mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:39:23 +00:00 
			
		
		
		
	 1da177e4c3
			
		
	
	
		1da177e4c3
		
	
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			485 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			485 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * lib/prio_tree.c - priority search tree
 | |
|  *
 | |
|  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
 | |
|  *
 | |
|  * This file is released under the GPL v2.
 | |
|  *
 | |
|  * Based on the radix priority search tree proposed by Edward M. McCreight
 | |
|  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
 | |
|  *
 | |
|  * 02Feb2004	Initial version
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/prio_tree.h>
 | |
| 
 | |
| /*
 | |
|  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
 | |
|  * which is useful for storing intervals, e.g, we can consider a vma as a closed
 | |
|  * interval of file pages [offset_begin, offset_end], and store all vmas that
 | |
|  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
 | |
|  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
 | |
|  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
 | |
|  * time where 'log n' is the height of the PST, and 'm' is the number of stored
 | |
|  * intervals (vmas) that overlap (map) with the input interval X (the set of
 | |
|  * consecutive file pages).
 | |
|  *
 | |
|  * In our implementation, we store closed intervals of the form [radix_index,
 | |
|  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
 | |
|  * is designed for storing intervals with unique radix indices, i.e., each
 | |
|  * interval have different radix_index. However, this limitation can be easily
 | |
|  * overcome by using the size, i.e., heap_index - radix_index, as part of the
 | |
|  * index, so we index the tree using [(radix_index,size), heap_index].
 | |
|  *
 | |
|  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
 | |
|  * machine, the maximum height of a PST can be 64. We can use a balanced version
 | |
|  * of the priority search tree to optimize the tree height, but the balanced
 | |
|  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The following macros are used for implementing prio_tree for i_mmap
 | |
|  */
 | |
| 
 | |
| #define RADIX_INDEX(vma)  ((vma)->vm_pgoff)
 | |
| #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
 | |
| /* avoid overflow */
 | |
| #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
 | |
| 
 | |
| 
 | |
| static void get_index(const struct prio_tree_root *root,
 | |
|     const struct prio_tree_node *node,
 | |
|     unsigned long *radix, unsigned long *heap)
 | |
| {
 | |
| 	if (root->raw) {
 | |
| 		struct vm_area_struct *vma = prio_tree_entry(
 | |
| 		    node, struct vm_area_struct, shared.prio_tree_node);
 | |
| 
 | |
| 		*radix = RADIX_INDEX(vma);
 | |
| 		*heap = HEAP_INDEX(vma);
 | |
| 	}
 | |
| 	else {
 | |
| 		*radix = node->start;
 | |
| 		*heap = node->last;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
 | |
| 
 | |
| void __init prio_tree_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
 | |
| 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
 | |
| 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum heap_index that can be stored in a PST with index_bits bits
 | |
|  */
 | |
| static inline unsigned long prio_tree_maxindex(unsigned int bits)
 | |
| {
 | |
| 	return index_bits_to_maxindex[bits - 1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extend a priority search tree so that it can store a node with heap_index
 | |
|  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
 | |
|  * However, this function is used rarely and the common case performance is
 | |
|  * not bad.
 | |
|  */
 | |
| static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
 | |
| 		struct prio_tree_node *node, unsigned long max_heap_index)
 | |
| {
 | |
| 	struct prio_tree_node *first = NULL, *prev, *last = NULL;
 | |
| 
 | |
| 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
 | |
| 		root->index_bits++;
 | |
| 
 | |
| 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
 | |
| 		root->index_bits++;
 | |
| 
 | |
| 		if (prio_tree_empty(root))
 | |
| 			continue;
 | |
| 
 | |
| 		if (first == NULL) {
 | |
| 			first = root->prio_tree_node;
 | |
| 			prio_tree_remove(root, root->prio_tree_node);
 | |
| 			INIT_PRIO_TREE_NODE(first);
 | |
| 			last = first;
 | |
| 		} else {
 | |
| 			prev = last;
 | |
| 			last = root->prio_tree_node;
 | |
| 			prio_tree_remove(root, root->prio_tree_node);
 | |
| 			INIT_PRIO_TREE_NODE(last);
 | |
| 			prev->left = last;
 | |
| 			last->parent = prev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	INIT_PRIO_TREE_NODE(node);
 | |
| 
 | |
| 	if (first) {
 | |
| 		node->left = first;
 | |
| 		first->parent = node;
 | |
| 	} else
 | |
| 		last = node;
 | |
| 
 | |
| 	if (!prio_tree_empty(root)) {
 | |
| 		last->left = root->prio_tree_node;
 | |
| 		last->left->parent = last;
 | |
| 	}
 | |
| 
 | |
| 	root->prio_tree_node = node;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace a prio_tree_node with a new node and return the old node
 | |
|  */
 | |
| struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
 | |
| 		struct prio_tree_node *old, struct prio_tree_node *node)
 | |
| {
 | |
| 	INIT_PRIO_TREE_NODE(node);
 | |
| 
 | |
| 	if (prio_tree_root(old)) {
 | |
| 		BUG_ON(root->prio_tree_node != old);
 | |
| 		/*
 | |
| 		 * We can reduce root->index_bits here. However, it is complex
 | |
| 		 * and does not help much to improve performance (IMO).
 | |
| 		 */
 | |
| 		node->parent = node;
 | |
| 		root->prio_tree_node = node;
 | |
| 	} else {
 | |
| 		node->parent = old->parent;
 | |
| 		if (old->parent->left == old)
 | |
| 			old->parent->left = node;
 | |
| 		else
 | |
| 			old->parent->right = node;
 | |
| 	}
 | |
| 
 | |
| 	if (!prio_tree_left_empty(old)) {
 | |
| 		node->left = old->left;
 | |
| 		old->left->parent = node;
 | |
| 	}
 | |
| 
 | |
| 	if (!prio_tree_right_empty(old)) {
 | |
| 		node->right = old->right;
 | |
| 		old->right->parent = node;
 | |
| 	}
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert a prio_tree_node @node into a radix priority search tree @root. The
 | |
|  * algorithm typically takes O(log n) time where 'log n' is the number of bits
 | |
|  * required to represent the maximum heap_index. In the worst case, the algo
 | |
|  * can take O((log n)^2) - check prio_tree_expand.
 | |
|  *
 | |
|  * If a prior node with same radix_index and heap_index is already found in
 | |
|  * the tree, then returns the address of the prior node. Otherwise, inserts
 | |
|  * @node into the tree and returns @node.
 | |
|  */
 | |
| struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
 | |
| 		struct prio_tree_node *node)
 | |
| {
 | |
| 	struct prio_tree_node *cur, *res = node;
 | |
| 	unsigned long radix_index, heap_index;
 | |
| 	unsigned long r_index, h_index, index, mask;
 | |
| 	int size_flag = 0;
 | |
| 
 | |
| 	get_index(root, node, &radix_index, &heap_index);
 | |
| 
 | |
| 	if (prio_tree_empty(root) ||
 | |
| 			heap_index > prio_tree_maxindex(root->index_bits))
 | |
| 		return prio_tree_expand(root, node, heap_index);
 | |
| 
 | |
| 	cur = root->prio_tree_node;
 | |
| 	mask = 1UL << (root->index_bits - 1);
 | |
| 
 | |
| 	while (mask) {
 | |
| 		get_index(root, cur, &r_index, &h_index);
 | |
| 
 | |
| 		if (r_index == radix_index && h_index == heap_index)
 | |
| 			return cur;
 | |
| 
 | |
|                 if (h_index < heap_index ||
 | |
| 		    (h_index == heap_index && r_index > radix_index)) {
 | |
| 			struct prio_tree_node *tmp = node;
 | |
| 			node = prio_tree_replace(root, cur, node);
 | |
| 			cur = tmp;
 | |
| 			/* swap indices */
 | |
| 			index = r_index;
 | |
| 			r_index = radix_index;
 | |
| 			radix_index = index;
 | |
| 			index = h_index;
 | |
| 			h_index = heap_index;
 | |
| 			heap_index = index;
 | |
| 		}
 | |
| 
 | |
| 		if (size_flag)
 | |
| 			index = heap_index - radix_index;
 | |
| 		else
 | |
| 			index = radix_index;
 | |
| 
 | |
| 		if (index & mask) {
 | |
| 			if (prio_tree_right_empty(cur)) {
 | |
| 				INIT_PRIO_TREE_NODE(node);
 | |
| 				cur->right = node;
 | |
| 				node->parent = cur;
 | |
| 				return res;
 | |
| 			} else
 | |
| 				cur = cur->right;
 | |
| 		} else {
 | |
| 			if (prio_tree_left_empty(cur)) {
 | |
| 				INIT_PRIO_TREE_NODE(node);
 | |
| 				cur->left = node;
 | |
| 				node->parent = cur;
 | |
| 				return res;
 | |
| 			} else
 | |
| 				cur = cur->left;
 | |
| 		}
 | |
| 
 | |
| 		mask >>= 1;
 | |
| 
 | |
| 		if (!mask) {
 | |
| 			mask = 1UL << (BITS_PER_LONG - 1);
 | |
| 			size_flag = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Should not reach here */
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a prio_tree_node @node from a radix priority search tree @root. The
 | |
|  * algorithm takes O(log n) time where 'log n' is the number of bits required
 | |
|  * to represent the maximum heap_index.
 | |
|  */
 | |
| void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
 | |
| {
 | |
| 	struct prio_tree_node *cur;
 | |
| 	unsigned long r_index, h_index_right, h_index_left;
 | |
| 
 | |
| 	cur = node;
 | |
| 
 | |
| 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
 | |
| 		if (!prio_tree_left_empty(cur))
 | |
| 			get_index(root, cur->left, &r_index, &h_index_left);
 | |
| 		else {
 | |
| 			cur = cur->right;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!prio_tree_right_empty(cur))
 | |
| 			get_index(root, cur->right, &r_index, &h_index_right);
 | |
| 		else {
 | |
| 			cur = cur->left;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* both h_index_left and h_index_right cannot be 0 */
 | |
| 		if (h_index_left >= h_index_right)
 | |
| 			cur = cur->left;
 | |
| 		else
 | |
| 			cur = cur->right;
 | |
| 	}
 | |
| 
 | |
| 	if (prio_tree_root(cur)) {
 | |
| 		BUG_ON(root->prio_tree_node != cur);
 | |
| 		__INIT_PRIO_TREE_ROOT(root, root->raw);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cur->parent->right == cur)
 | |
| 		cur->parent->right = cur->parent;
 | |
| 	else
 | |
| 		cur->parent->left = cur->parent;
 | |
| 
 | |
| 	while (cur != node)
 | |
| 		cur = prio_tree_replace(root, cur->parent, cur);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Following functions help to enumerate all prio_tree_nodes in the tree that
 | |
|  * overlap with the input interval X [radix_index, heap_index]. The enumeration
 | |
|  * takes O(log n + m) time where 'log n' is the height of the tree (which is
 | |
|  * proportional to # of bits required to represent the maximum heap_index) and
 | |
|  * 'm' is the number of prio_tree_nodes that overlap the interval X.
 | |
|  */
 | |
| 
 | |
| static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
 | |
| 		unsigned long *r_index, unsigned long *h_index)
 | |
| {
 | |
| 	if (prio_tree_left_empty(iter->cur))
 | |
| 		return NULL;
 | |
| 
 | |
| 	get_index(iter->root, iter->cur->left, r_index, h_index);
 | |
| 
 | |
| 	if (iter->r_index <= *h_index) {
 | |
| 		iter->cur = iter->cur->left;
 | |
| 		iter->mask >>= 1;
 | |
| 		if (iter->mask) {
 | |
| 			if (iter->size_level)
 | |
| 				iter->size_level++;
 | |
| 		} else {
 | |
| 			if (iter->size_level) {
 | |
| 				BUG_ON(!prio_tree_left_empty(iter->cur));
 | |
| 				BUG_ON(!prio_tree_right_empty(iter->cur));
 | |
| 				iter->size_level++;
 | |
| 				iter->mask = ULONG_MAX;
 | |
| 			} else {
 | |
| 				iter->size_level = 1;
 | |
| 				iter->mask = 1UL << (BITS_PER_LONG - 1);
 | |
| 			}
 | |
| 		}
 | |
| 		return iter->cur;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
 | |
| 		unsigned long *r_index, unsigned long *h_index)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	if (prio_tree_right_empty(iter->cur))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (iter->size_level)
 | |
| 		value = iter->value;
 | |
| 	else
 | |
| 		value = iter->value | iter->mask;
 | |
| 
 | |
| 	if (iter->h_index < value)
 | |
| 		return NULL;
 | |
| 
 | |
| 	get_index(iter->root, iter->cur->right, r_index, h_index);
 | |
| 
 | |
| 	if (iter->r_index <= *h_index) {
 | |
| 		iter->cur = iter->cur->right;
 | |
| 		iter->mask >>= 1;
 | |
| 		iter->value = value;
 | |
| 		if (iter->mask) {
 | |
| 			if (iter->size_level)
 | |
| 				iter->size_level++;
 | |
| 		} else {
 | |
| 			if (iter->size_level) {
 | |
| 				BUG_ON(!prio_tree_left_empty(iter->cur));
 | |
| 				BUG_ON(!prio_tree_right_empty(iter->cur));
 | |
| 				iter->size_level++;
 | |
| 				iter->mask = ULONG_MAX;
 | |
| 			} else {
 | |
| 				iter->size_level = 1;
 | |
| 				iter->mask = 1UL << (BITS_PER_LONG - 1);
 | |
| 			}
 | |
| 		}
 | |
| 		return iter->cur;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
 | |
| {
 | |
| 	iter->cur = iter->cur->parent;
 | |
| 	if (iter->mask == ULONG_MAX)
 | |
| 		iter->mask = 1UL;
 | |
| 	else if (iter->size_level == 1)
 | |
| 		iter->mask = 1UL;
 | |
| 	else
 | |
| 		iter->mask <<= 1;
 | |
| 	if (iter->size_level)
 | |
| 		iter->size_level--;
 | |
| 	if (!iter->size_level && (iter->value & iter->mask))
 | |
| 		iter->value ^= iter->mask;
 | |
| 	return iter->cur;
 | |
| }
 | |
| 
 | |
| static inline int overlap(struct prio_tree_iter *iter,
 | |
| 		unsigned long r_index, unsigned long h_index)
 | |
| {
 | |
| 	return iter->h_index >= r_index && iter->r_index <= h_index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prio_tree_first:
 | |
|  *
 | |
|  * Get the first prio_tree_node that overlaps with the interval [radix_index,
 | |
|  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
 | |
|  * traversal of the tree.
 | |
|  */
 | |
| static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
 | |
| {
 | |
| 	struct prio_tree_root *root;
 | |
| 	unsigned long r_index, h_index;
 | |
| 
 | |
| 	INIT_PRIO_TREE_ITER(iter);
 | |
| 
 | |
| 	root = iter->root;
 | |
| 	if (prio_tree_empty(root))
 | |
| 		return NULL;
 | |
| 
 | |
| 	get_index(root, root->prio_tree_node, &r_index, &h_index);
 | |
| 
 | |
| 	if (iter->r_index > h_index)
 | |
| 		return NULL;
 | |
| 
 | |
| 	iter->mask = 1UL << (root->index_bits - 1);
 | |
| 	iter->cur = root->prio_tree_node;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (overlap(iter, r_index, h_index))
 | |
| 			return iter->cur;
 | |
| 
 | |
| 		if (prio_tree_left(iter, &r_index, &h_index))
 | |
| 			continue;
 | |
| 
 | |
| 		if (prio_tree_right(iter, &r_index, &h_index))
 | |
| 			continue;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prio_tree_next:
 | |
|  *
 | |
|  * Get the next prio_tree_node that overlaps with the input interval in iter
 | |
|  */
 | |
| struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
 | |
| {
 | |
| 	unsigned long r_index, h_index;
 | |
| 
 | |
| 	if (iter->cur == NULL)
 | |
| 		return prio_tree_first(iter);
 | |
| 
 | |
| repeat:
 | |
| 	while (prio_tree_left(iter, &r_index, &h_index))
 | |
| 		if (overlap(iter, r_index, h_index))
 | |
| 			return iter->cur;
 | |
| 
 | |
| 	while (!prio_tree_right(iter, &r_index, &h_index)) {
 | |
| 	    	while (!prio_tree_root(iter->cur) &&
 | |
| 				iter->cur->parent->right == iter->cur)
 | |
| 			prio_tree_parent(iter);
 | |
| 
 | |
| 		if (prio_tree_root(iter->cur))
 | |
| 			return NULL;
 | |
| 
 | |
| 		prio_tree_parent(iter);
 | |
| 	}
 | |
| 
 | |
| 	if (overlap(iter, r_index, h_index))
 | |
| 		return iter->cur;
 | |
| 
 | |
| 	goto repeat;
 | |
| }
 |