c121c4 |
arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
The COMPAT_SIGFRAME_REGS_OFFSET and COMPAT_RT_SIGFRAME_REGS_OFFSET defintions aren't used anywhere. They were added in commit: |
||
![]() |
7bd8870af8 |
arm64: asm-offsets: remove VMA_VM_*
The VMA_VM_MM definition is only used by the vma_vm_mm macro, which itself is unused. The VMA_VM_FLAGS definition isn't used anywhere. Remove them all. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241007123921.549340-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ab23df141f |
arm64: asm-offsets: remove TSK_ACTIVE_MM
The TSK_ACTIVE_MM definition isn't used anywhere. Remove it. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241007123921.549340-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
14762109de |
arm64: probes: Remove probe_opcode_t
The probe_opcode_t typedef for u32 isn't necessary, and is a source of confusion as it is easily confused with kprobe_opcode_t, which is a typedef for __le32. The typedef is only used within arch/arm64, and all of arm64's commn insn code uses u32 for the endian-agnostic value of an instruction, so it'd be clearer to use u32 consistently. Remove probe_opcode_t and use u32 directly. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marnias@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241008155851.801546-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
dd0eb50e7c |
arm64: probes: Cleanup kprobes endianness conversions
The core kprobes code uses kprobe_opcode_t for the in-memory representation of an instruction, using 'kprobe_opcode_t *' for XOL slots. As arm64 instructions are always little-endian 32-bit values, kprobes_opcode_t should be __le32, but at the moment kprobe_opcode_t is typedef'd to u32. Today there is no functional issue as we convert values via cpu_to_le32() and le32_to_cpu() where necessary, but these conversions are inconsistent with the types used, causing sparse warnings: | CHECK arch/arm64/kernel/probes/kprobes.c | arch/arm64/kernel/probes/kprobes.c:102:21: warning: cast to restricted __le32 | CHECK arch/arm64/kernel/probes/decode-insn.c | arch/arm64/kernel/probes/decode-insn.c:122:46: warning: cast to restricted __le32 | arch/arm64/kernel/probes/decode-insn.c:124:50: warning: cast to restricted __le32 | arch/arm64/kernel/probes/decode-insn.c:136:31: warning: cast to restricted __le32 Improve this by making kprobes_opcode_t a typedef for __le32 and consistently using this for pointers to executable instructions. With this change we can rely on the type system to tell us where conversions are necessary. Since kprobe::opcode is changed from u32 to __le32, the existing le32_to_cpu() converion moves from the point this is initialized (in arch_prepare_kprobe()) to the points this is consumed when passed to a handler or text patching function. As kprobe::opcode isn't altered or consumed elsewhere, this shouldn't result in a functional change. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241008155851.801546-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6105c5d46d |
arm64: probes: Move kprobes-specific fields
We share struct arch_probe_insn between krpboes and uprobes, but most of its fields aren't necessary for uprobes: * The 'insn' field is only used by kprobes as a pointer to the XOL slot. * The 'restore' field is only used by probes as the PC to restore after stepping an instruction in the XOL slot. * The 'pstate_cc' field isn't used by kprobes or uprobes, and seems to only exist as a result of copy-pasting the 32-bit arm implementation of kprobes. As these fields live in struct arch_probe_insn they cannot use definitions that only exist when CONFIG_KPROBES=y, such as the kprobe_opcode_t typedef, which we'd like to use in subsequent patches. Clean this up by removing the 'pstate_cc' field, and moving the kprobes-specific fields into the kprobes-specific struct arch_specific_insn. To make it clear that the fields are related to stepping instructions in the XOL slot, 'insn' is renamed to 'xol_insn' and 'restore' is renamed to 'xol_restore' At the same time, remove the misleading and useless comment above struct arch_probe_insn. The should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20241008155851.801546-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8603652569 |
arm64: vdso: Remove timekeeper include
Since the generic VDSO clock mode storage is used, this header file is unused and can be removed. Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/all/20241010-vdso-generic-arch_update_vsyscall-v1-3-7fe5a3ea4382@linutronix.de |
||
![]() |
e3e8527133 |
arm64: set POR_EL0 for kernel threads
Restrict kernel threads to only have RWX overlays for pkey 0. This matches what arch/x86 does, by defaulting to a restrictive PKRU. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Kevin Brodsky <Kevin.Brodsky@arm.com> Link: https://lore.kernel.org/r/20241001133618.1547996-2-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7888af4166 |
ftrace: Make ftrace_regs abstract from direct use
ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
13f8f1e05f |
arm64: probes: Fix uprobes for big-endian kernels
The arm64 uprobes code is broken for big-endian kernels as it doesn't
convert the in-memory instruction encoding (which is always
little-endian) into the kernel's native endianness before analyzing and
simulating instructions. This may result in a few distinct problems:
* The kernel may may erroneously reject probing an instruction which can
safely be probed.
* The kernel may erroneously erroneously permit stepping an
instruction out-of-line when that instruction cannot be stepped
out-of-line safely.
* The kernel may erroneously simulate instruction incorrectly dur to
interpretting the byte-swapped encoding.
The endianness mismatch isn't caught by the compiler or sparse because:
* The arch_uprobe::{insn,ixol} fields are encoded as arrays of u8, so
the compiler and sparse have no idea these contain a little-endian
32-bit value. The core uprobes code populates these with a memcpy()
which similarly does not handle endianness.
* While the uprobe_opcode_t type is an alias for __le32, both
arch_uprobe_analyze_insn() and arch_uprobe_skip_sstep() cast from u8[]
to the similarly-named probe_opcode_t, which is an alias for u32.
Hence there is no endianness conversion warning.
Fix this by changing the arch_uprobe::{insn,ixol} fields to __le32 and
adding the appropriate __le32_to_cpu() conversions prior to consuming
the instruction encoding. The core uprobes copies these fields as opaque
ranges of bytes, and so is unaffected by this change.
At the same time, remove MAX_UINSN_BYTES and consistently use
AARCH64_INSN_SIZE for clarity.
Tested with the following:
| #include <stdio.h>
| #include <stdbool.h>
|
| #define noinline __attribute__((noinline))
|
| static noinline void *adrp_self(void)
| {
| void *addr;
|
| asm volatile(
| " adrp %x0, adrp_self\n"
| " add %x0, %x0, :lo12:adrp_self\n"
| : "=r" (addr));
| }
|
|
| int main(int argc, char *argv)
| {
| void *ptr = adrp_self();
| bool equal = (ptr == adrp_self);
|
| printf("adrp_self => %p\n"
| "adrp_self() => %p\n"
| "%s\n",
| adrp_self, ptr, equal ? "EQUAL" : "NOT EQUAL");
|
| return 0;
| }
.... where the adrp_self() function was compiled to:
| 00000000004007e0 <adrp_self>:
| 4007e0: 90000000 adrp x0, 400000 <__ehdr_start>
| 4007e4: 911f8000 add x0, x0, #0x7e0
| 4007e8: d65f03c0 ret
Before this patch, the ADRP is not recognized, and is assumed to be
steppable, resulting in corruption of the result:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0xffffffffff7e0
| NOT EQUAL
After this patch, the ADRP is correctly recognized and simulated:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| #
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
Fixes:
|
||
![]() |
50f813e576 |
arm64: probes: Fix simulate_ldr*_literal()
The simulate_ldr_literal() code always loads a 64-bit quantity, and when
simulating a 32-bit load into a 'W' register, it discards the most
significant 32 bits. For big-endian kernels this means that the relevant
bits are discarded, and the value returned is the the subsequent 32 bits
in memory (i.e. the value at addr + 4).
Additionally, simulate_ldr_literal() and simulate_ldrsw_literal() use a
plain C load, which the compiler may tear or elide (e.g. if the target
is the zero register). Today this doesn't happen to matter, but it may
matter in future if trampoline code uses a LDR (literal) or LDRSW
(literal).
Update simulate_ldr_literal() and simulate_ldrsw_literal() to use an
appropriately-sized READ_ONCE() to perform the access, which avoids
these problems.
Fixes:
|
||
![]() |
acc450aa07 |
arm64: probes: Remove broken LDR (literal) uprobe support
The simulate_ldr_literal() and simulate_ldrsw_literal() functions are
unsafe to use for uprobes. Both functions were originally written for
use with kprobes, and access memory with plain C accesses. When uprobes
was added, these were reused unmodified even though they cannot safely
access user memory.
There are three key problems:
1) The plain C accesses do not have corresponding extable entries, and
thus if they encounter a fault the kernel will treat these as
unintentional accesses to user memory, resulting in a BUG() which
will kill the kernel thread, and likely lead to further issues (e.g.
lockup or panic()).
2) The plain C accesses are subject to HW PAN and SW PAN, and so when
either is in use, any attempt to simulate an access to user memory
will fault. Thus neither simulate_ldr_literal() nor
simulate_ldrsw_literal() can do anything useful when simulating a
user instruction on any system with HW PAN or SW PAN.
3) The plain C accesses are privileged, as they run in kernel context,
and in practice can access a small range of kernel virtual addresses.
The instructions they simulate have a range of +/-1MiB, and since the
simulated instructions must itself be a user instructions in the
TTBR0 address range, these can address the final 1MiB of the TTBR1
acddress range by wrapping downwards from an address in the first
1MiB of the TTBR0 address range.
In contemporary kernels the last 8MiB of TTBR1 address range is
reserved, and accesses to this will always fault, meaning this is no
worse than (1).
Historically, it was theoretically possible for the linear map or
vmemmap to spill into the final 8MiB of the TTBR1 address range, but
in practice this is extremely unlikely to occur as this would
require either:
* Having enough physical memory to fill the entire linear map all the
way to the final 1MiB of the TTBR1 address range.
* Getting unlucky with KASLR randomization of the linear map such
that the populated region happens to overlap with the last 1MiB of
the TTBR address range.
... and in either case if we were to spill into the final page there
would be larger problems as the final page would alias with error
pointers.
Practically speaking, (1) and (2) are the big issues. Given there have
been no reports of problems since the broken code was introduced, it
appears that no-one is relying on probing these instructions with
uprobes.
Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW
(literal), limiting the use of simulate_ldr_literal() and
simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR
(literal) and LDRSW (literal) will be rejected as
arm_probe_decode_insn() will return INSN_REJECTED. In future we can
consider introducing working uprobes support for these instructions, but
this will require more significant work.
Fixes:
|
||
![]() |
3eddb108ab |
arm64: Subscribe Microsoft Azure Cobalt 100 to erratum 3194386
Add the Microsoft Azure Cobalt 100 CPU to the list of CPUs suffering
from erratum 3194386 added in commit
|
||
![]() |
7ec3b57cb2 |
arm64/ptrace: Expose GCS via ptrace and core files
Provide a new register type NT_ARM_GCS reporting the current GCS mode and pointer for EL0. Due to the interactions with allocation and deallocation of Guarded Control Stacks we do not permit any changes to the GCS mode via ptrace, only GCSPR_EL0 may be changed. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-27-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
16f47bb9ac |
arm64/signal: Expose GCS state in signal frames
Add a context for the GCS state and include it in the signal context when running on a system that supports GCS. We reuse the same flags that the prctl() uses to specify which GCS features are enabled and also provide the current GCS pointer. We do not support enabling GCS via signal return, there is a conflict between specifying GCSPR_EL0 and allocation of a new GCS and this is not an ancticipated use case. We also enforce GCS configuration locking on signal return. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-26-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
eaf62ce156 |
arm64/signal: Set up and restore the GCS context for signal handlers
When invoking a signal handler we use the GCS configuration and stack for the current thread. Since we implement signal return by calling the signal handler with a return address set up pointing to a trampoline in the vDSO we need to also configure any active GCS for this by pushing a frame for the trampoline onto the GCS. If we do not do this then signal return will generate a GCS protection fault. In order to guard against attempts to bypass GCS protections via signal return we only allow returning with GCSPR_EL0 pointing to an address where it was previously preempted by a signal. We do this by pushing a cap onto the GCS, this takes the form of an architectural GCS cap token with the top bit set and token type of 0 which we add on signal entry and validate and pop off on signal return. The combination of the top bit being set and the token type mean that this can't be interpreted as a valid token or address. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-25-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
506496bcbb |
arm64/gcs: Ensure that new threads have a GCS
When a new thread is created by a thread with GCS enabled the GCS needs to be specified along with the regular stack. Unfortunately plain clone() is not extensible and existing clone3() users will not specify a stack so all existing code would be broken if we mandated specifying the stack explicitly. For compatibility with these cases and also x86 (which did not initially implement clone3() support for shadow stacks) if no GCS is specified we will allocate one so when a thread is created which has GCS enabled allocate one for it. We follow the extensively discussed x86 implementation and allocate min(RLIMIT_STACK/2, 2G). Since the GCS only stores the call stack and not any variables this should be more than sufficient for most applications. GCSs allocated via this mechanism will be freed when the thread exits. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-22-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
fc84bc5378 |
arm64/gcs: Context switch GCS state for EL0
There are two registers controlling the GCS state of EL0, GCSPR_EL0 which is the current GCS pointer and GCSCRE0_EL1 which has enable bits for the specific GCS functionality enabled for EL0. Manage these on context switch and process lifetime events, GCS is reset on exec(). Also ensure that any changes to the GCS memory are visible to other PEs and that changes from other PEs are visible on this one by issuing a GCSB DSYNC when moving to or from a thread with GCS. Since the current GCS configuration of a thread will be visible to userspace we store the configuration in the format used with userspace and provide a helper which configures the system register as needed. On systems that support GCS we always allow access to GCSPR_EL0, this facilitates reporting of GCS faults if userspace implements disabling of GCS on error - the GCS can still be discovered and examined even if GCS has been disabled. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-21-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8ce71d2705 |
arm64/traps: Handle GCS exceptions
A new exception code is defined for GCS specific faults other than standard load/store faults, for example GCS token validation failures, add handling for this. These faults are reported to userspace as segfaults with code SEGV_CPERR (protection error), mirroring the reporting for x86 shadow stack errors. GCS faults due to memory load/store operations generate data aborts with a flag set, these will be handled separately as part of the data abort handling. Since we do not currently enable GCS for EL1 we should not get any faults there but while we're at it we wire things up there, treating any GCS fault as fatal. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-19-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
eefc98711f |
arm64/hwcap: Add hwcap for GCS
Provide a hwcap to enable userspace to detect support for GCS. Signed-off-by: Mark Brown <broonie@kernel.org> Acked-by: Yury Khrustalev <yury.khrustalev@arm.com> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-18-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
a94452112c |
arm64/idreg: Add overrride for GCS
Hook up an override for GCS, allowing it to be disabled from the command line by specifying arm64.nogcs in case there are problems. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-17-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6487c96308 |
arm64/cpufeature: Runtime detection of Guarded Control Stack (GCS)
Add a cpufeature for GCS, allowing other code to conditionally support it at runtime. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-12-222b78d87eee@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
081eb7932c |
arm64: errata: Expand speculative SSBS workaround once more
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. We worked around this for a number of CPUs in commits: * |
||
![]() |
348325d644 |
asm-generic updates for 6.12
These are only two small patches, one cleanup for arch/alpha and a preparation patch cleaning up the handling of runtime constants in the linker scripts. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmboHV0ACgkQYKtH/8kJ UifHfhAAqTHHxxe+HiphGBPHN0ODyLVUs7fOQHtLOSmJlQa6x1TCR/+1nL1kTDbe j6EcIRxZrllQZ+jZBA8z2XsAmjjBLUxCB4yu6oxYJh8OdFyqeVM/myZEr2TAyb0o A3D9b+rfnY8sr9XaFHSHGWbh4c33cGQhACumHVAjtPvU06Voskq4pAf9ZnpGkNBe AdKNTVG6+w84dKUNuzXcexP8d7SnsXNfd6T9+evtW/M+fziWzs3aPQr+GZED96E5 8IRldXi2nzIwm9LT5IzZAt+QvpVb2Qob1+rej9p5WpptGp840CROTo61SwaYHCMV DDxTlmADsApWJQ3B5gDu6QS2jXT4eeOrY3JI2baeCyOV6auj15UXKiWc2QVoHOVU 6+PzlSFuLatI6WsxXfOcD0o3bfQXMKS6zCC/4eD7Y/SmmMqBbL5+d9sU5lwkiOFl swoswF4HTwo5d6NdkSuJOt6KA/V8a68lBhKYBXHu2yuLi/LDNOaipEvBHQLzfnlY 91e5DtDiHK9CYDNkwiR+bV9rQnhA535JSlfR8VtpU/SJTTjyF+dkt9JGPdivXoIA 8Zv+DN/oyrahUtCrgzzPXahOuBrfD/WfIajsvpEK6vNPuBhscsZFg/thc70FMIXo qn8Dmpi/CnDWFNOy0xO0cbYWrGBGn9E7kzbSZ78tUIjPUmmEKfk= =OOMl -----END PGP SIGNATURE----- Merge tag 'asm-generic-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic updates from Arnd Bergmann: "These are only two small patches, one cleanup for arch/alpha and a preparation patch cleaning up the handling of runtime constants in the linker scripts" * tag 'asm-generic-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: runtime constants: move list of constants to vmlinux.lds.h alpha: no need to include asm/xchg.h twice |
||
![]() |
4a39ac5b7d |
Random number generator updates for Linux 6.12-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmboHyUACgkQSfxwEqXe A66wGQ/8DRIjBllwf1YuTWi4T6OcfoYxK6C9bXO6QPP5gzdTyFE9pvDuuPyad6+F FR086ydTHeodemz1dFiQCL9etcUaxo4+6FRKyXKF9/1ezGbTA5nJd0/fKJGlqbI2 EoA4LNYHOsvCZk1BTpxRNWKeKphU9zQgQdSigy6Rx8p269UkGmIZjD1PtUc+vqfR Ox0dK/Cswyo236fRi5HzaoMntWI4vXgLfxty0e1R7tfbstkCxSKWAON1lo3uHgkA 0HpJXWgWXAPt9gp++Fs/jGNpOqbt6IaKeV5f7CjYfvWhlFjNMhQxF+PbxknaZn/k K0gQsItOIoFTfbQdLDIdfnj9awMdLW8FB2A1WXHpNr9pVC4ickPb1bMTF/XRd0tm wBNu4BL0gklx6017KZg5uINMIduzMLGkBLRFiBW0en/sZMLTJTMg58BJn0CL1Pmh 1ll/Q3ToSMHalvxU2OnJagTwh4fzzCEpK/hW9WiDO4jSCsMXyX0clinrCjNo1JfA tqgTWEy3uGtg+dg0Du9VD5JASbNQSJ0ZRnas5+qz10IRWWfTolrsk61dliXLQ4Sv tSryDtsE2znwJF1Krh4aHNSSVhD5/l/8QaXkf9aZc/kkaHxwsx83FuWnqw6nMz8c l4B2MbH0jUgsEqEyx+0iwk+FXE9kZKWumTVLjFZ6bRnq3q+uq0U= =mWCw -----END PGP SIGNATURE----- Merge tag 'random-6.12-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "Originally I'd planned on sending each of the vDSO getrandom() architecture ports to their respective arch trees. But as we started to work on this, we found lots of interesting issues in the shared code and infrastructure, the fixes for which the various archs needed to base their work. So in the end, this turned into a nice collaborative effort fixing up issues and porting to 5 new architectures -- arm64, powerpc64, powerpc32, s390x, and loongarch64 -- with everybody pitching in and commenting on each other's code. It was a fun development cycle. This contains: - Numerous fixups to the vDSO selftest infrastructure, getting it running successfully on more platforms, and fixing bugs in it. - Additions to the vDSO getrandom & chacha selftests. Basically every time manual review unearthed a bug in a revision of an arch patch, or an ambiguity, the tests were augmented. By the time the last arch was submitted for review, s390x, v1 of the series was essentially fine right out of the gate. - Fixes to the the generic C implementation of vDSO getrandom, to build and run successfully on all archs, decoupling it from assumptions we had (unintentionally) made on x86_64 that didn't carry through to the other architectures. - Port of vDSO getrandom to LoongArch64, from Xi Ruoyao and acked by Huacai Chen. - Port of vDSO getrandom to ARM64, from Adhemerval Zanella and acked by Will Deacon. - Port of vDSO getrandom to PowerPC, in both 32-bit and 64-bit varieties, from Christophe Leroy and acked by Michael Ellerman. - Port of vDSO getrandom to S390X from Heiko Carstens, the arch maintainer. While it'd be natural for there to be things to fix up over the course of the development cycle, these patches got a decent amount of review from a fairly diverse crew of folks on the mailing lists, and, for the most part, they've been cooking in linux-next, which has been helpful for ironing out build issues. In terms of architectures, I think that mostly takes care of the important 64-bit archs with hardware still being produced and running production loads in settings where vDSO getrandom is likely to help. Arguably there's still RISC-V left, and we'll see for 6.13 whether they find it useful and submit a port" * tag 'random-6.12-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (47 commits) selftests: vDSO: check cpu caps before running chacha test s390/vdso: Wire up getrandom() vdso implementation s390/vdso: Move vdso symbol handling to separate header file s390/vdso: Allow alternatives in vdso code s390/module: Provide find_section() helper s390/facility: Let test_facility() generate static branch if possible s390/alternatives: Remove ALT_FACILITY_EARLY s390/facility: Disable compile time optimization for decompressor code selftests: vDSO: fix vdso_config for s390 selftests: vDSO: fix ELF hash table entry size for s390x powerpc/vdso: Wire up getrandom() vDSO implementation on VDSO64 powerpc/vdso: Wire up getrandom() vDSO implementation on VDSO32 powerpc/vdso: Refactor CFLAGS for CVDSO build powerpc/vdso32: Add crtsavres mm: Define VM_DROPPABLE for powerpc/32 powerpc/vdso: Fix VDSO data access when running in a non-root time namespace selftests: vDSO: don't include generated headers for chacha test arm64: vDSO: Wire up getrandom() vDSO implementation arm64: alternative: make alternative_has_cap_likely() VDSO compatible selftests: vDSO: also test counter in vdso_test_chacha ... |
||
![]() |
067610ebaa |
RCU pull request for v6.12
This pull request contains the following branches: context_tracking.15.08.24a: Rename context tracking state related symbols and remove references to "dynticks" in various context tracking state variables and related helpers; force context_tracking_enabled_this_cpu() to be inlined to avoid leaving a noinstr section. csd.lock.15.08.24a: Enhance CSD-lock diagnostic reports; add an API to provide an indication of ongoing CSD-lock stall. nocb.09.09.24a: Update and simplify RCU nocb code to handle (de-)offloading of callbacks only for offline CPUs; fix RT throttling hrtimer being armed from offline CPU. rcutorture.14.08.24a: Remove redundant rcu_torture_ops get_gp_completed fields; add SRCU ->same_gp_state and ->get_comp_state functions; add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU polled grace periods; add CFcommon.arch for arch-specific Kconfig options; print number of update types in rcu_torture_write_types(); add rcutree.nohz_full_patience_delay testing to the TREE07 scenario; add a stall_cpu_repeat module parameter to test repeated CPU stalls; add argument to limit number of CPUs a guest OS can use in torture.sh; rcustall.09.09.24a: Abbreviate RCU CPU stall warnings during CSD-lock stalls; Allow dump_cpu_task() to be called without disabling preemption; defer printing stall-warning backtrace when holding rcu_node lock. srcu.12.08.24a: Make SRCU gp seq wrap-around faster; add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and ->reschedule_count which are used in heuristics governing auto-expediting of normal SRCU grace periods and grace-period-state-machine delays; mark idle SRCU-barrier callbacks to help identify stuck SRCU-barrier callback. rcu.tasks.14.08.24a: Remove RCU Tasks Rude asynchronous APIs as they are no longer used; stop testing RCU Tasks Rude asynchronous APIs; fix access to non-existent percpu regions; check processor-ID assumptions during chosen CPU calculation for callback enqueuing; update description of rtp->tasks_gp_seq grace-period sequence number; add rcu_barrier_cb_is_done() to identify whether a given rcu_barrier callback is stuck; mark idle Tasks-RCU-barrier callbacks; add *torture_stats_print() functions to print detailed diagnostics for Tasks-RCU variants; capture start time of rcu_barrier_tasks*() operation to help distinguish a hung barrier operation from a long series of barrier operations. rcu_scaling_tests.15.08.24a: refscale: Add a TINY scenario to support tests of Tiny RCU and Tiny SRCU; Optimize process_durations() operation; rcuscale: Dump stacks of stalled rcu_scale_writer() instances; dump grace-period statistics when rcu_scale_writer() stalls; mark idle RCU-barrier callbacks to identify stuck RCU-barrier callbacks; print detailed grace-period and barrier diagnostics on rcu_scale_writer() hangs for Tasks-RCU variants; warn if async module parameter is specified for RCU implementations that do not have async primitives such as RCU Tasks Rude; make all writer tasks report upon hang; tolerate repeated GFP_KERNEL failure in rcu_scale_writer(); use special allocator for rcu_scale_writer(); NULL out top-level pointers to heap memory to avoid double-free bugs on modprobe failures; maintain per-task instead of per-CPU callbacks count to avoid any issues with migration of either tasks or callbacks; constify struct ref_scale_ops. fixes.12.08.24a: Use system_unbound_wq for kfree_rcu work to avoid disturbing isolated CPUs. misc.11.08.24a: Warn on unexpected rcu_state.srs_done_tail state; Better define "atomic" for list_replace_rcu() and hlist_replace_rcu() routines; annotate struct kvfree_rcu_bulk_data with __counted_by(). -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQSi2tPIQIc2VEtjarIAHS7/6Z0wpQUCZt8+8wAKCRAAHS7/6Z0w pTqoAPwPN//tlEoJx2PRs6t0q+nD1YNvnZawPaRmdzgdM8zJogD+PiSN+XhqRr80 jzyvMDU4Aa0wjUNP3XsCoaCxo7L/lQk= =bZ9z -----END PGP SIGNATURE----- Merge tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux Pull RCU updates from Neeraj Upadhyay: "Context tracking: - rename context tracking state related symbols and remove references to "dynticks" in various context tracking state variables and related helpers - force context_tracking_enabled_this_cpu() to be inlined to avoid leaving a noinstr section CSD lock: - enhance CSD-lock diagnostic reports - add an API to provide an indication of ongoing CSD-lock stall nocb: - update and simplify RCU nocb code to handle (de-)offloading of callbacks only for offline CPUs - fix RT throttling hrtimer being armed from offline CPU rcutorture: - remove redundant rcu_torture_ops get_gp_completed fields - add SRCU ->same_gp_state and ->get_comp_state functions - add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU polled grace periods - add CFcommon.arch for arch-specific Kconfig options - print number of update types in rcu_torture_write_types() - add rcutree.nohz_full_patience_delay testing to the TREE07 scenario - add a stall_cpu_repeat module parameter to test repeated CPU stalls - add argument to limit number of CPUs a guest OS can use in torture.sh rcustall: - abbreviate RCU CPU stall warnings during CSD-lock stalls - Allow dump_cpu_task() to be called without disabling preemption - defer printing stall-warning backtrace when holding rcu_node lock srcu: - make SRCU gp seq wrap-around faster - add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and ->reschedule_count which are used in heuristics governing auto-expediting of normal SRCU grace periods and grace-period-state-machine delays - mark idle SRCU-barrier callbacks to help identify stuck SRCU-barrier callback rcu tasks: - remove RCU Tasks Rude asynchronous APIs as they are no longer used - stop testing RCU Tasks Rude asynchronous APIs - fix access to non-existent percpu regions - check processor-ID assumptions during chosen CPU calculation for callback enqueuing - update description of rtp->tasks_gp_seq grace-period sequence number - add rcu_barrier_cb_is_done() to identify whether a given rcu_barrier callback is stuck - mark idle Tasks-RCU-barrier callbacks - add *torture_stats_print() functions to print detailed diagnostics for Tasks-RCU variants - capture start time of rcu_barrier_tasks*() operation to help distinguish a hung barrier operation from a long series of barrier operations refscale: - add a TINY scenario to support tests of Tiny RCU and Tiny SRCU - optimize process_durations() operation rcuscale: - dump stacks of stalled rcu_scale_writer() instances and grace-period statistics when rcu_scale_writer() stalls - mark idle RCU-barrier callbacks to identify stuck RCU-barrier callbacks - print detailed grace-period and barrier diagnostics on rcu_scale_writer() hangs for Tasks-RCU variants - warn if async module parameter is specified for RCU implementations that do not have async primitives such as RCU Tasks Rude - make all writer tasks report upon hang - tolerate repeated GFP_KERNEL failure in rcu_scale_writer() - use special allocator for rcu_scale_writer() - NULL out top-level pointers to heap memory to avoid double-free bugs on modprobe failures - maintain per-task instead of per-CPU callbacks count to avoid any issues with migration of either tasks or callbacks - constify struct ref_scale_ops Fixes: - use system_unbound_wq for kfree_rcu work to avoid disturbing isolated CPUs Misc: - warn on unexpected rcu_state.srs_done_tail state - better define "atomic" for list_replace_rcu() and hlist_replace_rcu() routines - annotate struct kvfree_rcu_bulk_data with __counted_by()" * tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (90 commits) rcu: Defer printing stall-warning backtrace when holding rcu_node lock rcu/nocb: Remove superfluous memory barrier after bypass enqueue rcu/nocb: Conditionally wake up rcuo if not already waiting on GP rcu/nocb: Fix RT throttling hrtimer armed from offline CPU rcu/nocb: Simplify (de-)offloading state machine context_tracking: Tag context_tracking_enabled_this_cpu() __always_inline context_tracking, rcu: Rename rcu_dyntick trace event into rcu_watching rcu: Update stray documentation references to rcu_dynticks_eqs_{enter, exit}() rcu: Rename rcu_momentary_dyntick_idle() into rcu_momentary_eqs() rcu: Rename rcu_implicit_dynticks_qs() into rcu_watching_snap_recheck() rcu: Rename dyntick_save_progress_counter() into rcu_watching_snap_save() rcu: Rename struct rcu_data .exp_dynticks_snap into .exp_watching_snap rcu: Rename struct rcu_data .dynticks_snap into .watching_snap rcu: Rename rcu_dynticks_zero_in_eqs() into rcu_watching_zero_in_eqs() rcu: Rename rcu_dynticks_in_eqs_since() into rcu_watching_snap_stopped_since() rcu: Rename rcu_dynticks_in_eqs() into rcu_watching_snap_in_eqs() rcu: Rename rcu_dynticks_eqs_online() into rcu_watching_online() context_tracking, rcu: Rename rcu_dynticks_curr_cpu_in_eqs() into rcu_is_watching_curr_cpu() context_tracking, rcu: Rename rcu_dynticks_task*() into rcu_task*() refscale: Constify struct ref_scale_ops ... |
||
![]() |
11b3125073 |
ACPI updates for 6.12-rc1
- Check return value in acpi_db_convert_to_package() (Pei Xiao). - Detect FACS and allow setting the waking vector on reduced-hardware ACPI platforms (Jiaqing Zhao). - Allow ACPICA to represent semaphores as integers (Adrien Destugues). - Complete CXL 3.0 CXIMS structures support in ACPICA (Zhang Rui). - Make ACPICA support SPCR version 4 and add RISC-V SBI Subtype to DBG2 (Sia Jee Heng). - Implement the Dword_PCC Resource Descriptor Macro in ACPICA (Jose Marinho). - Correct the typo in struct acpi_mpam_msc_node member (Punit Agrawal). - Implement ACPI_WARNING_ONCE() and ACPI_ERROR_ONCE() and use them to prevent a Stall() violation warning from being printed every time this takes place (Vasily Khoruzhick). - Allow PCC Data Type in MCTP resource (Adam Young). - Fix memory leaks on acpi_ps_get_next_namepath() and acpi_ps_get_next_field() failures (Armin Wolf). - Add support for supressing leading zeros in hex strings when converting them to integers and update integer-to-hex-string conversions in ACPICA (Armin Wolf). - Add support for Windows 11 22H2 _OSI string (Armin Wolf). - Avoid warning for Dump Functions in ACPICA (Adam Lackorzynski). - Add extended linear address mode to HMAT MSCIS in ACPICA (Dave Jiang). - Handle empty connection_node in iasl (Aleksandrs Vinarskis). - Allow for more flexibility in _DSM args (Saket Dumbre). - Setup for ACPICA release 20240827 (Saket Dumbre). - Add ACPI device enumeration support for interrupt controller probing including taking dependencies into account (Sunil V L). - Implement ACPI-based interrupt controller probing on RISC-V (Sunil V L). - Add ACPI support for AIA in riscv-intc and add ACPI support to riscv-imsic, riscv-aplic, and sifive-plic (Sunil V L). - Do not release locks during operation region accesses in the ACPI EC driver (Rafael Wysocki). - Fix up the _STR handling in the ACPI device object sysfs interface, make it represent the device object attributes as an attribute group and make it rely on driver core functionality for sysfs attrubute management (Thomas Weißschuh). - Extend error messages printed to the kernel log when acpi_evaluate_dsm() fails to include revision and function number (David Wang). - Add a new AMDI0015 platform device ID to the ACPi APD driver for AMD SoCs (Shyam Sundar S K). - Use the driver core for the async probing management in the ACPI battery driver (Thomas Weißschuh). - Remove redundant initalizations of a local variable to NULL from the ACPI battery driver (Ilpo Järvinen). - Remove unneeded check in tps68470_pmic_opregion_probe() (Aleksandr Mishin). - Add support for setting the EPP register through the ACPI CPPC sysfs interface if it is in FFH (Mario Limonciello). - Fix MASK_VAL() usage in the ACPI CPPC library (Clément Léger). - Reduce the log level of a per-CPU message about idle states in the ACPI processor driver (Li RongQing). - Fix crash in exit_round_robin() in the ACPI processor aggregator device (PAD) driver (Seiji Nishikawa). - Add force_vendor quirk for Panasonic Toughbook CF-18 in the ACPI backlight driver (Hans de Goede). - Make the DMI checks related to backlight handling on Lenovo Yoga Tab 3 X90F less strict (Hans de Goede). - Enforce native backlight handling on Apple MacbookPro9,2 (Esther Shimanovich). - Add IRQ override quirks for Asus Vivobook Go E1404GAB and MECHREV GM7XG0M, and refine the TongFang GMxXGxx quirk (Li Chen, Tamim Khan, Werner Sembach). - Quirk ASUS ROG M16 to default to S3 sleep (Luke D. Jones). - Define and use symbols for device and class name lengths in the ACPI bus type code and make the code use strscpy() instead of strcpy() in several places (Muhammad Qasim Abdul Majeed). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmbjJ9kSHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxhfMP/3i4Nrkmf2HpiSJ/zFMSISNbAEmLSqQQ gSo0Mmj1OHN9W9rBiIVDgJjeakyLg2IHB1sFZ9ABtU1JvO9mMchU7OlDKIt8Q8sf VJa+q0tcA4kny5BZa47fPjZaaM6f9boVTm5WRn9T7KSLA+EGBAxE+UXQ2ibxiPCc ZWX8obeYe78Zv2i5U8LiO4mQlB2viGEgO/5vKywmNKYVpurOMAv4zGjvDfRxK3ZQ GXIZLUCh0inu8VomrbI5B1bpqNTxUrLoEAExKpyAyIiRYay+nyv8Vm2sSw9roe3a C9pux4pojT0zfkmCVJmXET0982GcMSDaB0Rb1ypwbC2EdTtEoauC/HTyTixNBxBa MnHntDe/l6Z9gLhbj8dcfB0ZVUkahqFzndWA9EBwroor2S7woZNtA3jL9VNHbM1J kKNPQ2YCQi1ObQcftZDC9UYYx62KVvWNZCTS1+ZjnpKNH8hcEEBwMlnmE1VTYeHf TN0vbB6QJSDu26qOyiWMCgLAR45TW/YzA3CrJi7/zGMSUyEQvHQAe5wh5H3ygbAR GbDau0AVSvCO7lTRpqkzS6aeTLIbp1oqGwnnSXQDy30biI2FeQyg76Nq8Rgj5Lun 8+GvmkuVSjbjTXYbLqjt/gW97O/HUdygfL7hhjS10TB+3C34mQm/pwFxNYxJdFyO mhMeKq4DdOJ+ =XHaD -----END PGP SIGNATURE----- Merge tag 'acpi-6.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI updates from Rafael Wysocki: "These update the ACPICA code in the kernel to upstream version 20240827, add support for ACPI-based enumeration of interrupt controllers on RISC-V along with some related irqchip updates, clean up the ACPI device object sysfs interface, add some quirks for backlight handling and IRQ overrides, fix assorted issues and clean up code. Specifics: - Check return value in acpi_db_convert_to_package() (Pei Xiao) - Detect FACS and allow setting the waking vector on reduced-hardware ACPI platforms (Jiaqing Zhao) - Allow ACPICA to represent semaphores as integers (Adrien Destugues) - Complete CXL 3.0 CXIMS structures support in ACPICA (Zhang Rui) - Make ACPICA support SPCR version 4 and add RISC-V SBI Subtype to DBG2 (Sia Jee Heng) - Implement the Dword_PCC Resource Descriptor Macro in ACPICA (Jose Marinho) - Correct the typo in struct acpi_mpam_msc_node member (Punit Agrawal) - Implement ACPI_WARNING_ONCE() and ACPI_ERROR_ONCE() and use them to prevent a Stall() violation warning from being printed every time this takes place (Vasily Khoruzhick) - Allow PCC Data Type in MCTP resource (Adam Young) - Fix memory leaks on acpi_ps_get_next_namepath() and acpi_ps_get_next_field() failures (Armin Wolf) - Add support for supressing leading zeros in hex strings when converting them to integers and update integer-to-hex-string conversions in ACPICA (Armin Wolf) - Add support for Windows 11 22H2 _OSI string (Armin Wolf) - Avoid warning for Dump Functions in ACPICA (Adam Lackorzynski) - Add extended linear address mode to HMAT MSCIS in ACPICA (Dave Jiang) - Handle empty connection_node in iasl (Aleksandrs Vinarskis) - Allow for more flexibility in _DSM args (Saket Dumbre) - Setup for ACPICA release 20240827 (Saket Dumbre) - Add ACPI device enumeration support for interrupt controller probing including taking dependencies into account (Sunil V L) - Implement ACPI-based interrupt controller probing on RISC-V (Sunil V L) - Add ACPI support for AIA in riscv-intc and add ACPI support to riscv-imsic, riscv-aplic, and sifive-plic (Sunil V L) - Do not release locks during operation region accesses in the ACPI EC driver (Rafael Wysocki) - Fix up the _STR handling in the ACPI device object sysfs interface, make it represent the device object attributes as an attribute group and make it rely on driver core functionality for sysfs attrubute management (Thomas Weißschuh) - Extend error messages printed to the kernel log when acpi_evaluate_dsm() fails to include revision and function number (David Wang) - Add a new AMDI0015 platform device ID to the ACPi APD driver for AMD SoCs (Shyam Sundar S K) - Use the driver core for the async probing management in the ACPI battery driver (Thomas Weißschuh) - Remove redundant initalizations of a local variable to NULL from the ACPI battery driver (Ilpo Järvinen) - Remove unneeded check in tps68470_pmic_opregion_probe() (Aleksandr Mishin) - Add support for setting the EPP register through the ACPI CPPC sysfs interface if it is in FFH (Mario Limonciello) - Fix MASK_VAL() usage in the ACPI CPPC library (Clément Léger) - Reduce the log level of a per-CPU message about idle states in the ACPI processor driver (Li RongQing) - Fix crash in exit_round_robin() in the ACPI processor aggregator device (PAD) driver (Seiji Nishikawa) - Add force_vendor quirk for Panasonic Toughbook CF-18 in the ACPI backlight driver (Hans de Goede) - Make the DMI checks related to backlight handling on Lenovo Yoga Tab 3 X90F less strict (Hans de Goede) - Enforce native backlight handling on Apple MacbookPro9,2 (Esther Shimanovich) - Add IRQ override quirks for Asus Vivobook Go E1404GAB and MECHREV GM7XG0M, and refine the TongFang GMxXGxx quirk (Li Chen, Tamim Khan, Werner Sembach) - Quirk ASUS ROG M16 to default to S3 sleep (Luke D. Jones) - Define and use symbols for device and class name lengths in the ACPI bus type code and make the code use strscpy() instead of strcpy() in several places (Muhammad Qasim Abdul Majeed)" * tag 'acpi-6.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (70 commits) ACPI: resource: Add another DMI match for the TongFang GMxXGxx ACPI: CPPC: Add support for setting EPP register in FFH ACPI: PM: Quirk ASUS ROG M16 to default to S3 sleep ACPI: video: Add force_vendor quirk for Panasonic Toughbook CF-18 ACPI: battery: use driver core managed async probing ACPI: button: Use strscpy() instead of strcpy() ACPI: resource: Skip IRQ override on Asus Vivobook Go E1404GAB ACPI: CPPC: Fix MASK_VAL() usage irqchip/sifive-plic: Add ACPI support ACPICA: Setup for ACPICA release 20240827 ACPICA: Allow for more flexibility in _DSM args ACPICA: iasl: handle empty connection_node ACPICA: HMAT: Add extended linear address mode to MSCIS ACPICA: Avoid warning for Dump Functions ACPICA: Add support for Windows 11 22H2 _OSI string ACPICA: Update integer-to-hex-string conversions ACPICA: Add support for supressing leading zeros in hex strings ACPICA: Allow for supressing leading zeros when using acpi_ex_convert_to_ascii() ACPICA: Fix memory leak if acpi_ps_get_next_field() fails ACPICA: Fix memory leak if acpi_ps_get_next_namepath() fails ... |
||
![]() |
114143a595 |
arm64 updates for 6.12
ACPI: * Enable PMCG erratum workaround for HiSilicon HIP10 and 11 platforms. * Ensure arm64-specific IORT header is covered by MAINTAINERS. CPU Errata: * Enable workaround for hardware access/dirty issue on Ampere-1A cores. Memory management: * Define PHYSMEM_END to fix a crash in the amdgpu driver. * Avoid tripping over invalid kernel mappings on the kexec() path. * Userspace support for the Permission Overlay Extension (POE) using protection keys. Perf and PMUs: * Add support for the "fixed instruction counter" extension in the CPU PMU architecture. * Extend and fix the event encodings for Apple's M1 CPU PMU. * Allow LSM hooks to decide on SPE permissions for physical profiling. * Add support for the CMN S3 and NI-700 PMUs. Confidential Computing: * Add support for booting an arm64 kernel as a protected guest under Android's "Protected KVM" (pKVM) hypervisor. Selftests: * Fix vector length issues in the SVE/SME sigreturn tests * Fix build warning in the ptrace tests. Timers: * Add support for PR_{G,S}ET_TSC so that 'rr' can deal with non-determinism arising from the architected counter. Miscellaneous: * Rework our IPI-based CPU stopping code to try NMIs if regular IPIs don't succeed. * Minor fixes and cleanups. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmbkVNEQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNKeIB/9YtbN7JMgsXktM94GP03r3tlFF36Y1S51S +zdDZclAVZCTCZN+PaFeAZ/+ah2EQYrY6rtDoHUSEMQdF9kH+ycuIPDTwaJ4Qkam QKXMpAgtY/4yf2rX4lhDF8rEvkhLDsu7oGDhqUZQsA33GrMBHfgA3oqpYwlVjvGq gkm7olTo9LdWAxkPpnjGrjB6Mv5Dq8dJRhW+0Q5AntI5zx3RdYGJZA9GUSzyYCCt FIYOtMmWPkQ0kKxIVxOxAOm/ubhfyCs2sjSfkaa3vtvtt+Yjye1Xd81rFciIbPgP QlK/Mes2kBZmjhkeus8guLI5Vi7tx3DQMkNqLXkHAAzOoC4oConE =6osL -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The highlights are support for Arm's "Permission Overlay Extension" using memory protection keys, support for running as a protected guest on Android as well as perf support for a bunch of new interconnect PMUs. Summary: ACPI: - Enable PMCG erratum workaround for HiSilicon HIP10 and 11 platforms. - Ensure arm64-specific IORT header is covered by MAINTAINERS. CPU Errata: - Enable workaround for hardware access/dirty issue on Ampere-1A cores. Memory management: - Define PHYSMEM_END to fix a crash in the amdgpu driver. - Avoid tripping over invalid kernel mappings on the kexec() path. - Userspace support for the Permission Overlay Extension (POE) using protection keys. Perf and PMUs: - Add support for the "fixed instruction counter" extension in the CPU PMU architecture. - Extend and fix the event encodings for Apple's M1 CPU PMU. - Allow LSM hooks to decide on SPE permissions for physical profiling. - Add support for the CMN S3 and NI-700 PMUs. Confidential Computing: - Add support for booting an arm64 kernel as a protected guest under Android's "Protected KVM" (pKVM) hypervisor. Selftests: - Fix vector length issues in the SVE/SME sigreturn tests - Fix build warning in the ptrace tests. Timers: - Add support for PR_{G,S}ET_TSC so that 'rr' can deal with non-determinism arising from the architected counter. Miscellaneous: - Rework our IPI-based CPU stopping code to try NMIs if regular IPIs don't succeed. - Minor fixes and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (94 commits) perf: arm-ni: Fix an NULL vs IS_ERR() bug arm64: hibernate: Fix warning for cast from restricted gfp_t arm64: esr: Define ESR_ELx_EC_* constants as UL arm64: pkeys: remove redundant WARN perf: arm_pmuv3: Use BR_RETIRED for HW branch event if enabled MAINTAINERS: List Arm interconnect PMUs as supported perf: Add driver for Arm NI-700 interconnect PMU dt-bindings/perf: Add Arm NI-700 PMU perf/arm-cmn: Improve format attr printing perf/arm-cmn: Clean up unnecessary NUMA_NO_NODE check arm64/mm: use lm_alias() with addresses passed to memblock_free() mm: arm64: document why pte is not advanced in contpte_ptep_set_access_flags() arm64: Expose the end of the linear map in PHYSMEM_END arm64: trans_pgd: mark PTEs entries as valid to avoid dead kexec() arm64/mm: Delete __init region from memblock.reserved perf/arm-cmn: Support CMN S3 dt-bindings: perf: arm-cmn: Add CMN S3 perf/arm-cmn: Refactor DTC PMU register access perf/arm-cmn: Make cycle counts less surprising perf/arm-cmn: Improve build-time assertion ... |
||
![]() |
712676ea2b |
arm64: vDSO: Wire up getrandom() vDSO implementation
Hook up the generic vDSO implementation to the aarch64 vDSO data page. The _vdso_rng_data required data is placed within the _vdso_data vvar page, by using a offset larger than the vdso_data. The vDSO function requires a ChaCha20 implementation that does not write to the stack, and that can do an entire ChaCha20 permutation. The one provided uses NEON on the permute operation, with a fallback to the syscall for chips that do not support AdvSIMD. This also passes the vdso_test_chacha test along with vdso_test_getrandom. The vdso_test_getrandom bench-single result on Neoverse-N1 shows: vdso: 25000000 times in 0.783884250 seconds libc: 25000000 times in 8.780275399 seconds syscall: 25000000 times in 8.786581518 seconds A small fixup to arch/arm64/include/asm/mman.h was required to avoid pulling kernel code into the vDSO, similar to what's already done in arch/arm64/include/asm/rwonce.h. Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
![]() |
75078ba2b3 |
Merge branch 'for-next/timers' into for-next/core
* for-next/timers: arm64: Implement prctl(PR_{G,S}ET_TSC) |
||
![]() |
982a847c71 |
Merge branch 'for-next/poe' into for-next/core
* for-next/poe: (31 commits) arm64: pkeys: remove redundant WARN kselftest/arm64: Add test case for POR_EL0 signal frame records kselftest/arm64: parse POE_MAGIC in a signal frame kselftest/arm64: add HWCAP test for FEAT_S1POE selftests: mm: make protection_keys test work on arm64 selftests: mm: move fpregs printing kselftest/arm64: move get_header() arm64: add Permission Overlay Extension Kconfig arm64: enable PKEY support for CPUs with S1POE arm64: enable POE and PIE to coexist arm64/ptrace: add support for FEAT_POE arm64: add POE signal support arm64: implement PKEYS support arm64: add pte_access_permitted_no_overlay() arm64: handle PKEY/POE faults arm64: mask out POIndex when modifying a PTE arm64: convert protection key into vm_flags and pgprot values arm64: add POIndex defines arm64: re-order MTE VM_ flags arm64: enable the Permission Overlay Extension for EL0 ... |
||
![]() |
f661eb5f8d |
Merge branch 'for-next/misc' into for-next/core
* for-next/misc: arm64: hibernate: Fix warning for cast from restricted gfp_t arm64: esr: Define ESR_ELx_EC_* constants as UL arm64: Constify struct kobj_type arm64: smp: smp_send_stop() and crash_smp_send_stop() should try non-NMI first arm64/sve: Remove unused declaration read_smcr_features() arm64: mm: Remove unused declaration early_io_map() arm64: el2_setup.h: Rename some labels to be more diff-friendly arm64: signal: Fix some under-bracketed UAPI macros arm64/mm: Drop TCR_SMP_FLAGS arm64/mm: Drop PMD_SECT_VALID |
||
![]() |
ecdd16df45 |
arm64: hibernate: Fix warning for cast from restricted gfp_t
This patch fixes the following warning by adding __force to the cast: arch/arm64/kernel/hibernate.c:410:44: sparse: warning: cast from restricted gfp_t No functional change intended. Signed-off-by: Min-Hua Chen <minhuadotchen@gmail.com> Link: https://lore.kernel.org/r/20240910232507.313555-1-minhuadotchen@gmail.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
45de40574f |
Merge branch 'acpi-riscv'
Merge ACPI and irqchip updates related to external interrupt controller support on RISC-V: - Add ACPI device enumeration support for interrupt controller probing including taking dependencies into account (Sunil V L). - Implement ACPI-based interrupt controller probing on RISC-V (Sunil V L). - Add ACPI support for AIA in riscv-intc and add ACPI support to riscv-imsic, riscv-aplic, and sifive-plic (Sunil V L). * acpi-riscv: irqchip/sifive-plic: Add ACPI support irqchip/riscv-aplic: Add ACPI support irqchip/riscv-imsic: Add ACPI support irqchip/riscv-imsic-state: Create separate function for DT irqchip/riscv-intc: Add ACPI support for AIA ACPI: RISC-V: Implement function to add implicit dependencies ACPI: RISC-V: Initialize GSI mapping structures ACPI: RISC-V: Implement function to reorder irqchip probe entries ACPI: RISC-V: Implement PCI related functionality ACPI: pci_link: Clear the dependencies after probe ACPI: bus: Add RINTC IRQ model for RISC-V ACPI: scan: Define weak function to populate dependencies ACPI: scan: Add RISC-V interrupt controllers to honor list ACPI: scan: Refactor dependency creation ACPI: bus: Add acpi_riscv_init() function ACPI: scan: Add a weak arch_sort_irqchip_probe() to order the IRQCHIP probe arm64: PCI: Migrate ACPI related functions to pci-acpi.c |
||
![]() |
6b8ff511e4 |
Fix the arm64 usage of ftrace_graph_ret_addr() to pass the
&state->graph_idx pointer instead of NULL, otherwise this function just returns early. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmbbNqMACgkQa9axLQDI XvGDhQ//dxbFGx+5oD7BjX8xoyis4GQmnYS3IkNJXdTbd7gB2MCygobNfDyjOGjV wkCDpgrgs2al+OnldldjqoIwcqkp4e03IKuxamouF3yg2nrPfZl1Z9JkL+0hhk7c ZHvw82cF1EHPF8Su8zyh/XIyBWPwH5x/+YYW1PYsFWS0P17Y2q6B8qU0EfRvNtT2 9168yPlR1vYuXBPg+34OUXlMVXww0KNulVa12vab2EZMI+v8Ql5M6F05SrzVT3JG G/IG4R8QpVuVCcQjMmy0oNPlB56+CScqM7yIUOGTiGgTgvZ3cs+83grd4gqfvVAp 3bgZno4oV9O+V8JrjcGMw9K6sIl5KRmED6+zCjdEwPgkhStV1C6ApcdnUnqst7Gw NkhskzTqRRt5ZVGQsN24AGoybtmFALudmTRmOiL3eOzikK73CZMSK29DNiEP32SD D1mWZj57EnOBkxiUsh36+FbX5zMieJu0hbOy7jLFE5ynb/GpyFPf9pORrLI3fbk1 46/VCvWTrul0fD9iBafm+VGfoy4SQX5T8TWnKEXF4THfvrzu5q6HCPTGMBgBLXDg vRMyL4dIgAK6/HeoLQL7UhkWEYrT3KrBMHeZf/q57oMr+kyQctxFKJg9N8TApk78 GIqWrRpuCPj2E/vrfI6j1szVfMgna3Az2Y2ArVWWFPqY7U8hEl4= =GM7Q -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fix from Catalin Marinas: "Fix the arm64 usage of ftrace_graph_ret_addr() to pass the &state->graph_idx pointer instead of NULL, otherwise this function just returns early" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: stacktrace: fix the usage of ftrace_graph_ret_addr() |
||
![]() |
c060f93253 |
arm64: stacktrace: fix the usage of ftrace_graph_ret_addr()
ftrace_graph_ret_addr() takes an 'idx' integer pointer that is used to
optimize the stack unwinding process. arm64 currently passes `NULL` for
this parameter which stops it from utilizing these optimizations.
Further, the current code for ftrace_graph_ret_addr() will just return
the passed in return address if it is NULL which will break this usage.
Pass a valid integer pointer to ftrace_graph_ret_addr() similar to
x86_64's stack unwinder.
Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
Fixes:
|
||
![]() |
1751981992 |
arm64/ptrace: add support for FEAT_POE
Add a regset for POE containing POR_EL0. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-21-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9160f7e909 |
arm64: add POE signal support
Add PKEY support to signals, by saving and restoring POR_EL0 from the stackframe. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Szabolcs Nagy <szabolcs.nagy@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-20-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7f0ab60763 |
arm64: handle PKEY/POE faults
If a memory fault occurs that is due to an overlay/pkey fault, report that to userspace with a SEGV_PKUERR. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-17-joey.gouly@arm.com [will: Add ESR.FSC check to data abort handler] Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
bf83dae90f |
arm64: enable the Permission Overlay Extension for EL0
Expose a HWCAP and ID_AA64MMFR3_EL1_S1POE to userspace, so they can be used to check if the CPU supports the feature. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-12-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
160a8e13de |
arm64: context switch POR_EL0 register
POR_EL0 is a register that can be modified by userspace directly, so it must be context switched. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-7-joey.gouly@arm.com [will: Dropped unnecessary isb()s] Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
3496f69391 |
arm64: cpufeature: add Permission Overlay Extension cpucap
This indicates if the system supports POE. This is a CPUCAP_BOOT_CPU_FEATURE as the boot CPU will enable POE if it has it, so secondary CPUs must also have this feature. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20240822151113.1479789-6-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
db0d8a8434 |
arm64: errata: Enable the AC03_CPU_38 workaround for ampere1a
The ampere1a cpu is affected by erratum AC04_CPU_10 which is the same bug as AC03_CPU_38. Add ampere1a to the AC03_CPU_38 workaround midr list. Cc: <stable@vger.kernel.org> Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240827211701.2216719-1-scott@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
789befdfa3 |
arm64: PCI: Migrate ACPI related functions to pci-acpi.c
The functions defined in arm64 for ACPI support are required for RISC-V also. To avoid duplication, move these functions to common location. Signed-off-by: Sunil V L <sunilvl@ventanamicro.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Will Deacon <will@kernel.org> Tested-by: Björn Töpel <bjorn@rivosinc.com> Link: https://patch.msgid.link/20240812005929.113499-2-sunilvl@ventanamicro.com Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
![]() |
684fbd42d3 |
arm64: Constify struct kobj_type
'struct kobj_type' is not modified. It is only used in kobject_init() which takes a 'const struct kobj_type *ktype' parameter. Constifying this structure moves some data to a read-only section, so increase over all security. On a x86_64, compiled with arm defconfig: Before: ====== text data bss dec hex filename 5602 548 352 6502 1966 arch/arm64/kernel/cpuinfo.o After: ====== text data bss dec hex filename 5650 500 352 6502 1966 arch/arm64/kernel/cpuinfo.o Signed-off-by: Huang Xiaojia <huangxiaojia2@huawei.com> Link: https://lore.kernel.org/r/20240826151250.3500302-1-huangxiaojia2@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
3e9e67e129 |
arm64: Implement prctl(PR_{G,S}ET_TSC)
On arm64, this prctl controls access to CNTVCT_EL0, CNTVCTSS_EL0 and
CNTFRQ_EL0 via CNTKCTL_EL1.EL0VCTEN. Since this bit is also used to
implement various erratum workarounds, check whether the CPU needs
a workaround whenever we potentially need to change it.
This is needed for a correct implementation of non-instrumenting
record-replay debugging on arm64 (i.e. rr; https://rr-project.org/).
rr must trap and record any sources of non-determinism from the
userspace program's perspective so it can be replayed later. This
includes the results of syscalls as well as the results of access
to architected timers exposed directly to the program. This prctl
was originally added for x86 by commit
|
||
![]() |
fdfa588124 |
arm64: smp: smp_send_stop() and crash_smp_send_stop() should try non-NMI first
When testing hard lockup handling on my sc7180-trogdor-lazor device with pseudo-NMI enabled, with serial console enabled and with kgdb disabled, I found that the stack crawls printed to the serial console ended up as a jumbled mess. After rebooting, the pstore-based console looked fine though. Also, enabling kgdb to trap the panic made the console look fine and avoided the mess. After a bit of tracking down, I came to the conclusion that this was what was happening: 1. The panic path was stopping all other CPUs with panic_other_cpus_shutdown(). 2. At least one of those other CPUs was in the middle of printing to the serial console and holding the console port's lock, which is grabbed with "irqsave". ...but since we were stopping with an NMI we didn't care about the "irqsave" and interrupted anyway. 3. Since we stopped the CPU while it was holding the lock it would never release it. 4. All future calls to output to the console would end up failing to get the lock in qcom_geni_serial_console_write(). This isn't _totally_ unexpected at panic time but it's a code path that's not well tested, hard to get right, and apparently doesn't work terribly well on the Qualcomm geni serial driver. The Qualcomm geni serial driver was fixed to be a bit better in commit |
||
![]() |
92a10d3861 |
runtime constants: move list of constants to vmlinux.lds.h
Refactor the list of constant variables into a macro. This should make it easier to add more constants in the future. Signed-off-by: Jann Horn <jannh@google.com> Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
c2cdb13a34 |
arm64 fixes:
- Fix the arm64 __get_mem_asm() to use the _ASM_EXTABLE_##type##ACCESS() macro instead of the *_ERR() one in order to avoid writing -EFAULT to the value register in case of a fault - Initialise all elements of the acpi_early_node_map[] to NUMA_NO_NODE. Prior to this fix, only the first element was initialised - Move the KASAN random tag seed initialisation after the per-CPU areas have been initialised (prng_state is __percpu) -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAma/d5sACgkQa9axLQDI XvGt7xAAm1Pc3IEoODXMZ4Io8yhXDvpMzYVIDHhiexKrxAMLCJfIRCrYPvmpHfNS lQMdgTw61htAk7IukgQA2yKjqQ3C2H1hZ0Ofa9T+oH3ZmCleyWzgmk+nQgVF6aOw HipG9e2bgfRrJujJ4oZEaSaUtusaeS6qK39Jam2VdiaSCJYOu1yCMn2biyvj5PX0 0Eh5H6uE1gc5n84QGUEDj9ZXLdjx+N8NXhBxAqaDjQ8nhvcDFMlQoDY0XS2e0TrT 35QB8z6nb1jNITlIQ2p1X+ahT8urfVYxzBmi+wvLE7dCSCsPR3wwWS+fQ+9Fq9gv u2VqnaVasmai1xiWSA/+TrQYiVnWBqhaNb5iOZuUMNN6BUNuXZq5ItZEsGp58NOA Ircluc+ad5xQGGeTYKNiEq0pRucuoTRODHzrv+XfueJ63TJ7IXfFxbJtGL0yhVa7 lqJ4wK4nIRRealAa2SqIgF9KN3E9QdHhQJr1Bv228gsXxByhOoG05bChUXF+Ckx7 OOHdq5cLkoLfV3liXqNP7hrzLFpUVvn0lNzcZECNz8XEjIqwp81N/HF6rOf8p8G8 h7fXEAzPGuMZYFUnwx9Nsyi9vkLiy3i1QkcAsTV+xHzcZJNLu08OO/ypme/Qp6O/ T0O02MwzQRzVfu9LI8GYzvLwYySPAD/5b6mNTwPwe/A0RM46rio= =XCox -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - Fix the arm64 __get_mem_asm() to use the _ASM_EXTABLE_##type##ACCESS() macro instead of the *_ERR() one in order to avoid writing -EFAULT to the value register in case of a fault - Initialise all elements of the acpi_early_node_map[] to NUMA_NO_NODE. Prior to this fix, only the first element was initialised - Move the KASAN random tag seed initialisation after the per-CPU areas have been initialised (prng_state is __percpu) * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Fix KASAN random tag seed initialization arm64: ACPI: NUMA: initialize all values of acpi_early_node_map to NUMA_NO_NODE arm64: uaccess: correct thinko in __get_mem_asm() |
||
![]() |
f75c235565 |
arm64: Fix KASAN random tag seed initialization
Currently, kasan_init_sw_tags() is called before setup_per_cpu_areas(), so per_cpu(prng_state, cpu) accesses the same address regardless of the value of "cpu", and the same seed value gets copied to the percpu area for every CPU. Fix this by moving the call to smp_prepare_boot_cpu(), which is the first architecture hook after setup_per_cpu_areas(). Fixes: |
||
![]() |
a21dcf0ea8 |
arm64: ACPI: NUMA: initialize all values of acpi_early_node_map to NUMA_NO_NODE
Currently, only acpi_early_node_map[0] was initialized to NUMA_NO_NODE.
To ensure all the values were properly initialized, switch to initialize
all of them to NUMA_NO_NODE.
Fixes:
|
||
![]() |
041b1061d8 |
arm64 fixes:
- Expand the speculative SSBS errata workaround to more CPUs - Ensure jump label changes are visible to all CPUs with a kick_all_cpus_sync() (and also enable jump label batching as part of the fix) - The shadow call stack sanitiser is currently incompatible with Rust, make CONFIG_RUST conditional on !CONFIG_SHADOW_CALL_STACK -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmatFc0ACgkQa9axLQDI XvFwmA/9GlYeqB/YTVxBjUOSY/cZZha8W+h+sN0HQH9jUkK3LvVpdZb392XGbY/O fY1e3I4QNMqqDNGMZT58m4Wu9UWSMn6jlwU3DuaJmKgCG5UjowjWd7BKisokXssX UZSXMtZwsg5di43rI7Y9XiuI1KTbDclvg+dv18XapOaaEsVbeWaUcxn5GRRhCIkY +WjRkGeP1/kdyzsM8peciFs5FlnHicL6uD+SlM2a1nw/Rl9lmV6r++rn5pyjeS16 k2QaIse0BsySHNEr+1SVzCClgRT8g+ycrObb6cyq9pmIhrrVXppwZ7mHsU1myXp/ Lp2bslVbVmN5Iqxco9NFghttgftaVzIY0q7rU/QV4QS38ysxaRHYx3k5M7qOXTK/ 48Dd/b9O03zFbHq5RIdR5hnXIaDeQx6pwaS5DM3ElUd7bt+lKV104lpMSjaJ3qKy 8EBTdSd8RKKrcoPMGq0BxuEMenLBMcTKJ5lBe6y+Q3CqcciyBfDT4g7E/LZbrBlJ vvSjVsVg9E6Rp5ZmRjjRdfhkhZindSuCSQe5MYqphmVJITgX8vZH+hVI9on8hcbY 6cDyu18WYPSUH8ojHytzdrrK4udtjaZklCeuezRNi27dnMXuhHE0xK1dNX7SXpVP w1DdAyLjg82etXXJI6fFBxbKuSyHPLh2Cq87NbXduYHV+7g7VVg= =AShX -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - Expand the speculative SSBS errata workaround to more CPUs - Ensure jump label changes are visible to all CPUs with a kick_all_cpus_sync() (and also enable jump label batching as part of the fix) - The shadow call stack sanitiser is currently incompatible with Rust, make CONFIG_RUST conditional on !CONFIG_SHADOW_CALL_STACK * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: jump_label: Ensure patched jump_labels are visible to all CPUs rust: SHADOW_CALL_STACK is incompatible with Rust arm64: errata: Expand speculative SSBS workaround (again) arm64: cputype: Add Cortex-A725 definitions arm64: cputype: Add Cortex-X1C definitions |
||
![]() |
cfb00a3578 |
arm64: jump_label: Ensure patched jump_labels are visible to all CPUs
Although the Arm architecture permits concurrent modification and execution of NOP and branch instructions, it still requires some synchronisation to ensure that other CPUs consistently execute the newly written instruction: > When the modified instructions are observable, each PE that is > executing the modified instructions must execute an ISB or perform a > context synchronizing event to ensure execution of the modified > instructions Prior to commit |
||
![]() |
343416f0c1 |
syscalls: fix syscall macros for newfstat/newfstatat
The __NR_newfstat and __NR_newfstatat macros accidentally got renamed
in the conversion to the syscall.tbl format, dropping the 'new' portion
of the name.
In an unrelated change, the two syscalls are no longer architecture
specific but are once more defined on all 64-bit architectures, so the
'newstat' ABI keyword can be dropped from the table as a simplification.
Fixes: Fixes:
|
||
![]() |
adeec61a47 |
arm64: errata: Expand speculative SSBS workaround (again)
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. We worked around this for a number of CPUs in commits: * |
||
![]() |
d65d411c92 |
treewide: context_tracking: Rename CONTEXT_* into CT_STATE_*
Context tracking state related symbols currently use a mix of the CONTEXT_ (e.g. CONTEXT_KERNEL) and CT_SATE_ (e.g. CT_STATE_MASK) prefixes. Clean up the naming and make the ctx_state enum use the CT_STATE_ prefix. Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> |
||
![]() |
a6294b5b1f |
arm64 fixes for -rc1
- Remove some redundant Kconfig conditionals - Fix string output in ptrace selftest - Fix fast GUP crashes in some page-table configurations - Remove obsolete linker option when building the vDSO - Fix some sysreg field definitions for the GIC -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmaiSAMQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNJ8PB/9lyDbJ+qTNwECGKtz+vOAbronZncJy4yzd ElPRNeQ+B7QqrrYZM2TCrz6/ppeKXp0OurwNk9vKBqzrCfy/D6kKXWfcOYqeWlyI C2NImLHZgC6pIRwF3GlJ/E0VDtf/wQsJoWk7ikVssPtyIWOufafaB53FRacc1vnf bmEpcdXox+FsTG4q8YhBE6DZnqqQTnm7MvAt4wgskk6tTyKj/FuQmSk50ZW22oXb G2UOZxhYZV7IIXlRaClsY/iv62pTfMYlqDAvZeH81aiol/vfYXVFSeca5Mca67Ji P1o8HPd++hTw9WVyCrrbSGcZ/XNs96yTmahJWM+eneiV7OzKxj4v =Mr4K -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "The usual summary below, but the main fix is for the fast GUP lockless page-table walk when we have a combination of compile-time and run-time folding of the p4d and the pud respectively. - Remove some redundant Kconfig conditionals - Fix string output in ptrace selftest - Fix fast GUP crashes in some page-table configurations - Remove obsolete linker option when building the vDSO - Fix some sysreg field definitions for the GIC" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: mm: Fix lockless walks with static and dynamic page-table folding arm64/sysreg: Correct the values for GICv4.1 arm64/vdso: Remove --hash-style=sysv kselftest: missing arg in ptrace.c arm64/Kconfig: Remove redundant 'if HAVE_FUNCTION_GRAPH_TRACER' arm64: remove redundant 'if HAVE_ARCH_KASAN' in Kconfig |
||
![]() |
78eb4ea25c |
sysctl: treewide: constify the ctl_table argument of proc_handlers
const qualify the struct ctl_table argument in the proc_handler function signatures. This is a prerequisite to moving the static ctl_table structs into .rodata data which will ensure that proc_handler function pointers cannot be modified. This patch has been generated by the following coccinelle script: ``` virtual patch @r1@ identifier ctl, write, buffer, lenp, ppos; identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)"; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos); @r2@ identifier func, ctl, write, buffer, lenp, ppos; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos) { ... } @r3@ identifier func; @@ int func( - struct ctl_table * + const struct ctl_table * ,int , void *, size_t *, loff_t *); @r4@ identifier func, ctl; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int , void *, size_t *, loff_t *); @r5@ identifier func, write, buffer, lenp, ppos; @@ int func( - struct ctl_table * + const struct ctl_table * ,int write, void *buffer, size_t *lenp, loff_t *ppos); ``` * Code formatting was adjusted in xfs_sysctl.c to comply with code conventions. The xfs_stats_clear_proc_handler, xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where adjusted. * The ctl_table argument in proc_watchdog_common was const qualified. This is called from a proc_handler itself and is calling back into another proc_handler, making it necessary to change it as part of the proc_handler migration. Co-developed-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Co-developed-by: Joel Granados <j.granados@samsung.com> Signed-off-by: Joel Granados <j.granados@samsung.com> |
||
![]() |
48f6430505 |
arm64/vdso: Remove --hash-style=sysv
glibc added support for .gnu.hash in 2006 and .hash has been obsoleted
for more than one decade in many Linux distributions. Using
--hash-style=sysv might imply unaddressed issues and confuse readers.
Just drop the option and rely on the linker default, which is likely
"both", or "gnu" when the distribution really wants to eliminate sysv
hash overhead.
Similar to commit
|
||
![]() |
2c9b351240 |
ARM:
* Initial infrastructure for shadow stage-2 MMUs, as part of nested virtualization enablement * Support for userspace changes to the guest CTR_EL0 value, enabling (in part) migration of VMs between heterogenous hardware * Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1 of the protocol * FPSIMD/SVE support for nested, including merged trap configuration and exception routing * New command-line parameter to control the WFx trap behavior under KVM * Introduce kCFI hardening in the EL2 hypervisor * Fixes + cleanups for handling presence/absence of FEAT_TCRX * Miscellaneous fixes + documentation updates LoongArch: * Add paravirt steal time support. * Add support for KVM_DIRTY_LOG_INITIALLY_SET. * Add perf kvm-stat support for loongarch. RISC-V: * Redirect AMO load/store access fault traps to guest * perf kvm stat support * Use guest files for IMSIC virtualization, when available ONE_REG support for the Zimop, Zcmop, Zca, Zcf, Zcd, Zcb and Zawrs ISA extensions is coming through the RISC-V tree. s390: * Assortment of tiny fixes which are not time critical x86: * Fixes for Xen emulation. * Add a global struct to consolidate tracking of host values, e.g. EFER * Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC bus frequency, because TDX. * Print the name of the APICv/AVIC inhibits in the relevant tracepoint. * Clean up KVM's handling of vendor specific emulation to consistently act on "compatible with Intel/AMD", versus checking for a specific vendor. * Drop MTRR virtualization, and instead always honor guest PAT on CPUs that support self-snoop. * Update to the newfangled Intel CPU FMS infrastructure. * Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads '0' and writes from userspace are ignored. * Misc cleanups x86 - MMU: * Small cleanups, renames and refactoring extracted from the upcoming Intel TDX support. * Don't allocate kvm_mmu_page.shadowed_translation for shadow pages that can't hold leafs SPTEs. * Unconditionally drop mmu_lock when allocating TDP MMU page tables for eager page splitting, to avoid stalling vCPUs when splitting huge pages. * Bug the VM instead of simply warning if KVM tries to split a SPTE that is non-present or not-huge. KVM is guaranteed to end up in a broken state because the callers fully expect a valid SPTE, it's all but dangerous to let more MMU changes happen afterwards. x86 - AMD: * Make per-CPU save_area allocations NUMA-aware. * Force sev_es_host_save_area() to be inlined to avoid calling into an instrumentable function from noinstr code. * Base support for running SEV-SNP guests. API-wise, this includes a new KVM_X86_SNP_VM type, encrypting/measure the initial image into guest memory, and finalizing it before launching it. Internally, there are some gmem/mmu hooks needed to prepare gmem-allocated pages before mapping them into guest private memory ranges. This includes basic support for attestation guest requests, enough to say that KVM supports the GHCB 2.0 specification. There is no support yet for loading into the firmware those signing keys to be used for attestation requests, and therefore no need yet for the host to provide certificate data for those keys. To support fetching certificate data from userspace, a new KVM exit type will be needed to handle fetching the certificate from userspace. An attempt to define a new KVM_EXIT_COCO/KVM_EXIT_COCO_REQ_CERTS exit type to handle this was introduced in v1 of this patchset, but is still being discussed by community, so for now this patchset only implements a stub version of SNP Extended Guest Requests that does not provide certificate data. x86 - Intel: * Remove an unnecessary EPT TLB flush when enabling hardware. * Fix a series of bugs that cause KVM to fail to detect nested pending posted interrupts as valid wake eents for a vCPU executing HLT in L2 (with HLT-exiting disable by L1). * KVM: x86: Suppress MMIO that is triggered during task switch emulation Explicitly suppress userspace emulated MMIO exits that are triggered when emulating a task switch as KVM doesn't support userspace MMIO during complex (multi-step) emulation. Silently ignoring the exit request can result in the WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace for some other reason prior to purging mmio_needed. See commit |
||
![]() |
d80f2996b8 |
asm-generic updates for 6.11
Most of this is part of my ongoing work to clean up the system call tables. In this bit, all of the newer architectures are converted to use the machine readable syscall.tbl format instead in place of complex macros in include/uapi/asm-generic/unistd.h. This follows an earlier series that fixed various API mismatches and in turn is used as the base for planned simplifications. The other two patches are dead code removal and a warning fix. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmaVB1cACgkQYKtH/8kJ UicMqxAAnYKOxfjoMIhYYK6bl126wg/vIcDcjIR9cNWH21Nhn3qxn11ZXau3S7xv 3l/HreEhyEQr4gC2a70IlXyHUadYOlrk+83OURrunWk1oKPmZlMKcfPVbtp8GL7x PUNXQfwM1XZLveKwufY24hoZdwKC+Y/5WLc1t0ReznJuAqgeO2rM9W5dnV5bAfCp he3F5hFcr196Dz3/GJjJIWrY+cbwfmZWsNtj1vFTL5/r/LuCu8HTkqhsGj8tE5BJ NGVEEXbp5eaVTCIGqJWhnuZcsnKN9kM51M7CtdwWf8OTckUVuJap5OsDVKQkWkGl bLPbd2jhDltph0sah51hAIvv4WdkThW76u9FRW7KR3fo7ra67eF7l5j7wc1lE2JB GwLJ1X56Bxe1GhvvNTlDmb7DrnlP/DMPuRv3Z6xyH6l8iZ2pMGlnAxuw6Bs1s6Y5 WSs36ZpnS0ctgjfx37ZITsZSvbKFPpQFJP4siwS8aRNv/NFALNNdFyOCY5lNzspZ 0dxwjn6/7UpHE4MKh6/hvCg2QwupXXBTRytibw+75/rOsR+EYlmtuONtyq2sLUHe ktJ5pg+8XuZm27+wLffuluzmY7sv2F8OU4cTYeM60Ynmc6pRzwUY6/VhG52S1/mU Ua4VgYIpzOtlLrYmz5QTWIZpdSFSVbIc/3pLriD6hn4Mvg+BwdA= =XOhL -----END PGP SIGNATURE----- Merge tag 'asm-generic-6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic updates from Arnd Bergmann: "Most of this is part of my ongoing work to clean up the system call tables. In this bit, all of the newer architectures are converted to use the machine readable syscall.tbl format instead in place of complex macros in include/uapi/asm-generic/unistd.h. This follows an earlier series that fixed various API mismatches and in turn is used as the base for planned simplifications. The other two patches are dead code removal and a warning fix" * tag 'asm-generic-6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: vmlinux.lds.h: catch .bss..L* sections into BSS") fixmap: Remove unused set_fixmap_offset_io() riscv: convert to generic syscall table openrisc: convert to generic syscall table nios2: convert to generic syscall table loongarch: convert to generic syscall table hexagon: use new system call table csky: convert to generic syscall table arm64: rework compat syscall macros arm64: generate 64-bit syscall.tbl arm64: convert unistd_32.h to syscall.tbl format arc: convert to generic syscall table clone3: drop __ARCH_WANT_SYS_CLONE3 macro kbuild: add syscall table generation to scripts/Makefile.asm-headers kbuild: verify asm-generic header list loongarch: avoid generating extra header files um: don't generate asm/bpf_perf_event.h csky: drop asm/gpio.h wrapper syscalls: add generic scripts/syscall.tbl |
||
![]() |
1c5a0b55ab |
KVM/arm64 changes for 6.11
- Initial infrastructure for shadow stage-2 MMUs, as part of nested virtualization enablement - Support for userspace changes to the guest CTR_EL0 value, enabling (in part) migration of VMs between heterogenous hardware - Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1 of the protocol - FPSIMD/SVE support for nested, including merged trap configuration and exception routing - New command-line parameter to control the WFx trap behavior under KVM - Introduce kCFI hardening in the EL2 hypervisor - Fixes + cleanups for handling presence/absence of FEAT_TCRX - Miscellaneous fixes + documentation updates -----BEGIN PGP SIGNATURE----- iI0EABYIADUWIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZpTCAxccb2xpdmVyLnVw dG9uQGxpbnV4LmRldgAKCRCivnWIJHzdFjChAQCWs9ucJag4USgvXpg5mo9sxzly kBZZ1o49N/VLxs4cagEAtq3KVNQNQyGXelYH6gr20aI85j6VnZW5W5z+sy5TAgk= =sSOt -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.11 - Initial infrastructure for shadow stage-2 MMUs, as part of nested virtualization enablement - Support for userspace changes to the guest CTR_EL0 value, enabling (in part) migration of VMs between heterogenous hardware - Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1 of the protocol - FPSIMD/SVE support for nested, including merged trap configuration and exception routing - New command-line parameter to control the WFx trap behavior under KVM - Introduce kCFI hardening in the EL2 hypervisor - Fixes + cleanups for handling presence/absence of FEAT_TCRX - Miscellaneous fixes + documentation updates |
||
![]() |
c89d780cc1 |
arm64 updates for 6.11:
* Virtual CPU hotplug support for arm64 ACPI systems * cpufeature infrastructure cleanups and making the FEAT_ECBHB ID bits visible to guests * CPU errata: expand the speculative SSBS workaround to more CPUs * arm64 ACPI: - acpi=nospcr option to disable SPCR as default console for arm64 - Move some ACPI code (cpuidle, FFH) to drivers/acpi/arm64/ * GICv3, use compile-time PMR values: optimise the way regular IRQs are masked/unmasked when GICv3 pseudo-NMIs are used, removing the need for a static key in fast paths by using a priority value chosen dynamically at boot time * arm64 perf updates: - Rework of the IMX PMU driver to enable support for I.MX95 - Enable support for tertiary match groups in the CMN PMU driver - Initial refactoring of the CPU PMU code to prepare for the fixed instruction counter introduced by Arm v9.4 - Add missing PMU driver MODULE_DESCRIPTION() strings - Hook up DT compatibles for recent CPU PMUs * arm64 kselftest updates: - Kernel mode NEON fp-stress - Cleanups, spelling mistakes * arm64 Documentation update with a minor clarification on TBI * Miscellaneous: - Fix missing IPI statistics - Implement raw_smp_processor_id() using thread_info rather than a per-CPU variable (better code generation) - Make MTE checking of in-kernel asynchronous tag faults conditional on KASAN being enabled - Minor cleanups, typos -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmaQKN4ACgkQa9axLQDI XvE0Nw/+JZ6OEQ+DMUHXZfbWanvn1p0nVOoEV3MYVpOeQK1ILYCoDapatLNIlet0 wcja7tohKbL1ifc7GOqlkitu824LMlotncrdOBycRqb/4C5KuJ+XhygFv5hGfX0T Uh2zbo4w52FPPEUMICfEAHrKT3QB9tv7f66xeUNbWWFqUn3rY02/ZVQVVdw6Zc0e fVYWGUUoQDR7+9hRkk6tnYw3+9YFVAUAbLWk+DGrW7WsANi6HuJ/rBMibwFI6RkG SZDZHum6vnwx0Dj9H7WrYaQCvUMm7AlckhQGfPbIFhUk6pWysfJtP5Qk49yiMl7p oRk/GrSXpiKumuetgTeOHbokiE1Nb8beXx0OcsjCu4RrIaNipAEpH1AkYy5oiKoT 9vKZErMDtQgd96JHFVaXc+A3D2kxVfkc1u7K3TEfVRnZFV7CN+YL+61iyZ+uLxVi d9xrAmwRsWYFVQzlZG3NWvSeQBKisUA1L8JROlzWc/NFDwTqDGIt/zS4pZNL3+OM EXW0LyKt7Ijl6vPXKCXqrODRrPlcLc66VMZxofZOl0/dEqyJ+qLL4GUkWZu8lTqO BqydYnbTSjiDg/ntWjTrD0uJ8c40Qy7KTPEdaPqEIQvkDEsUGlOnhAQjHrnGNb9M psZtpDW2xm7GykEOcd6rgSz4Xeky2iLsaR4Wc7FTyDS0YRmeG44= =ob2k -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The biggest part is the virtual CPU hotplug that touches ACPI, irqchip. We also have some GICv3 optimisation for pseudo-NMIs that has been queued via the arm64 tree. Otherwise the usual perf updates, kselftest, various small cleanups. Core: - Virtual CPU hotplug support for arm64 ACPI systems - cpufeature infrastructure cleanups and making the FEAT_ECBHB ID bits visible to guests - CPU errata: expand the speculative SSBS workaround to more CPUs - GICv3, use compile-time PMR values: optimise the way regular IRQs are masked/unmasked when GICv3 pseudo-NMIs are used, removing the need for a static key in fast paths by using a priority value chosen dynamically at boot time ACPI: - 'acpi=nospcr' option to disable SPCR as default console for arm64 - Move some ACPI code (cpuidle, FFH) to drivers/acpi/arm64/ Perf updates: - Rework of the IMX PMU driver to enable support for I.MX95 - Enable support for tertiary match groups in the CMN PMU driver - Initial refactoring of the CPU PMU code to prepare for the fixed instruction counter introduced by Arm v9.4 - Add missing PMU driver MODULE_DESCRIPTION() strings - Hook up DT compatibles for recent CPU PMUs Kselftest updates: - Kernel mode NEON fp-stress - Cleanups, spelling mistakes Miscellaneous: - arm64 Documentation update with a minor clarification on TBI - Fix missing IPI statistics - Implement raw_smp_processor_id() using thread_info rather than a per-CPU variable (better code generation) - Make MTE checking of in-kernel asynchronous tag faults conditional on KASAN being enabled - Minor cleanups, typos" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (69 commits) selftests: arm64: tags: remove the result script selftests: arm64: tags_test: conform test to TAP output perf: add missing MODULE_DESCRIPTION() macros arm64: smp: Fix missing IPI statistics irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64 Documentation: arm64: Update memory.rst for TBI arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1 KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1 perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h perf: arm_v6/7_pmu: Drop non-DT probe support perf/arm: Move 32-bit PMU drivers to drivers/perf/ perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU perf: imx_perf: add support for i.MX95 platform perf: imx_perf: fix counter start and config sequence perf: imx_perf: refactor driver for imx93 perf: imx_perf: let the driver manage the counter usage rather the user perf: imx_perf: add macro definitions for parsing config attr ... |
||
![]() |
1654c37ddb |
Merge branch 'arm64-uaccess' (early part)
Merge arm64 support for proper 'unsafe' user accessor functionality, with 'asm goto' for handling exceptions. The arm64 user access code used the slow fallback code for the user access code, which generates horrendous code for things like strncpy_from_user(), because it causes us to generate code for SW PAN and for range checking for every individual word. Teach arm64 about 'user_access_begin()' and the so-called 'unsafe' user access functions that take an error label and use 'asm goto' to make all the exception handling be entirely out of line. [ These user access functions are called 'unsafe' not because the concept is unsafe, but because the low-level accessor functions absolutely have to be protected by the 'user_access_begin()' code, because that's what does the range checking. So the accessor functions have that scary name to make sure people don't think they are usable on their own, and cannot be mis-used the way our old "double underscore" versions of __get_user() and friends were ] The "(early part)" of the branch is because the full branch also improved on the "access_ok()" function, but the exact semantics of TBI (top byte ignore) have to be discussed before doing that part. So this just does the low-level accessor update to use "asm goto". * 'arm64-uaccess' (early part): arm64: start using 'asm goto' for put_user() arm64: start using 'asm goto' for get_user() when available |
||
![]() |
a5819099f6 |
Merge branch 'runtime-constants'
Merge runtime constants infrastructure with implementations for x86 and arm64. This is one of four branches that came out of me looking at profiles of my kernel build filesystem load on my 128-core Altra arm64 system, where pathname walking and the user copies (particularly strncpy_from_user() for fetching the pathname from user space) is very hot. This is a very specialized "instruction alternatives" model where the dentry hash pointer and hash count will be constants for the lifetime of the kernel, but the allocation are not static but done early during the kernel boot. In order to avoid the pointer load and dynamic shift, we just rewrite the constants in the instructions in place. We can't use the "generic" alternative instructions infrastructure, because different architectures do it very differently, and it's actually simpler to just have very specific helpers, with a fallback to the generic ("old") model of just using variables for architectures that do not implement the runtime constant patching infrastructure. Link: https://lore.kernel.org/all/CAHk-=widPe38fUNjUOmX11ByDckaeEo9tN4Eiyke9u1SAtu9sA@mail.gmail.com/ * runtime-constants: arm64: add 'runtime constant' support runtime constants: add x86 architecture support runtime constants: add default dummy infrastructure vfs: dcache: move hashlen_hash() from callers into d_hash() |
||
![]() |
4f3a6c4de7 |
Merge branch 'for-next/vcpu-hotplug' into for-next/core
* for-next/vcpu-hotplug: (21 commits) : arm64 support for virtual CPU hotplug (ACPI) irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU cpumask: Add enabled cpumask for present CPUs that can be brought online arm64: document virtual CPU hotplug's expectations arm64: Kconfig: Enable hotplug CPU on arm64 if ACPI_PROCESSOR is enabled. arm64: arch_register_cpu() variant to check if an ACPI handle is now available. arm64: psci: Ignore DENIED CPUs irqchip/gic-v3: Add support for ACPI's disabled but 'online capable' CPUs irqchip/gic-v3: Don't return errors from gic_acpi_match_gicc() arm64: acpi: Harden get_cpu_for_acpi_id() against missing CPU entry arm64: acpi: Move get_cpu_for_acpi_id() to a header ACPI: Add post_eject to struct acpi_scan_handler for cpu hotplug ACPI: scan: switch to flags for acpi_scan_check_and_detach() ACPI: processor: Register deferred CPUs from acpi_processor_get_info() ACPI: processor: Add acpi_get_processor_handle() helper ACPI: processor: Move checks and availability of acpi_processor earlier ACPI: processor: Fix memory leaks in error paths of processor_add() ACPI: processor: Return an error if acpi_processor_get_info() fails in processor_add() ACPI: processor: Drop duplicated check on _STA (enabled + present) cpu: Do not warn on arch_register_cpu() returning -EPROBE_DEFER ... |
||
![]() |
3346c56685 |
Merge branches 'for-next/cpufeature', 'for-next/misc', 'for-next/kselftest', 'for-next/mte', 'for-next/errata', 'for-next/acpi', 'for-next/gic-v3-pmr' and 'for-next/doc', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: add missing MODULE_DESCRIPTION() macros perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h perf: arm_v6/7_pmu: Drop non-DT probe support perf/arm: Move 32-bit PMU drivers to drivers/perf/ perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold perf: imx_perf: add support for i.MX95 platform perf: imx_perf: fix counter start and config sequence perf: imx_perf: refactor driver for imx93 perf: imx_perf: let the driver manage the counter usage rather the user perf: imx_perf: add macro definitions for parsing config attr dt-bindings: perf: fsl-imx-ddr: Add i.MX95 compatible perf: pmuv3: Add new Cortex and Neoverse PMUs dt-bindings: arm: pmu: Add new Cortex and Neoverse cores perf/arm-cmn: Enable support for tertiary match group perf/arm-cmn: Decouple wp_config registers from filter group number * for-next/cpufeature: : Various cpufeature infrastructure patches arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1 KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1 arm64/cpufeatures/kvm: Add ARMv8.9 FEAT_ECBHB bits in ID_AA64MMFR1 register * for-next/misc: : Miscellaneous patches arm64: smp: Fix missing IPI statistics arm64: Cleanup __cpu_set_tcr_t0sz() arm64/mm: Stop using ESR_ELx_FSC_TYPE during fault arm64: Kconfig: fix typo in __builtin_return_adddress ARM64: reloc_test: add missing MODULE_DESCRIPTION() macro arm64: implement raw_smp_processor_id() using thread_info arm64/arch_timer: include <linux/percpu.h> * for-next/kselftest: : arm64 kselftest updates selftests: arm64: tags: remove the result script selftests: arm64: tags_test: conform test to TAP output kselftest/arm64: Fix a couple of spelling mistakes kselftest/arm64: Fix redundancy of a testcase kselftest/arm64: Include kernel mode NEON in fp-stress * for-next/mte: : MTE updates arm64: mte: Make mte_check_tfsr_*() conditional on KASAN instead of MTE * for-next/errata: : Arm CPU errata workarounds arm64: errata: Expand speculative SSBS workaround arm64: errata: Unify speculative SSBS errata logic arm64: cputype: Add Cortex-X925 definitions arm64: cputype: Add Cortex-A720 definitions arm64: cputype: Add Cortex-X3 definitions * for-next/acpi: : arm64 ACPI patches ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64 ACPI / amba: Drop unnecessary check for registered amba_dummy_clk arm64: FFH: Move ACPI specific code into drivers/acpi/arm64/ arm64: cpuidle: Move ACPI specific code into drivers/acpi/arm64/ ACPI: arm64: Sort entries alphabetically * for-next/gic-v3-pmr: : arm64: irqchip/gic-v3: Use compiletime constant PMR values arm64: irqchip/gic-v3: Select priorities at boot time irqchip/gic-v3: Detect GICD_CTRL.DS and SCR_EL3.FIQ earlier irqchip/gic-v3: Make distributor priorities variables irqchip/gic-common: Remove sync_access callback wordpart.h: Add REPEAT_BYTE_U32() * for-next/doc: : arm64 documentation updates Documentation: arm64: Update memory.rst for TBI |
||
![]() |
d2a4a07190 |
arm64: rework compat syscall macros
The generated asm/unistd_compat_32.h header file now contains macros that can be used directly in the vdso and the signal trampolines, so remove the duplicate definitions. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
e632bca07c |
arm64: generate 64-bit syscall.tbl
Change the asm/unistd.h header for arm64 to no longer include asm-generic/unistd.h itself, but instead generate both the asm/unistd.h contents and the list of entry points using the syscall.tbl scripts that we use on most other architectures. Once his is done for the remaining architectures, the generic unistd.h header can be removed and the generated tbl file put in its place. The Makefile changes are more complex than they should be, I need a little help to improve those. Ideally this should be done in an architecture-independent way as well. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
7fe33e9f66 |
arm64: convert unistd_32.h to syscall.tbl format
This is a straight conversion from the old asm/unistd32.h into the format used by 32-bit arm and most other architectures, calling scripts to generate the asm/unistd32.h header and a new asm/syscalls32.h headers. I used a semi-automated text replacement method to do the conversion, and then used 'vimdiff' to synchronize the whitespace and the (unused) names of the non-compat syscalls with the arm version. There are two differences between the generated syscalls names and the old version: - the old asm/unistd32.h contained only a __NR_sync_file_range2 entry, while the arm32 version also defines __NR_arm_sync_file_range with the same number. I added this duplicate back in asm/unistd32.h. - __NR__sysctl was removed from the arm64 file a while ago, but all the tables still contain it. This should probably get removed everywhere but I added it here for consistency. On top of that, the arm64 version does not contain any references to the 32-bit OABI syscalls that are not supported by arm64. If we ever want to share the file between arm32 and arm64, it would not be hard to add support for both in one file. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
94a2bc0f61 |
arm64: add 'runtime constant' support
This implements the runtime constant infrastructure for arm64, allowing the dcache d_hash() function to be generated using as a constant for hash table address followed by shift by a constant of the hash index. [ Fixed up to deal with the big-endian case as per Mark Rutland ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
![]() |
916b93f4e8 |
arm64: smp: Fix missing IPI statistics
commit |
||
![]() |
f5a4af3c75 |
ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64
For varying privacy and security reasons, sometimes we would like to completely silence the _serial_ console, and only enable it when needed. But there are many existing systems that depend on this _serial_ console, so add acpi=nospcr to disable console in ACPI SPCR table as default _serial_ console. Signed-off-by: Liu Wei <liuwei09@cestc.cn> Suggested-by: Prarit Bhargava <prarit@redhat.com> Suggested-by: Will Deacon <will@kernel.org> Suggested-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Hanjun Guo <guohanjun@huawei.com> Reviewed-by: Prarit Bhargava <prarit@redhat.com> Link: https://lore.kernel.org/r/20240625030504.58025-1-liuwei09@cestc.cn Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
056600ff73 |
arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1
This replaces custom macros usage (i.e ID_AA64PFR0_EL1_ELx_64BIT_ONLY and ID_AA64PFR0_EL1_ELx_32BIT_64BIT) and instead directly uses register fields from ID_AA64PFR0_EL1 sysreg definition. Finally let's drop off both these custom macros as they are now redundant. Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240613102710.3295108-3-anshuman.khandual@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b75f947270 |
hardening fixes for v6.10-rc6
- Remove invalid tty __counted_by annotation (Nathan Chancellor) - Add missing MODULE_DESCRIPTION()s for KUnit string tests (Jeff Johnson) - Remove non-functional per-arch kstack entropy filtering -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmZ+4Z4ACgkQiXL039xt wCYUPQ/9Ghbg4CfOIyjl5G7fAYuG+/zLDCkY+kh7XcO2kAn3213KiyRKm0GUAhXY p3N7rDH9NsXedfO2bnQ0YTDR3TU8AWIegKgEyGBsyqvdtjSe0ParwWOoGGpavJZ2 6Op39e6LL2fKGyL4N72lkhRpGPJgGQOqckTljaDl5yQfIHryMpQl0fXzMMjh1HUt TKc39kSRbQxguDdIqU1zHgs+Lu9Kph6A3q9PjVap9qzCcPZ4RjIRms4gDrghP7GK M0POyZbuXUWxaJ8VwRHbqAtEyEGjXdfBW9DgKQM1fg9XWGZbCkucu3PZbPHv+c6e eBGG6O5l6UylmXpmkqLMfIudUekfo8cAEXqcLCBYis8uIuasUWiLMhoTDjdfcvhn HHr6iu25IKR698PZzTHQ5yUiuBP38qjXfXr9DDzXrI2+SUbxjurTfbHxFBWK/FYX YSdrZR4DbeaU/HI1I+I5YghgeRfR6TQ5NGrmj61wW1QnwvEF6Gdlh+MZgUS59SP5 S+T50ggGKEYARZcZj1N6Nz39Co9syn/xlhyPKFPkgsRTXw1QE0z6e841V1jxhr49 cStKFcKAovDeG2UN4bAju49/MWUFlcpkIxn9Y0ZHiu6R6SC9zasXhKi7+xDFolmP B6PmON2ZSSoFNwMr7Fr1SC0gWg7V3TYLmpHITDWz5KL00ReEdJY= =dItV -----END PGP SIGNATURE----- Merge tag 'hardening-v6.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening fixes from Kees Cook: - Remove invalid tty __counted_by annotation (Nathan Chancellor) - Add missing MODULE_DESCRIPTION()s for KUnit string tests (Jeff Johnson) - Remove non-functional per-arch kstack entropy filtering * tag 'hardening-v6.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: tty: mxser: Remove __counted_by from mxser_board.ports[] randomize_kstack: Remove non-functional per-arch entropy filtering string: kunit: add missing MODULE_DESCRIPTION() macros |
||
![]() |
9d0873892f |
arm64: Kconfig: Enable hotplug CPU on arm64 if ACPI_PROCESSOR is enabled.
In order to move arch_register_cpu() to be called via the same path for initially present CPUs described by ACPI and hotplugged CPUs ACPI_HOTPLUG_CPU needs to be enabled. The protection against invalid IDs in acpi_map_cpu() is needed as at least one production BIOS is in the wild which reports entries in DSDT (with no _STA method, so assumed enabled and present) that don't match MADT. Tested-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-18-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
eba4675008 |
arm64: arch_register_cpu() variant to check if an ACPI handle is now available.
The ARM64 architecture does not support physical CPU HP today. To avoid any possibility of a bug against such an architecture if defined in future, check for the physical CPU HP case (not present) and return an error on any such attempt. On ARM64 virtual CPU Hotplug relies on the status value that can be queried via the AML method _STA for the CPU object. There are two conditions in which the CPU can be registered. 1) ACPI disabled. 2) ACPI enabled and the acpi_handle is available. _STA evaluates to the CPU is both enabled and present. (Note that in absence of the _STA method they are always in this state). If neither of these conditions is met the CPU is not 'yet' ready to be used and -EPROBE_DEFER is returned. Success occurs in the early attempt to register the CPUs if we are booting with DT (no concept yet of vCPU HP) if not it succeeds for already enabled CPUs when the ACPI Processor driver attaches to them. Finally it may succeed via the CPU Hotplug code indicating that the CPU is now enabled. For ACPI if CONFIG_ACPI_PROCESSOR the only path to get to arch_register_cpu() with that handle set is via acpi_processor_hot_add_init() which is only called from an ACPI bus scan in which _STA has already been queried there is no need to repeat it here. Add a comment to remind us of this in the future. Suggested-by: Rafael J. Wysocki <rafael@kernel.org> Tested-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-17-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
643e12da4a |
arm64: psci: Ignore DENIED CPUs
When a CPU is marked as disabled, but online capable in the MADT, PSCI applies some firmware policy to control when it can be brought online. PSCI returns DENIED to a CPU_ON request if this is not currently permitted. The OS can learn the current policy from the _STA enabled bit. Handle the PSCI DENIED return code gracefully instead of printing an error. Note the alternatives to the PSCI cpu_boot() callback do not return -EPERM so the change in smp.c has no affect. See https://developer.arm.com/documentation/den0022/f/?lang=en page 58. Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> [ morse: Rewrote commit message ] Signed-off-by: James Morse <james.morse@arm.com> Tested-by: Miguel Luis <miguel.luis@oracle.com> Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com> Tested-by: Jianyong Wu <jianyong.wu@arm.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/20240529133446.28446-16-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d633da5d3a |
irqchip/gic-v3: Add support for ACPI's disabled but 'online capable' CPUs
To support virtual CPU hotplug, ACPI has added an 'online capable' bit to the MADT GICC entries. This indicates a disabled CPU entry may not be possible to online via PSCI until firmware has set enabled bit in _STA. This means that a "usable" GIC redistributor is one that is marked as either enabled, or online capable. The meaning of the acpi_gicc_is_usable() would become less clear than just checking the pair of flags at call sites. As such, drop that helper function. The test in gic_acpi_match_gicc() remains as testing just the enabled bit so the count of enabled distributors is correct. What about the redistributor in the GICC entry? ACPI doesn't want to say. Assume the worst: When a redistributor is described in the GICC entry, but the entry is marked as disabled at boot, assume the redistributor is inaccessible. The GICv3 driver doesn't support late online of redistributors, so this means the corresponding CPU can't be brought online either. Rather than modifying cpu masks that may already have been used, register a new cpuhp callback to fail this case. This must run earlier than the main gic_starting_cpu() so that this case can be rejected before the section of cpuhp that runs on the CPU that is coming up as that is not allowed to fail. This solution keeps the handling of this broken firmware corner case local to the GIC driver. As precise ordering of this callback doesn't need to be controlled as long as it is in that initial prepare phase, use CPUHP_BP_PREPARE_DYN. Systems that want CPU hotplug in a VM can ensure their redistributors are always-on, and describe them that way with a GICR entry in the MADT. Suggested-by: Marc Zyngier <maz@kernel.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Tested-by: Miguel Luis <miguel.luis@oracle.com> Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240529133446.28446-15-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8d34b6f17b |
arm64: acpi: Move get_cpu_for_acpi_id() to a header
ACPI identifies CPUs by UID. get_cpu_for_acpi_id() maps the ACPI UID to the Linux CPU number. The helper to retrieve this mapping is only available in arm64's NUMA code. Move it to live next to get_acpi_id_for_cpu(). Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Tested-by: Miguel Luis <miguel.luis@oracle.com> Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com> Tested-by: Jianyong Wu <jianyong.wu@arm.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Link: https://lore.kernel.org/r/20240529133446.28446-12-Jonathan.Cameron@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9038455948 |
arm64 fixes for -rc6
- Fix spurious page-table warning when clearing PTE_UFFD_WP in a live pte - Fix clearing of the idmap pgd when using large addressing modes -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmZ9gJgQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNKEdB/9wDzyoyo+tMp2csPFk66ufbytbsSV2LWys kvUZdTYLAV4YlI6jTxXJ/3I3rXggc5SsXE/WosDQ1zfb1KsE/3sWaexIURHxeT73 PUUqREUfvA7Ormv65A4zlKbVzfsPlM8VWT7mmSj3k6rV5TvNBkjm53x5t4QEPHxO VwHRd/JRm+8+JvhXUhPiECFWCalBvJKXxOsCK9Plj1uIOY+eFw3nYp59H2hE30be VDmdgBQ6u1mZvqgSv8P6jDV9r69qBxRbig5fo9C89E8ptS9u3piHvcBEtg6FAztA SYyrfxBbYvejM5cN4aEWc035kWW0o1K1MimQgZYpyYlqKNHywTw0 =JzVF -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A pair of small arm64 fixes for -rc6. One is a fix for the recently merged uffd-wp support (which was triggering a spurious warning) and the other is a fix to the clearing of the initial idmap pgd in some configurations Summary: - Fix spurious page-table warning when clearing PTE_UFFD_WP in a live pte - Fix clearing of the idmap pgd when using large addressing modes" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Clear the initial ID map correctly before remapping arm64: mm: Permit PTE SW bits to change in live mappings |
||
![]() |
6db1208bf9 |
randomize_kstack: Remove non-functional per-arch entropy filtering
An unintended consequence of commit |
||
![]() |
18fdb6348c |
arm64: irqchip/gic-v3: Select priorities at boot time
The distributor and PMR/RPR can present different views of the interrupt priority space dependent upon the values of GICD_CTLR.DS and SCR_EL3.FIQ. Currently we treat the distributor's view of the priority space as canonical, and when the two differ we change the way we handle values in the PMR/RPR, using the `gic_nonsecure_priorities` static key to decide what to do. This approach works, but it's sub-optimal. When using pseudo-NMI we manipulate the distributor rarely, and we manipulate the PMR/RPR registers very frequently in code spread out throughout the kernel (e.g. local_irq_{save,restore}()). It would be nicer if we could use fixed values for the PMR/RPR, and dynamically choose the values programmed into the distributor. This patch changes the GICv3 driver and arm64 code accordingly. PMR values are chosen at compile time, and the GICv3 driver determines the appropriate values to program into the distributor at boot time. This removes the need for the `gic_nonsecure_priorities` static key and results in smaller and better generated code for saving/restoring the irqflags. Before this patch, local_irq_disable() compiles to: | 0000000000000000 <outlined_local_irq_disable>: | 0: d503201f nop | 4: d50343df msr daifset, #0x3 | 8: d65f03c0 ret | c: d503201f nop | 10: d2800c00 mov x0, #0x60 // #96 | 14: d5184600 msr icc_pmr_el1, x0 | 18: d65f03c0 ret | 1c: d2801400 mov x0, #0xa0 // #160 | 20: 17fffffd b 14 <outlined_local_irq_disable+0x14> After this patch, local_irq_disable() compiles to: | 0000000000000000 <outlined_local_irq_disable>: | 0: d503201f nop | 4: d50343df msr daifset, #0x3 | 8: d65f03c0 ret | c: d2801800 mov x0, #0xc0 // #192 | 10: d5184600 msr icc_pmr_el1, x0 | 14: d65f03c0 ret ... with 3 fewer instructions per call. For defconfig + CONFIG_PSEUDO_NMI=y, this results in a minor saving of ~4K of text, and will make it easier to make further improvements to the way we manipulate irqflags and DAIF bits. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Tested-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240617111841.2529370-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> |
||
![]() |
ecc54006f1 |
arm64: Clear the initial ID map correctly before remapping
In the attempt to clear and recreate the initial ID map for LPA2, we
wrongly use 'start - end' as the map size and make the memset() almost a
nop.
Fix it by passing the correct map size.
Fixes:
|
||
![]() |
7a928b32f1 |
arm64: Introduce esr_brk_comment, esr_is_cfi_brk
As it is already used in two places, move esr_comment() to a header for re-use, with a clearer name. Introduce esr_is_cfi_brk() to detect kCFI BRK syndromes, currently used by early_brk64() but soon to also be used by hypervisor code. Signed-off-by: Pierre-Clément Tosi <ptosi@google.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240610063244.2828978-7-ptosi@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
a8f0655887 |
KVM: arm64: Fix clobbered ELR in sync abort/SError
When the hypervisor receives a SError or synchronous exception (EL2h)
while running with the __kvm_hyp_vector and if ELR_EL2 doesn't point to
an extable entry, it panics indirectly by overwriting ELR with the
address of a panic handler in order for the asm routine it returns to to
ERET into the handler.
However, this clobbers ELR_EL2 for the handler itself. As a result,
hyp_panic(), when retrieving what it believes to be the PC where the
exception happened, actually ends up reading the address of the panic
handler that called it! This results in an erroneous and confusing panic
message where the source of any synchronous exception (e.g. BUG() or
kCFI) appears to be __guest_exit_panic, making it hard to locate the
actual BRK instruction.
Therefore, store the original ELR_EL2 in the per-CPU kvm_hyp_ctxt and
point the sysreg to a routine that first restores it to its previous
value before running __guest_exit_panic.
Fixes:
|
||
![]() |
86a6a68feb |
arm64: start using 'asm goto' for get_user() when available
This generates noticeably better code with compilers that support it, since we don't need to test the error register etc, the exception just jumps to the error handling directly. Note that this also marks SW_TTBR0_PAN incompatible with KCSAN support, since KCSAN wants to save and restore the user access state. KCSAN and SW_TTBR0_PAN were probably always incompatible, but it became obvious only when implementing the unsafe user access functions. At that point the default empty user_access_save/restore() functions weren't provided by the default fallback functions. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
![]() |
46d1907d1c |
EFI fixes for v6.10 #3
- Ensure that EFI runtime services are not unmapped by PAN on ARM - Avoid freeing the memory holding the EFI memory map inadvertently on x86 - Avoid a false positive kmemleak warning on arm64 -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZm1QFgAKCRAwbglWLn0t XDCpAP9tB6S9uQwDsR9PuxJfWOALJEqoMWCjGzLjt5HlGePlvAD9HaltvkT5p9Ff TkfP4Ivl29BtuaNBIFGEiC6KJXETawc= =Tvsr -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: "Another small set of EFI fixes. Only the x86 one is likely to affect any actual users (and has a cc:stable), but the issue it fixes was only observed in an unusual context (kexec in a confidential VM). - Ensure that EFI runtime services are not unmapped by PAN on ARM - Avoid freeing the memory holding the EFI memory map inadvertently on x86 - Avoid a false positive kmemleak warning on arm64" * tag 'efi-fixes-for-v6.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi/arm64: Fix kmemleak false positive in arm64_efi_rt_init() efi/x86: Free EFI memory map only when installing a new one. efi/arm: Disable LPAE PAN when calling EFI runtime services |
||
![]() |
46e27b9961 |
efi/arm64: Fix kmemleak false positive in arm64_efi_rt_init()
The kmemleak code sometimes complains about the following leak: unreferenced object 0xffff8000102e0000 (size 32768): comm "swapper/0", pid 1, jiffies 4294937323 (age 71.240s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000db9a88a3>] __vmalloc_node_range+0x324/0x450 [<00000000ff8903a4>] __vmalloc_node+0x90/0xd0 [<000000001a06634f>] arm64_efi_rt_init+0x64/0xdc [<0000000007826a8d>] do_one_initcall+0x178/0xac0 [<0000000054a87017>] do_initcalls+0x190/0x1d0 [<00000000308092d0>] kernel_init_freeable+0x2c0/0x2f0 [<000000003e7b99e0>] kernel_init+0x28/0x14c [<000000002246af5b>] ret_from_fork+0x10/0x20 The memory object in this case is for efi_rt_stack_top and is allocated in an initcall. So this is certainly a false positive. Mark the object as not a leak to quash it. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
2a805201f9 |
ARM64: reloc_test: add missing MODULE_DESCRIPTION() macro
With ARCH=arm64, make allmodconfig && make W=1 C=1 reports: WARNING: modpost: missing MODULE_DESCRIPTION() in arch/arm64/kernel/arm64-reloc-test.o Add the missing invocation of the MODULE_DESCRIPTION() macro. Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com> Link: https://lore.kernel.org/r/20240612-md-arch-arm64-kernel-v1-1-1fafe8d11df3@quicinc.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7a7a1cac3c |
arm64: FFH: Move ACPI specific code into drivers/acpi/arm64/
The ACPI FFH Opregion code can be moved out of arm64 arch code as it just uses SMCCC. Move all the ACPI FFH Opregion code into drivers/acpi/arm64/ffh.c Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Hanjun Guo <guohanjun@huawei.com> Link: https://lore.kernel.org/r/20240605131458.3341095-4-sudeep.holla@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
99e7a8adc0 |
arm64: cpuidle: Move ACPI specific code into drivers/acpi/arm64/
The ACPI cpuidle LPI FFH code can be moved out of arm64 arch code as it just uses SMCCC. Move all the ACPI cpuidle LPI FFH code into drivers/acpi/arm64/cpuidle.c Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Hanjun Guo <guohanjun@huawei.com> Link: https://lore.kernel.org/r/20240605131458.3341095-3-sudeep.holla@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
75b3c43eab |
arm64: errata: Expand speculative SSBS workaround
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time.
We worked around this for Cortex-X4 and Neoverse-V3, in commit:
|
||
![]() |
ec76876660 |
arm64: errata: Unify speculative SSBS errata logic
Cortex-X4 erratum 3194386 and Neoverse-V3 erratum 3312417 are identical, with duplicate Kconfig text and some unsightly ifdeffery. While we try to share code behind CONFIG_ARM64_WORKAROUND_SPECULATIVE_SSBS, having separate options results in a fair amount of boilerplate code, and this will only get worse as we expand the set of affected CPUs. To reduce this boilerplate, unify the two behind a common Kconfig option. This removes the duplicate text and Kconfig logic, and removes the need for the intermediate ARM64_WORKAROUND_SPECULATIVE_SSBS option. The set of affected CPUs is described as a list so that this can easily be extended. I've used ARM64_ERRATUM_3194386 (matching the Neoverse-V3 erratum ID) as the common option, matching the way we use ARM64_ERRATUM_1319367 to cover Cortex-A57 erratum 1319537 and Cortex-A72 erratum 1319367. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <wilL@kernel.org> Link: https://lore.kernel.org/r/20240603111812.1514101-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bf0baa5bbd |
arm64: implement raw_smp_processor_id() using thread_info
Historically, arm64 implemented raw_smp_processor_id() as a read of current_thread_info()->cpu. This changed when arm64 moved thread_info into task struct, as at the time CONFIG_THREAD_INFO_IN_TASK made core code use thread_struct::cpu for the cpu number, and due to header dependencies prevented using this in raw_smp_processor_id(). As a workaround, we moved to using a percpu variable in commit: |
||
![]() |
e8cde32f11 |
arm64/cpufeatures/kvm: Add ARMv8.9 FEAT_ECBHB bits in ID_AA64MMFR1 register
Enable ECBHB bits in ID_AA64MMFR1 register as per ARM DDI 0487K.a specification. When guest OS read ID_AA64MMFR1_EL1, kvm emulate this reg using ftr_id_aa64mmfr1 and always return ID_AA64MMFR1_EL1.ECBHB=0 to guest. It results in guest syscall jump to tramp ventry, which is not needed in implementation with ID_AA64MMFR1_EL1.ECBHB=1. Let's make the guest syscall process the same as the host. Signed-off-by: Nianyao Tang <tangnianyao@huawei.com> Link: https://lore.kernel.org/r/20240611122049.2758600-1-tangnianyao@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
14951beaec |
arm64: armv8_deprecated: Fix warning in isndep cpuhp starting process
The function run_all_insn_set_hw_mode() is registered as startup callback of 'CPUHP_AP_ARM64_ISNDEP_STARTING', it invokes set_hw_mode() methods of all emulated instructions. As the STARTING callbacks are not expected to fail, if one of the set_hw_mode() fails, e.g. due to el0 mixed-endian is not supported for 'setend', it will report a warning: ``` CPU[2] cannot support the emulation of setend CPU 2 UP state arm64/isndep:starting (136) failed (-22) CPU2: Booted secondary processor 0x0000000002 [0x414fd0c1] ``` To fix it, add a check for INSN_UNAVAILABLE status and skip the process. Signed-off-by: Wei Li <liwei391@huawei.com> Tested-by: Huisong Li <lihuisong@huawei.com> Link: https://lore.kernel.org/r/20240423093501.3460764-1-liwei391@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9b62e02e63 |
16 hotfixes, 11 of which are cc:stable.
A few nilfs2 fixes, the remainder are for MM: a couple of selftests fixes, various singletons fixing various issues in various parts. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZlIOUgAKCRDdBJ7gKXxA jrYnAP9UeOw8YchTIsjEllmAbTMAqWGI+54CU/qD78jdIHoVWAEAmp0QqgFW3r2p jze4jBkh3lGQjykTjkUskaR71h9AZww= =AHeV -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2024-05-25-09-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "16 hotfixes, 11 of which are cc:stable. A few nilfs2 fixes, the remainder are for MM: a couple of selftests fixes, various singletons fixing various issues in various parts" * tag 'mm-hotfixes-stable-2024-05-25-09-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm/ksm: fix possible UAF of stable_node mm/memory-failure: fix handling of dissolved but not taken off from buddy pages mm: /proc/pid/smaps_rollup: avoid skipping vma after getting mmap_lock again nilfs2: fix potential hang in nilfs_detach_log_writer() nilfs2: fix unexpected freezing of nilfs_segctor_sync() nilfs2: fix use-after-free of timer for log writer thread selftests/mm: fix build warnings on ppc64 arm64: patching: fix handling of execmem addresses selftests/mm: compaction_test: fix bogus test success and reduce probability of OOM-killer invocation selftests/mm: compaction_test: fix incorrect write of zero to nr_hugepages selftests/mm: compaction_test: fix bogus test success on Aarch64 mailmap: update email address for Satya Priya mm/huge_memory: don't unpoison huge_zero_folio kasan, fortify: properly rename memintrinsics lib: add version into /proc/allocinfo output mm/vmalloc: fix vmalloc which may return null if called with __GFP_NOFAIL |
||
![]() |
b1480ed230 |
arm64: patching: fix handling of execmem addresses
Klara Modin reported warnings for a kernel configured with BPF_JIT but
without MODULES:
[ 44.131296] Trying to vfree() bad address (000000004a17c299)
[ 44.138024] WARNING: CPU: 1 PID: 193 at mm/vmalloc.c:3189 remove_vm_area (mm/vmalloc.c:3189 (discriminator 1))
[ 44.146675] CPU: 1 PID: 193 Comm: kworker/1:2 Tainted: G D W 6.9.0-01786-g2c9e5d4a0082 #25
[ 44.158229] Hardware name: Raspberry Pi 3 Model B (DT)
[ 44.164433] Workqueue: events bpf_prog_free_deferred
[ 44.170492] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 44.178601] pc : remove_vm_area (mm/vmalloc.c:3189 (discriminator 1))
[ 44.183705] lr : remove_vm_area (mm/vmalloc.c:3189 (discriminator 1))
[ 44.188772] sp : ffff800082a13c70
[ 44.193112] x29: ffff800082a13c70 x28: 0000000000000000 x27: 0000000000000000
[ 44.201384] x26: 0000000000000000 x25: ffff00003a44efa0 x24: 00000000d4202000
[ 44.209658] x23: ffff800081223dd0 x22: ffff00003a198a40 x21: ffff8000814dd880
[ 44.217924] x20: 00000000d4202000 x19: ffff8000814dd880 x18: 0000000000000006
[ 44.226206] x17: 0000000000000000 x16: 0000000000000020 x15: 0000000000000002
[ 44.234460] x14: ffff8000811a6370 x13: 0000000020000000 x12: 0000000000000000
[ 44.242710] x11: ffff8000811a6370 x10: 0000000000000144 x9 : ffff8000811fe370
[ 44.250959] x8 : 0000000000017fe8 x7 : 00000000fffff000 x6 : ffff8000811fe370
[ 44.259206] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
[ 44.267457] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000002203240
[ 44.275703] Call trace:
[ 44.279158] remove_vm_area (mm/vmalloc.c:3189 (discriminator 1))
[ 44.283858] vfree (mm/vmalloc.c:3322)
[ 44.287835] execmem_free (mm/execmem.c:70)
[ 44.292347] bpf_jit_free_exec+0x10/0x1c
[ 44.297283] bpf_prog_pack_free (kernel/bpf/core.c:1006)
[ 44.302457] bpf_jit_binary_pack_free (kernel/bpf/core.c:1195)
[ 44.307951] bpf_jit_free (include/linux/filter.h:1083 arch/arm64/net/bpf_jit_comp.c:2474)
[ 44.312342] bpf_prog_free_deferred (kernel/bpf/core.c:2785)
[ 44.317785] process_one_work (kernel/workqueue.c:3273)
[ 44.322684] worker_thread (kernel/workqueue.c:3342 (discriminator 2) kernel/workqueue.c:3429 (discriminator 2))
[ 44.327292] kthread (kernel/kthread.c:388)
[ 44.331342] ret_from_fork (arch/arm64/kernel/entry.S:861)
The problem is because bpf_arch_text_copy() silently fails to write to the
read-only area as a result of patch_map() faulting and the resulting
-EFAULT being chucked away.
Update patch_map() to use CONFIG_EXECMEM instead of
CONFIG_STRICT_MODULE_RWX to check for vmalloc addresses.
Link: https://lkml.kernel.org/r/20240521213813.703309-1-rppt@kernel.org
Fixes:
|
||
![]() |
d6a326d694 |
tracing: Remove second argument of __assign_str()
The __assign_str() macro logic of the TRACE_EVENT() macro was optimized so that it no longer needs the second argument. The __assign_str() is always matched with __string() field that takes a field name and the source for that field: __string(field, source) The TRACE_EVENT() macro logic will save off the source value and then use that value to copy into the ring buffer via the __assign_str(). Before commit |
||
![]() |
2b7ced108e |
arm64 fixes for -rc1
- Fix broken FP register state tracking which resulted in filesystem corruption when dm-crypt is used - Workarounds for Arm CPU errata affecting the SSBS Spectre mitigation - Fix lockdep assertion in DMC620 memory controller PMU driver - Fix alignment of BUG table when CONFIG_DEBUG_BUGVERBOSE is disabled -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmZN3xcQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNMWjCACBIwegWWitCxgvujTPzOc0AwbxJjJWVGF4 0Y3sthbirIJc8e5K7HYv4wbbCHbaqHX4T9noAKx3wvskEomcNqYyI5Wzr/KTR82f OHWHeMebFCAvo+UKTBa71JZcjgB4wi4+UuXIV1tViuMvGRKJW3nXKSwIt4SSQOYM VmS8bvqyyJZtnpNDgniY6QHRCWatagHpQFNFePkvsJiSoi78+FZWb2k2h55rz0iE EG2Vuzw5r1MNqXHCpPaU7fNwsLFbNYiJz3CQYisBLondyDDMsK1XUkLWoxWgGJbK SNbE3becd0C2SlOTwllV4R59AsmMPvA7tOHbD41aGOSBlKY1Hi91 =ivar -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "The major fix here is for a filesystem corruption issue reported on Apple M1 as a result of buggy management of the floating point register state introduced in 6.8. I initially reverted one of the offending patches, but in the end Ard cooked a proper fix so there's a revert+reapply in the series. Aside from that, we've got some CPU errata workarounds and misc other fixes. - Fix broken FP register state tracking which resulted in filesystem corruption when dm-crypt is used - Workarounds for Arm CPU errata affecting the SSBS Spectre mitigation - Fix lockdep assertion in DMC620 memory controller PMU driver - Fix alignment of BUG table when CONFIG_DEBUG_BUGVERBOSE is disabled" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/fpsimd: Avoid erroneous elide of user state reload Reapply "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD" arm64: asm-bug: Add .align 2 to the end of __BUG_ENTRY perf/arm-dmc620: Fix lockdep assert in ->event_init() Revert "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD" arm64: errata: Add workaround for Arm errata 3194386 and 3312417 arm64: cputype: Add Neoverse-V3 definitions arm64: cputype: Add Cortex-X4 definitions arm64: barrier: Restore spec_bar() macro |
||
![]() |
2c92ca849f |
tracing/treewide: Remove second parameter of __assign_str()
With the rework of how the __string() handles dynamic strings where it saves off the source string in field in the helper structure[1], the assignment of that value to the trace event field is stored in the helper value and does not need to be passed in again. This means that with: __string(field, mystring) Which use to be assigned with __assign_str(field, mystring), no longer needs the second parameter and it is unused. With this, __assign_str() will now only get a single parameter. There's over 700 users of __assign_str() and because coccinelle does not handle the TRACE_EVENT() macro I ended up using the following sed script: git grep -l __assign_str | while read a ; do sed -e 's/\(__assign_str([^,]*[^ ,]\) *,[^;]*/\1)/' $a > /tmp/test-file; mv /tmp/test-file $a; done I then searched for __assign_str() that did not end with ';' as those were multi line assignments that the sed script above would fail to catch. Note, the same updates will need to be done for: __assign_str_len() __assign_rel_str() __assign_rel_str_len() I tested this with both an allmodconfig and an allyesconfig (build only for both). [1] https://lore.kernel.org/linux-trace-kernel/20240222211442.634192653@goodmis.org/ Link: https://lore.kernel.org/linux-trace-kernel/20240516133454.681ba6a0@rorschach.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Julia Lawall <Julia.Lawall@inria.fr> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Christian König <christian.koenig@amd.com> for the amdgpu parts. Acked-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> #for Acked-by: Rafael J. Wysocki <rafael@kernel.org> # for thermal Acked-by: Takashi Iwai <tiwai@suse.de> Acked-by: Darrick J. Wong <djwong@kernel.org> # xfs Tested-by: Guenter Roeck <linux@roeck-us.net> |
||
![]() |
e92bee9f86 |
arm64/fpsimd: Avoid erroneous elide of user state reload
TIF_FOREIGN_FPSTATE is a 'convenience' flag that should reflect whether
the current CPU holds the most recent user mode FP/SIMD state of the
current task. It combines two conditions:
- whether the current CPU's FP/SIMD state belongs to the task;
- whether that state is the most recent associated with the task (as a
task may have executed on other CPUs as well).
When a task is scheduled in and TIF_KERNEL_FPSTATE is set, it means the
task was in a kernel mode NEON section when it was scheduled out, and so
the kernel mode FP/SIMD state is restored. Since this implies that the
current CPU is *not* holding the most recent user mode FP/SIMD state of
the current task, the TIF_FOREIGN_FPSTATE flag is set too, so that the
user mode FP/SIMD state is reloaded from memory when returning to
userland.
However, the task may be scheduled out after completing the kernel mode
NEON section, but before returning to userland. When this happens, the
TIF_FOREIGN_FPSTATE flag will not be preserved, but will be set as usual
the next time the task is scheduled in, and will be based on the above
conditions.
This means that, rather than setting TIF_FOREIGN_FPSTATE when scheduling
in a task with TIF_KERNEL_FPSTATE set, the underlying state should be
updated so that TIF_FOREIGN_FPSTATE will assume the expected value as a
result.
So instead, call fpsimd_flush_cpu_state(), which takes care of this.
Closes: https://lore.kernel.org/all/cb8822182231850108fa43e0446a4c7f@kernel.org
Reported-by: Johannes Nixdorf <mixi@shadowice.org>
Fixes:
|
||
![]() |
f481bb32d6 |
Reapply "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD"
This reverts commit
|
||
![]() |
61307b7be4 |
The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB nvA4E0DcPrUAFy144FNM0NTCb7u9vAw= =V3R/ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ... |
||
![]() |
25f4874662 |
RDMA v6.10 merge window
Normal set of driver updates and small fixes: - Small improvements and fixes for erdma, efa, hfi1, bnxt_re - Fix a UAF crash after module unload on leaking restrack entry - Continue adding full RDMA support in mana with support for EQs, GID's and CQs - Improvements to the mkey cache in mlx5 - DSCP traffic class support in hns and several bug fixes - Cap the maximum number of MADs in the receive queue to avoid OOM - Another batch of rxe bug fixes from large scale testing - __iowrite64_copy() optimizations for write combining MMIO memory - Remove NULL checks before dev_put/hold() - EFA support for receive with immediate - Fix a recent memleaking regression in a cma error path -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQRRRCHOFoQz/8F5bUaFwuHvBreFYQUCZkeo2gAKCRCFwuHvBreF YbuNAQChzGmS4F0JAn5Wj0CDvkZghELqtvzEb92SzqcgdyQafAD/fC7f23LJ4OsO 1ZIaQEZu7j9DVg5PKFZ7WfdXjGTKqwA= =QRXg -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull rdma updates from Jason Gunthorpe: "Aside from the usual things this has an arch update for __iowrite64_copy() used by the RDMA drivers. This API was intended to generate large 64 byte MemWr TLPs on PCI. These days most processors had done this by just repeating writel() in a loop. S390 and some new ARM64 designs require a special helper to get this to generate. - Small improvements and fixes for erdma, efa, hfi1, bnxt_re - Fix a UAF crash after module unload on leaking restrack entry - Continue adding full RDMA support in mana with support for EQs, GID's and CQs - Improvements to the mkey cache in mlx5 - DSCP traffic class support in hns and several bug fixes - Cap the maximum number of MADs in the receive queue to avoid OOM - Another batch of rxe bug fixes from large scale testing - __iowrite64_copy() optimizations for write combining MMIO memory - Remove NULL checks before dev_put/hold() - EFA support for receive with immediate - Fix a recent memleaking regression in a cma error path" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (70 commits) RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw RDMA/IPoIB: Fix format truncation compilation errors bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq RDMA/efa: Support QP with unsolicited write w/ imm. receive IB/hfi1: Remove generic .ndo_get_stats64 IB/hfi1: Do not use custom stat allocator RDMA/hfi1: Use RMW accessors for changing LNKCTL2 RDMA/mana_ib: implement uapi for creation of rnic cq RDMA/mana_ib: boundary check before installing cq callbacks RDMA/mana_ib: introduce a helper to remove cq callbacks RDMA/mana_ib: create and destroy RNIC cqs RDMA/mana_ib: create EQs for RNIC CQs RDMA/core: Remove NULL check before dev_{put, hold} RDMA/ipoib: Remove NULL check before dev_{put, hold} RDMA/mlx5: Remove NULL check before dev_{put, hold} RDMA/mlx5: Track DCT, DCI and REG_UMR QPs as diver_detail resources. RDMA/core: Add an option to display driver-specific QPs in the rdmatool RDMA/efa: Add shutdown notifier RDMA/mana_ib: Fix missing ret value IB/mlx5: Use __iowrite64_copy() for write combining stores ... |
||
![]() |
ff9a79307f |
Kbuild updates for v6.10
- Avoid 'constexpr', which is a keyword in C23 - Allow 'dtbs_check' and 'dt_compatible_check' run independently of 'dt_binding_check' - Fix weak references to avoid GOT entries in position-independent code generation - Convert the last use of 'optional' property in arch/sh/Kconfig - Remove support for the 'optional' property in Kconfig - Remove support for Clang's ThinLTO caching, which does not work with the .incbin directive - Change the semantics of $(src) so it always points to the source directory, which fixes Makefile inconsistencies between upstream and downstream - Fix 'make tar-pkg' for RISC-V to produce a consistent package - Provide reasonable default coverage for objtool, sanitizers, and profilers - Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc. - Remove the last use of tristate choice in drivers/rapidio/Kconfig - Various cleanups and fixes in Kconfig -----BEGIN PGP SIGNATURE----- iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmZFlGcVHG1hc2FoaXJv eUBrZXJuZWwub3JnAAoJED2LAQed4NsG8voQALC8NtFpduWVfLRj2Qg6Ll/xf1vX 2igcTJEOFHkeqXLGoT8dTDKLEipUBUvKyguPq66CGwVTe2g6zy/nUSXeVtFrUsIa msLTi8FqhqUo5lodNvGMRf8qqmuqcvnXoiQwIocF92jtsFy14bhiFY+n4HfcFNjj GOKwqBZYQUwY/VVb090efc7RfS9c7uwABJSBelSoxg3AGZriwjGy7Pw5aSKGgVYi inqL1eR6qwPP6z7CgQWM99soP+zwybFZmnQrsD9SniRBI4rtAat8Ih5jQFaSUFUQ lk2w0NQBRFN88/uR2IJ2GWuIlQ74WeJ+QnCqVuQ59tV5zw90wqSmLzngfPD057Dv JjNuhk0UyXVtpIg3lRtd4810ppNSTe33b9OM4O2H846W/crju5oDRNDHcflUXcwm Rmn5ho1rb5QVzDVejJbgwidnUInSgJ9PZcvXQ/RJVZPhpgsBzAY9pQexG1G3hviw y9UDrt6KP6bF9tHjmolmtdIes9Pj0c4dN6/Rdj4HS4hIQ/GDar0tnwvOvtfUctNL orJlBsA6GeMmDVXKkR0ytOCWRYqWWbyt8g70RVKQJfuHX7/hGyAQPaQ2/u4mQhC2 aevYfbNJMj0VDfGz81HDBKFtkc5n+Ite8l157dHEl2LEabkOkRdNVcn7SNbOvZmd ZCSnZ31h7woGfNho =D5B/ -----END PGP SIGNATURE----- Merge tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Avoid 'constexpr', which is a keyword in C23 - Allow 'dtbs_check' and 'dt_compatible_check' run independently of 'dt_binding_check' - Fix weak references to avoid GOT entries in position-independent code generation - Convert the last use of 'optional' property in arch/sh/Kconfig - Remove support for the 'optional' property in Kconfig - Remove support for Clang's ThinLTO caching, which does not work with the .incbin directive - Change the semantics of $(src) so it always points to the source directory, which fixes Makefile inconsistencies between upstream and downstream - Fix 'make tar-pkg' for RISC-V to produce a consistent package - Provide reasonable default coverage for objtool, sanitizers, and profilers - Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc. - Remove the last use of tristate choice in drivers/rapidio/Kconfig - Various cleanups and fixes in Kconfig * tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits) kconfig: use sym_get_choice_menu() in sym_check_prop() rapidio: remove choice for enumeration kconfig: lxdialog: remove initialization with A_NORMAL kconfig: m/nconf: merge two item_add_str() calls kconfig: m/nconf: remove dead code to display value of bool choice kconfig: m/nconf: remove dead code to display children of choice members kconfig: gconf: show checkbox for choice correctly kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal Makefile: remove redundant tool coverage variables kbuild: provide reasonable defaults for tool coverage modules: Drop the .export_symbol section from the final modules kconfig: use menu_list_for_each_sym() in sym_check_choice_deps() kconfig: use sym_get_choice_menu() in conf_write_defconfig() kconfig: add sym_get_choice_menu() helper kconfig: turn defaults and additional prompt for choice members into error kconfig: turn missing prompt for choice members into error kconfig: turn conf_choice() into void function kconfig: use linked list in sym_set_changed() kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED kconfig: gconf: remove debug code ... |
||
![]() |
b8995a1841 |
Revert "arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD"
This reverts commit
|
||
![]() |
f4b0c4b508 |
ARM:
* Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. * Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greatly simplified. * Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. * A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! * Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. * Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. * Preserve vcpu-specific ID registers across a vcpu reset. * Various minor cleanups and improvements. LoongArch: * Add ParaVirt IPI support. * Add software breakpoint support. * Add mmio trace events support. RISC-V: * Support guest breakpoints using ebreak * Introduce per-VCPU mp_state_lock and reset_cntx_lock * Virtualize SBI PMU snapshot and counter overflow interrupts * New selftests for SBI PMU and Guest ebreak * Some preparatory work for both TDX and SNP page fault handling. This also cleans up the page fault path, so that the priorities of various kinds of fauls (private page, no memory, write to read-only slot, etc.) are easier to follow. x86: * Minimize amount of time that shadow PTEs remain in the special REMOVED_SPTE state. This is a state where the mmu_lock is held for reading but concurrent accesses to the PTE have to spin; shortening its use allows other vCPUs to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. * Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is defined by hardware but left for software use. This lets KVM communicate its inability to map GPAs that set bits 51:48 on hosts without 5-level nested page tables. Guest firmware is expected to use the information when mapping BARs; this avoids that they end up at a legal, but unmappable, GPA. * Fixed a bug where KVM would not reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. * As usual, a bunch of code cleanups. x86 (AMD): * Implement a new and improved API to initialize SEV and SEV-ES VMs, which will also be extendable to SEV-SNP. The new API specifies the desired encryption in KVM_CREATE_VM and then separately initializes the VM. The new API also allows customizing the desired set of VMSA features; the features affect the measurement of the VM's initial state, and therefore enabling them cannot be done tout court by the hypervisor. While at it, the new API includes two bugfixes that couldn't be applied to the old one without a flag day in userspace or without affecting the initial measurement. When a SEV-ES VM is created with the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected once the VMSA has been encrypted. Also, the FPU and AVX state will be synchronized and encrypted too. * Support for GHCB version 2 as applicable to SEV-ES guests. This, once more, is only accessible when using the new KVM_SEV_INIT2 flow for initialization of SEV-ES VMs. x86 (Intel): * An initial bunch of prerequisite patches for Intel TDX were merged. They generally don't do anything interesting. The only somewhat user visible change is a new debugging mode that checks that KVM's MMU never triggers a #VE virtualization exception in the guest. * Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. Generic: * Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). * Remove .change_pte() MMU notifier - the changes to non-KVM code are small and Andrew Morton asked that I also take those through the KVM tree. The callback was only ever implemented by KVM (which was also the original user of MMU notifiers) but it had been nonfunctional ever since calls to set_pte_at_notify were wrapped with invalidate_range_start and invalidate_range_end... in 2012. Selftests: * Enhance the demand paging test to allow for better reporting and stressing of UFFD performance. * Convert the steal time test to generate TAP-friendly output. * Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed time across two different clock domains. * Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT. * Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell script, to play nice with running in a minimal userspace environment. * Allow skipping the RSEQ test's sanity check that the vCPU was able to complete a reasonable number of KVM_RUNs, as the assert can fail on a completely valid setup. If the test is run on a large-ish system that is otherwise idle, and the test isn't affined to a low-ish number of CPUs, the vCPU task can be repeatedly migrated to CPUs that are in deep sleep states, which results in the vCPU having very little net runtime before the next migration due to high wakeup latencies. * Define _GNU_SOURCE for all selftests to fix a warning that was introduced by a change to kselftest_harness.h late in the 6.9 cycle, and because forcing every test to #define _GNU_SOURCE is painful. * Provide a global pseudo-RNG instance for all tests, so that library code can generate random, but determinstic numbers. * Use the global pRNG to randomly force emulation of select writes from guest code on x86, e.g. to help validate KVM's emulation of locked accesses. * Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception handlers at VM creation, instead of forcing tests to manually trigger the related setup. Documentation: * Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmZE878UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroOukQf+LcvZsWtrC7Wd5K9SQbYXaS4Rk6P6 JHoQW2d0hUN893J2WibEw+l1J/0vn5JumqHXyZgJ7CbaMtXkWWQTwDSDLuURUKpv XNB3Sb17G87NH+s1tOh0tA9h5upbtlHVHvrtIwdbb9+XHgQ6HTL4uk+HdfO/p9fW cWBEZAKoWcCIa99Numv3pmq5vdrvBlNggwBugBS8TH69EKMw+V1Vu1SFkIdNDTQk NJJ28cohoP3wnwlIHaXSmU4RujipPH3Lm/xupyA5MwmzO713eq2yUqV49jzhD5/I MA4Ruvgrdm4wpp89N9lQMyci91u6q7R9iZfMu0tSg2qYI3UPKIdstd8sOA== =2lED -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "ARM: - Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. - Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greatly simplified. - Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. - A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! - Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. - Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. - Preserve vcpu-specific ID registers across a vcpu reset. - Various minor cleanups and improvements. LoongArch: - Add ParaVirt IPI support - Add software breakpoint support - Add mmio trace events support RISC-V: - Support guest breakpoints using ebreak - Introduce per-VCPU mp_state_lock and reset_cntx_lock - Virtualize SBI PMU snapshot and counter overflow interrupts - New selftests for SBI PMU and Guest ebreak - Some preparatory work for both TDX and SNP page fault handling. This also cleans up the page fault path, so that the priorities of various kinds of fauls (private page, no memory, write to read-only slot, etc.) are easier to follow. x86: - Minimize amount of time that shadow PTEs remain in the special REMOVED_SPTE state. This is a state where the mmu_lock is held for reading but concurrent accesses to the PTE have to spin; shortening its use allows other vCPUs to repopulate the zapped region while the zapper finishes tearing down the old, defunct page tables. - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which is defined by hardware but left for software use. This lets KVM communicate its inability to map GPAs that set bits 51:48 on hosts without 5-level nested page tables. Guest firmware is expected to use the information when mapping BARs; this avoids that they end up at a legal, but unmappable, GPA. - Fixed a bug where KVM would not reject accesses to MSR that aren't supposed to exist given the vCPU model and/or KVM configuration. - As usual, a bunch of code cleanups. x86 (AMD): - Implement a new and improved API to initialize SEV and SEV-ES VMs, which will also be extendable to SEV-SNP. The new API specifies the desired encryption in KVM_CREATE_VM and then separately initializes the VM. The new API also allows customizing the desired set of VMSA features; the features affect the measurement of the VM's initial state, and therefore enabling them cannot be done tout court by the hypervisor. While at it, the new API includes two bugfixes that couldn't be applied to the old one without a flag day in userspace or without affecting the initial measurement. When a SEV-ES VM is created with the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected once the VMSA has been encrypted. Also, the FPU and AVX state will be synchronized and encrypted too. - Support for GHCB version 2 as applicable to SEV-ES guests. This, once more, is only accessible when using the new KVM_SEV_INIT2 flow for initialization of SEV-ES VMs. x86 (Intel): - An initial bunch of prerequisite patches for Intel TDX were merged. They generally don't do anything interesting. The only somewhat user visible change is a new debugging mode that checks that KVM's MMU never triggers a #VE virtualization exception in the guest. - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to L1, as per the SDM. Generic: - Use vfree() instead of kvfree() for allocations that always use vcalloc() or __vcalloc(). - Remove .change_pte() MMU notifier - the changes to non-KVM code are small and Andrew Morton asked that I also take those through the KVM tree. The callback was only ever implemented by KVM (which was also the original user of MMU notifiers) but it had been nonfunctional ever since calls to set_pte_at_notify were wrapped with invalidate_range_start and invalidate_range_end... in 2012. Selftests: - Enhance the demand paging test to allow for better reporting and stressing of UFFD performance. - Convert the steal time test to generate TAP-friendly output. - Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed time across two different clock domains. - Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT. - Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell script, to play nice with running in a minimal userspace environment. - Allow skipping the RSEQ test's sanity check that the vCPU was able to complete a reasonable number of KVM_RUNs, as the assert can fail on a completely valid setup. If the test is run on a large-ish system that is otherwise idle, and the test isn't affined to a low-ish number of CPUs, the vCPU task can be repeatedly migrated to CPUs that are in deep sleep states, which results in the vCPU having very little net runtime before the next migration due to high wakeup latencies. - Define _GNU_SOURCE for all selftests to fix a warning that was introduced by a change to kselftest_harness.h late in the 6.9 cycle, and because forcing every test to #define _GNU_SOURCE is painful. - Provide a global pseudo-RNG instance for all tests, so that library code can generate random, but determinstic numbers. - Use the global pRNG to randomly force emulation of select writes from guest code on x86, e.g. to help validate KVM's emulation of locked accesses. - Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception handlers at VM creation, instead of forcing tests to manually trigger the related setup. Documentation: - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits) selftests/kvm: remove dead file KVM: selftests: arm64: Test vCPU-scoped feature ID registers KVM: selftests: arm64: Test that feature ID regs survive a reset KVM: selftests: arm64: Store expected register value in set_id_regs KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope KVM: arm64: Only reset vCPU-scoped feature ID regs once KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs() KVM: arm64: Rename is_id_reg() to imply VM scope KVM: arm64: Destroy mpidr_data for 'late' vCPU creation KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support KVM: arm64: Fix hvhe/nvhe early alias parsing KVM: SEV: Allow per-guest configuration of GHCB protocol version KVM: SEV: Add GHCB handling for termination requests KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests KVM: SEV: Add support to handle AP reset MSR protocol KVM: x86: Explicitly zero kvm_caps during vendor module load KVM: x86: Fully re-initialize supported_mce_cap on vendor module load KVM: x86: Fully re-initialize supported_vm_types on vendor module load KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values ... |
||
![]() |
a49468240e |
Modules changes for v6.10-rc1
Finally something fun. Mike Rapoport does some cleanup to allow us to take out module_alloc() out of modules into a new paint shedded execmem_alloc() and execmem_free() so to make emphasis these helpers are actually used outside of modules. It starts with a no-functional changes API rename / placeholders to then allow architectures to define their requirements into a new shiny struct execmem_info with ranges, and requirements for those ranges. Archs now can intitialize this execmem_info as the last part of mm_core_init() if they have to diverge from the norm. Each range is a known type clearly articulated and spelled out in enum execmem_type. Although a lot of this is major cleanup and prep work for future enhancements an immediate clear gain is we get to enable KPROBES without MODULES now. That is ultimately what motiviated to pick this work up again, now with smaller goal as concrete stepping stone. This has been sitting on linux-next for a little less than a month, a few issues were found already and fixed, in particular an odd mips boot issue. Arch folks reviewed the code too. This is ready for wider exposure and testing. -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmZDHfMSHG1jZ3JvZkBr ZXJuZWwub3JnAAoJEM4jHQowkoinfIwP/iFsr89v9BjWdRTqzufuHwjOxvFymWxU BbEpOppRny3CckDU9ag9hLIlUaSL1Bg56Zb+znzp5stKOoiQYMDBvjSYdfybPxW2 mRS6SClMF1ubWbzdysdp5Ld9u8T0MQPCLX+P2pKhZRGi0wjkBf5WEkTje+muJKI3 4vYkXS7bNhuTwRQ+EGfze4+AeleGdQJKDWFY00TW9mZTTBADjfHyYU5o0m9ijf5l 3V/weUznODvjVJStbIF7wEQ845Ae02LN1zXfsloIOuBMhcMju+x8IjPgPbD0KhX2 yA48q7mVWkirYp0L5GSQchtqV1GBiP0NK1xXWEpyx6EqQZ4RJCsQhlhjijoExYBR ylP4bqiGVuE3IN075X0OzGCnmOStuzwssfDmug0sMAZH/MvmOQ21WzZdet2nLMas wwJArHqZsBI9BnBlvH9ZM4Y9f1zC7iR1wULaNGwXLPx34X9PIch8Yk+RElP1kMFQ +YrjOuWPjl63pmSkrkk+Pe2eesMPcPB41M6Q2iCjDlp0iBp63LIx2XISUbTf0ljM EsI4ZQseYpx+BmC7AuQfmXvEOjuXII9z072/artVWcB2u/87ixIprnqZVhcs/spy 73DnXB4ufor2PCCC5Xrb/6kT6G+PzF3VwTbHQ1D+fYZ5n2qdyG+LKxgXbtxsRVTp oUg+Z/AJaCMt =Nsg4 -----END PGP SIGNATURE----- Merge tag 'modules-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull modules updates from Luis Chamberlain: "Finally something fun. Mike Rapoport does some cleanup to allow us to take out module_alloc() out of modules into a new paint shedded execmem_alloc() and execmem_free() so to make emphasis these helpers are actually used outside of modules. It starts with a non-functional changes API rename / placeholders to then allow architectures to define their requirements into a new shiny struct execmem_info with ranges, and requirements for those ranges. Archs now can intitialize this execmem_info as the last part of mm_core_init() if they have to diverge from the norm. Each range is a known type clearly articulated and spelled out in enum execmem_type. Although a lot of this is major cleanup and prep work for future enhancements an immediate clear gain is we get to enable KPROBES without MODULES now. That is ultimately what motiviated to pick this work up again, now with smaller goal as concrete stepping stone" * tag 'modules-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: bpf: remove CONFIG_BPF_JIT dependency on CONFIG_MODULES of kprobes: remove dependency on CONFIG_MODULES powerpc: use CONFIG_EXECMEM instead of CONFIG_MODULES where appropriate x86/ftrace: enable dynamic ftrace without CONFIG_MODULES arch: make execmem setup available regardless of CONFIG_MODULES powerpc: extend execmem_params for kprobes allocations arm64: extend execmem_info for generated code allocations riscv: extend execmem_params for generated code allocations mm/execmem, arch: convert remaining overrides of module_alloc to execmem mm/execmem, arch: convert simple overrides of module_alloc to execmem mm: introduce execmem_alloc() and execmem_free() module: make module_memory_{alloc,free} more self-contained sparc: simplify module_alloc() nios2: define virtual address space for modules mips: module: rename MODULE_START to MODULES_VADDR arm64: module: remove unneeded call to kasan_alloc_module_shadow() kallsyms: replace deprecated strncpy with strscpy module: allow UNUSED_KSYMS_WHITELIST to be relative against objtree. |
||
![]() |
103916ffe2 |
arm64 updates for 6.10
ACPI: * Support for the Firmware ACPI Control Structure (FACS) signature feature which is used to reboot out of hibernation on some systems. Kbuild: * Support for building Flat Image Tree (FIT) images, where the kernel Image is compressed alongside a set of devicetree blobs. Memory management: * Optimisation of our early page-table manipulation for creation of the linear mapping. * Support for userfaultfd write protection, which brings along some nice cleanups to our handling of invalid but present ptes. * Extend our use of range TLBI invalidation at EL1. Perf and PMUs: * Ensure that the 'pmu->parent' pointer is correctly initialised by PMU drivers. * Avoid allocating 'cpumask_t' types on the stack in some PMU drivers. * Fix parsing of the CPU PMU "version" field in assembly code, as it doesn't follow the usual architectural rules. * Add best-effort unwinding support for USER_STACKTRACE * Minor driver fixes and cleanups. Selftests: * Minor cleanups to the arm64 selftests (missing NULL check, unused variable). Miscellaneous * Add a command-line alias for disabling 32-bit application support. * Add part number for Neoverse-V2 CPUs. * Minor fixes and cleanups. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmY+IWkQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNBVNB/9JG4jlmgxzbTDoer0md31YFvWCDGeOKx1x g3XhE24W5w8eLXnc75p7/tOUKfo0TNWL4qdUs0hJCEUAOSy6a4Qz13bkkkvvBtDm nnHvEjidx5yprHggocsoTF29CKgHMJ3bt8rJe6g+O3Lp1JAFlXXNgplX5koeaVtm TtaFvX9MGyDDNkPIcQ/SQTFZJ2Oz51+ik6O8SYuGYtmAcR7MzlxH77lHl2mrF1bf Jzv/f5n0lS+Gt9tRuFWhbfEm4aKdUlLha4ufzUq42/vJvELboZbG3LqLxRG8DbqR +HvyZOG/xtu2dbzDqHkRumMToWmwzD4oBGSK4JAoJxeHavEdAvSG =JMvT -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The most interesting parts are probably the mm changes from Ryan which optimise the creation of the linear mapping at boot and (separately) implement write-protect support for userfaultfd. Outside of our usual directories, the Kbuild-related changes under scripts/ have been acked by Masahiro whilst the drivers/acpi/ parts have been acked by Rafael and the addition of cpumask_any_and_but() has been acked by Yury. ACPI: - Support for the Firmware ACPI Control Structure (FACS) signature feature which is used to reboot out of hibernation on some systems Kbuild: - Support for building Flat Image Tree (FIT) images, where the kernel Image is compressed alongside a set of devicetree blobs Memory management: - Optimisation of our early page-table manipulation for creation of the linear mapping - Support for userfaultfd write protection, which brings along some nice cleanups to our handling of invalid but present ptes - Extend our use of range TLBI invalidation at EL1 Perf and PMUs: - Ensure that the 'pmu->parent' pointer is correctly initialised by PMU drivers - Avoid allocating 'cpumask_t' types on the stack in some PMU drivers - Fix parsing of the CPU PMU "version" field in assembly code, as it doesn't follow the usual architectural rules - Add best-effort unwinding support for USER_STACKTRACE - Minor driver fixes and cleanups Selftests: - Minor cleanups to the arm64 selftests (missing NULL check, unused variable) Miscellaneous: - Add a command-line alias for disabling 32-bit application support - Add part number for Neoverse-V2 CPUs - Minor fixes and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits) arm64/mm: Fix pud_user_accessible_page() for PGTABLE_LEVELS <= 2 arm64/mm: Add uffd write-protect support arm64/mm: Move PTE_PRESENT_INVALID to overlay PTE_NG arm64/mm: Remove PTE_PROT_NONE bit arm64/mm: generalize PMD_PRESENT_INVALID for all levels arm64: simplify arch_static_branch/_jump function arm64: Add USER_STACKTRACE support arm64: Add the arm64.no32bit_el0 command line option drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset() drivers/perf: hisi: hns3: Fix out-of-bound access when valid event group drivers/perf: hisi_pcie: Fix out-of-bound access when valid event group kselftest: arm64: Add a null pointer check arm64: defer clearing DAIF.D arm64: assembler: update stale comment for disable_step_tsk arm64/sysreg: Update PIE permission encodings kselftest/arm64: Remove unused parameters in abi test perf/arm-spe: Assign parents for event_source device perf/arm-smmuv3: Assign parents for event_source device perf/arm-dsu: Assign parents for event_source device perf/arm-dmc620: Assign parents for event_source device ... |
||
![]() |
7f7f6f7ad6 |
Makefile: remove redundant tool coverage variables
Now Kbuild provides reasonable defaults for objtool, sanitizers, and profilers. Remove redundant variables. Note: This commit changes the coverage for some objects: - include arch/mips/vdso/vdso-image.o into UBSAN, GCOV, KCOV - include arch/sparc/vdso/vdso-image-*.o into UBSAN - include arch/sparc/vdso/vma.o into UBSAN - include arch/x86/entry/vdso/extable.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vdso-image-*.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vdso32-setup.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vma.o into GCOV, KCOV - include arch/x86/um/vdso/vma.o into KASAN, GCOV, KCOV I believe these are positive effects because all of them are kernel space objects. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Roberto Sassu <roberto.sassu@huawei.com> |
||
![]() |
0cc2dc4902 |
arch: make execmem setup available regardless of CONFIG_MODULES
execmem does not depend on modules, on the contrary modules use execmem. To make execmem available when CONFIG_MODULES=n, for instance for kprobes, split execmem_params initialization out from arch/*/kernel/module.c and compile it when CONFIG_EXECMEM=y Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
e2effa2235 |
arm64: extend execmem_info for generated code allocations
The memory allocations for kprobes and BPF on arm64 can be placed anywhere in vmalloc address space and currently this is implemented with overrides of alloc_insn_page() and bpf_jit_alloc_exec() in arm64. Define EXECMEM_KPROBES and EXECMEM_BPF ranges in arm64::execmem_info and drop overrides of alloc_insn_page() and bpf_jit_alloc_exec(). Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
223b5e57d0 |
mm/execmem, arch: convert remaining overrides of module_alloc to execmem
Extend execmem parameters to accommodate more complex overrides of module_alloc() by architectures. This includes specification of a fallback range required by arm, arm64 and powerpc, EXECMEM_MODULE_DATA type required by powerpc, support for allocation of KASAN shadow required by s390 and x86 and support for late initialization of execmem required by arm64. The core implementation of execmem_alloc() takes care of suppressing warnings when the initial allocation fails but there is a fallback range defined. Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Song Liu <song@kernel.org> Tested-by: Liviu Dudau <liviu@dudau.co.uk> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
00be875879 |
arm64: module: remove unneeded call to kasan_alloc_module_shadow()
Since commit
|
||
![]() |
17ca7fc22f |
Perf events changes for v6.10:
- Combine perf and BPF for fast evalution of HW breakpoint conditions. - Add LBR capture support outside of hardware events - Trigger IO signals for watermark_wakeup - Add RAPL support for Intel Arrow Lake and Lunar Lake - Optimize frequency-throttling - Miscellaneous cleanups & fixes. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBsC8RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1izyxAAo7yOdhk9q+y2YWlKx2FmxUlZ8vlxBDRT 22bIN2d1ADrRS2IMsXC2/PhLnw0RNMCjBf6vyXi1hrMMK2zjuCFet5WDN8NboWEp hMdUSv1ODf5vb2I8frYS9X4jPtXDKSpIBR9e3E7iFYU6vj3BUXLSXnfXFjRsLU8i BG1k4apAWkDw0UjwQsRdxOoTFxp17idO3Ruz0/ksXleO/0aR0WR68tGO2WS1Hz95 mBhdjudekpWgT8VktGPrXsgUU3jqywTx04zFkWS36+IqDqNeNMPmePC7hqohlvv4 ZEPg6XrjdFmcDE6nc2YFYLD9njLDbdKPLeGTEtSNFSAmHYqV8W+UFlNa6hlXEE7n KFnvJ8zLymW/UQGaPsIcqqTSXkGKuTsUZJO+QK/VF+sK7VpMJtwTaUliSlN7zQtF 6HDBjp4sLB3NW16AN/M65LjpqyLdRxD7tvXoPLTt9mOVQt41ckv2Tfe2m6hg9OVQ qFzEdhgXxOUMyO9ifEX4HC2sBkKee4Jt76SLkpdr6kuuqlTRisIVdhlJ7yjK9/Rk RbuK/4eqL1p/o4GFAPP8gQjfdMSWatOZzxpE4V1cnzEdGjwuUMPJrbYPiAkgHskO HpzXtY+xFbAiaDanW1kUmwlqO8yO18WvdUem+SRRlFvbeE+grmgmtRZecNOi7mgg MlKdr1a4mV8= =r0yr -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf events updates from Ingo Molnar: - Combine perf and BPF for fast evalution of HW breakpoint conditions - Add LBR capture support outside of hardware events - Trigger IO signals for watermark_wakeup - Add RAPL support for Intel Arrow Lake and Lunar Lake - Optimize frequency-throttling - Miscellaneous cleanups & fixes * tag 'perf-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) perf/bpf: Mark perf_event_set_bpf_handler() and perf_event_free_bpf_handler() as inline too selftests/perf_events: Test FASYNC with watermark wakeups perf/ring_buffer: Trigger IO signals for watermark_wakeup perf: Move perf_event_fasync() to perf_event.h perf/bpf: Change the !CONFIG_BPF_SYSCALL stubs to static inlines selftest/bpf: Test a perf BPF program that suppresses side effects perf/bpf: Allow a BPF program to suppress all sample side effects perf/bpf: Remove unneeded uses_default_overflow_handler() perf/bpf: Call BPF handler directly, not through overflow machinery perf/bpf: Remove #ifdef CONFIG_BPF_SYSCALL from struct perf_event members perf/bpf: Create bpf_overflow_handler() stub for !CONFIG_BPF_SYSCALL perf/bpf: Reorder bpf_overflow_handler() ahead of __perf_event_overflow() perf/x86/rapl: Add support for Intel Lunar Lake perf/x86/rapl: Add support for Intel Arrow Lake perf/core: Reduce PMU access to adjust sample freq perf/core: Optimize perf_adjust_freq_unthr_context() perf/x86/amd: Don't reject non-sampling events with configured LBR perf/x86/amd: Support capturing LBR from software events perf/x86/amd: Avoid taking branches before disabling LBR perf/x86/amd: Ensure amd_pmu_core_disable_all() is always inlined ... |
||
![]() |
e5f62e27b1 |
KVM/arm64 updates for Linux 6.10
- Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. - Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greattly simplified. - Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. - A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! - Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. - Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. - Preserve vcpu-specific ID registers across a vcpu reset. - Various minor cleanups and improvements. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmY/PT4ACgkQI9DQutE9 ekNwSA/7BTro0n5gP5/SfSFJeEedigpmHQJtHJk9og0LBzjXZTvYqKpI5J1HnpWE AFsDf3aDRPaSCvI+S14LkkK+TmGtVEXUg8YGytQo08IcO2x6xBT/YjpkVOHy23kq SGgNMPNUH2sycb7hTcz9Z/V0vBeYwFzYEAhmpvtROvmaRd8ZIyt+ofcclwUZZAQ2 SolOXR2d+ynCh8ZCOexqyZ67keikW1NXtW5aNWWFc6S6qhmcWdaWJGDcSyHauFac +YuHjPETJYh7TNpwYTmKclRh1fk/CgA/e+r71Hlgdkg+DGCyVnEZBQxqMi6GTzNC dzy3qhTtRT61SR54q55yMVIC3o6uRSkht+xNg1Nd+UghiqGKAtoYhvGjduodONW2 1Eas6O+vHipu98HgFnkJRPlnF1HR3VunPDwpzIWIZjK0fIXEfrWqCR3nHFaxShOR dniTEPfELguxOtbl3jCZ+KHCIXueysczXFlqQjSDkg/P1l0jKBgpkZzMPY2mpP1y TgjipfSL5gr1GPdbrmh4WznQtn5IYWduKIrdEmSBuru05OmBaCO4geXPUwL4coHd O8TBnXYBTN/z3lORZMSOj9uK8hgU1UWmnOIkdJ4YBBAL8DSS+O+KtCRkHQP0ghl+ whl0q1SWTu4LtOQzN5CUrhq9Tge11erEt888VyJbBJmv8x6qJjE= =CEfD -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for Linux 6.10 - Move a lot of state that was previously stored on a per vcpu basis into a per-CPU area, because it is only pertinent to the host while the vcpu is loaded. This results in better state tracking, and a smaller vcpu structure. - Add full handling of the ERET/ERETAA/ERETAB instructions in nested virtualisation. The last two instructions also require emulating part of the pointer authentication extension. As a result, the trap handling of pointer authentication has been greattly simplified. - Turn the global (and not very scalable) LPI translation cache into a per-ITS, scalable cache, making non directly injected LPIs much cheaper to make visible to the vcpu. - A batch of pKVM patches, mostly fixes and cleanups, as the upstreaming process seems to be resuming. Fingers crossed! - Allocate PPIs and SGIs outside of the vcpu structure, allowing for smaller EL2 mapping and some flexibility in implementing more or less than 32 private IRQs. - Purge stale mpidr_data if a vcpu is created after the MPIDR map has been created. - Preserve vcpu-specific ID registers across a vcpu reset. - Various minor cleanups and improvements. |
||
![]() |
f0cc697f9f |
Merge branch 'for-next/errata' into for-next/core
* for-next/errata: arm64: errata: Add workaround for Arm errata 3194386 and 3312417 arm64: cputype: Add Neoverse-V3 definitions arm64: cputype: Add Cortex-X4 definitions arm64: barrier: Restore spec_bar() macro |
||
![]() |
7187bb7d0b |
arm64: errata: Add workaround for Arm errata 3194386 and 3312417
Cortex-X4 and Neoverse-V3 suffer from errata whereby an MSR to the SSBS special-purpose register does not affect subsequent speculative instructions, permitting speculative store bypassing for a window of time. This is described in their Software Developer Errata Notice (SDEN) documents: * Cortex-X4 SDEN v8.0, erratum 3194386: https://developer.arm.com/documentation/SDEN-2432808/0800/ * Neoverse-V3 SDEN v6.0, erratum 3312417: https://developer.arm.com/documentation/SDEN-2891958/0600/ To workaround these errata, it is necessary to place a speculation barrier (SB) after MSR to the SSBS special-purpose register. This patch adds the requisite SB after writes to SSBS within the kernel, and hides the presence of SSBS from EL0 such that userspace software which cares about SSBS will manipulate this via prctl(PR_GET_SPECULATION_CTRL, ...). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20240508081400.235362-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b1992c3772 |
kbuild: use $(src) instead of $(srctree)/$(src) for source directory
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for checked-in source files. It is merely a convention without any functional difference. In fact, $(obj) and $(src) are exactly the same, as defined in scripts/Makefile.build: src := $(obj) When the kernel is built in a separate output directory, $(src) does not accurately reflect the source directory location. While Kbuild resolves this discrepancy by specifying VPATH=$(srctree) to search for source files, it does not cover all cases. For example, when adding a header search path for local headers, -I$(srctree)/$(src) is typically passed to the compiler. This introduces inconsistency between upstream and downstream Makefiles because $(src) is used instead of $(srctree)/$(src) for the latter. To address this inconsistency, this commit changes the semantics of $(src) so that it always points to the directory in the source tree. Going forward, the variables used in Makefiles will have the following meanings: $(obj) - directory in the object tree $(src) - directory in the source tree (changed by this commit) $(objtree) - the top of the kernel object tree $(srctree) - the top of the kernel source tree Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced with $(src). Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> |
||
![]() |
42e7ddbaf1 |
Merge branch 'for-next/perf' into for-next/core
* for-next/perf: (41 commits) arm64: Add USER_STACKTRACE support drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset() drivers/perf: hisi: hns3: Fix out-of-bound access when valid event group drivers/perf: hisi_pcie: Fix out-of-bound access when valid event group perf/arm-spe: Assign parents for event_source device perf/arm-smmuv3: Assign parents for event_source device perf/arm-dsu: Assign parents for event_source device perf/arm-dmc620: Assign parents for event_source device perf/arm-ccn: Assign parents for event_source device perf/arm-cci: Assign parents for event_source device perf/alibaba_uncore: Assign parents for event_source device perf/arm_pmu: Assign parents for event_source devices perf/imx_ddr: Assign parents for event_source devices perf/qcom: Assign parents for event_source devices Documentation: qcom-pmu: Use /sys/bus/event_source/devices paths perf/riscv: Assign parents for event_source devices perf/thunderx2: Assign parents for event_source devices Documentation: thunderx2-pmu: Use /sys/bus/event_source/devices paths perf/xgene: Assign parents for event_source devices Documentation: xgene-pmu: Use /sys/bus/event_source/devices paths ... |
||
![]() |
7a7f6045ca |
Merge branch 'for-next/misc' into for-next/core
* for-next/misc: arm64: simplify arch_static_branch/_jump function arm64: Add the arm64.no32bit_el0 command line option arm64: defer clearing DAIF.D arm64: assembler: update stale comment for disable_step_tsk arm64/sysreg: Update PIE permission encodings arm64: Add Neoverse-V2 part arm64: Remove unnecessary irqflags alternative.h include |
||
![]() |
e28157060c |
Merge branch kvm-arm64/misc-6.10 into kvmarm-master/next
* kvm-arm64/misc-6.10: : . : Misc fixes and updates targeting 6.10 : : - Improve boot-time diagnostics when the sysreg tables : are not correctly sorted : : - Allow FFA_MSG_SEND_DIRECT_REQ in the FFA proxy : : - Fix duplicate XNX field in the ID_AA64MMFR1_EL1 : writeable mask : : - Allocate PPIs and SGIs outside of the vcpu structure, allowing : for smaller EL2 mapping and some flexibility in implementing : more or less than 32 private IRQs. : : - Use bitmap_gather() instead of its open-coded equivalent : : - Make protected mode use hVHE if available : : - Purge stale mpidr_data if a vcpu is created after the MPIDR : map has been created : . KVM: arm64: Destroy mpidr_data for 'late' vCPU creation KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support KVM: arm64: Fix hvhe/nvhe early alias parsing KVM: arm64: Convert kvm_mpidr_index() to bitmap_gather() KVM: arm64: vgic: Allocate private interrupts on demand KVM: arm64: Remove duplicated AA64MMFR1_EL1 XNX KVM: arm64: Remove FFA_MSG_SEND_DIRECT_REQ from the denylist KVM: arm64: Improve out-of-order sysreg table diagnostics Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
5053c3f051 |
KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support
The early command line parsing treats "kvm-arm.mode=protected" as an
alias for "id_aa64mmfr1.vh=0", forcing the use of nVHE so that the host
kernel runs at EL1 with the pKVM hypervisor at EL2.
With the introduction of hVHE support in
|
||
![]() |
3c142f9d02 |
KVM: arm64: Fix hvhe/nvhe early alias parsing
Booting a kernel with "arm64_sw.hvhe=1 kvm-arm.mode=nvhe" on the command-line results in KVM initialising using hVHE, whereas one might expect the latter option to override the former. Fix this by adding "arm64_sw.hvhe=0" to the alias expansion for "kvm-arm.mode=nvhe". Signed-off-by: Will Deacon <will@kernel.org> Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20240501163400.15838-2-will@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
410e471f87 |
arm64: Add USER_STACKTRACE support
Currently, userstacktrace is unsupported for ftrace and uprobe tracers on arm64. This patch uses the perf_callchain_user() code as blueprint to implement the arch_stack_walk_user() which add userstacktrace support on arm64. Meanwhile, we can use arch_stack_walk_user() to simplify the implementation of perf_callchain_user(). This patch is tested pass with ftrace, uprobe and perf tracers profiling userstacktrace cases. Tested-by: chenqiwu <qiwu.chen@transsion.com> Signed-off-by: chenqiwu <qiwu.chen@transsion.com> Link: https://lore.kernel.org/r/20231219022229.10230-1-qiwu.chen@transsion.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1279e8d0dc |
arm64: Add the arm64.no32bit_el0 command line option
Introducing the field 'el0' to the idreg-override for register ID_AA64PFR0_EL1. This field is also aliased to the new kernel command line option 'arm64.no32bit_el0' as a more recognizable and mnemonic name to disable the execution of 32 bit userspace applications (i.e. avoid Aarch32 execution state in EL0) from kernel command line. Link: https://lore.kernel.org/all/20240207105847.7739-1-andrea.porta@suse.com/ Signed-off-by: Andrea della Porta <andrea.porta@suse.com> Link: https://lore.kernel.org/r/20240429102833.6426-1-andrea.porta@suse.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b957df3b85 |
arch: use $(obj)/ instead of $(src)/ for preprocessed linker scripts
These are generated files. Prefix them with $(obj)/ instead of $(src)/. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Helge Deller <deller@gmx.de> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> |
||
![]() |
080297becc |
arm64: defer clearing DAIF.D
For historical reasons we unmask debug exceptions in __cpu_setup(), but it's not necessary to unmask debug exceptions this early in the boot/idle entry paths. It would be better to unmask debug exceptions later in C code as this simplifies the current code and will make it easier to rework exception masking logic to handle non-DAIF bits in future (e.g. PSTATE.{ALLINT,PM}). We started clearing DAIF.D in __cpu_setup() in commit: |
||
![]() |
0069455bcb |
fix missing vmalloc.h includes
Patch series "Memory allocation profiling", v6. Overview: Low overhead [1] per-callsite memory allocation profiling. Not just for debug kernels, overhead low enough to be deployed in production. Example output: root@moria-kvm:~# sort -rn /proc/allocinfo 127664128 31168 mm/page_ext.c:270 func:alloc_page_ext 56373248 4737 mm/slub.c:2259 func:alloc_slab_page 14880768 3633 mm/readahead.c:247 func:page_cache_ra_unbounded 14417920 3520 mm/mm_init.c:2530 func:alloc_large_system_hash 13377536 234 block/blk-mq.c:3421 func:blk_mq_alloc_rqs 11718656 2861 mm/filemap.c:1919 func:__filemap_get_folio 9192960 2800 kernel/fork.c:307 func:alloc_thread_stack_node 4206592 4 net/netfilter/nf_conntrack_core.c:2567 func:nf_ct_alloc_hashtable 4136960 1010 drivers/staging/ctagmod/ctagmod.c:20 [ctagmod] func:ctagmod_start 3940352 962 mm/memory.c:4214 func:alloc_anon_folio 2894464 22613 fs/kernfs/dir.c:615 func:__kernfs_new_node ... Usage: kconfig options: - CONFIG_MEM_ALLOC_PROFILING - CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT - CONFIG_MEM_ALLOC_PROFILING_DEBUG adds warnings for allocations that weren't accounted because of a missing annotation sysctl: /proc/sys/vm/mem_profiling Runtime info: /proc/allocinfo Notes: [1]: Overhead To measure the overhead we are comparing the following configurations: (1) Baseline with CONFIG_MEMCG_KMEM=n (2) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) (3) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) (4) Enabled at runtime (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n && /proc/sys/vm/mem_profiling=1) (5) Baseline with CONFIG_MEMCG_KMEM=y && allocating with __GFP_ACCOUNT (6) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) && CONFIG_MEMCG_KMEM=y (7) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) && CONFIG_MEMCG_KMEM=y Performance overhead: To evaluate performance we implemented an in-kernel test executing multiple get_free_page/free_page and kmalloc/kfree calls with allocation sizes growing from 8 to 240 bytes with CPU frequency set to max and CPU affinity set to a specific CPU to minimize the noise. Below are results from running the test on Ubuntu 22.04.2 LTS with 6.8.0-rc1 kernel on 56 core Intel Xeon: kmalloc pgalloc (1 baseline) 6.764s 16.902s (2 default disabled) 6.793s (+0.43%) 17.007s (+0.62%) (3 default enabled) 7.197s (+6.40%) 23.666s (+40.02%) (4 runtime enabled) 7.405s (+9.48%) 23.901s (+41.41%) (5 memcg) 13.388s (+97.94%) 48.460s (+186.71%) (6 def disabled+memcg) 13.332s (+97.10%) 48.105s (+184.61%) (7 def enabled+memcg) 13.446s (+98.78%) 54.963s (+225.18%) Memory overhead: Kernel size: text data bss dec diff (1) 26515311 18890222 17018880 62424413 (2) 26524728 19423818 16740352 62688898 264485 (3) 26524724 19423818 16740352 62688894 264481 (4) 26524728 19423818 16740352 62688898 264485 (5) 26541782 18964374 16957440 62463596 39183 Memory consumption on a 56 core Intel CPU with 125GB of memory: Code tags: 192 kB PageExts: 262144 kB (256MB) SlabExts: 9876 kB (9.6MB) PcpuExts: 512 kB (0.5MB) Total overhead is 0.2% of total memory. Benchmarks: Hackbench tests run 100 times: hackbench -s 512 -l 200 -g 15 -f 25 -P baseline disabled profiling enabled profiling avg 0.3543 0.3559 (+0.0016) 0.3566 (+0.0023) stdev 0.0137 0.0188 0.0077 hackbench -l 10000 baseline disabled profiling enabled profiling avg 6.4218 6.4306 (+0.0088) 6.5077 (+0.0859) stdev 0.0933 0.0286 0.0489 stress-ng tests: stress-ng --class memory --seq 4 -t 60 stress-ng --class cpu --seq 4 -t 60 Results posted at: https://evilpiepirate.org/~kent/memalloc_prof_v4_stress-ng/ [2] https://lore.kernel.org/all/20240306182440.2003814-1-surenb@google.com/ This patch (of 37): The next patch drops vmalloc.h from a system header in order to fix a circular dependency; this adds it to all the files that were pulling it in implicitly. [kent.overstreet@linux.dev: fix arch/alpha/lib/memcpy.c] Link: https://lkml.kernel.org/r/20240327002152.3339937-1-kent.overstreet@linux.dev [surenb@google.com: fix arch/x86/mm/numa_32.c] Link: https://lkml.kernel.org/r/20240402180933.1663992-1-surenb@google.com [kent.overstreet@linux.dev: a few places were depending on sizes.h] Link: https://lkml.kernel.org/r/20240404034744.1664840-1-kent.overstreet@linux.dev [arnd@arndb.de: fix mm/kasan/hw_tags.c] Link: https://lkml.kernel.org/r/20240404124435.3121534-1-arnd@kernel.org [surenb@google.com: fix arc build] Link: https://lkml.kernel.org/r/20240405225115.431056-1-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-1-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-2-surenb@google.com Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
ead79118da |
arm64/io: Provide a WC friendly __iowriteXX_copy()
The kernel provides driver support for using write combining IO memory through the __iowriteXX_copy() API which is commonly used as an optional optimization to generate 16/32/64 byte MemWr TLPs in a PCIe environment. iomap_copy.c provides a generic implementation as a simple 4/8 byte at a time copy loop that has worked well with past ARM64 CPUs, giving a high frequency of large TLPs being successfully formed. However modern ARM64 CPUs are quite sensitive to how the write combining CPU HW is operated and a compiler generated loop with intermixed load/store is not sufficient to frequently generate a large TLP. The CPUs would like to see the entire TLP generated by consecutive store instructions from registers. Compilers like gcc tend to intermix loads and stores and have poor code generation, in part, due to the ARM64 situation that writeq() does not codegen anything other than "[xN]". However even with that resolved compilers like clang still do not have good code generation. This means on modern ARM64 CPUs the rate at which __iowriteXX_copy() successfully generates large TLPs is very small (less than 1 in 10,000) tries), to the point that the use of WC is pointless. Implement __iowrite32/64_copy() specifically for ARM64 and use inline assembly to build consecutive blocks of STR instructions. Provide direct support for 64/32/16 large TLP generation in this manner. Optimize for common constant lengths so that the compiler can directly inline the store blocks. This brings the frequency of large TLP generation up to a high level that is comparable with older CPU generations. As the __iowriteXX_copy() family of APIs is intended for use with WC incorporate the DGH hint directly into the function. Link: https://lore.kernel.org/r/4-v3-1893cd8b9369+1925-mlx5_arm_wc_jgg@nvidia.com Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> |
||
![]() |
34e526cb7d |
arm64/head: Disable MMU at EL2 before clearing HCR_EL2.E2H
Even though the boot protocol stipulates otherwise, an exception has
been made for the EFI stub, and entering the core kernel with the MMU
enabled is permitted. This allows a substantial amount of cache
maintenance to be elided, wich is significant when fast boot times are
critical (e.g., for booting micro-VMs)
Once the initial ID map has been populated, the MMU is disabled as part
of the logic sequence that puts all system registers into a known state.
Any code that needs to execute within the window where the MMU is off is
cleaned to the PoC explicitly, which includes all of HYP text when
entering at EL2.
However, the current sequence of initializing the EL2 system registers
is not safe: HCR_EL2 is set to its nVHE initial state before SCTLR_EL2
is reprogrammed, and this means that a VHE-to-nVHE switch may occur
while the MMU is enabled. This switch causes some system registers as
well as page table descriptors to be interpreted in a different way,
potentially resulting in spurious exceptions relating to MMU
translation.
So disable the MMU explicitly first when entering in EL2 with the MMU
and caches enabled.
Fixes:
|
||
![]() |
2b504e1620 |
arm64/head: Drop unnecessary pre-disable-MMU workaround
The Falkor erratum that results in the need for an ISB before clearing the M bit in SCTLR_ELx only applies to execution at exception level x, and so the workaround is not needed when disabling the EL1 MMU while running at EL2. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Marc Zyngier <maz@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20240415075412.2347624-5-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
fbaad243b5 |
arm64: acpi: Honour firmware_signature field of FACS, if it exists
If the firmware_signature changes then OSPM should not attempt to resume from hibernate, but should instead perform a clean reboot. Set the global swsusp_hardware_signature to allow the generic code to include the value in the swsusp header on disk, and perform the appropriate check on resume. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20240412073530.2222496-3-dwmw2@infradead.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d0331aa978 |
Merge branch 'linus' into perf/core, to pick up perf/urgent fixes
Pick up perf/urgent fixes that are upstream already, but not yet in the perf/core development branch. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
76f6d58845 |
perf/bpf: Remove unneeded uses_default_overflow_handler()
Now that struct perf_event's orig_overflow_handler is gone, there's no need for the functions and macros to support looking past overflow_handler to orig_overflow_handler. This patch is solely a refactoring and results in no behavior change. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240412015019.7060-6-khuey@kylehuey.com |
||
![]() |
c7830236d5 |
arm64/ptrace fix to use the correct SVE layout based on the saved
floating point state rather than the TIF_SVE flag. The latter may be left on during syscalls even if the SVE state is discarded. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmYQPVQACgkQa9axLQDI XvF0pg//WeFmSH9qweHXZixDrD5liVSEICSZcsoz0TsLXP+AbkCaFEEUsQ7MKfz8 Cb0AVQRLxkCRlRBTVaeUpPp6GqLB5VfUgBejjCLXI1C0fL0LwgeodQXdZGRZ1nqF C0r6CZIw3IBD2IxQJ8CiIS6EQMYjldzopwVzJEkjGzFMU8ALrAQuQ66ILNyl9tp9 iCW6HkJ3caUtkBM99wxdHBd1CG12EkDiuFqlQBkzcaCOHiqjEdI1KUJtSz+n5ISr +mYFz2aXZm78SQsvACyVoZjoLvVK8xk4ppCnXrFbrsP3t4XwJ/Cr5ToHbpTrCUym I8zZyErbNT6N01Yw4OBtAMLz7em0+iKciMoTiyD0M9EFxgnJbWt6uA9pvU3oQgnL DE4+gFuMQMUq2wMb0EMezAjT6PoxHSmfjRKJv+hvSjk7xW4drzl0jCx2oK5Pi+na g4gQqkkzBgV71tIXoaVlQmbaR7Y+KpfA8KnFQQVplBG53fsHCsQuVCSNiCmx36er 2hBcEm4ntT56Zn5ZiEaGFFAS7SwlDD4JUmz947Kl4M97M9BRz6j4eERlg6lLsEzD kwRyIYitvbDkyMxKDQijfmI/sS2ni9Q+F8l0HPFpSpKfCdgSwlqcFfFMtmXcOme9 aS4UPneYMobuU/u4G+xklXVzaeCjAMWHQQ8dENND2tqFC44aVfo= =+BPs -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fix from Catalin Marinas: "arm64/ptrace fix to use the correct SVE layout based on the saved floating point state rather than the TIF_SVE flag. The latter may be left on during syscalls even if the SVE state is discarded" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/ptrace: Use saved floating point state type to determine SVE layout |
||
![]() |
b017a0cea6 |
arm64/ptrace: Use saved floating point state type to determine SVE layout
The SVE register sets have two different formats, one of which is a wrapped
version of the standard FPSIMD register set and another with actual SVE
register data. At present we check TIF_SVE to see if full SVE register
state should be provided when reading the SVE regset but if we were in a
syscall we may have saved only floating point registers even though that is
set.
Fix this and simplify the logic by checking and using the format which we
recorded when deciding if we should use FPSIMD or SVE format.
Fixes:
|
||
![]() |
b3320142f3 |
arm64: Fix early handling of FEAT_E2H0 not being implemented
Commit |
||
![]() |
4f712ee0cb |
S390:
* Changes to FPU handling came in via the main s390 pull request * Only deliver to the guest the SCLP events that userspace has requested. * More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same). * Fix selftests undefined behavior. x86: * Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec. * Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests). * Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized. * Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest. * Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit. * Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code. * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support. * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot. * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels. * Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization. * Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives. * Fix the debugregs ABI for 32-bit KVM. * Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD. * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work. * Cleanup the logic for checking if the currently loaded vCPU is in-kernel. * Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel. x86 Xen emulation: * Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same. * When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation. * Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior). * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs. RISC-V: * Support exception and interrupt handling in selftests * New self test for RISC-V architectural timer (Sstc extension) * New extension support (Ztso, Zacas) * Support userspace emulation of random number seed CSRs. ARM: * Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it * Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path * Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register * Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: * Set reserved bits as zero in CPUCFG. * Start SW timer only when vcpu is blocking. * Do not restart SW timer when it is expired. * Remove unnecessary CSR register saving during enter guest. * Misc cleanups and fixes as usual. Generic: * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else. * Factor common "select" statements in common code instead of requiring each architecture to specify it * Remove thoroughly obsolete APIs from the uapi headers. * Move architecture-dependent stuff to uapi/asm/kvm.h * Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded. * Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker. Selftests: * Reduce boilerplate especially when utilize selftest TAP infrastructure. * Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory. * Fix benign bugs where tests neglect to close() guest_memfd files. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA== =mqOV -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ... |