mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 1da177e4c3
			
		
	
	
		1da177e4c3
		
	
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			1091 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1091 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2001-2002 by David Brownell
 | |
|  * 
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2 of the License, or (at your
 | |
|  * option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | |
|  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  * for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| /* this file is part of ehci-hcd.c */
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
 | |
|  *
 | |
|  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
 | |
|  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
 | |
|  * buffers needed for the larger number).  We use one QH per endpoint, queue
 | |
|  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
 | |
|  *
 | |
|  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
 | |
|  * interrupts) needs careful scheduling.  Performance improvements can be
 | |
|  * an ongoing challenge.  That's in "ehci-sched.c".
 | |
|  * 
 | |
|  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
 | |
|  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
 | |
|  * (b) special fields in qh entries or (c) split iso entries.  TTs will
 | |
|  * buffer low/full speed data so the host collects it at high speed.
 | |
|  */
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /* fill a qtd, returning how much of the buffer we were able to queue up */
 | |
| 
 | |
| static int
 | |
| qtd_fill (struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
 | |
| 		int token, int maxpacket)
 | |
| {
 | |
| 	int	i, count;
 | |
| 	u64	addr = buf;
 | |
| 
 | |
| 	/* one buffer entry per 4K ... first might be short or unaligned */
 | |
| 	qtd->hw_buf [0] = cpu_to_le32 ((u32)addr);
 | |
| 	qtd->hw_buf_hi [0] = cpu_to_le32 ((u32)(addr >> 32));
 | |
| 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
 | |
| 	if (likely (len < count))		/* ... iff needed */
 | |
| 		count = len;
 | |
| 	else {
 | |
| 		buf +=  0x1000;
 | |
| 		buf &= ~0x0fff;
 | |
| 
 | |
| 		/* per-qtd limit: from 16K to 20K (best alignment) */
 | |
| 		for (i = 1; count < len && i < 5; i++) {
 | |
| 			addr = buf;
 | |
| 			qtd->hw_buf [i] = cpu_to_le32 ((u32)addr);
 | |
| 			qtd->hw_buf_hi [i] = cpu_to_le32 ((u32)(addr >> 32));
 | |
| 			buf += 0x1000;
 | |
| 			if ((count + 0x1000) < len)
 | |
| 				count += 0x1000;
 | |
| 			else
 | |
| 				count = len;
 | |
| 		}
 | |
| 
 | |
| 		/* short packets may only terminate transfers */
 | |
| 		if (count != len)
 | |
| 			count -= (count % maxpacket);
 | |
| 	}
 | |
| 	qtd->hw_token = cpu_to_le32 ((count << 16) | token);
 | |
| 	qtd->length = count;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline void
 | |
| qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
 | |
| {
 | |
| 	/* writes to an active overlay are unsafe */
 | |
| 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
 | |
| 
 | |
| 	qh->hw_qtd_next = QTD_NEXT (qtd->qtd_dma);
 | |
| 	qh->hw_alt_next = EHCI_LIST_END;
 | |
| 
 | |
| 	/* Except for control endpoints, we make hardware maintain data
 | |
| 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 | |
| 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 | |
| 	 * ever clear it.
 | |
| 	 */
 | |
| 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
 | |
| 		unsigned	is_out, epnum;
 | |
| 
 | |
| 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
 | |
| 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
 | |
| 		if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
 | |
| 			qh->hw_token &= ~__constant_cpu_to_le32 (QTD_TOGGLE);
 | |
| 			usb_settoggle (qh->dev, epnum, is_out, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
 | |
| 	wmb ();
 | |
| 	qh->hw_token &= __constant_cpu_to_le32 (QTD_TOGGLE | QTD_STS_PING);
 | |
| }
 | |
| 
 | |
| /* if it weren't for a common silicon quirk (writing the dummy into the qh
 | |
|  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 | |
|  * recovery (including urb dequeue) would need software changes to a QH...
 | |
|  */
 | |
| static void
 | |
| qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qtd *qtd;
 | |
| 
 | |
| 	if (list_empty (&qh->qtd_list))
 | |
| 		qtd = qh->dummy;
 | |
| 	else {
 | |
| 		qtd = list_entry (qh->qtd_list.next,
 | |
| 				struct ehci_qtd, qtd_list);
 | |
| 		/* first qtd may already be partially processed */
 | |
| 		if (cpu_to_le32 (qtd->qtd_dma) == qh->hw_current)
 | |
| 			qtd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (qtd)
 | |
| 		qh_update (ehci, qh, qtd);
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void qtd_copy_status (
 | |
| 	struct ehci_hcd *ehci,
 | |
| 	struct urb *urb,
 | |
| 	size_t length,
 | |
| 	u32 token
 | |
| )
 | |
| {
 | |
| 	/* count IN/OUT bytes, not SETUP (even short packets) */
 | |
| 	if (likely (QTD_PID (token) != 2))
 | |
| 		urb->actual_length += length - QTD_LENGTH (token);
 | |
| 
 | |
| 	/* don't modify error codes */
 | |
| 	if (unlikely (urb->status != -EINPROGRESS))
 | |
| 		return;
 | |
| 
 | |
| 	/* force cleanup after short read; not always an error */
 | |
| 	if (unlikely (IS_SHORT_READ (token)))
 | |
| 		urb->status = -EREMOTEIO;
 | |
| 
 | |
| 	/* serious "can't proceed" faults reported by the hardware */
 | |
| 	if (token & QTD_STS_HALT) {
 | |
| 		if (token & QTD_STS_BABBLE) {
 | |
| 			/* FIXME "must" disable babbling device's port too */
 | |
| 			urb->status = -EOVERFLOW;
 | |
| 		} else if (token & QTD_STS_MMF) {
 | |
| 			/* fs/ls interrupt xfer missed the complete-split */
 | |
| 			urb->status = -EPROTO;
 | |
| 		} else if (token & QTD_STS_DBE) {
 | |
| 			urb->status = (QTD_PID (token) == 1) /* IN ? */
 | |
| 				? -ENOSR  /* hc couldn't read data */
 | |
| 				: -ECOMM; /* hc couldn't write data */
 | |
| 		} else if (token & QTD_STS_XACT) {
 | |
| 			/* timeout, bad crc, wrong PID, etc; retried */
 | |
| 			if (QTD_CERR (token))
 | |
| 				urb->status = -EPIPE;
 | |
| 			else {
 | |
| 				ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n",
 | |
| 					urb->dev->devpath,
 | |
| 					usb_pipeendpoint (urb->pipe),
 | |
| 					usb_pipein (urb->pipe) ? "in" : "out");
 | |
| 				urb->status = -EPROTO;
 | |
| 			}
 | |
| 		/* CERR nonzero + no errors + halt --> stall */
 | |
| 		} else if (QTD_CERR (token))
 | |
| 			urb->status = -EPIPE;
 | |
| 		else	/* unknown */
 | |
| 			urb->status = -EPROTO;
 | |
| 
 | |
| 		ehci_vdbg (ehci,
 | |
| 			"dev%d ep%d%s qtd token %08x --> status %d\n",
 | |
| 			usb_pipedevice (urb->pipe),
 | |
| 			usb_pipeendpoint (urb->pipe),
 | |
| 			usb_pipein (urb->pipe) ? "in" : "out",
 | |
| 			token, urb->status);
 | |
| 
 | |
| 		/* if async CSPLIT failed, try cleaning out the TT buffer */
 | |
| 		if (urb->status != -EPIPE
 | |
| 				&& urb->dev->tt && !usb_pipeint (urb->pipe)
 | |
| 				&& ((token & QTD_STS_MMF) != 0
 | |
| 					|| QTD_CERR(token) == 0)
 | |
| 				&& (!ehci_is_TDI(ehci)
 | |
|                 	                || urb->dev->tt->hub !=
 | |
| 					   ehci_to_hcd(ehci)->self.root_hub)) {
 | |
| #ifdef DEBUG
 | |
| 			struct usb_device *tt = urb->dev->tt->hub;
 | |
| 			dev_dbg (&tt->dev,
 | |
| 				"clear tt buffer port %d, a%d ep%d t%08x\n",
 | |
| 				urb->dev->ttport, urb->dev->devnum,
 | |
| 				usb_pipeendpoint (urb->pipe), token);
 | |
| #endif /* DEBUG */
 | |
| 			usb_hub_tt_clear_buffer (urb->dev, urb->pipe);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| ehci_urb_done (struct ehci_hcd *ehci, struct urb *urb, struct pt_regs *regs)
 | |
| __releases(ehci->lock)
 | |
| __acquires(ehci->lock)
 | |
| {
 | |
| 	if (likely (urb->hcpriv != NULL)) {
 | |
| 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
 | |
| 
 | |
| 		/* S-mask in a QH means it's an interrupt urb */
 | |
| 		if ((qh->hw_info2 & __constant_cpu_to_le32 (0x00ff)) != 0) {
 | |
| 
 | |
| 			/* ... update hc-wide periodic stats (for usbfs) */
 | |
| 			ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
 | |
| 		}
 | |
| 		qh_put (qh);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock (&urb->lock);
 | |
| 	urb->hcpriv = NULL;
 | |
| 	switch (urb->status) {
 | |
| 	case -EINPROGRESS:		/* success */
 | |
| 		urb->status = 0;
 | |
| 	default:			/* fault */
 | |
| 		COUNT (ehci->stats.complete);
 | |
| 		break;
 | |
| 	case -EREMOTEIO:		/* fault or normal */
 | |
| 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
 | |
| 			urb->status = 0;
 | |
| 		COUNT (ehci->stats.complete);
 | |
| 		break;
 | |
| 	case -ECONNRESET:		/* canceled */
 | |
| 	case -ENOENT:
 | |
| 		COUNT (ehci->stats.unlink);
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock (&urb->lock);
 | |
| 
 | |
| #ifdef EHCI_URB_TRACE
 | |
| 	ehci_dbg (ehci,
 | |
| 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
 | |
| 		__FUNCTION__, urb->dev->devpath, urb,
 | |
| 		usb_pipeendpoint (urb->pipe),
 | |
| 		usb_pipein (urb->pipe) ? "in" : "out",
 | |
| 		urb->status,
 | |
| 		urb->actual_length, urb->transfer_buffer_length);
 | |
| #endif
 | |
| 
 | |
| 	/* complete() can reenter this HCD */
 | |
| 	spin_unlock (&ehci->lock);
 | |
| 	usb_hcd_giveback_urb (ehci_to_hcd(ehci), urb, regs);
 | |
| 	spin_lock (&ehci->lock);
 | |
| }
 | |
| 
 | |
| static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| 
 | |
| static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| 
 | |
| /*
 | |
|  * Process and free completed qtds for a qh, returning URBs to drivers.
 | |
|  * Chases up to qh->hw_current.  Returns number of completions called,
 | |
|  * indicating how much "real" work we did.
 | |
|  */
 | |
| #define HALT_BIT __constant_cpu_to_le32(QTD_STS_HALT)
 | |
| static unsigned
 | |
| qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ehci_qtd		*last = NULL, *end = qh->dummy;
 | |
| 	struct list_head	*entry, *tmp;
 | |
| 	int			stopped;
 | |
| 	unsigned		count = 0;
 | |
| 	int			do_status = 0;
 | |
| 	u8			state;
 | |
| 
 | |
| 	if (unlikely (list_empty (&qh->qtd_list)))
 | |
| 		return count;
 | |
| 
 | |
| 	/* completions (or tasks on other cpus) must never clobber HALT
 | |
| 	 * till we've gone through and cleaned everything up, even when
 | |
| 	 * they add urbs to this qh's queue or mark them for unlinking.
 | |
| 	 *
 | |
| 	 * NOTE:  unlinking expects to be done in queue order.
 | |
| 	 */
 | |
| 	state = qh->qh_state;
 | |
| 	qh->qh_state = QH_STATE_COMPLETING;
 | |
| 	stopped = (state == QH_STATE_IDLE);
 | |
| 
 | |
| 	/* remove de-activated QTDs from front of queue.
 | |
| 	 * after faults (including short reads), cleanup this urb
 | |
| 	 * then let the queue advance.
 | |
| 	 * if queue is stopped, handles unlinks.
 | |
| 	 */
 | |
| 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 		struct urb	*urb;
 | |
| 		u32		token = 0;
 | |
| 
 | |
| 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 | |
| 		urb = qtd->urb;
 | |
| 
 | |
| 		/* clean up any state from previous QTD ...*/
 | |
| 		if (last) {
 | |
| 			if (likely (last->urb != urb)) {
 | |
| 				ehci_urb_done (ehci, last->urb, regs);
 | |
| 				count++;
 | |
| 			}
 | |
| 			ehci_qtd_free (ehci, last);
 | |
| 			last = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* ignore urbs submitted during completions we reported */
 | |
| 		if (qtd == end)
 | |
| 			break;
 | |
| 
 | |
| 		/* hardware copies qtd out of qh overlay */
 | |
| 		rmb ();
 | |
| 		token = le32_to_cpu (qtd->hw_token);
 | |
| 
 | |
| 		/* always clean up qtds the hc de-activated */
 | |
| 		if ((token & QTD_STS_ACTIVE) == 0) {
 | |
| 
 | |
| 			if ((token & QTD_STS_HALT) != 0) {
 | |
| 				stopped = 1;
 | |
| 
 | |
| 			/* magic dummy for some short reads; qh won't advance.
 | |
| 			 * that silicon quirk can kick in with this dummy too.
 | |
| 			 */
 | |
| 			} else if (IS_SHORT_READ (token)
 | |
| 					&& !(qtd->hw_alt_next & EHCI_LIST_END)) {
 | |
| 				stopped = 1;
 | |
| 				goto halt;
 | |
| 			}
 | |
| 
 | |
| 		/* stop scanning when we reach qtds the hc is using */
 | |
| 		} else if (likely (!stopped
 | |
| 				&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) {
 | |
| 			break;
 | |
| 
 | |
| 		} else {
 | |
| 			stopped = 1;
 | |
| 
 | |
| 			if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)))
 | |
| 				urb->status = -ESHUTDOWN;
 | |
| 
 | |
| 			/* ignore active urbs unless some previous qtd
 | |
| 			 * for the urb faulted (including short read) or
 | |
| 			 * its urb was canceled.  we may patch qh or qtds.
 | |
| 			 */
 | |
| 			if (likely (urb->status == -EINPROGRESS))
 | |
| 				continue;
 | |
| 			
 | |
| 			/* issue status after short control reads */
 | |
| 			if (unlikely (do_status != 0)
 | |
| 					&& QTD_PID (token) == 0 /* OUT */) {
 | |
| 				do_status = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* token in overlay may be most current */
 | |
| 			if (state == QH_STATE_IDLE
 | |
| 					&& cpu_to_le32 (qtd->qtd_dma)
 | |
| 						== qh->hw_current)
 | |
| 				token = le32_to_cpu (qh->hw_token);
 | |
| 
 | |
| 			/* force halt for unlinked or blocked qh, so we'll
 | |
| 			 * patch the qh later and so that completions can't
 | |
| 			 * activate it while we "know" it's stopped.
 | |
| 			 */
 | |
| 			if ((HALT_BIT & qh->hw_token) == 0) {
 | |
| halt:
 | |
| 				qh->hw_token |= HALT_BIT;
 | |
| 				wmb ();
 | |
| 			}
 | |
| 		}
 | |
|  
 | |
| 		/* remove it from the queue */
 | |
| 		spin_lock (&urb->lock);
 | |
| 		qtd_copy_status (ehci, urb, qtd->length, token);
 | |
| 		do_status = (urb->status == -EREMOTEIO)
 | |
| 				&& usb_pipecontrol (urb->pipe);
 | |
| 		spin_unlock (&urb->lock);
 | |
| 
 | |
| 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
 | |
| 			last = list_entry (qtd->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			last->hw_next = qtd->hw_next;
 | |
| 		}
 | |
| 		list_del (&qtd->qtd_list);
 | |
| 		last = qtd;
 | |
| 	}
 | |
| 
 | |
| 	/* last urb's completion might still need calling */
 | |
| 	if (likely (last != NULL)) {
 | |
| 		ehci_urb_done (ehci, last->urb, regs);
 | |
| 		count++;
 | |
| 		ehci_qtd_free (ehci, last);
 | |
| 	}
 | |
| 
 | |
| 	/* restore original state; caller must unlink or relink */
 | |
| 	qh->qh_state = state;
 | |
| 
 | |
| 	/* be sure the hardware's done with the qh before refreshing
 | |
| 	 * it after fault cleanup, or recovering from silicon wrongly
 | |
| 	 * overlaying the dummy qtd (which reduces DMA chatter).
 | |
| 	 */
 | |
| 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
 | |
| 		switch (state) {
 | |
| 		case QH_STATE_IDLE:
 | |
| 			qh_refresh(ehci, qh);
 | |
| 			break;
 | |
| 		case QH_STATE_LINKED:
 | |
| 			/* should be rare for periodic transfers,
 | |
| 			 * except maybe high bandwidth ...
 | |
| 			 */
 | |
| 			if (qh->period) {
 | |
| 				intr_deschedule (ehci, qh);
 | |
| 				(void) qh_schedule (ehci, qh);
 | |
| 			} else
 | |
| 				unlink_async (ehci, qh);
 | |
| 			break;
 | |
| 		/* otherwise, unlink already started */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
 | |
| #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
 | |
| // ... and packet size, for any kind of endpoint descriptor
 | |
| #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
 | |
| 
 | |
| /*
 | |
|  * reverse of qh_urb_transaction:  free a list of TDs.
 | |
|  * used for cleanup after errors, before HC sees an URB's TDs.
 | |
|  */
 | |
| static void qtd_list_free (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list
 | |
| ) {
 | |
| 	struct list_head	*entry, *temp;
 | |
| 
 | |
| 	list_for_each_safe (entry, temp, qtd_list) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 
 | |
| 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 | |
| 		list_del (&qtd->qtd_list);
 | |
| 		ehci_qtd_free (ehci, qtd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * create a list of filled qtds for this URB; won't link into qh.
 | |
|  */
 | |
| static struct list_head *
 | |
| qh_urb_transaction (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*head,
 | |
| 	int			flags
 | |
| ) {
 | |
| 	struct ehci_qtd		*qtd, *qtd_prev;
 | |
| 	dma_addr_t		buf;
 | |
| 	int			len, maxpacket;
 | |
| 	int			is_input;
 | |
| 	u32			token;
 | |
| 
 | |
| 	/*
 | |
| 	 * URBs map to sequences of QTDs:  one logical transaction
 | |
| 	 */
 | |
| 	qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 	if (unlikely (!qtd))
 | |
| 		return NULL;
 | |
| 	list_add_tail (&qtd->qtd_list, head);
 | |
| 	qtd->urb = urb;
 | |
| 
 | |
| 	token = QTD_STS_ACTIVE;
 | |
| 	token |= (EHCI_TUNE_CERR << 10);
 | |
| 	/* for split transactions, SplitXState initialized to zero */
 | |
| 
 | |
| 	len = urb->transfer_buffer_length;
 | |
| 	is_input = usb_pipein (urb->pipe);
 | |
| 	if (usb_pipecontrol (urb->pipe)) {
 | |
| 		/* SETUP pid */
 | |
| 		qtd_fill (qtd, urb->setup_dma, sizeof (struct usb_ctrlrequest),
 | |
| 			token | (2 /* "setup" */ << 8), 8);
 | |
| 
 | |
| 		/* ... and always at least one more pid */
 | |
| 		token ^= QTD_TOGGLE;
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 		if (unlikely (!qtd))
 | |
| 			goto cleanup;
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
 | |
| 		list_add_tail (&qtd->qtd_list, head);
 | |
| 	} 
 | |
| 
 | |
| 	/*
 | |
| 	 * data transfer stage:  buffer setup
 | |
| 	 */
 | |
| 	if (likely (len > 0))
 | |
| 		buf = urb->transfer_dma;
 | |
| 	else
 | |
| 		buf = 0;
 | |
| 
 | |
| 	/* for zero length DATA stages, STATUS is always IN */
 | |
| 	if (!buf || is_input)
 | |
| 		token |= (1 /* "in" */ << 8);
 | |
| 	/* else it's already initted to "out" pid (0 << 8) */
 | |
| 
 | |
| 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
 | |
| 
 | |
| 	/*
 | |
| 	 * buffer gets wrapped in one or more qtds;
 | |
| 	 * last one may be "short" (including zero len)
 | |
| 	 * and may serve as a control status ack
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		int this_qtd_len;
 | |
| 
 | |
| 		this_qtd_len = qtd_fill (qtd, buf, len, token, maxpacket);
 | |
| 		len -= this_qtd_len;
 | |
| 		buf += this_qtd_len;
 | |
| 		if (is_input)
 | |
| 			qtd->hw_alt_next = ehci->async->hw_alt_next;
 | |
| 
 | |
| 		/* qh makes control packets use qtd toggle; maybe switch it */
 | |
| 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
 | |
| 			token ^= QTD_TOGGLE;
 | |
| 
 | |
| 		if (likely (len <= 0))
 | |
| 			break;
 | |
| 
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 		if (unlikely (!qtd))
 | |
| 			goto cleanup;
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
 | |
| 		list_add_tail (&qtd->qtd_list, head);
 | |
| 	}
 | |
| 
 | |
| 	/* unless the bulk/interrupt caller wants a chance to clean
 | |
| 	 * up after short reads, hc should advance qh past this urb
 | |
| 	 */
 | |
| 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
 | |
| 				|| usb_pipecontrol (urb->pipe)))
 | |
| 		qtd->hw_alt_next = EHCI_LIST_END;
 | |
| 
 | |
| 	/*
 | |
| 	 * control requests may need a terminating data "status" ack;
 | |
| 	 * bulk ones may need a terminating short packet (zero length).
 | |
| 	 */
 | |
| 	if (likely (buf != 0)) {
 | |
| 		int	one_more = 0;
 | |
| 
 | |
| 		if (usb_pipecontrol (urb->pipe)) {
 | |
| 			one_more = 1;
 | |
| 			token ^= 0x0100;	/* "in" <--> "out"  */
 | |
| 			token |= QTD_TOGGLE;	/* force DATA1 */
 | |
| 		} else if (usb_pipebulk (urb->pipe)
 | |
| 				&& (urb->transfer_flags & URB_ZERO_PACKET)
 | |
| 				&& !(urb->transfer_buffer_length % maxpacket)) {
 | |
| 			one_more = 1;
 | |
| 		}
 | |
| 		if (one_more) {
 | |
| 			qtd_prev = qtd;
 | |
| 			qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 			if (unlikely (!qtd))
 | |
| 				goto cleanup;
 | |
| 			qtd->urb = urb;
 | |
| 			qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma);
 | |
| 			list_add_tail (&qtd->qtd_list, head);
 | |
| 
 | |
| 			/* never any data in such packets */
 | |
| 			qtd_fill (qtd, 0, 0, token, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* by default, enable interrupt on urb completion */
 | |
| 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
 | |
| 		qtd->hw_token |= __constant_cpu_to_le32 (QTD_IOC);
 | |
| 	return head;
 | |
| 
 | |
| cleanup:
 | |
| 	qtd_list_free (ehci, urb, head);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| // Would be best to create all qh's from config descriptors,
 | |
| // when each interface/altsetting is established.  Unlink
 | |
| // any previous qh and cancel its urbs first; endpoints are
 | |
| // implicitly reset then (data toggle too).
 | |
| // That'd mean updating how usbcore talks to HCDs. (2.7?)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Each QH holds a qtd list; a QH is used for everything except iso.
 | |
|  *
 | |
|  * For interrupt urbs, the scheduler must set the microframe scheduling
 | |
|  * mask(s) each time the QH gets scheduled.  For highspeed, that's
 | |
|  * just one microframe in the s-mask.  For split interrupt transactions
 | |
|  * there are additional complications: c-mask, maybe FSTNs.
 | |
|  */
 | |
| static struct ehci_qh *
 | |
| qh_make (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	int			flags
 | |
| ) {
 | |
| 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
 | |
| 	u32			info1 = 0, info2 = 0;
 | |
| 	int			is_input, type;
 | |
| 	int			maxp = 0;
 | |
| 
 | |
| 	if (!qh)
 | |
| 		return qh;
 | |
| 
 | |
| 	/*
 | |
| 	 * init endpoint/device data for this QH
 | |
| 	 */
 | |
| 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
 | |
| 	info1 |= usb_pipedevice (urb->pipe) << 0;
 | |
| 
 | |
| 	is_input = usb_pipein (urb->pipe);
 | |
| 	type = usb_pipetype (urb->pipe);
 | |
| 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
 | |
| 
 | |
| 	/* Compute interrupt scheduling parameters just once, and save.
 | |
| 	 * - allowing for high bandwidth, how many nsec/uframe are used?
 | |
| 	 * - split transactions need a second CSPLIT uframe; same question
 | |
| 	 * - splits also need a schedule gap (for full/low speed I/O)
 | |
| 	 * - qh has a polling interval
 | |
| 	 *
 | |
| 	 * For control/bulk requests, the HC or TT handles these.
 | |
| 	 */
 | |
| 	if (type == PIPE_INTERRUPT) {
 | |
| 		qh->usecs = usb_calc_bus_time (USB_SPEED_HIGH, is_input, 0,
 | |
| 				hb_mult (maxp) * max_packet (maxp));
 | |
| 		qh->start = NO_FRAME;
 | |
| 
 | |
| 		if (urb->dev->speed == USB_SPEED_HIGH) {
 | |
| 			qh->c_usecs = 0;
 | |
| 			qh->gap_uf = 0;
 | |
| 
 | |
| 			qh->period = urb->interval >> 3;
 | |
| 			if (qh->period == 0 && urb->interval != 1) {
 | |
| 				/* NOTE interval 2 or 4 uframes could work.
 | |
| 				 * But interval 1 scheduling is simpler, and
 | |
| 				 * includes high bandwidth.
 | |
| 				 */
 | |
| 				dbg ("intr period %d uframes, NYET!",
 | |
| 						urb->interval);
 | |
| 				goto done;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* gap is f(FS/LS transfer times) */
 | |
| 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
 | |
| 					is_input, 0, maxp) / (125 * 1000);
 | |
| 
 | |
| 			/* FIXME this just approximates SPLIT/CSPLIT times */
 | |
| 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
 | |
| 				qh->c_usecs = qh->usecs + HS_USECS (0);
 | |
| 				qh->usecs = HS_USECS (1);
 | |
| 			} else {		// SPLIT+DATA, gap, CSPLIT
 | |
| 				qh->usecs += HS_USECS (1);
 | |
| 				qh->c_usecs = HS_USECS (0);
 | |
| 			}
 | |
| 
 | |
| 			qh->period = urb->interval;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* support for tt scheduling, and access to toggles */
 | |
| 	qh->dev = usb_get_dev (urb->dev);
 | |
| 
 | |
| 	/* using TT? */
 | |
| 	switch (urb->dev->speed) {
 | |
| 	case USB_SPEED_LOW:
 | |
| 		info1 |= (1 << 12);	/* EPS "low" */
 | |
| 		/* FALL THROUGH */
 | |
| 
 | |
| 	case USB_SPEED_FULL:
 | |
| 		/* EPS 0 means "full" */
 | |
| 		if (type != PIPE_INTERRUPT)
 | |
| 			info1 |= (EHCI_TUNE_RL_TT << 28);
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= (1 << 27);	/* for TT */
 | |
| 			info1 |= 1 << 14;	/* toggle from qtd */
 | |
| 		}
 | |
| 		info1 |= maxp << 16;
 | |
| 
 | |
| 		info2 |= (EHCI_TUNE_MULT_TT << 30);
 | |
| 		info2 |= urb->dev->ttport << 23;
 | |
| 
 | |
| 		/* set the address of the TT; for TDI's integrated
 | |
| 		 * root hub tt, leave it zeroed.
 | |
| 		 */
 | |
| 		if (!ehci_is_TDI(ehci)
 | |
| 				|| urb->dev->tt->hub !=
 | |
| 					ehci_to_hcd(ehci)->self.root_hub)
 | |
| 			info2 |= urb->dev->tt->hub->devnum << 16;
 | |
| 
 | |
| 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case USB_SPEED_HIGH:		/* no TT involved */
 | |
| 		info1 |= (2 << 12);	/* EPS "high" */
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
 | |
| 			info1 |= 1 << 14;	/* toggle from qtd */
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else if (type == PIPE_BULK) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else {		/* PIPE_INTERRUPT */
 | |
| 			info1 |= max_packet (maxp) << 16;
 | |
| 			info2 |= hb_mult (maxp) << 30;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
|  		dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed);
 | |
| done:
 | |
| 		qh_put (qh);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
 | |
| 
 | |
| 	/* init as live, toggle clear, advance to dummy */
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	qh->hw_info1 = cpu_to_le32 (info1);
 | |
| 	qh->hw_info2 = cpu_to_le32 (info2);
 | |
| 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
 | |
| 	qh_refresh (ehci, qh);
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /* move qh (and its qtds) onto async queue; maybe enable queue.  */
 | |
| 
 | |
| static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	__le32		dma = QH_NEXT (qh->qh_dma);
 | |
| 	struct ehci_qh	*head;
 | |
| 
 | |
| 	/* (re)start the async schedule? */
 | |
| 	head = ehci->async;
 | |
| 	timer_action_done (ehci, TIMER_ASYNC_OFF);
 | |
| 	if (!head->qh_next.qh) {
 | |
| 		u32	cmd = readl (&ehci->regs->command);
 | |
| 
 | |
| 		if (!(cmd & CMD_ASE)) {
 | |
| 			/* in case a clear of CMD_ASE didn't take yet */
 | |
| 			(void) handshake (&ehci->regs->status, STS_ASS, 0, 150);
 | |
| 			cmd |= CMD_ASE | CMD_RUN;
 | |
| 			writel (cmd, &ehci->regs->command);
 | |
| 			ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
 | |
| 			/* posted write need not be known to HC yet ... */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
 | |
| 	if (qh->qh_state == QH_STATE_IDLE)
 | |
| 		qh_refresh (ehci, qh);
 | |
| 
 | |
| 	/* splice right after start */
 | |
| 	qh->qh_next = head->qh_next;
 | |
| 	qh->hw_next = head->hw_next;
 | |
| 	wmb ();
 | |
| 
 | |
| 	head->qh_next.qh = qh;
 | |
| 	head->hw_next = dma;
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_LINKED;
 | |
| 	/* qtd completions reported later by interrupt */
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| #define	QH_ADDR_MASK	__constant_cpu_to_le32(0x7f)
 | |
| 
 | |
| /*
 | |
|  * For control/bulk/interrupt, return QH with these TDs appended.
 | |
|  * Allocates and initializes the QH if necessary.
 | |
|  * Returns null if it can't allocate a QH it needs to.
 | |
|  * If the QH has TDs (urbs) already, that's great.
 | |
|  */
 | |
| static struct ehci_qh *qh_append_tds (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list,
 | |
| 	int			epnum,
 | |
| 	void			**ptr
 | |
| )
 | |
| {
 | |
| 	struct ehci_qh		*qh = NULL;
 | |
| 
 | |
| 	qh = (struct ehci_qh *) *ptr;
 | |
| 	if (unlikely (qh == NULL)) {
 | |
| 		/* can't sleep here, we have ehci->lock... */
 | |
| 		qh = qh_make (ehci, urb, GFP_ATOMIC);
 | |
| 		*ptr = qh;
 | |
| 	}
 | |
| 	if (likely (qh != NULL)) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 
 | |
| 		if (unlikely (list_empty (qtd_list)))
 | |
| 			qtd = NULL;
 | |
| 		else
 | |
| 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
 | |
| 					qtd_list);
 | |
| 
 | |
| 		/* control qh may need patching ... */
 | |
| 		if (unlikely (epnum == 0)) {
 | |
| 
 | |
|                         /* usb_reset_device() briefly reverts to address 0 */
 | |
|                         if (usb_pipedevice (urb->pipe) == 0)
 | |
|                                 qh->hw_info1 &= ~QH_ADDR_MASK;
 | |
| 		}
 | |
| 
 | |
| 		/* just one way to queue requests: swap with the dummy qtd.
 | |
| 		 * only hc or qh_refresh() ever modify the overlay.
 | |
| 		 */
 | |
| 		if (likely (qtd != NULL)) {
 | |
| 			struct ehci_qtd		*dummy;
 | |
| 			dma_addr_t		dma;
 | |
| 			__le32			token;
 | |
| 
 | |
| 			/* to avoid racing the HC, use the dummy td instead of
 | |
| 			 * the first td of our list (becomes new dummy).  both
 | |
| 			 * tds stay deactivated until we're done, when the
 | |
| 			 * HC is allowed to fetch the old dummy (4.10.2).
 | |
| 			 */
 | |
| 			token = qtd->hw_token;
 | |
| 			qtd->hw_token = HALT_BIT;
 | |
| 			wmb ();
 | |
| 			dummy = qh->dummy;
 | |
| 
 | |
| 			dma = dummy->qtd_dma;
 | |
| 			*dummy = *qtd;
 | |
| 			dummy->qtd_dma = dma;
 | |
| 
 | |
| 			list_del (&qtd->qtd_list);
 | |
| 			list_add (&dummy->qtd_list, qtd_list);
 | |
| 			__list_splice (qtd_list, qh->qtd_list.prev);
 | |
| 
 | |
| 			ehci_qtd_init (qtd, qtd->qtd_dma);
 | |
| 			qh->dummy = qtd;
 | |
| 
 | |
| 			/* hc must see the new dummy at list end */
 | |
| 			dma = qtd->qtd_dma;
 | |
| 			qtd = list_entry (qh->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			qtd->hw_next = QTD_NEXT (dma);
 | |
| 
 | |
| 			/* let the hc process these next qtds */
 | |
| 			wmb ();
 | |
| 			dummy->hw_token = token;
 | |
| 
 | |
| 			urb->hcpriv = qh_get (qh);
 | |
| 		}
 | |
| 	}
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static int
 | |
| submit_async (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct usb_host_endpoint *ep,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list,
 | |
| 	int			mem_flags
 | |
| ) {
 | |
| 	struct ehci_qtd		*qtd;
 | |
| 	int			epnum;
 | |
| 	unsigned long		flags;
 | |
| 	struct ehci_qh		*qh = NULL;
 | |
| 
 | |
| 	qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list);
 | |
| 	epnum = ep->desc.bEndpointAddress;
 | |
| 
 | |
| #ifdef EHCI_URB_TRACE
 | |
| 	ehci_dbg (ehci,
 | |
| 		"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
 | |
| 		__FUNCTION__, urb->dev->devpath, urb,
 | |
| 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
 | |
| 		urb->transfer_buffer_length,
 | |
| 		qtd, ep->hcpriv);
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave (&ehci->lock, flags);
 | |
| 	qh = qh_append_tds (ehci, urb, qtd_list, epnum, &ep->hcpriv);
 | |
| 
 | |
| 	/* Control/bulk operations through TTs don't need scheduling,
 | |
| 	 * the HC and TT handle it when the TT has a buffer ready.
 | |
| 	 */
 | |
| 	if (likely (qh != NULL)) {
 | |
| 		if (likely (qh->qh_state == QH_STATE_IDLE))
 | |
| 			qh_link_async (ehci, qh_get (qh));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore (&ehci->lock, flags);
 | |
| 	if (unlikely (qh == NULL)) {
 | |
| 		qtd_list_free (ehci, urb, qtd_list);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /* the async qh for the qtds being reclaimed are now unlinked from the HC */
 | |
| 
 | |
| static void end_unlink_async (struct ehci_hcd *ehci, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ehci_qh		*qh = ehci->reclaim;
 | |
| 	struct ehci_qh		*next;
 | |
| 
 | |
| 	timer_action_done (ehci, TIMER_IAA_WATCHDOG);
 | |
| 
 | |
| 	// qh->hw_next = cpu_to_le32 (qh->qh_dma);
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	qh->qh_next.qh = NULL;
 | |
| 	qh_put (qh);			// refcount from reclaim 
 | |
| 
 | |
| 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
 | |
| 	next = qh->reclaim;
 | |
| 	ehci->reclaim = next;
 | |
| 	ehci->reclaim_ready = 0;
 | |
| 	qh->reclaim = NULL;
 | |
| 
 | |
| 	qh_completions (ehci, qh, regs);
 | |
| 
 | |
| 	if (!list_empty (&qh->qtd_list)
 | |
| 			&& HC_IS_RUNNING (ehci_to_hcd(ehci)->state))
 | |
| 		qh_link_async (ehci, qh);
 | |
| 	else {
 | |
| 		qh_put (qh);		// refcount from async list
 | |
| 
 | |
| 		/* it's not free to turn the async schedule on/off; leave it
 | |
| 		 * active but idle for a while once it empties.
 | |
| 		 */
 | |
| 		if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
 | |
| 				&& ehci->async->qh_next.qh == NULL)
 | |
| 			timer_action (ehci, TIMER_ASYNC_OFF);
 | |
| 	}
 | |
| 
 | |
| 	if (next) {
 | |
| 		ehci->reclaim = NULL;
 | |
| 		start_unlink_async (ehci, next);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* makes sure the async qh will become idle */
 | |
| /* caller must own ehci->lock */
 | |
| 
 | |
| static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	int		cmd = readl (&ehci->regs->command);
 | |
| 	struct ehci_qh	*prev;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	assert_spin_locked(&ehci->lock);
 | |
| 	if (ehci->reclaim
 | |
| 			|| (qh->qh_state != QH_STATE_LINKED
 | |
| 				&& qh->qh_state != QH_STATE_UNLINK_WAIT)
 | |
| 			)
 | |
| 		BUG ();
 | |
| #endif
 | |
| 
 | |
| 	/* stop async schedule right now? */
 | |
| 	if (unlikely (qh == ehci->async)) {
 | |
| 		/* can't get here without STS_ASS set */
 | |
| 		if (ehci_to_hcd(ehci)->state != HC_STATE_HALT) {
 | |
| 			writel (cmd & ~CMD_ASE, &ehci->regs->command);
 | |
| 			wmb ();
 | |
| 			// handshake later, if we need to
 | |
| 		}
 | |
| 		timer_action_done (ehci, TIMER_ASYNC_OFF);
 | |
| 		return;
 | |
| 	} 
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_UNLINK;
 | |
| 	ehci->reclaim = qh = qh_get (qh);
 | |
| 
 | |
| 	prev = ehci->async;
 | |
| 	while (prev->qh_next.qh != qh)
 | |
| 		prev = prev->qh_next.qh;
 | |
| 
 | |
| 	prev->hw_next = qh->hw_next;
 | |
| 	prev->qh_next = qh->qh_next;
 | |
| 	wmb ();
 | |
| 
 | |
| 	if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) {
 | |
| 		/* if (unlikely (qh->reclaim != 0))
 | |
| 		 * 	this will recurse, probably not much
 | |
| 		 */
 | |
| 		end_unlink_async (ehci, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ehci->reclaim_ready = 0;
 | |
| 	cmd |= CMD_IAAD;
 | |
| 	writel (cmd, &ehci->regs->command);
 | |
| 	(void) readl (&ehci->regs->command);
 | |
| 	timer_action (ehci, TIMER_IAA_WATCHDOG);
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
| scan_async (struct ehci_hcd *ehci, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ehci_qh		*qh;
 | |
| 	enum ehci_timer_action	action = TIMER_IO_WATCHDOG;
 | |
| 
 | |
| 	if (!++(ehci->stamp))
 | |
| 		ehci->stamp++;
 | |
| 	timer_action_done (ehci, TIMER_ASYNC_SHRINK);
 | |
| rescan:
 | |
| 	qh = ehci->async->qh_next.qh;
 | |
| 	if (likely (qh != NULL)) {
 | |
| 		do {
 | |
| 			/* clean any finished work for this qh */
 | |
| 			if (!list_empty (&qh->qtd_list)
 | |
| 					&& qh->stamp != ehci->stamp) {
 | |
| 				int temp;
 | |
| 
 | |
| 				/* unlinks could happen here; completion
 | |
| 				 * reporting drops the lock.  rescan using
 | |
| 				 * the latest schedule, but don't rescan
 | |
| 				 * qhs we already finished (no looping).
 | |
| 				 */
 | |
| 				qh = qh_get (qh);
 | |
| 				qh->stamp = ehci->stamp;
 | |
| 				temp = qh_completions (ehci, qh, regs);
 | |
| 				qh_put (qh);
 | |
| 				if (temp != 0) {
 | |
| 					goto rescan;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* unlink idle entries, reducing HC PCI usage as well
 | |
| 			 * as HCD schedule-scanning costs.  delay for any qh
 | |
| 			 * we just scanned, there's a not-unusual case that it
 | |
| 			 * doesn't stay idle for long.
 | |
| 			 * (plus, avoids some kind of re-activation race.)
 | |
| 			 */
 | |
| 			if (list_empty (&qh->qtd_list)) {
 | |
| 				if (qh->stamp == ehci->stamp)
 | |
| 					action = TIMER_ASYNC_SHRINK;
 | |
| 				else if (!ehci->reclaim
 | |
| 					    && qh->qh_state == QH_STATE_LINKED)
 | |
| 					start_unlink_async (ehci, qh);
 | |
| 			}
 | |
| 
 | |
| 			qh = qh->qh_next.qh;
 | |
| 		} while (qh);
 | |
| 	}
 | |
| 	if (action == TIMER_ASYNC_SHRINK)
 | |
| 		timer_action (ehci, TIMER_ASYNC_SHRINK);
 | |
| }
 |