mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 1e74f3000b
			
		
	
	
		1e74f3000b
		
	
	
	
	
		
			
			Impact: fix DMA buffer allocation coherency bug in certain configs This patch fixes swiotlb to use dev->coherent_dma_mask in swiotlb_alloc_coherent(). coherent_dma_mask is a subset of dma_mask (equal to it most of the time), enumerating the address range that a given device is able to DMA to/from in a cache-coherent way. But currently, swiotlb uses dev->dma_mask in alloc_coherent() implicitly via address_needs_mapping(), but alloc_coherent is really supposed to use coherent_dma_mask. This bug could break drivers that uses smaller coherent_dma_mask than dma_mask (though the current code works for the majority that use the same mask for coherent_dma_mask and dma_mask). Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: tony.luck@intel.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
			
				
	
	
		
			855 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			855 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Dynamic DMA mapping support.
 | |
|  *
 | |
|  * This implementation is a fallback for platforms that do not support
 | |
|  * I/O TLBs (aka DMA address translation hardware).
 | |
|  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
 | |
|  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
 | |
|  * Copyright (C) 2000, 2003 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *
 | |
|  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 | |
|  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 | |
|  *			unnecessary i-cache flushing.
 | |
|  * 04/07/.. ak		Better overflow handling. Assorted fixes.
 | |
|  * 05/09/10 linville	Add support for syncing ranges, support syncing for
 | |
|  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 | |
|  */
 | |
| 
 | |
| #include <linux/cache.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/scatterlist.h>
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/iommu-helper.h>
 | |
| 
 | |
| #define OFFSET(val,align) ((unsigned long)	\
 | |
| 	                   ( (val) & ( (align) - 1)))
 | |
| 
 | |
| #define SG_ENT_VIRT_ADDRESS(sg)	(sg_virt((sg)))
 | |
| #define SG_ENT_PHYS_ADDRESS(sg)	virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
 | |
| 
 | |
| /*
 | |
|  * Maximum allowable number of contiguous slabs to map,
 | |
|  * must be a power of 2.  What is the appropriate value ?
 | |
|  * The complexity of {map,unmap}_single is linearly dependent on this value.
 | |
|  */
 | |
| #define IO_TLB_SEGSIZE	128
 | |
| 
 | |
| /*
 | |
|  * log of the size of each IO TLB slab.  The number of slabs is command line
 | |
|  * controllable.
 | |
|  */
 | |
| #define IO_TLB_SHIFT 11
 | |
| 
 | |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * Minimum IO TLB size to bother booting with.  Systems with mainly
 | |
|  * 64bit capable cards will only lightly use the swiotlb.  If we can't
 | |
|  * allocate a contiguous 1MB, we're probably in trouble anyway.
 | |
|  */
 | |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Enumeration for sync targets
 | |
|  */
 | |
| enum dma_sync_target {
 | |
| 	SYNC_FOR_CPU = 0,
 | |
| 	SYNC_FOR_DEVICE = 1,
 | |
| };
 | |
| 
 | |
| int swiotlb_force;
 | |
| 
 | |
| /*
 | |
|  * Used to do a quick range check in swiotlb_unmap_single and
 | |
|  * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
 | |
|  * API.
 | |
|  */
 | |
| static char *io_tlb_start, *io_tlb_end;
 | |
| 
 | |
| /*
 | |
|  * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
 | |
|  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 | |
|  */
 | |
| static unsigned long io_tlb_nslabs;
 | |
| 
 | |
| /*
 | |
|  * When the IOMMU overflows we return a fallback buffer. This sets the size.
 | |
|  */
 | |
| static unsigned long io_tlb_overflow = 32*1024;
 | |
| 
 | |
| void *io_tlb_overflow_buffer;
 | |
| 
 | |
| /*
 | |
|  * This is a free list describing the number of free entries available from
 | |
|  * each index
 | |
|  */
 | |
| static unsigned int *io_tlb_list;
 | |
| static unsigned int io_tlb_index;
 | |
| 
 | |
| /*
 | |
|  * We need to save away the original address corresponding to a mapped entry
 | |
|  * for the sync operations.
 | |
|  */
 | |
| static unsigned char **io_tlb_orig_addr;
 | |
| 
 | |
| /*
 | |
|  * Protect the above data structures in the map and unmap calls
 | |
|  */
 | |
| static DEFINE_SPINLOCK(io_tlb_lock);
 | |
| 
 | |
| static int __init
 | |
| setup_io_tlb_npages(char *str)
 | |
| {
 | |
| 	if (isdigit(*str)) {
 | |
| 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
 | |
| 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 | |
| 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | |
| 	}
 | |
| 	if (*str == ',')
 | |
| 		++str;
 | |
| 	if (!strcmp(str, "force"))
 | |
| 		swiotlb_force = 1;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("swiotlb=", setup_io_tlb_npages);
 | |
| /* make io_tlb_overflow tunable too? */
 | |
| 
 | |
| /*
 | |
|  * Statically reserve bounce buffer space and initialize bounce buffer data
 | |
|  * structures for the software IO TLB used to implement the DMA API.
 | |
|  */
 | |
| void __init
 | |
| swiotlb_init_with_default_size(size_t default_size)
 | |
| {
 | |
| 	unsigned long i, bytes;
 | |
| 
 | |
| 	if (!io_tlb_nslabs) {
 | |
| 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 | |
| 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | |
| 	}
 | |
| 
 | |
| 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get IO TLB memory from the low pages
 | |
| 	 */
 | |
| 	io_tlb_start = alloc_bootmem_low_pages(bytes);
 | |
| 	if (!io_tlb_start)
 | |
| 		panic("Cannot allocate SWIOTLB buffer");
 | |
| 	io_tlb_end = io_tlb_start + bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize the free list array.  This array is used
 | |
| 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 | |
| 	 * between io_tlb_start and io_tlb_end.
 | |
| 	 */
 | |
| 	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
 | |
| 	for (i = 0; i < io_tlb_nslabs; i++)
 | |
|  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 | |
| 	io_tlb_index = 0;
 | |
| 	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the overflow emergency buffer
 | |
| 	 */
 | |
| 	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
 | |
| 	if (!io_tlb_overflow_buffer)
 | |
| 		panic("Cannot allocate SWIOTLB overflow buffer!\n");
 | |
| 
 | |
| 	printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
 | |
| 	       virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
 | |
| }
 | |
| 
 | |
| void __init
 | |
| swiotlb_init(void)
 | |
| {
 | |
| 	swiotlb_init_with_default_size(64 * (1<<20));	/* default to 64MB */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Systems with larger DMA zones (those that don't support ISA) can
 | |
|  * initialize the swiotlb later using the slab allocator if needed.
 | |
|  * This should be just like above, but with some error catching.
 | |
|  */
 | |
| int
 | |
| swiotlb_late_init_with_default_size(size_t default_size)
 | |
| {
 | |
| 	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	if (!io_tlb_nslabs) {
 | |
| 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 | |
| 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get IO TLB memory from the low pages
 | |
| 	 */
 | |
| 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 | |
| 	io_tlb_nslabs = SLABS_PER_PAGE << order;
 | |
| 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| 
 | |
| 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | |
| 		io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 | |
| 		                                        order);
 | |
| 		if (io_tlb_start)
 | |
| 			break;
 | |
| 		order--;
 | |
| 	}
 | |
| 
 | |
| 	if (!io_tlb_start)
 | |
| 		goto cleanup1;
 | |
| 
 | |
| 	if (order != get_order(bytes)) {
 | |
| 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 | |
| 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 | |
| 		io_tlb_nslabs = SLABS_PER_PAGE << order;
 | |
| 		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| 	}
 | |
| 	io_tlb_end = io_tlb_start + bytes;
 | |
| 	memset(io_tlb_start, 0, bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and initialize the free list array.  This array is used
 | |
| 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 | |
| 	 * between io_tlb_start and io_tlb_end.
 | |
| 	 */
 | |
| 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 | |
| 	                              get_order(io_tlb_nslabs * sizeof(int)));
 | |
| 	if (!io_tlb_list)
 | |
| 		goto cleanup2;
 | |
| 
 | |
| 	for (i = 0; i < io_tlb_nslabs; i++)
 | |
|  		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 | |
| 	io_tlb_index = 0;
 | |
| 
 | |
| 	io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
 | |
| 	                           get_order(io_tlb_nslabs * sizeof(char *)));
 | |
| 	if (!io_tlb_orig_addr)
 | |
| 		goto cleanup3;
 | |
| 
 | |
| 	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the overflow emergency buffer
 | |
| 	 */
 | |
| 	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 | |
| 	                                          get_order(io_tlb_overflow));
 | |
| 	if (!io_tlb_overflow_buffer)
 | |
| 		goto cleanup4;
 | |
| 
 | |
| 	printk(KERN_INFO "Placing %luMB software IO TLB between 0x%lx - "
 | |
| 	       "0x%lx\n", bytes >> 20,
 | |
| 	       virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup4:
 | |
| 	free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
 | |
| 	                                                      sizeof(char *)));
 | |
| 	io_tlb_orig_addr = NULL;
 | |
| cleanup3:
 | |
| 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 | |
| 	                                                 sizeof(int)));
 | |
| 	io_tlb_list = NULL;
 | |
| cleanup2:
 | |
| 	io_tlb_end = NULL;
 | |
| 	free_pages((unsigned long)io_tlb_start, order);
 | |
| 	io_tlb_start = NULL;
 | |
| cleanup1:
 | |
| 	io_tlb_nslabs = req_nslabs;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int
 | |
| address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
 | |
| {
 | |
| 	return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
 | |
| }
 | |
| 
 | |
| static int is_swiotlb_buffer(char *addr)
 | |
| {
 | |
| 	return addr >= io_tlb_start && addr < io_tlb_end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates bounce buffer and returns its kernel virtual address.
 | |
|  */
 | |
| static void *
 | |
| map_single(struct device *hwdev, char *buffer, size_t size, int dir)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	char *dma_addr;
 | |
| 	unsigned int nslots, stride, index, wrap;
 | |
| 	int i;
 | |
| 	unsigned long start_dma_addr;
 | |
| 	unsigned long mask;
 | |
| 	unsigned long offset_slots;
 | |
| 	unsigned long max_slots;
 | |
| 
 | |
| 	mask = dma_get_seg_boundary(hwdev);
 | |
| 	start_dma_addr = virt_to_bus(io_tlb_start) & mask;
 | |
| 
 | |
| 	offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | |
| 	max_slots = mask + 1
 | |
| 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 | |
| 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * For mappings greater than a page, we limit the stride (and
 | |
| 	 * hence alignment) to a page size.
 | |
| 	 */
 | |
| 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | |
| 	if (size > PAGE_SIZE)
 | |
| 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 | |
| 	else
 | |
| 		stride = 1;
 | |
| 
 | |
| 	BUG_ON(!nslots);
 | |
| 
 | |
| 	/*
 | |
| 	 * Find suitable number of IO TLB entries size that will fit this
 | |
| 	 * request and allocate a buffer from that IO TLB pool.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&io_tlb_lock, flags);
 | |
| 	index = ALIGN(io_tlb_index, stride);
 | |
| 	if (index >= io_tlb_nslabs)
 | |
| 		index = 0;
 | |
| 	wrap = index;
 | |
| 
 | |
| 	do {
 | |
| 		while (iommu_is_span_boundary(index, nslots, offset_slots,
 | |
| 					      max_slots)) {
 | |
| 			index += stride;
 | |
| 			if (index >= io_tlb_nslabs)
 | |
| 				index = 0;
 | |
| 			if (index == wrap)
 | |
| 				goto not_found;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we find a slot that indicates we have 'nslots' number of
 | |
| 		 * contiguous buffers, we allocate the buffers from that slot
 | |
| 		 * and mark the entries as '0' indicating unavailable.
 | |
| 		 */
 | |
| 		if (io_tlb_list[index] >= nslots) {
 | |
| 			int count = 0;
 | |
| 
 | |
| 			for (i = index; i < (int) (index + nslots); i++)
 | |
| 				io_tlb_list[i] = 0;
 | |
| 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 | |
| 				io_tlb_list[i] = ++count;
 | |
| 			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 | |
| 
 | |
| 			/*
 | |
| 			 * Update the indices to avoid searching in the next
 | |
| 			 * round.
 | |
| 			 */
 | |
| 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
 | |
| 					? (index + nslots) : 0);
 | |
| 
 | |
| 			goto found;
 | |
| 		}
 | |
| 		index += stride;
 | |
| 		if (index >= io_tlb_nslabs)
 | |
| 			index = 0;
 | |
| 	} while (index != wrap);
 | |
| 
 | |
| not_found:
 | |
| 	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | |
| 	return NULL;
 | |
| found:
 | |
| 	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Save away the mapping from the original address to the DMA address.
 | |
| 	 * This is needed when we sync the memory.  Then we sync the buffer if
 | |
| 	 * needed.
 | |
| 	 */
 | |
| 	for (i = 0; i < nslots; i++)
 | |
| 		io_tlb_orig_addr[index+i] = buffer + (i << IO_TLB_SHIFT);
 | |
| 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 | |
| 		memcpy(dma_addr, buffer, size);
 | |
| 
 | |
| 	return dma_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 | |
|  */
 | |
| static void
 | |
| unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 | |
| 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
 | |
| 	char *buffer = io_tlb_orig_addr[index];
 | |
| 
 | |
| 	/*
 | |
| 	 * First, sync the memory before unmapping the entry
 | |
| 	 */
 | |
| 	if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 | |
| 		/*
 | |
| 		 * bounce... copy the data back into the original buffer * and
 | |
| 		 * delete the bounce buffer.
 | |
| 		 */
 | |
| 		memcpy(buffer, dma_addr, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Return the buffer to the free list by setting the corresponding
 | |
| 	 * entries to indicate the number of contigous entries available.
 | |
| 	 * While returning the entries to the free list, we merge the entries
 | |
| 	 * with slots below and above the pool being returned.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&io_tlb_lock, flags);
 | |
| 	{
 | |
| 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 | |
| 			 io_tlb_list[index + nslots] : 0);
 | |
| 		/*
 | |
| 		 * Step 1: return the slots to the free list, merging the
 | |
| 		 * slots with superceeding slots
 | |
| 		 */
 | |
| 		for (i = index + nslots - 1; i >= index; i--)
 | |
| 			io_tlb_list[i] = ++count;
 | |
| 		/*
 | |
| 		 * Step 2: merge the returned slots with the preceding slots,
 | |
| 		 * if available (non zero)
 | |
| 		 */
 | |
| 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 | |
| 			io_tlb_list[i] = ++count;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&io_tlb_lock, flags);
 | |
| }
 | |
| 
 | |
| static void
 | |
| sync_single(struct device *hwdev, char *dma_addr, size_t size,
 | |
| 	    int dir, int target)
 | |
| {
 | |
| 	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
 | |
| 	char *buffer = io_tlb_orig_addr[index];
 | |
| 
 | |
| 	buffer += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
 | |
| 
 | |
| 	switch (target) {
 | |
| 	case SYNC_FOR_CPU:
 | |
| 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 | |
| 			memcpy(buffer, dma_addr, size);
 | |
| 		else
 | |
| 			BUG_ON(dir != DMA_TO_DEVICE);
 | |
| 		break;
 | |
| 	case SYNC_FOR_DEVICE:
 | |
| 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 | |
| 			memcpy(dma_addr, buffer, size);
 | |
| 		else
 | |
| 			BUG_ON(dir != DMA_FROM_DEVICE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *
 | |
| swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 | |
| 		       dma_addr_t *dma_handle, gfp_t flags)
 | |
| {
 | |
| 	dma_addr_t dev_addr;
 | |
| 	void *ret;
 | |
| 	int order = get_order(size);
 | |
| 	u64 dma_mask = DMA_32BIT_MASK;
 | |
| 
 | |
| 	if (hwdev && hwdev->coherent_dma_mask)
 | |
| 		dma_mask = hwdev->coherent_dma_mask;
 | |
| 
 | |
| 	ret = (void *)__get_free_pages(flags, order);
 | |
| 	if (ret && !is_buffer_dma_capable(dma_mask, virt_to_bus(ret), size)) {
 | |
| 		/*
 | |
| 		 * The allocated memory isn't reachable by the device.
 | |
| 		 * Fall back on swiotlb_map_single().
 | |
| 		 */
 | |
| 		free_pages((unsigned long) ret, order);
 | |
| 		ret = NULL;
 | |
| 	}
 | |
| 	if (!ret) {
 | |
| 		/*
 | |
| 		 * We are either out of memory or the device can't DMA
 | |
| 		 * to GFP_DMA memory; fall back on
 | |
| 		 * swiotlb_map_single(), which will grab memory from
 | |
| 		 * the lowest available address range.
 | |
| 		 */
 | |
| 		ret = map_single(hwdev, NULL, size, DMA_FROM_DEVICE);
 | |
| 		if (!ret)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memset(ret, 0, size);
 | |
| 	dev_addr = virt_to_bus(ret);
 | |
| 
 | |
| 	/* Confirm address can be DMA'd by device */
 | |
| 	if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
 | |
| 		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 | |
| 		       (unsigned long long)dma_mask,
 | |
| 		       (unsigned long long)dev_addr);
 | |
| 
 | |
| 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 | |
| 		unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	*dma_handle = dev_addr;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 | |
| 		      dma_addr_t dma_handle)
 | |
| {
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 	if (!is_swiotlb_buffer(vaddr))
 | |
| 		free_pages((unsigned long) vaddr, get_order(size));
 | |
| 	else
 | |
| 		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
 | |
| 		unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ran out of IOMMU space for this operation. This is very bad.
 | |
| 	 * Unfortunately the drivers cannot handle this operation properly.
 | |
| 	 * unless they check for dma_mapping_error (most don't)
 | |
| 	 * When the mapping is small enough return a static buffer to limit
 | |
| 	 * the damage, or panic when the transfer is too big.
 | |
| 	 */
 | |
| 	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
 | |
| 	       "device %s\n", size, dev ? dev->bus_id : "?");
 | |
| 
 | |
| 	if (size > io_tlb_overflow && do_panic) {
 | |
| 		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
 | |
| 			panic("DMA: Memory would be corrupted\n");
 | |
| 		if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
 | |
| 			panic("DMA: Random memory would be DMAed\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map a single buffer of the indicated size for DMA in streaming mode.  The
 | |
|  * physical address to use is returned.
 | |
|  *
 | |
|  * Once the device is given the dma address, the device owns this memory until
 | |
|  * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
 | |
|  */
 | |
| dma_addr_t
 | |
| swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
 | |
| 			 int dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	dma_addr_t dev_addr = virt_to_bus(ptr);
 | |
| 	void *map;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	/*
 | |
| 	 * If the pointer passed in happens to be in the device's DMA window,
 | |
| 	 * we can safely return the device addr and not worry about bounce
 | |
| 	 * buffering it.
 | |
| 	 */
 | |
| 	if (!address_needs_mapping(hwdev, dev_addr, size) && !swiotlb_force)
 | |
| 		return dev_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Oh well, have to allocate and map a bounce buffer.
 | |
| 	 */
 | |
| 	map = map_single(hwdev, ptr, size, dir);
 | |
| 	if (!map) {
 | |
| 		swiotlb_full(hwdev, size, dir, 1);
 | |
| 		map = io_tlb_overflow_buffer;
 | |
| 	}
 | |
| 
 | |
| 	dev_addr = virt_to_bus(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the address returned is DMA'ble
 | |
| 	 */
 | |
| 	if (address_needs_mapping(hwdev, dev_addr, size))
 | |
| 		panic("map_single: bounce buffer is not DMA'ble");
 | |
| 
 | |
| 	return dev_addr;
 | |
| }
 | |
| EXPORT_SYMBOL(swiotlb_map_single_attrs);
 | |
| 
 | |
| dma_addr_t
 | |
| swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
 | |
| {
 | |
| 	return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 | |
|  * match what was provided for in a previous swiotlb_map_single call.  All
 | |
|  * other usages are undefined.
 | |
|  *
 | |
|  * After this call, reads by the cpu to the buffer are guaranteed to see
 | |
|  * whatever the device wrote there.
 | |
|  */
 | |
| void
 | |
| swiotlb_unmap_single_attrs(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			   size_t size, int dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	char *dma_addr = bus_to_virt(dev_addr);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	if (is_swiotlb_buffer(dma_addr))
 | |
| 		unmap_single(hwdev, dma_addr, size, dir);
 | |
| 	else if (dir == DMA_FROM_DEVICE)
 | |
| 		dma_mark_clean(dma_addr, size);
 | |
| }
 | |
| EXPORT_SYMBOL(swiotlb_unmap_single_attrs);
 | |
| 
 | |
| void
 | |
| swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
 | |
| 		     int dir)
 | |
| {
 | |
| 	return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
 | |
| }
 | |
| /*
 | |
|  * Make physical memory consistent for a single streaming mode DMA translation
 | |
|  * after a transfer.
 | |
|  *
 | |
|  * If you perform a swiotlb_map_single() but wish to interrogate the buffer
 | |
|  * using the cpu, yet do not wish to teardown the dma mapping, you must
 | |
|  * call this function before doing so.  At the next point you give the dma
 | |
|  * address back to the card, you must first perform a
 | |
|  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 | |
|  */
 | |
| static void
 | |
| swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 		    size_t size, int dir, int target)
 | |
| {
 | |
| 	char *dma_addr = bus_to_virt(dev_addr);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	if (is_swiotlb_buffer(dma_addr))
 | |
| 		sync_single(hwdev, dma_addr, size, dir, target);
 | |
| 	else if (dir == DMA_FROM_DEVICE)
 | |
| 		dma_mark_clean(dma_addr, size);
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			    size_t size, int dir)
 | |
| {
 | |
| 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			       size_t size, int dir)
 | |
| {
 | |
| 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as above, but for a sub-range of the mapping.
 | |
|  */
 | |
| static void
 | |
| swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			  unsigned long offset, size_t size,
 | |
| 			  int dir, int target)
 | |
| {
 | |
| 	char *dma_addr = bus_to_virt(dev_addr) + offset;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	if (is_swiotlb_buffer(dma_addr))
 | |
| 		sync_single(hwdev, dma_addr, size, dir, target);
 | |
| 	else if (dir == DMA_FROM_DEVICE)
 | |
| 		dma_mark_clean(dma_addr, size);
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 				  unsigned long offset, size_t size, int dir)
 | |
| {
 | |
| 	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
 | |
| 				  SYNC_FOR_CPU);
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 				     unsigned long offset, size_t size, int dir)
 | |
| {
 | |
| 	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
 | |
| 				  SYNC_FOR_DEVICE);
 | |
| }
 | |
| 
 | |
| void swiotlb_unmap_sg_attrs(struct device *, struct scatterlist *, int, int,
 | |
| 			    struct dma_attrs *);
 | |
| /*
 | |
|  * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | |
|  * This is the scatter-gather version of the above swiotlb_map_single
 | |
|  * interface.  Here the scatter gather list elements are each tagged with the
 | |
|  * appropriate dma address and length.  They are obtained via
 | |
|  * sg_dma_{address,length}(SG).
 | |
|  *
 | |
|  * NOTE: An implementation may be able to use a smaller number of
 | |
|  *       DMA address/length pairs than there are SG table elements.
 | |
|  *       (for example via virtual mapping capabilities)
 | |
|  *       The routine returns the number of addr/length pairs actually
 | |
|  *       used, at most nents.
 | |
|  *
 | |
|  * Device ownership issues as mentioned above for swiotlb_map_single are the
 | |
|  * same here.
 | |
|  */
 | |
| int
 | |
| swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | |
| 		     int dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	void *addr;
 | |
| 	dma_addr_t dev_addr;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		addr = SG_ENT_VIRT_ADDRESS(sg);
 | |
| 		dev_addr = virt_to_bus(addr);
 | |
| 		if (swiotlb_force ||
 | |
| 		    address_needs_mapping(hwdev, dev_addr, sg->length)) {
 | |
| 			void *map = map_single(hwdev, addr, sg->length, dir);
 | |
| 			if (!map) {
 | |
| 				/* Don't panic here, we expect map_sg users
 | |
| 				   to do proper error handling. */
 | |
| 				swiotlb_full(hwdev, sg->length, dir, 0);
 | |
| 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 | |
| 						       attrs);
 | |
| 				sgl[0].dma_length = 0;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			sg->dma_address = virt_to_bus(map);
 | |
| 		} else
 | |
| 			sg->dma_address = dev_addr;
 | |
| 		sg->dma_length = sg->length;
 | |
| 	}
 | |
| 	return nelems;
 | |
| }
 | |
| EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 | |
| 
 | |
| int
 | |
| swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | |
| 	       int dir)
 | |
| {
 | |
| 	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 | |
|  * concerning calls here are the same as for swiotlb_unmap_single() above.
 | |
|  */
 | |
| void
 | |
| swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | |
| 		       int nelems, int dir, struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
 | |
| 			unmap_single(hwdev, bus_to_virt(sg->dma_address),
 | |
| 				     sg->dma_length, dir);
 | |
| 		else if (dir == DMA_FROM_DEVICE)
 | |
| 			dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 | |
| 
 | |
| void
 | |
| swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | |
| 		 int dir)
 | |
| {
 | |
| 	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make physical memory consistent for a set of streaming mode DMA translations
 | |
|  * after a transfer.
 | |
|  *
 | |
|  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 | |
|  * and usage.
 | |
|  */
 | |
| static void
 | |
| swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 | |
| 		int nelems, int dir, int target)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
 | |
| 			sync_single(hwdev, bus_to_virt(sg->dma_address),
 | |
| 				    sg->dma_length, dir, target);
 | |
| 		else if (dir == DMA_FROM_DEVICE)
 | |
| 			dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 | |
| 			int nelems, int dir)
 | |
| {
 | |
| 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 | |
| }
 | |
| 
 | |
| void
 | |
| swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 | |
| 			   int nelems, int dir)
 | |
| {
 | |
| 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 | |
| }
 | |
| 
 | |
| int
 | |
| swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 | |
| {
 | |
| 	return (dma_addr == virt_to_bus(io_tlb_overflow_buffer));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether the given device DMA address mask can be supported
 | |
|  * properly.  For example, if your device can only drive the low 24-bits
 | |
|  * during bus mastering, then you would pass 0x00ffffff as the mask to
 | |
|  * this function.
 | |
|  */
 | |
| int
 | |
| swiotlb_dma_supported(struct device *hwdev, u64 mask)
 | |
| {
 | |
| 	return virt_to_bus(io_tlb_end - 1) <= mask;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(swiotlb_map_single);
 | |
| EXPORT_SYMBOL(swiotlb_unmap_single);
 | |
| EXPORT_SYMBOL(swiotlb_map_sg);
 | |
| EXPORT_SYMBOL(swiotlb_unmap_sg);
 | |
| EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 | |
| EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 | |
| EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
 | |
| EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
 | |
| EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
 | |
| EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
 | |
| EXPORT_SYMBOL(swiotlb_dma_mapping_error);
 | |
| EXPORT_SYMBOL(swiotlb_alloc_coherent);
 | |
| EXPORT_SYMBOL(swiotlb_free_coherent);
 | |
| EXPORT_SYMBOL(swiotlb_dma_supported);
 |