mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 3fcfab16c5
			
		
	
	
		3fcfab16c5
		
	
	
	
	
		
			
			Separate out the concept of "queue congestion" from "backing-dev congestion". Congestion is a backing-dev concept, not a queue concept. The blk_* congestion functions are retained, as wrappers around the core backing-dev congestion functions. This proper layering is needed so that NFS can cleanly use the congestion functions, and so that CONFIG_BLOCK=n actually links. Cc: "Thomas Maier" <balagi@justmail.de> Cc: "Jens Axboe" <jens.axboe@oracle.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: David Howells <dhowells@redhat.com> Cc: Peter Osterlund <petero2@telia.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			973 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			973 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/page-writeback.c
 | |
|  *
 | |
|  * Copyright (C) 2002, Linus Torvalds.
 | |
|  *
 | |
|  * Contains functions related to writing back dirty pages at the
 | |
|  * address_space level.
 | |
|  *
 | |
|  * 10Apr2002	akpm@zip.com.au
 | |
|  *		Initial version
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/pagevec.h>
 | |
| 
 | |
| /*
 | |
|  * The maximum number of pages to writeout in a single bdflush/kupdate
 | |
|  * operation.  We do this so we don't hold I_LOCK against an inode for
 | |
|  * enormous amounts of time, which would block a userspace task which has
 | |
|  * been forced to throttle against that inode.  Also, the code reevaluates
 | |
|  * the dirty each time it has written this many pages.
 | |
|  */
 | |
| #define MAX_WRITEBACK_PAGES	1024
 | |
| 
 | |
| /*
 | |
|  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 | |
|  * will look to see if it needs to force writeback or throttling.
 | |
|  */
 | |
| static long ratelimit_pages = 32;
 | |
| 
 | |
| static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
 | |
| 
 | |
| /*
 | |
|  * When balance_dirty_pages decides that the caller needs to perform some
 | |
|  * non-background writeback, this is how many pages it will attempt to write.
 | |
|  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
 | |
|  * large amounts of I/O are submitted.
 | |
|  */
 | |
| static inline long sync_writeback_pages(void)
 | |
| {
 | |
| 	return ratelimit_pages + ratelimit_pages / 2;
 | |
| }
 | |
| 
 | |
| /* The following parameters are exported via /proc/sys/vm */
 | |
| 
 | |
| /*
 | |
|  * Start background writeback (via pdflush) at this percentage
 | |
|  */
 | |
| int dirty_background_ratio = 10;
 | |
| 
 | |
| /*
 | |
|  * The generator of dirty data starts writeback at this percentage
 | |
|  */
 | |
| int vm_dirty_ratio = 40;
 | |
| 
 | |
| /*
 | |
|  * The interval between `kupdate'-style writebacks, in jiffies
 | |
|  */
 | |
| int dirty_writeback_interval = 5 * HZ;
 | |
| 
 | |
| /*
 | |
|  * The longest number of jiffies for which data is allowed to remain dirty
 | |
|  */
 | |
| int dirty_expire_interval = 30 * HZ;
 | |
| 
 | |
| /*
 | |
|  * Flag that makes the machine dump writes/reads and block dirtyings.
 | |
|  */
 | |
| int block_dump;
 | |
| 
 | |
| /*
 | |
|  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 | |
|  * a full sync is triggered after this time elapses without any disk activity.
 | |
|  */
 | |
| int laptop_mode;
 | |
| 
 | |
| EXPORT_SYMBOL(laptop_mode);
 | |
| 
 | |
| /* End of sysctl-exported parameters */
 | |
| 
 | |
| 
 | |
| static void background_writeout(unsigned long _min_pages);
 | |
| 
 | |
| /*
 | |
|  * Work out the current dirty-memory clamping and background writeout
 | |
|  * thresholds.
 | |
|  *
 | |
|  * The main aim here is to lower them aggressively if there is a lot of mapped
 | |
|  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 | |
|  * pages.  It is better to clamp down on writers than to start swapping, and
 | |
|  * performing lots of scanning.
 | |
|  *
 | |
|  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 | |
|  *
 | |
|  * We don't permit the clamping level to fall below 5% - that is getting rather
 | |
|  * excessive.
 | |
|  *
 | |
|  * We make sure that the background writeout level is below the adjusted
 | |
|  * clamping level.
 | |
|  */
 | |
| static void
 | |
| get_dirty_limits(long *pbackground, long *pdirty,
 | |
| 					struct address_space *mapping)
 | |
| {
 | |
| 	int background_ratio;		/* Percentages */
 | |
| 	int dirty_ratio;
 | |
| 	int unmapped_ratio;
 | |
| 	long background;
 | |
| 	long dirty;
 | |
| 	unsigned long available_memory = vm_total_pages;
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	/*
 | |
| 	 * If this mapping can only allocate from low memory,
 | |
| 	 * we exclude high memory from our count.
 | |
| 	 */
 | |
| 	if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
 | |
| 		available_memory -= totalhigh_pages;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
 | |
| 				global_page_state(NR_ANON_PAGES)) * 100) /
 | |
| 					vm_total_pages;
 | |
| 
 | |
| 	dirty_ratio = vm_dirty_ratio;
 | |
| 	if (dirty_ratio > unmapped_ratio / 2)
 | |
| 		dirty_ratio = unmapped_ratio / 2;
 | |
| 
 | |
| 	if (dirty_ratio < 5)
 | |
| 		dirty_ratio = 5;
 | |
| 
 | |
| 	background_ratio = dirty_background_ratio;
 | |
| 	if (background_ratio >= dirty_ratio)
 | |
| 		background_ratio = dirty_ratio / 2;
 | |
| 
 | |
| 	background = (background_ratio * available_memory) / 100;
 | |
| 	dirty = (dirty_ratio * available_memory) / 100;
 | |
| 	tsk = current;
 | |
| 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 | |
| 		background += background / 4;
 | |
| 		dirty += dirty / 4;
 | |
| 	}
 | |
| 	*pbackground = background;
 | |
| 	*pdirty = dirty;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * balance_dirty_pages() must be called by processes which are generating dirty
 | |
|  * data.  It looks at the number of dirty pages in the machine and will force
 | |
|  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 | |
|  * If we're over `background_thresh' then pdflush is woken to perform some
 | |
|  * writeout.
 | |
|  */
 | |
| static void balance_dirty_pages(struct address_space *mapping)
 | |
| {
 | |
| 	long nr_reclaimable;
 | |
| 	long background_thresh;
 | |
| 	long dirty_thresh;
 | |
| 	unsigned long pages_written = 0;
 | |
| 	unsigned long write_chunk = sync_writeback_pages();
 | |
| 
 | |
| 	struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct writeback_control wbc = {
 | |
| 			.bdi		= bdi,
 | |
| 			.sync_mode	= WB_SYNC_NONE,
 | |
| 			.older_than_this = NULL,
 | |
| 			.nr_to_write	= write_chunk,
 | |
| 			.range_cyclic	= 1,
 | |
| 		};
 | |
| 
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
 | |
| 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 | |
| 					global_page_state(NR_UNSTABLE_NFS);
 | |
| 		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
 | |
| 			dirty_thresh)
 | |
| 				break;
 | |
| 
 | |
| 		if (!dirty_exceeded)
 | |
| 			dirty_exceeded = 1;
 | |
| 
 | |
| 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 | |
| 		 * Unstable writes are a feature of certain networked
 | |
| 		 * filesystems (i.e. NFS) in which data may have been
 | |
| 		 * written to the server's write cache, but has not yet
 | |
| 		 * been flushed to permanent storage.
 | |
| 		 */
 | |
| 		if (nr_reclaimable) {
 | |
| 			writeback_inodes(&wbc);
 | |
| 			get_dirty_limits(&background_thresh,
 | |
| 					 	&dirty_thresh, mapping);
 | |
| 			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 | |
| 					global_page_state(NR_UNSTABLE_NFS);
 | |
| 			if (nr_reclaimable +
 | |
| 				global_page_state(NR_WRITEBACK)
 | |
| 					<= dirty_thresh)
 | |
| 						break;
 | |
| 			pages_written += write_chunk - wbc.nr_to_write;
 | |
| 			if (pages_written >= write_chunk)
 | |
| 				break;		/* We've done our duty */
 | |
| 		}
 | |
| 		congestion_wait(WRITE, HZ/10);
 | |
| 	}
 | |
| 
 | |
| 	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
 | |
| 		<= dirty_thresh && dirty_exceeded)
 | |
| 			dirty_exceeded = 0;
 | |
| 
 | |
| 	if (writeback_in_progress(bdi))
 | |
| 		return;		/* pdflush is already working this queue */
 | |
| 
 | |
| 	/*
 | |
| 	 * In laptop mode, we wait until hitting the higher threshold before
 | |
| 	 * starting background writeout, and then write out all the way down
 | |
| 	 * to the lower threshold.  So slow writers cause minimal disk activity.
 | |
| 	 *
 | |
| 	 * In normal mode, we start background writeout at the lower
 | |
| 	 * background_thresh, to keep the amount of dirty memory low.
 | |
| 	 */
 | |
| 	if ((laptop_mode && pages_written) ||
 | |
| 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
 | |
| 		pdflush_operation(background_writeout, 0);
 | |
| }
 | |
| 
 | |
| void set_page_dirty_balance(struct page *page)
 | |
| {
 | |
| 	if (set_page_dirty(page)) {
 | |
| 		struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 		if (mapping)
 | |
| 			balance_dirty_pages_ratelimited(mapping);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 | |
|  * @mapping: address_space which was dirtied
 | |
|  * @nr_pages_dirtied: number of pages which the caller has just dirtied
 | |
|  *
 | |
|  * Processes which are dirtying memory should call in here once for each page
 | |
|  * which was newly dirtied.  The function will periodically check the system's
 | |
|  * dirty state and will initiate writeback if needed.
 | |
|  *
 | |
|  * On really big machines, get_writeback_state is expensive, so try to avoid
 | |
|  * calling it too often (ratelimiting).  But once we're over the dirty memory
 | |
|  * limit we decrease the ratelimiting by a lot, to prevent individual processes
 | |
|  * from overshooting the limit by (ratelimit_pages) each.
 | |
|  */
 | |
| void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 | |
| 					unsigned long nr_pages_dirtied)
 | |
| {
 | |
| 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
 | |
| 	unsigned long ratelimit;
 | |
| 	unsigned long *p;
 | |
| 
 | |
| 	ratelimit = ratelimit_pages;
 | |
| 	if (dirty_exceeded)
 | |
| 		ratelimit = 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the rate limiting. Also, we do not want to throttle real-time
 | |
| 	 * tasks in balance_dirty_pages(). Period.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	p =  &__get_cpu_var(ratelimits);
 | |
| 	*p += nr_pages_dirtied;
 | |
| 	if (unlikely(*p >= ratelimit)) {
 | |
| 		*p = 0;
 | |
| 		preempt_enable();
 | |
| 		balance_dirty_pages(mapping);
 | |
| 		return;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 | |
| 
 | |
| void throttle_vm_writeout(void)
 | |
| {
 | |
| 	long background_thresh;
 | |
| 	long dirty_thresh;
 | |
| 
 | |
|         for ( ; ; ) {
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
 | |
| 
 | |
|                 /*
 | |
|                  * Boost the allowable dirty threshold a bit for page
 | |
|                  * allocators so they don't get DoS'ed by heavy writers
 | |
|                  */
 | |
|                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 | |
| 
 | |
|                 if (global_page_state(NR_UNSTABLE_NFS) +
 | |
| 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
 | |
|                         	break;
 | |
|                 congestion_wait(WRITE, HZ/10);
 | |
|         }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * writeback at least _min_pages, and keep writing until the amount of dirty
 | |
|  * memory is less than the background threshold, or until we're all clean.
 | |
|  */
 | |
| static void background_writeout(unsigned long _min_pages)
 | |
| {
 | |
| 	long min_pages = _min_pages;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.bdi		= NULL,
 | |
| 		.sync_mode	= WB_SYNC_NONE,
 | |
| 		.older_than_this = NULL,
 | |
| 		.nr_to_write	= 0,
 | |
| 		.nonblocking	= 1,
 | |
| 		.range_cyclic	= 1,
 | |
| 	};
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		long background_thresh;
 | |
| 		long dirty_thresh;
 | |
| 
 | |
| 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
 | |
| 		if (global_page_state(NR_FILE_DIRTY) +
 | |
| 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
 | |
| 				&& min_pages <= 0)
 | |
| 			break;
 | |
| 		wbc.encountered_congestion = 0;
 | |
| 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 | |
| 		wbc.pages_skipped = 0;
 | |
| 		writeback_inodes(&wbc);
 | |
| 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 | |
| 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
 | |
| 			/* Wrote less than expected */
 | |
| 			congestion_wait(WRITE, HZ/10);
 | |
| 			if (!wbc.encountered_congestion)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 | |
|  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
 | |
|  * -1 if all pdflush threads were busy.
 | |
|  */
 | |
| int wakeup_pdflush(long nr_pages)
 | |
| {
 | |
| 	if (nr_pages == 0)
 | |
| 		nr_pages = global_page_state(NR_FILE_DIRTY) +
 | |
| 				global_page_state(NR_UNSTABLE_NFS);
 | |
| 	return pdflush_operation(background_writeout, nr_pages);
 | |
| }
 | |
| 
 | |
| static void wb_timer_fn(unsigned long unused);
 | |
| static void laptop_timer_fn(unsigned long unused);
 | |
| 
 | |
| static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
 | |
| static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
 | |
| 
 | |
| /*
 | |
|  * Periodic writeback of "old" data.
 | |
|  *
 | |
|  * Define "old": the first time one of an inode's pages is dirtied, we mark the
 | |
|  * dirtying-time in the inode's address_space.  So this periodic writeback code
 | |
|  * just walks the superblock inode list, writing back any inodes which are
 | |
|  * older than a specific point in time.
 | |
|  *
 | |
|  * Try to run once per dirty_writeback_interval.  But if a writeback event
 | |
|  * takes longer than a dirty_writeback_interval interval, then leave a
 | |
|  * one-second gap.
 | |
|  *
 | |
|  * older_than_this takes precedence over nr_to_write.  So we'll only write back
 | |
|  * all dirty pages if they are all attached to "old" mappings.
 | |
|  */
 | |
| static void wb_kupdate(unsigned long arg)
 | |
| {
 | |
| 	unsigned long oldest_jif;
 | |
| 	unsigned long start_jif;
 | |
| 	unsigned long next_jif;
 | |
| 	long nr_to_write;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.bdi		= NULL,
 | |
| 		.sync_mode	= WB_SYNC_NONE,
 | |
| 		.older_than_this = &oldest_jif,
 | |
| 		.nr_to_write	= 0,
 | |
| 		.nonblocking	= 1,
 | |
| 		.for_kupdate	= 1,
 | |
| 		.range_cyclic	= 1,
 | |
| 	};
 | |
| 
 | |
| 	sync_supers();
 | |
| 
 | |
| 	oldest_jif = jiffies - dirty_expire_interval;
 | |
| 	start_jif = jiffies;
 | |
| 	next_jif = start_jif + dirty_writeback_interval;
 | |
| 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
 | |
| 			global_page_state(NR_UNSTABLE_NFS) +
 | |
| 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
 | |
| 	while (nr_to_write > 0) {
 | |
| 		wbc.encountered_congestion = 0;
 | |
| 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 | |
| 		writeback_inodes(&wbc);
 | |
| 		if (wbc.nr_to_write > 0) {
 | |
| 			if (wbc.encountered_congestion)
 | |
| 				congestion_wait(WRITE, HZ/10);
 | |
| 			else
 | |
| 				break;	/* All the old data is written */
 | |
| 		}
 | |
| 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 | |
| 	}
 | |
| 	if (time_before(next_jif, jiffies + HZ))
 | |
| 		next_jif = jiffies + HZ;
 | |
| 	if (dirty_writeback_interval)
 | |
| 		mod_timer(&wb_timer, next_jif);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 | |
|  */
 | |
| int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 | |
| 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
 | |
| 	if (dirty_writeback_interval) {
 | |
| 		mod_timer(&wb_timer,
 | |
| 			jiffies + dirty_writeback_interval);
 | |
| 		} else {
 | |
| 		del_timer(&wb_timer);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void wb_timer_fn(unsigned long unused)
 | |
| {
 | |
| 	if (pdflush_operation(wb_kupdate, 0) < 0)
 | |
| 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
 | |
| }
 | |
| 
 | |
| static void laptop_flush(unsigned long unused)
 | |
| {
 | |
| 	sys_sync();
 | |
| }
 | |
| 
 | |
| static void laptop_timer_fn(unsigned long unused)
 | |
| {
 | |
| 	pdflush_operation(laptop_flush, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We've spun up the disk and we're in laptop mode: schedule writeback
 | |
|  * of all dirty data a few seconds from now.  If the flush is already scheduled
 | |
|  * then push it back - the user is still using the disk.
 | |
|  */
 | |
| void laptop_io_completion(void)
 | |
| {
 | |
| 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're in laptop mode and we've just synced. The sync's writes will have
 | |
|  * caused another writeback to be scheduled by laptop_io_completion.
 | |
|  * Nothing needs to be written back anymore, so we unschedule the writeback.
 | |
|  */
 | |
| void laptop_sync_completion(void)
 | |
| {
 | |
| 	del_timer(&laptop_mode_wb_timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If ratelimit_pages is too high then we can get into dirty-data overload
 | |
|  * if a large number of processes all perform writes at the same time.
 | |
|  * If it is too low then SMP machines will call the (expensive)
 | |
|  * get_writeback_state too often.
 | |
|  *
 | |
|  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 | |
|  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 | |
|  * thresholds before writeback cuts in.
 | |
|  *
 | |
|  * But the limit should not be set too high.  Because it also controls the
 | |
|  * amount of memory which the balance_dirty_pages() caller has to write back.
 | |
|  * If this is too large then the caller will block on the IO queue all the
 | |
|  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 | |
|  * will write six megabyte chunks, max.
 | |
|  */
 | |
| 
 | |
| void writeback_set_ratelimit(void)
 | |
| {
 | |
| 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 | |
| 	if (ratelimit_pages < 16)
 | |
| 		ratelimit_pages = 16;
 | |
| 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 | |
| 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 | |
| }
 | |
| 
 | |
| static int __cpuinit
 | |
| ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 | |
| {
 | |
| 	writeback_set_ratelimit();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata ratelimit_nb = {
 | |
| 	.notifier_call	= ratelimit_handler,
 | |
| 	.next		= NULL,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * If the machine has a large highmem:lowmem ratio then scale back the default
 | |
|  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
 | |
|  * number of buffer_heads.
 | |
|  */
 | |
| void __init page_writeback_init(void)
 | |
| {
 | |
| 	long buffer_pages = nr_free_buffer_pages();
 | |
| 	long correction;
 | |
| 
 | |
| 	correction = (100 * 4 * buffer_pages) / vm_total_pages;
 | |
| 
 | |
| 	if (correction < 100) {
 | |
| 		dirty_background_ratio *= correction;
 | |
| 		dirty_background_ratio /= 100;
 | |
| 		vm_dirty_ratio *= correction;
 | |
| 		vm_dirty_ratio /= 100;
 | |
| 
 | |
| 		if (dirty_background_ratio <= 0)
 | |
| 			dirty_background_ratio = 1;
 | |
| 		if (vm_dirty_ratio <= 0)
 | |
| 			vm_dirty_ratio = 1;
 | |
| 	}
 | |
| 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
 | |
| 	writeback_set_ratelimit();
 | |
| 	register_cpu_notifier(&ratelimit_nb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * generic_writepages - walk the list of dirty pages of the given
 | |
|  *                      address space and writepage() all of them.
 | |
|  *
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  *
 | |
|  * This is a library function, which implements the writepages()
 | |
|  * address_space_operation.
 | |
|  *
 | |
|  * If a page is already under I/O, generic_writepages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  *
 | |
|  * Derived from mpage_writepages() - if you fix this you should check that
 | |
|  * also!
 | |
|  */
 | |
| int generic_writepages(struct address_space *mapping,
 | |
| 		       struct writeback_control *wbc)
 | |
| {
 | |
| 	struct backing_dev_info *bdi = mapping->backing_dev_info;
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int (*writepage)(struct page *page, struct writeback_control *wbc);
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	int scanned = 0;
 | |
| 	int range_whole = 0;
 | |
| 
 | |
| 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
 | |
| 		wbc->encountered_congestion = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	writepage = mapping->a_ops->writepage;
 | |
| 
 | |
| 	/* deal with chardevs and other special file */
 | |
| 	if (!writepage)
 | |
| 		return 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* Start from prev offset */
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 | |
| 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 | |
| 			range_whole = 1;
 | |
| 		scanned = 1;
 | |
| 	}
 | |
| retry:
 | |
| 	while (!done && (index <= end) &&
 | |
| 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 					      PAGECACHE_TAG_DIRTY,
 | |
| 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		scanned = 1;
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/*
 | |
| 			 * At this point we hold neither mapping->tree_lock nor
 | |
| 			 * lock on the page itself: the page may be truncated or
 | |
| 			 * invalidated (changing page->mapping to NULL), or even
 | |
| 			 * swizzled back from swapper_space to tmpfs file
 | |
| 			 * mapping
 | |
| 			 */
 | |
| 			lock_page(page);
 | |
| 
 | |
| 			if (unlikely(page->mapping != mapping)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!wbc->range_cyclic && page->index > end) {
 | |
| 				done = 1;
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (wbc->sync_mode != WB_SYNC_NONE)
 | |
| 				wait_on_page_writeback(page);
 | |
| 
 | |
| 			if (PageWriteback(page) ||
 | |
| 			    !clear_page_dirty_for_io(page)) {
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = (*writepage)(page, wbc);
 | |
| 			if (ret) {
 | |
| 				if (ret == -ENOSPC)
 | |
| 					set_bit(AS_ENOSPC, &mapping->flags);
 | |
| 				else
 | |
| 					set_bit(AS_EIO, &mapping->flags);
 | |
| 			}
 | |
| 
 | |
| 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
 | |
| 				unlock_page(page);
 | |
| 			if (ret || (--(wbc->nr_to_write) <= 0))
 | |
| 				done = 1;
 | |
| 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
 | |
| 				wbc->encountered_congestion = 1;
 | |
| 				done = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	if (!scanned && !done) {
 | |
| 		/*
 | |
| 		 * We hit the last page and there is more work to be done: wrap
 | |
| 		 * back to the start of the file
 | |
| 		 */
 | |
| 		scanned = 1;
 | |
| 		index = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 | |
| 		mapping->writeback_index = index;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_writepages);
 | |
| 
 | |
| int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (wbc->nr_to_write <= 0)
 | |
| 		return 0;
 | |
| 	wbc->for_writepages = 1;
 | |
| 	if (mapping->a_ops->writepages)
 | |
| 		ret = mapping->a_ops->writepages(mapping, wbc);
 | |
| 	else
 | |
| 		ret = generic_writepages(mapping, wbc);
 | |
| 	wbc->for_writepages = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_one_page - write out a single page and optionally wait on I/O
 | |
|  *
 | |
|  * @page: the page to write
 | |
|  * @wait: if true, wait on writeout
 | |
|  *
 | |
|  * The page must be locked by the caller and will be unlocked upon return.
 | |
|  *
 | |
|  * write_one_page() returns a negative error code if I/O failed.
 | |
|  */
 | |
| int write_one_page(struct page *page, int wait)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	int ret = 0;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = 1,
 | |
| 	};
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	if (wait)
 | |
| 		wait_on_page_writeback(page);
 | |
| 
 | |
| 	if (clear_page_dirty_for_io(page)) {
 | |
| 		page_cache_get(page);
 | |
| 		ret = mapping->a_ops->writepage(page, &wbc);
 | |
| 		if (ret == 0 && wait) {
 | |
| 			wait_on_page_writeback(page);
 | |
| 			if (PageError(page))
 | |
| 				ret = -EIO;
 | |
| 		}
 | |
| 		page_cache_release(page);
 | |
| 	} else {
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(write_one_page);
 | |
| 
 | |
| /*
 | |
|  * For address_spaces which do not use buffers.  Just tag the page as dirty in
 | |
|  * its radix tree.
 | |
|  *
 | |
|  * This is also used when a single buffer is being dirtied: we want to set the
 | |
|  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 | |
|  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 | |
|  *
 | |
|  * Most callers have locked the page, which pins the address_space in memory.
 | |
|  * But zap_pte_range() does not lock the page, however in that case the
 | |
|  * mapping is pinned by the vma's ->vm_file reference.
 | |
|  *
 | |
|  * We take care to handle the case where the page was truncated from the
 | |
|  * mapping by re-checking page_mapping() insode tree_lock.
 | |
|  */
 | |
| int __set_page_dirty_nobuffers(struct page *page)
 | |
| {
 | |
| 	if (!TestSetPageDirty(page)) {
 | |
| 		struct address_space *mapping = page_mapping(page);
 | |
| 		struct address_space *mapping2;
 | |
| 
 | |
| 		if (mapping) {
 | |
| 			write_lock_irq(&mapping->tree_lock);
 | |
| 			mapping2 = page_mapping(page);
 | |
| 			if (mapping2) { /* Race with truncate? */
 | |
| 				BUG_ON(mapping2 != mapping);
 | |
| 				if (mapping_cap_account_dirty(mapping))
 | |
| 					__inc_zone_page_state(page,
 | |
| 								NR_FILE_DIRTY);
 | |
| 				radix_tree_tag_set(&mapping->page_tree,
 | |
| 					page_index(page), PAGECACHE_TAG_DIRTY);
 | |
| 			}
 | |
| 			write_unlock_irq(&mapping->tree_lock);
 | |
| 			if (mapping->host) {
 | |
| 				/* !PageAnon && !swapper_space */
 | |
| 				__mark_inode_dirty(mapping->host,
 | |
| 							I_DIRTY_PAGES);
 | |
| 			}
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__set_page_dirty_nobuffers);
 | |
| 
 | |
| /*
 | |
|  * When a writepage implementation decides that it doesn't want to write this
 | |
|  * page for some reason, it should redirty the locked page via
 | |
|  * redirty_page_for_writepage() and it should then unlock the page and return 0
 | |
|  */
 | |
| int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
 | |
| {
 | |
| 	wbc->pages_skipped++;
 | |
| 	return __set_page_dirty_nobuffers(page);
 | |
| }
 | |
| EXPORT_SYMBOL(redirty_page_for_writepage);
 | |
| 
 | |
| /*
 | |
|  * If the mapping doesn't provide a set_page_dirty a_op, then
 | |
|  * just fall through and assume that it wants buffer_heads.
 | |
|  */
 | |
| int fastcall set_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 	if (likely(mapping)) {
 | |
| 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
 | |
| #ifdef CONFIG_BLOCK
 | |
| 		if (!spd)
 | |
| 			spd = __set_page_dirty_buffers;
 | |
| #endif
 | |
| 		return (*spd)(page);
 | |
| 	}
 | |
| 	if (!PageDirty(page)) {
 | |
| 		if (!TestSetPageDirty(page))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_page_dirty);
 | |
| 
 | |
| /*
 | |
|  * set_page_dirty() is racy if the caller has no reference against
 | |
|  * page->mapping->host, and if the page is unlocked.  This is because another
 | |
|  * CPU could truncate the page off the mapping and then free the mapping.
 | |
|  *
 | |
|  * Usually, the page _is_ locked, or the caller is a user-space process which
 | |
|  * holds a reference on the inode by having an open file.
 | |
|  *
 | |
|  * In other cases, the page should be locked before running set_page_dirty().
 | |
|  */
 | |
| int set_page_dirty_lock(struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_page_nosync(page);
 | |
| 	ret = set_page_dirty(page);
 | |
| 	unlock_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_page_dirty_lock);
 | |
| 
 | |
| /*
 | |
|  * Clear a page's dirty flag, while caring for dirty memory accounting. 
 | |
|  * Returns true if the page was previously dirty.
 | |
|  */
 | |
| int test_clear_page_dirty(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		write_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		if (TestClearPageDirty(page)) {
 | |
| 			radix_tree_tag_clear(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_DIRTY);
 | |
| 			write_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 			/*
 | |
| 			 * We can continue to use `mapping' here because the
 | |
| 			 * page is locked, which pins the address_space
 | |
| 			 */
 | |
| 			if (mapping_cap_account_dirty(mapping)) {
 | |
| 				page_mkclean(page);
 | |
| 				dec_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 		write_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return TestClearPageDirty(page);
 | |
| }
 | |
| EXPORT_SYMBOL(test_clear_page_dirty);
 | |
| 
 | |
| /*
 | |
|  * Clear a page's dirty flag, while caring for dirty memory accounting.
 | |
|  * Returns true if the page was previously dirty.
 | |
|  *
 | |
|  * This is for preparing to put the page under writeout.  We leave the page
 | |
|  * tagged as dirty in the radix tree so that a concurrent write-for-sync
 | |
|  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 | |
|  * implementation will run either set_page_writeback() or set_page_dirty(),
 | |
|  * at which stage we bring the page's dirty flag and radix-tree dirty tag
 | |
|  * back into sync.
 | |
|  *
 | |
|  * This incoherency between the page's dirty flag and radix-tree tag is
 | |
|  * unfortunate, but it only exists while the page is locked.
 | |
|  */
 | |
| int clear_page_dirty_for_io(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		if (TestClearPageDirty(page)) {
 | |
| 			if (mapping_cap_account_dirty(mapping)) {
 | |
| 				page_mkclean(page);
 | |
| 				dec_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 			}
 | |
| 			return 1;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return TestClearPageDirty(page);
 | |
| }
 | |
| EXPORT_SYMBOL(clear_page_dirty_for_io);
 | |
| 
 | |
| int test_clear_page_writeback(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		write_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		ret = TestClearPageWriteback(page);
 | |
| 		if (ret)
 | |
| 			radix_tree_tag_clear(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_WRITEBACK);
 | |
| 		write_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 	} else {
 | |
| 		ret = TestClearPageWriteback(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int test_set_page_writeback(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mapping) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		write_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 		ret = TestSetPageWriteback(page);
 | |
| 		if (!ret)
 | |
| 			radix_tree_tag_set(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_WRITEBACK);
 | |
| 		if (!PageDirty(page))
 | |
| 			radix_tree_tag_clear(&mapping->page_tree,
 | |
| 						page_index(page),
 | |
| 						PAGECACHE_TAG_DIRTY);
 | |
| 		write_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 	} else {
 | |
| 		ret = TestSetPageWriteback(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(test_set_page_writeback);
 | |
| 
 | |
| /*
 | |
|  * Return true if any of the pages in the mapping are marged with the
 | |
|  * passed tag.
 | |
|  */
 | |
| int mapping_tagged(struct address_space *mapping, int tag)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	read_lock_irqsave(&mapping->tree_lock, flags);
 | |
| 	ret = radix_tree_tagged(&mapping->page_tree, tag);
 | |
| 	read_unlock_irqrestore(&mapping->tree_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(mapping_tagged);
 |