mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 697f8d0348
			
		
	
	
		697f8d0348
		
	
	
	
	
		
			
			The rationale is: * use u32 consistently * no need to do LCG on values from (better) get_random_bytes * use more data from get_random_bytes for secondary seeding * don't reduce state space on srandom32() * enforce state variable initialization restrictions Note: the second paper has a version of random32() with even longer period and a version of random64() if needed. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			155 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   This is a maximally equidistributed combined Tausworthe generator
 | |
|   based on code from GNU Scientific Library 1.5 (30 Jun 2004)
 | |
| 
 | |
|    x_n = (s1_n ^ s2_n ^ s3_n)
 | |
| 
 | |
|    s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19))
 | |
|    s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25))
 | |
|    s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11))
 | |
| 
 | |
|    The period of this generator is about 2^88.
 | |
| 
 | |
|    From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
 | |
|    Generators", Mathematics of Computation, 65, 213 (1996), 203--213.
 | |
| 
 | |
|    This is available on the net from L'Ecuyer's home page,
 | |
| 
 | |
|    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
 | |
|    ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
 | |
| 
 | |
|    There is an erratum in the paper "Tables of Maximally
 | |
|    Equidistributed Combined LFSR Generators", Mathematics of
 | |
|    Computation, 68, 225 (1999), 261--269:
 | |
|    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
 | |
| 
 | |
|         ... the k_j most significant bits of z_j must be non-
 | |
|         zero, for each j. (Note: this restriction also applies to the
 | |
|         computer code given in [4], but was mistakenly not mentioned in
 | |
|         that paper.)
 | |
| 
 | |
|    This affects the seeding procedure by imposing the requirement
 | |
|    s1 > 1, s2 > 7, s3 > 15.
 | |
| 
 | |
| */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/random.h>
 | |
| 
 | |
| struct rnd_state {
 | |
| 	u32 s1, s2, s3;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
 | |
| 
 | |
| static u32 __random32(struct rnd_state *state)
 | |
| {
 | |
| #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
 | |
| 
 | |
| 	state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12);
 | |
| 	state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4);
 | |
| 	state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17);
 | |
| 
 | |
| 	return (state->s1 ^ state->s2 ^ state->s3);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle minimum values for seeds
 | |
|  */
 | |
| static inline u32 __seed(u32 x, u32 m)
 | |
| {
 | |
| 	return (x < m) ? x + m : x;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	random32 - pseudo random number generator
 | |
|  *
 | |
|  *	A 32 bit pseudo-random number is generated using a fast
 | |
|  *	algorithm suitable for simulation. This algorithm is NOT
 | |
|  *	considered safe for cryptographic use.
 | |
|  */
 | |
| u32 random32(void)
 | |
| {
 | |
| 	unsigned long r;
 | |
| 	struct rnd_state *state = &get_cpu_var(net_rand_state);
 | |
| 	r = __random32(state);
 | |
| 	put_cpu_var(state);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL(random32);
 | |
| 
 | |
| /**
 | |
|  *	srandom32 - add entropy to pseudo random number generator
 | |
|  *	@seed: seed value
 | |
|  *
 | |
|  *	Add some additional seeding to the random32() pool.
 | |
|  */
 | |
| void srandom32(u32 entropy)
 | |
| {
 | |
| 	int i;
 | |
| 	/*
 | |
| 	 * No locking on the CPUs, but then somewhat random results are, well,
 | |
| 	 * expected.
 | |
| 	 */
 | |
| 	for_each_possible_cpu (i) {
 | |
| 		struct rnd_state *state = &per_cpu(net_rand_state, i);
 | |
| 		state->s1 = __seed(state->s1 ^ entropy, 1);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(srandom32);
 | |
| 
 | |
| /*
 | |
|  *	Generate some initially weak seeding values to allow
 | |
|  *	to start the random32() engine.
 | |
|  */
 | |
| static int __init random32_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rnd_state *state = &per_cpu(net_rand_state,i);
 | |
| 
 | |
| #define LCG(x)	((x) * 69069)	/* super-duper LCG */
 | |
| 		state->s1 = __seed(LCG(i + jiffies), 1);
 | |
| 		state->s2 = __seed(LCG(state->s1), 7);
 | |
| 		state->s3 = __seed(LCG(state->s2), 15);
 | |
| 
 | |
| 		/* "warm it up" */
 | |
| 		__random32(state);
 | |
| 		__random32(state);
 | |
| 		__random32(state);
 | |
| 		__random32(state);
 | |
| 		__random32(state);
 | |
| 		__random32(state);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| core_initcall(random32_init);
 | |
| 
 | |
| /*
 | |
|  *	Generate better values after random number generator
 | |
|  *	is fully initalized.
 | |
|  */
 | |
| static int __init random32_reseed(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct rnd_state *state = &per_cpu(net_rand_state,i);
 | |
| 		u32 seeds[3];
 | |
| 
 | |
| 		get_random_bytes(&seeds, sizeof(seeds));
 | |
| 		state->s1 = __seed(seeds[0], 1);
 | |
| 		state->s2 = __seed(seeds[1], 7);
 | |
| 		state->s3 = __seed(seeds[2], 15);
 | |
| 
 | |
| 		/* mix it in */
 | |
| 		__random32(state);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(random32_reseed);
 |