mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 22:26:12 +00:00 
			
		
		
		
	 6993974997
			
		
	
	
		6993974997
		
	
	
	
	
		
			
			With CONFIG_MIGRATION=n mm/mempolicy.c: In function 'do_mbind': mm/mempolicy.c:796: warning: passing argument 2 of 'migrate_pages' from incompatible pointer type Signed-off-by: Keith Owens <kaos@ocs.com.au> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			1910 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1910 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Simple NUMA memory policy for the Linux kernel.
 | |
|  *
 | |
|  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
 | |
|  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 | |
|  * Subject to the GNU Public License, version 2.
 | |
|  *
 | |
|  * NUMA policy allows the user to give hints in which node(s) memory should
 | |
|  * be allocated.
 | |
|  *
 | |
|  * Support four policies per VMA and per process:
 | |
|  *
 | |
|  * The VMA policy has priority over the process policy for a page fault.
 | |
|  *
 | |
|  * interleave     Allocate memory interleaved over a set of nodes,
 | |
|  *                with normal fallback if it fails.
 | |
|  *                For VMA based allocations this interleaves based on the
 | |
|  *                offset into the backing object or offset into the mapping
 | |
|  *                for anonymous memory. For process policy an process counter
 | |
|  *                is used.
 | |
|  *
 | |
|  * bind           Only allocate memory on a specific set of nodes,
 | |
|  *                no fallback.
 | |
|  *                FIXME: memory is allocated starting with the first node
 | |
|  *                to the last. It would be better if bind would truly restrict
 | |
|  *                the allocation to memory nodes instead
 | |
|  *
 | |
|  * preferred       Try a specific node first before normal fallback.
 | |
|  *                As a special case node -1 here means do the allocation
 | |
|  *                on the local CPU. This is normally identical to default,
 | |
|  *                but useful to set in a VMA when you have a non default
 | |
|  *                process policy.
 | |
|  *
 | |
|  * default        Allocate on the local node first, or when on a VMA
 | |
|  *                use the process policy. This is what Linux always did
 | |
|  *		  in a NUMA aware kernel and still does by, ahem, default.
 | |
|  *
 | |
|  * The process policy is applied for most non interrupt memory allocations
 | |
|  * in that process' context. Interrupts ignore the policies and always
 | |
|  * try to allocate on the local CPU. The VMA policy is only applied for memory
 | |
|  * allocations for a VMA in the VM.
 | |
|  *
 | |
|  * Currently there are a few corner cases in swapping where the policy
 | |
|  * is not applied, but the majority should be handled. When process policy
 | |
|  * is used it is not remembered over swap outs/swap ins.
 | |
|  *
 | |
|  * Only the highest zone in the zone hierarchy gets policied. Allocations
 | |
|  * requesting a lower zone just use default policy. This implies that
 | |
|  * on systems with highmem kernel lowmem allocation don't get policied.
 | |
|  * Same with GFP_DMA allocations.
 | |
|  *
 | |
|  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
 | |
|  * all users and remembered even when nobody has memory mapped.
 | |
|  */
 | |
| 
 | |
| /* Notebook:
 | |
|    fix mmap readahead to honour policy and enable policy for any page cache
 | |
|    object
 | |
|    statistics for bigpages
 | |
|    global policy for page cache? currently it uses process policy. Requires
 | |
|    first item above.
 | |
|    handle mremap for shared memory (currently ignored for the policy)
 | |
|    grows down?
 | |
|    make bind policy root only? It can trigger oom much faster and the
 | |
|    kernel is not always grateful with that.
 | |
|    could replace all the switch()es with a mempolicy_ops structure.
 | |
| */
 | |
| 
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/security.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /* Internal flags */
 | |
| #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 | |
| #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 | |
| #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2)		/* Gather statistics */
 | |
| 
 | |
| static struct kmem_cache *policy_cache;
 | |
| static struct kmem_cache *sn_cache;
 | |
| 
 | |
| #define PDprintk(fmt...)
 | |
| 
 | |
| /* Highest zone. An specific allocation for a zone below that is not
 | |
|    policied. */
 | |
| enum zone_type policy_zone = ZONE_DMA;
 | |
| 
 | |
| struct mempolicy default_policy = {
 | |
| 	.refcnt = ATOMIC_INIT(1), /* never free it */
 | |
| 	.policy = MPOL_DEFAULT,
 | |
| };
 | |
| 
 | |
| /* Do sanity checking on a policy */
 | |
| static int mpol_check_policy(int mode, nodemask_t *nodes)
 | |
| {
 | |
| 	int empty = nodes_empty(*nodes);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 		if (!empty)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		/* Preferred will only use the first bit, but allow
 | |
| 		   more for now. */
 | |
| 		if (empty)
 | |
| 			return -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
 | |
| }
 | |
| 
 | |
| /* Generate a custom zonelist for the BIND policy. */
 | |
| static struct zonelist *bind_zonelist(nodemask_t *nodes)
 | |
| {
 | |
| 	struct zonelist *zl;
 | |
| 	int num, max, nd;
 | |
| 	enum zone_type k;
 | |
| 
 | |
| 	max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
 | |
| 	zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
 | |
| 	if (!zl)
 | |
| 		return NULL;
 | |
| 	num = 0;
 | |
| 	/* First put in the highest zones from all nodes, then all the next 
 | |
| 	   lower zones etc. Avoid empty zones because the memory allocator
 | |
| 	   doesn't like them. If you implement node hot removal you
 | |
| 	   have to fix that. */
 | |
| 	k = policy_zone;
 | |
| 	while (1) {
 | |
| 		for_each_node_mask(nd, *nodes) { 
 | |
| 			struct zone *z = &NODE_DATA(nd)->node_zones[k];
 | |
| 			if (z->present_pages > 0) 
 | |
| 				zl->zones[num++] = z;
 | |
| 		}
 | |
| 		if (k == 0)
 | |
| 			break;
 | |
| 		k--;
 | |
| 	}
 | |
| 	zl->zones[num] = NULL;
 | |
| 	return zl;
 | |
| }
 | |
| 
 | |
| /* Create a new policy */
 | |
| static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *policy;
 | |
| 
 | |
| 	PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
 | |
| 	if (mode == MPOL_DEFAULT)
 | |
| 		return NULL;
 | |
| 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 	if (!policy)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	atomic_set(&policy->refcnt, 1);
 | |
| 	switch (mode) {
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		policy->v.nodes = *nodes;
 | |
| 		if (nodes_weight(*nodes) == 0) {
 | |
| 			kmem_cache_free(policy_cache, policy);
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		}
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED:
 | |
| 		policy->v.preferred_node = first_node(*nodes);
 | |
| 		if (policy->v.preferred_node >= MAX_NUMNODES)
 | |
| 			policy->v.preferred_node = -1;
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 		policy->v.zonelist = bind_zonelist(nodes);
 | |
| 		if (policy->v.zonelist == NULL) {
 | |
| 			kmem_cache_free(policy_cache, policy);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	policy->policy = mode;
 | |
| 	policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
 | |
| 	return policy;
 | |
| }
 | |
| 
 | |
| static void gather_stats(struct page *, void *, int pte_dirty);
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags);
 | |
| 
 | |
| /* Scan through pages checking if pages follow certain conditions. */
 | |
| static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pte_t *orig_pte;
 | |
| 	pte_t *pte;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		unsigned int nid;
 | |
| 
 | |
| 		if (!pte_present(*pte))
 | |
| 			continue;
 | |
| 		page = vm_normal_page(vma, addr, *pte);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * The check for PageReserved here is important to avoid
 | |
| 		 * handling zero pages and other pages that may have been
 | |
| 		 * marked special by the system.
 | |
| 		 *
 | |
| 		 * If the PageReserved would not be checked here then f.e.
 | |
| 		 * the location of the zero page could have an influence
 | |
| 		 * on MPOL_MF_STRICT, zero pages would be counted for
 | |
| 		 * the per node stats, and there would be useless attempts
 | |
| 		 * to put zero pages on the migration list.
 | |
| 		 */
 | |
| 		if (PageReserved(page))
 | |
| 			continue;
 | |
| 		nid = page_to_nid(page);
 | |
| 		if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 | |
| 			continue;
 | |
| 
 | |
| 		if (flags & MPOL_MF_STATS)
 | |
| 			gather_stats(page, private, pte_dirty(*pte));
 | |
| 		else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 			migrate_page_add(page, private, flags);
 | |
| 		else
 | |
| 			break;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap_unlock(orig_pte, ptl);
 | |
| 	return addr != end;
 | |
| }
 | |
| 
 | |
| static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		if (check_pte_range(vma, pmd, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		if (check_pmd_range(vma, pud, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int check_pgd_range(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags,
 | |
| 		void *private)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		if (check_pud_range(vma, pgd, addr, next, nodes,
 | |
| 				    flags, private))
 | |
| 			return -EIO;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Check if a vma is migratable */
 | |
| static inline int vma_migratable(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_flags & (
 | |
| 		VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if all pages in a range are on a set of nodes.
 | |
|  * If pagelist != NULL then isolate pages from the LRU and
 | |
|  * put them on the pagelist.
 | |
|  */
 | |
| static struct vm_area_struct *
 | |
| check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 | |
| 		const nodemask_t *nodes, unsigned long flags, void *private)
 | |
| {
 | |
| 	int err;
 | |
| 	struct vm_area_struct *first, *vma, *prev;
 | |
| 
 | |
| 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 | |
| 
 | |
| 		err = migrate_prep();
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	first = find_vma(mm, start);
 | |
| 	if (!first)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	prev = NULL;
 | |
| 	for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 | |
| 		if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 | |
| 			if (!vma->vm_next && vma->vm_end < end)
 | |
| 				return ERR_PTR(-EFAULT);
 | |
| 			if (prev && prev->vm_end < vma->vm_start)
 | |
| 				return ERR_PTR(-EFAULT);
 | |
| 		}
 | |
| 		if (!is_vm_hugetlb_page(vma) &&
 | |
| 		    ((flags & MPOL_MF_STRICT) ||
 | |
| 		     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 | |
| 				vma_migratable(vma)))) {
 | |
| 			unsigned long endvma = vma->vm_end;
 | |
| 
 | |
| 			if (endvma > end)
 | |
| 				endvma = end;
 | |
| 			if (vma->vm_start > start)
 | |
| 				start = vma->vm_start;
 | |
| 			err = check_pgd_range(vma, start, endvma, nodes,
 | |
| 						flags, private);
 | |
| 			if (err) {
 | |
| 				first = ERR_PTR(err);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		prev = vma;
 | |
| 	}
 | |
| 	return first;
 | |
| }
 | |
| 
 | |
| /* Apply policy to a single VMA */
 | |
| static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct mempolicy *old = vma->vm_policy;
 | |
| 
 | |
| 	PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 | |
| 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 | |
| 		 vma->vm_ops, vma->vm_file,
 | |
| 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 | |
| 
 | |
| 	if (vma->vm_ops && vma->vm_ops->set_policy)
 | |
| 		err = vma->vm_ops->set_policy(vma, new);
 | |
| 	if (!err) {
 | |
| 		mpol_get(new);
 | |
| 		vma->vm_policy = new;
 | |
| 		mpol_free(old);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Step 2: apply policy to a range and do splits. */
 | |
| static int mbind_range(struct vm_area_struct *vma, unsigned long start,
 | |
| 		       unsigned long end, struct mempolicy *new)
 | |
| {
 | |
| 	struct vm_area_struct *next;
 | |
| 	int err;
 | |
| 
 | |
| 	err = 0;
 | |
| 	for (; vma && vma->vm_start < end; vma = next) {
 | |
| 		next = vma->vm_next;
 | |
| 		if (vma->vm_start < start)
 | |
| 			err = split_vma(vma->vm_mm, vma, start, 1);
 | |
| 		if (!err && vma->vm_end > end)
 | |
| 			err = split_vma(vma->vm_mm, vma, end, 0);
 | |
| 		if (!err)
 | |
| 			err = policy_vma(vma, new);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int contextualize_policy(int mode, nodemask_t *nodes)
 | |
| {
 | |
| 	if (!nodes)
 | |
| 		return 0;
 | |
| 
 | |
| 	cpuset_update_task_memory_state();
 | |
| 	if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
 | |
| 		return -EINVAL;
 | |
| 	return mpol_check_policy(mode, nodes);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Update task->flags PF_MEMPOLICY bit: set iff non-default
 | |
|  * mempolicy.  Allows more rapid checking of this (combined perhaps
 | |
|  * with other PF_* flag bits) on memory allocation hot code paths.
 | |
|  *
 | |
|  * If called from outside this file, the task 'p' should -only- be
 | |
|  * a newly forked child not yet visible on the task list, because
 | |
|  * manipulating the task flags of a visible task is not safe.
 | |
|  *
 | |
|  * The above limitation is why this routine has the funny name
 | |
|  * mpol_fix_fork_child_flag().
 | |
|  *
 | |
|  * It is also safe to call this with a task pointer of current,
 | |
|  * which the static wrapper mpol_set_task_struct_flag() does,
 | |
|  * for use within this file.
 | |
|  */
 | |
| 
 | |
| void mpol_fix_fork_child_flag(struct task_struct *p)
 | |
| {
 | |
| 	if (p->mempolicy)
 | |
| 		p->flags |= PF_MEMPOLICY;
 | |
| 	else
 | |
| 		p->flags &= ~PF_MEMPOLICY;
 | |
| }
 | |
| 
 | |
| static void mpol_set_task_struct_flag(void)
 | |
| {
 | |
| 	mpol_fix_fork_child_flag(current);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| long do_set_mempolicy(int mode, nodemask_t *nodes)
 | |
| {
 | |
| 	struct mempolicy *new;
 | |
| 
 | |
| 	if (contextualize_policy(mode, nodes))
 | |
| 		return -EINVAL;
 | |
| 	new = mpol_new(mode, nodes);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 	mpol_free(current->mempolicy);
 | |
| 	current->mempolicy = new;
 | |
| 	mpol_set_task_struct_flag();
 | |
| 	if (new && new->policy == MPOL_INTERLEAVE)
 | |
| 		current->il_next = first_node(new->v.nodes);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Fill a zone bitmap for a policy */
 | |
| static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	nodes_clear(*nodes);
 | |
| 	switch (p->policy) {
 | |
| 	case MPOL_BIND:
 | |
| 		for (i = 0; p->v.zonelist->zones[i]; i++)
 | |
| 			node_set(zone_to_nid(p->v.zonelist->zones[i]),
 | |
| 				*nodes);
 | |
| 		break;
 | |
| 	case MPOL_DEFAULT:
 | |
| 		break;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		*nodes = p->v.nodes;
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED:
 | |
| 		/* or use current node instead of online map? */
 | |
| 		if (p->v.preferred_node < 0)
 | |
| 			*nodes = node_online_map;
 | |
| 		else
 | |
| 			node_set(p->v.preferred_node, *nodes);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int lookup_node(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 | |
| 	if (err >= 0) {
 | |
| 		err = page_to_nid(p);
 | |
| 		put_page(p);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| long do_get_mempolicy(int *policy, nodemask_t *nmask,
 | |
| 			unsigned long addr, unsigned long flags)
 | |
| {
 | |
| 	int err;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *vma = NULL;
 | |
| 	struct mempolicy *pol = current->mempolicy;
 | |
| 
 | |
| 	cpuset_update_task_memory_state();
 | |
| 	if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
 | |
| 		return -EINVAL;
 | |
| 	if (flags & MPOL_F_ADDR) {
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 		vma = find_vma_intersection(mm, addr, addr+1);
 | |
| 		if (!vma) {
 | |
| 			up_read(&mm->mmap_sem);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		if (vma->vm_ops && vma->vm_ops->get_policy)
 | |
| 			pol = vma->vm_ops->get_policy(vma, addr);
 | |
| 		else
 | |
| 			pol = vma->vm_policy;
 | |
| 	} else if (addr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pol)
 | |
| 		pol = &default_policy;
 | |
| 
 | |
| 	if (flags & MPOL_F_NODE) {
 | |
| 		if (flags & MPOL_F_ADDR) {
 | |
| 			err = lookup_node(mm, addr);
 | |
| 			if (err < 0)
 | |
| 				goto out;
 | |
| 			*policy = err;
 | |
| 		} else if (pol == current->mempolicy &&
 | |
| 				pol->policy == MPOL_INTERLEAVE) {
 | |
| 			*policy = current->il_next;
 | |
| 		} else {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else
 | |
| 		*policy = pol->policy;
 | |
| 
 | |
| 	if (vma) {
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 		vma = NULL;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (nmask)
 | |
| 		get_zonemask(pol, nmask);
 | |
| 
 | |
|  out:
 | |
| 	if (vma)
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| /*
 | |
|  * page migration
 | |
|  */
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Avoid migrating a page that is shared with others.
 | |
| 	 */
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
 | |
| 		isolate_lru_page(page, pagelist);
 | |
| }
 | |
| 
 | |
| static struct page *new_node_page(struct page *page, unsigned long node, int **x)
 | |
| {
 | |
| 	return alloc_pages_node(node, GFP_HIGHUSER, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate pages from one node to a target node.
 | |
|  * Returns error or the number of pages not migrated.
 | |
|  */
 | |
| int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
 | |
| {
 | |
| 	nodemask_t nmask;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	nodes_clear(nmask);
 | |
| 	node_set(source, nmask);
 | |
| 
 | |
| 	check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
 | |
| 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 | |
| 
 | |
| 	if (!list_empty(&pagelist))
 | |
| 		err = migrate_pages(&pagelist, new_node_page, dest);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move pages between the two nodesets so as to preserve the physical
 | |
|  * layout as much as possible.
 | |
|  *
 | |
|  * Returns the number of page that could not be moved.
 | |
|  */
 | |
| int do_migrate_pages(struct mm_struct *mm,
 | |
| 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 | |
| {
 | |
| 	LIST_HEAD(pagelist);
 | |
| 	int busy = 0;
 | |
| 	int err = 0;
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
|   	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	err = migrate_vmas(mm, from_nodes, to_nodes, flags);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| /*
 | |
|  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 | |
|  * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 | |
|  * bit in 'tmp', and return that <source, dest> pair for migration.
 | |
|  * The pair of nodemasks 'to' and 'from' define the map.
 | |
|  *
 | |
|  * If no pair of bits is found that way, fallback to picking some
 | |
|  * pair of 'source' and 'dest' bits that are not the same.  If the
 | |
|  * 'source' and 'dest' bits are the same, this represents a node
 | |
|  * that will be migrating to itself, so no pages need move.
 | |
|  *
 | |
|  * If no bits are left in 'tmp', or if all remaining bits left
 | |
|  * in 'tmp' correspond to the same bit in 'to', return false
 | |
|  * (nothing left to migrate).
 | |
|  *
 | |
|  * This lets us pick a pair of nodes to migrate between, such that
 | |
|  * if possible the dest node is not already occupied by some other
 | |
|  * source node, minimizing the risk of overloading the memory on a
 | |
|  * node that would happen if we migrated incoming memory to a node
 | |
|  * before migrating outgoing memory source that same node.
 | |
|  *
 | |
|  * A single scan of tmp is sufficient.  As we go, we remember the
 | |
|  * most recent <s, d> pair that moved (s != d).  If we find a pair
 | |
|  * that not only moved, but what's better, moved to an empty slot
 | |
|  * (d is not set in tmp), then we break out then, with that pair.
 | |
|  * Otherwise when we finish scannng from_tmp, we at least have the
 | |
|  * most recent <s, d> pair that moved.  If we get all the way through
 | |
|  * the scan of tmp without finding any node that moved, much less
 | |
|  * moved to an empty node, then there is nothing left worth migrating.
 | |
|  */
 | |
| 
 | |
| 	tmp = *from_nodes;
 | |
| 	while (!nodes_empty(tmp)) {
 | |
| 		int s,d;
 | |
| 		int source = -1;
 | |
| 		int dest = 0;
 | |
| 
 | |
| 		for_each_node_mask(s, tmp) {
 | |
| 			d = node_remap(s, *from_nodes, *to_nodes);
 | |
| 			if (s == d)
 | |
| 				continue;
 | |
| 
 | |
| 			source = s;	/* Node moved. Memorize */
 | |
| 			dest = d;
 | |
| 
 | |
| 			/* dest not in remaining from nodes? */
 | |
| 			if (!node_isset(dest, tmp))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (source == -1)
 | |
| 			break;
 | |
| 
 | |
| 		node_clear(source, tmp);
 | |
| 		err = migrate_to_node(mm, source, dest, flags);
 | |
| 		if (err > 0)
 | |
| 			busy += err;
 | |
| 		if (err < 0)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	return busy;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 | |
| {
 | |
| 	struct vm_area_struct *vma = (struct vm_area_struct *)private;
 | |
| 
 | |
| 	return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
 | |
| }
 | |
| #else
 | |
| 
 | |
| static void migrate_page_add(struct page *page, struct list_head *pagelist,
 | |
| 				unsigned long flags)
 | |
| {
 | |
| }
 | |
| 
 | |
| int do_migrate_pages(struct mm_struct *mm,
 | |
| 	const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| long do_mbind(unsigned long start, unsigned long len,
 | |
| 		unsigned long mode, nodemask_t *nmask, unsigned long flags)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct mempolicy *new;
 | |
| 	unsigned long end;
 | |
| 	int err;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 
 | |
| 	if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
 | |
| 				      MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 | |
| 	    || mode > MPOL_MAX)
 | |
| 		return -EINVAL;
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (start & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mode == MPOL_DEFAULT)
 | |
| 		flags &= ~MPOL_MF_STRICT;
 | |
| 
 | |
| 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 	end = start + len;
 | |
| 
 | |
| 	if (end < start)
 | |
| 		return -EINVAL;
 | |
| 	if (end == start)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mpol_check_policy(mode, nmask))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = mpol_new(mode, nmask);
 | |
| 	if (IS_ERR(new))
 | |
| 		return PTR_ERR(new);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using the default policy then operation
 | |
| 	 * on discontinuous address spaces is okay after all
 | |
| 	 */
 | |
| 	if (!new)
 | |
| 		flags |= MPOL_MF_DISCONTIG_OK;
 | |
| 
 | |
| 	PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
 | |
| 			mode,nodes_addr(nodes)[0]);
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	vma = check_range(mm, start, end, nmask,
 | |
| 			  flags | MPOL_MF_INVERT, &pagelist);
 | |
| 
 | |
| 	err = PTR_ERR(vma);
 | |
| 	if (!IS_ERR(vma)) {
 | |
| 		int nr_failed = 0;
 | |
| 
 | |
| 		err = mbind_range(vma, start, end, new);
 | |
| 
 | |
| 		if (!list_empty(&pagelist))
 | |
| 			nr_failed = migrate_pages(&pagelist, new_vma_page,
 | |
| 						(unsigned long)vma);
 | |
| 
 | |
| 		if (!err && nr_failed && (flags & MPOL_MF_STRICT))
 | |
| 			err = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	mpol_free(new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User space interface with variable sized bitmaps for nodelists.
 | |
|  */
 | |
| 
 | |
| /* Copy a node mask from user space. */
 | |
| static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
 | |
| 		     unsigned long maxnode)
 | |
| {
 | |
| 	unsigned long k;
 | |
| 	unsigned long nlongs;
 | |
| 	unsigned long endmask;
 | |
| 
 | |
| 	--maxnode;
 | |
| 	nodes_clear(*nodes);
 | |
| 	if (maxnode == 0 || !nmask)
 | |
| 		return 0;
 | |
| 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nlongs = BITS_TO_LONGS(maxnode);
 | |
| 	if ((maxnode % BITS_PER_LONG) == 0)
 | |
| 		endmask = ~0UL;
 | |
| 	else
 | |
| 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
 | |
| 
 | |
| 	/* When the user specified more nodes than supported just check
 | |
| 	   if the non supported part is all zero. */
 | |
| 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
 | |
| 		if (nlongs > PAGE_SIZE/sizeof(long))
 | |
| 			return -EINVAL;
 | |
| 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
 | |
| 			unsigned long t;
 | |
| 			if (get_user(t, nmask + k))
 | |
| 				return -EFAULT;
 | |
| 			if (k == nlongs - 1) {
 | |
| 				if (t & endmask)
 | |
| 					return -EINVAL;
 | |
| 			} else if (t)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
 | |
| 		endmask = ~0UL;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
 | |
| 		return -EFAULT;
 | |
| 	nodes_addr(*nodes)[nlongs-1] &= endmask;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Copy a kernel node mask to user space */
 | |
| static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
 | |
| 			      nodemask_t *nodes)
 | |
| {
 | |
| 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
 | |
| 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
 | |
| 
 | |
| 	if (copy > nbytes) {
 | |
| 		if (copy > PAGE_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
 | |
| 			return -EFAULT;
 | |
| 		copy = nbytes;
 | |
| 	}
 | |
| 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_mbind(unsigned long start, unsigned long len,
 | |
| 			unsigned long mode,
 | |
| 			unsigned long __user *nmask, unsigned long maxnode,
 | |
| 			unsigned flags)
 | |
| {
 | |
| 	nodemask_t nodes;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return do_mbind(start, len, mode, &nodes, flags);
 | |
| }
 | |
| 
 | |
| /* Set the process memory policy */
 | |
| asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
 | |
| 		unsigned long maxnode)
 | |
| {
 | |
| 	int err;
 | |
| 	nodemask_t nodes;
 | |
| 
 | |
| 	if (mode < 0 || mode > MPOL_MAX)
 | |
| 		return -EINVAL;
 | |
| 	err = get_nodes(&nodes, nmask, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	return do_set_mempolicy(mode, &nodes);
 | |
| }
 | |
| 
 | |
| asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
 | |
| 		const unsigned long __user *old_nodes,
 | |
| 		const unsigned long __user *new_nodes)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	struct task_struct *task;
 | |
| 	nodemask_t old;
 | |
| 	nodemask_t new;
 | |
| 	nodemask_t task_nodes;
 | |
| 	int err;
 | |
| 
 | |
| 	err = get_nodes(&old, old_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = get_nodes(&new, new_nodes, maxnode);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	task = pid ? find_task_by_pid(pid) : current;
 | |
| 	if (!task) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	mm = get_task_mm(task);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified
 | |
| 	 * process. The right exists if the process has administrative
 | |
| 	 * capabilities, superuser privileges or the same
 | |
| 	 * userid as the target process.
 | |
| 	 */
 | |
| 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
 | |
| 	    (current->uid != task->suid) && (current->uid != task->uid) &&
 | |
| 	    !capable(CAP_SYS_NICE)) {
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(task);
 | |
| 	/* Is the user allowed to access the target nodes? */
 | |
| 	if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	err = security_task_movememory(task);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = do_migrate_pages(mm, &old, &new,
 | |
| 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
 | |
| out:
 | |
| 	mmput(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Retrieve NUMA policy */
 | |
| asmlinkage long sys_get_mempolicy(int __user *policy,
 | |
| 				unsigned long __user *nmask,
 | |
| 				unsigned long maxnode,
 | |
| 				unsigned long addr, unsigned long flags)
 | |
| {
 | |
| 	int err, pval;
 | |
| 	nodemask_t nodes;
 | |
| 
 | |
| 	if (nmask != NULL && maxnode < MAX_NUMNODES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
 | |
| 
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (policy && put_user(pval, policy))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (nmask)
 | |
| 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 
 | |
| asmlinkage long compat_sys_get_mempolicy(int __user *policy,
 | |
| 				     compat_ulong_t __user *nmask,
 | |
| 				     compat_ulong_t maxnode,
 | |
| 				     compat_ulong_t addr, compat_ulong_t flags)
 | |
| {
 | |
| 	long err;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	DECLARE_BITMAP(bm, MAX_NUMNODES);
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask)
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 
 | |
| 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
 | |
| 
 | |
| 	if (!err && nmask) {
 | |
| 		err = copy_from_user(bm, nm, alloc_size);
 | |
| 		/* ensure entire bitmap is zeroed */
 | |
| 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
 | |
| 		err |= compat_put_bitmap(nmask, bm, nr_bits);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
 | |
| 				     compat_ulong_t maxnode)
 | |
| {
 | |
| 	long err = 0;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	DECLARE_BITMAP(bm, MAX_NUMNODES);
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask) {
 | |
| 		err = compat_get_bitmap(bm, nmask, nr_bits);
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 		err |= copy_to_user(nm, bm, alloc_size);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return sys_set_mempolicy(mode, nm, nr_bits+1);
 | |
| }
 | |
| 
 | |
| asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
 | |
| 			     compat_ulong_t mode, compat_ulong_t __user *nmask,
 | |
| 			     compat_ulong_t maxnode, compat_ulong_t flags)
 | |
| {
 | |
| 	long err = 0;
 | |
| 	unsigned long __user *nm = NULL;
 | |
| 	unsigned long nr_bits, alloc_size;
 | |
| 	nodemask_t bm;
 | |
| 
 | |
| 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
 | |
| 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
 | |
| 
 | |
| 	if (nmask) {
 | |
| 		err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
 | |
| 		nm = compat_alloc_user_space(alloc_size);
 | |
| 		err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Return effective policy for a VMA */
 | |
| static struct mempolicy * get_vma_policy(struct task_struct *task,
 | |
| 		struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol = task->mempolicy;
 | |
| 
 | |
| 	if (vma) {
 | |
| 		if (vma->vm_ops && vma->vm_ops->get_policy)
 | |
| 			pol = vma->vm_ops->get_policy(vma, addr);
 | |
| 		else if (vma->vm_policy &&
 | |
| 				vma->vm_policy->policy != MPOL_DEFAULT)
 | |
| 			pol = vma->vm_policy;
 | |
| 	}
 | |
| 	if (!pol)
 | |
| 		pol = &default_policy;
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| /* Return a zonelist representing a mempolicy */
 | |
| static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
 | |
| {
 | |
| 	int nd;
 | |
| 
 | |
| 	switch (policy->policy) {
 | |
| 	case MPOL_PREFERRED:
 | |
| 		nd = policy->v.preferred_node;
 | |
| 		if (nd < 0)
 | |
| 			nd = numa_node_id();
 | |
| 		break;
 | |
| 	case MPOL_BIND:
 | |
| 		/* Lower zones don't get a policy applied */
 | |
| 		/* Careful: current->mems_allowed might have moved */
 | |
| 		if (gfp_zone(gfp) >= policy_zone)
 | |
| 			if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
 | |
| 				return policy->v.zonelist;
 | |
| 		/*FALL THROUGH*/
 | |
| 	case MPOL_INTERLEAVE: /* should not happen */
 | |
| 	case MPOL_DEFAULT:
 | |
| 		nd = numa_node_id();
 | |
| 		break;
 | |
| 	default:
 | |
| 		nd = 0;
 | |
| 		BUG();
 | |
| 	}
 | |
| 	return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
 | |
| }
 | |
| 
 | |
| /* Do dynamic interleaving for a process */
 | |
| static unsigned interleave_nodes(struct mempolicy *policy)
 | |
| {
 | |
| 	unsigned nid, next;
 | |
| 	struct task_struct *me = current;
 | |
| 
 | |
| 	nid = me->il_next;
 | |
| 	next = next_node(nid, policy->v.nodes);
 | |
| 	if (next >= MAX_NUMNODES)
 | |
| 		next = first_node(policy->v.nodes);
 | |
| 	me->il_next = next;
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Depending on the memory policy provide a node from which to allocate the
 | |
|  * next slab entry.
 | |
|  */
 | |
| unsigned slab_node(struct mempolicy *policy)
 | |
| {
 | |
| 	int pol = policy ? policy->policy : MPOL_DEFAULT;
 | |
| 
 | |
| 	switch (pol) {
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		return interleave_nodes(policy);
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 		/*
 | |
| 		 * Follow bind policy behavior and start allocation at the
 | |
| 		 * first node.
 | |
| 		 */
 | |
| 		return zone_to_nid(policy->v.zonelist->zones[0]);
 | |
| 
 | |
| 	case MPOL_PREFERRED:
 | |
| 		if (policy->v.preferred_node >= 0)
 | |
| 			return policy->v.preferred_node;
 | |
| 		/* Fall through */
 | |
| 
 | |
| 	default:
 | |
| 		return numa_node_id();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Do static interleaving for a VMA with known offset. */
 | |
| static unsigned offset_il_node(struct mempolicy *pol,
 | |
| 		struct vm_area_struct *vma, unsigned long off)
 | |
| {
 | |
| 	unsigned nnodes = nodes_weight(pol->v.nodes);
 | |
| 	unsigned target = (unsigned)off % nnodes;
 | |
| 	int c;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	c = 0;
 | |
| 	do {
 | |
| 		nid = next_node(nid, pol->v.nodes);
 | |
| 		c++;
 | |
| 	} while (c <= target);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Determine a node number for interleave */
 | |
| static inline unsigned interleave_nid(struct mempolicy *pol,
 | |
| 		 struct vm_area_struct *vma, unsigned long addr, int shift)
 | |
| {
 | |
| 	if (vma) {
 | |
| 		unsigned long off;
 | |
| 
 | |
| 		/*
 | |
| 		 * for small pages, there is no difference between
 | |
| 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
 | |
| 		 * for huge pages, since vm_pgoff is in units of small
 | |
| 		 * pages, we need to shift off the always 0 bits to get
 | |
| 		 * a useful offset.
 | |
| 		 */
 | |
| 		BUG_ON(shift < PAGE_SHIFT);
 | |
| 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
 | |
| 		off += (addr - vma->vm_start) >> shift;
 | |
| 		return offset_il_node(pol, vma, off);
 | |
| 	} else
 | |
| 		return interleave_nodes(pol);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLBFS
 | |
| /* Return a zonelist suitable for a huge page allocation. */
 | |
| struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
 | |
| 
 | |
| 	if (pol->policy == MPOL_INTERLEAVE) {
 | |
| 		unsigned nid;
 | |
| 
 | |
| 		nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
 | |
| 		return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
 | |
| 	}
 | |
| 	return zonelist_policy(GFP_HIGHUSER, pol);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Allocate a page in interleaved policy.
 | |
|    Own path because it needs to do special accounting. */
 | |
| static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
 | |
| 					unsigned nid)
 | |
| {
 | |
| 	struct zonelist *zl;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
 | |
| 	page = __alloc_pages(gfp, order, zl);
 | |
| 	if (page && page_zone(page) == zl->zones[0])
 | |
| 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	alloc_page_vma	- Allocate a page for a VMA.
 | |
|  *
 | |
|  * 	@gfp:
 | |
|  *      %GFP_USER    user allocation.
 | |
|  *      %GFP_KERNEL  kernel allocations,
 | |
|  *      %GFP_HIGHMEM highmem/user allocations,
 | |
|  *      %GFP_FS      allocation should not call back into a file system.
 | |
|  *      %GFP_ATOMIC  don't sleep.
 | |
|  *
 | |
|  * 	@vma:  Pointer to VMA or NULL if not available.
 | |
|  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
 | |
|  *
 | |
|  * 	This function allocates a page from the kernel page pool and applies
 | |
|  *	a NUMA policy associated with the VMA or the current process.
 | |
|  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
 | |
|  *	mm_struct of the VMA to prevent it from going away. Should be used for
 | |
|  *	all allocations for pages that will be mapped into
 | |
|  * 	user space. Returns NULL when no page can be allocated.
 | |
|  *
 | |
|  *	Should be called with the mm_sem of the vma hold.
 | |
|  */
 | |
| struct page *
 | |
| alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
 | |
| {
 | |
| 	struct mempolicy *pol = get_vma_policy(current, vma, addr);
 | |
| 
 | |
| 	cpuset_update_task_memory_state();
 | |
| 
 | |
| 	if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
 | |
| 		unsigned nid;
 | |
| 
 | |
| 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
 | |
| 		return alloc_page_interleave(gfp, 0, nid);
 | |
| 	}
 | |
| 	return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 	alloc_pages_current - Allocate pages.
 | |
|  *
 | |
|  *	@gfp:
 | |
|  *		%GFP_USER   user allocation,
 | |
|  *      	%GFP_KERNEL kernel allocation,
 | |
|  *      	%GFP_HIGHMEM highmem allocation,
 | |
|  *      	%GFP_FS     don't call back into a file system.
 | |
|  *      	%GFP_ATOMIC don't sleep.
 | |
|  *	@order: Power of two of allocation size in pages. 0 is a single page.
 | |
|  *
 | |
|  *	Allocate a page from the kernel page pool.  When not in
 | |
|  *	interrupt context and apply the current process NUMA policy.
 | |
|  *	Returns NULL when no page can be allocated.
 | |
|  *
 | |
|  *	Don't call cpuset_update_task_memory_state() unless
 | |
|  *	1) it's ok to take cpuset_sem (can WAIT), and
 | |
|  *	2) allocating for current task (not interrupt).
 | |
|  */
 | |
| struct page *alloc_pages_current(gfp_t gfp, unsigned order)
 | |
| {
 | |
| 	struct mempolicy *pol = current->mempolicy;
 | |
| 
 | |
| 	if ((gfp & __GFP_WAIT) && !in_interrupt())
 | |
| 		cpuset_update_task_memory_state();
 | |
| 	if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
 | |
| 		pol = &default_policy;
 | |
| 	if (pol->policy == MPOL_INTERLEAVE)
 | |
| 		return alloc_page_interleave(gfp, order, interleave_nodes(pol));
 | |
| 	return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_pages_current);
 | |
| 
 | |
| /*
 | |
|  * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
 | |
|  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
 | |
|  * with the mems_allowed returned by cpuset_mems_allowed().  This
 | |
|  * keeps mempolicies cpuset relative after its cpuset moves.  See
 | |
|  * further kernel/cpuset.c update_nodemask().
 | |
|  */
 | |
| void *cpuset_being_rebound;
 | |
| 
 | |
| /* Slow path of a mempolicy copy */
 | |
| struct mempolicy *__mpol_copy(struct mempolicy *old)
 | |
| {
 | |
| 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 | |
| 
 | |
| 	if (!new)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	if (current_cpuset_is_being_rebound()) {
 | |
| 		nodemask_t mems = cpuset_mems_allowed(current);
 | |
| 		mpol_rebind_policy(old, &mems);
 | |
| 	}
 | |
| 	*new = *old;
 | |
| 	atomic_set(&new->refcnt, 1);
 | |
| 	if (new->policy == MPOL_BIND) {
 | |
| 		int sz = ksize(old->v.zonelist);
 | |
| 		new->v.zonelist = kmemdup(old->v.zonelist, sz, SLAB_KERNEL);
 | |
| 		if (!new->v.zonelist) {
 | |
| 			kmem_cache_free(policy_cache, new);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 	}
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* Slow path of a mempolicy comparison */
 | |
| int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
 | |
| {
 | |
| 	if (!a || !b)
 | |
| 		return 0;
 | |
| 	if (a->policy != b->policy)
 | |
| 		return 0;
 | |
| 	switch (a->policy) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 		return 1;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		return nodes_equal(a->v.nodes, b->v.nodes);
 | |
| 	case MPOL_PREFERRED:
 | |
| 		return a->v.preferred_node == b->v.preferred_node;
 | |
| 	case MPOL_BIND: {
 | |
| 		int i;
 | |
| 		for (i = 0; a->v.zonelist->zones[i]; i++)
 | |
| 			if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
 | |
| 				return 0;
 | |
| 		return b->v.zonelist->zones[i] == NULL;
 | |
| 	}
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Slow path of a mpol destructor. */
 | |
| void __mpol_free(struct mempolicy *p)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&p->refcnt))
 | |
| 		return;
 | |
| 	if (p->policy == MPOL_BIND)
 | |
| 		kfree(p->v.zonelist);
 | |
| 	p->policy = MPOL_DEFAULT;
 | |
| 	kmem_cache_free(policy_cache, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shared memory backing store policy support.
 | |
|  *
 | |
|  * Remember policies even when nobody has shared memory mapped.
 | |
|  * The policies are kept in Red-Black tree linked from the inode.
 | |
|  * They are protected by the sp->lock spinlock, which should be held
 | |
|  * for any accesses to the tree.
 | |
|  */
 | |
| 
 | |
| /* lookup first element intersecting start-end */
 | |
| /* Caller holds sp->lock */
 | |
| static struct sp_node *
 | |
| sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct rb_node *n = sp->root.rb_node;
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
 | |
| 
 | |
| 		if (start >= p->end)
 | |
| 			n = n->rb_right;
 | |
| 		else if (end <= p->start)
 | |
| 			n = n->rb_left;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	for (;;) {
 | |
| 		struct sp_node *w = NULL;
 | |
| 		struct rb_node *prev = rb_prev(n);
 | |
| 		if (!prev)
 | |
| 			break;
 | |
| 		w = rb_entry(prev, struct sp_node, nd);
 | |
| 		if (w->end <= start)
 | |
| 			break;
 | |
| 		n = prev;
 | |
| 	}
 | |
| 	return rb_entry(n, struct sp_node, nd);
 | |
| }
 | |
| 
 | |
| /* Insert a new shared policy into the list. */
 | |
| /* Caller holds sp->lock */
 | |
| static void sp_insert(struct shared_policy *sp, struct sp_node *new)
 | |
| {
 | |
| 	struct rb_node **p = &sp->root.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sp_node *nd;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		nd = rb_entry(parent, struct sp_node, nd);
 | |
| 		if (new->start < nd->start)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (new->end > nd->end)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	rb_link_node(&new->nd, parent, p);
 | |
| 	rb_insert_color(&new->nd, &sp->root);
 | |
| 	PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
 | |
| 		 new->policy ? new->policy->policy : 0);
 | |
| }
 | |
| 
 | |
| /* Find shared policy intersecting idx */
 | |
| struct mempolicy *
 | |
| mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
 | |
| {
 | |
| 	struct mempolicy *pol = NULL;
 | |
| 	struct sp_node *sn;
 | |
| 
 | |
| 	if (!sp->root.rb_node)
 | |
| 		return NULL;
 | |
| 	spin_lock(&sp->lock);
 | |
| 	sn = sp_lookup(sp, idx, idx+1);
 | |
| 	if (sn) {
 | |
| 		mpol_get(sn->policy);
 | |
| 		pol = sn->policy;
 | |
| 	}
 | |
| 	spin_unlock(&sp->lock);
 | |
| 	return pol;
 | |
| }
 | |
| 
 | |
| static void sp_delete(struct shared_policy *sp, struct sp_node *n)
 | |
| {
 | |
| 	PDprintk("deleting %lx-l%x\n", n->start, n->end);
 | |
| 	rb_erase(&n->nd, &sp->root);
 | |
| 	mpol_free(n->policy);
 | |
| 	kmem_cache_free(sn_cache, n);
 | |
| }
 | |
| 
 | |
| struct sp_node *
 | |
| sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
 | |
| {
 | |
| 	struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
 | |
| 
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 	n->start = start;
 | |
| 	n->end = end;
 | |
| 	mpol_get(pol);
 | |
| 	n->policy = pol;
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /* Replace a policy range. */
 | |
| static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
 | |
| 				 unsigned long end, struct sp_node *new)
 | |
| {
 | |
| 	struct sp_node *n, *new2 = NULL;
 | |
| 
 | |
| restart:
 | |
| 	spin_lock(&sp->lock);
 | |
| 	n = sp_lookup(sp, start, end);
 | |
| 	/* Take care of old policies in the same range. */
 | |
| 	while (n && n->start < end) {
 | |
| 		struct rb_node *next = rb_next(&n->nd);
 | |
| 		if (n->start >= start) {
 | |
| 			if (n->end <= end)
 | |
| 				sp_delete(sp, n);
 | |
| 			else
 | |
| 				n->start = end;
 | |
| 		} else {
 | |
| 			/* Old policy spanning whole new range. */
 | |
| 			if (n->end > end) {
 | |
| 				if (!new2) {
 | |
| 					spin_unlock(&sp->lock);
 | |
| 					new2 = sp_alloc(end, n->end, n->policy);
 | |
| 					if (!new2)
 | |
| 						return -ENOMEM;
 | |
| 					goto restart;
 | |
| 				}
 | |
| 				n->end = start;
 | |
| 				sp_insert(sp, new2);
 | |
| 				new2 = NULL;
 | |
| 				break;
 | |
| 			} else
 | |
| 				n->end = start;
 | |
| 		}
 | |
| 		if (!next)
 | |
| 			break;
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 	}
 | |
| 	if (new)
 | |
| 		sp_insert(sp, new);
 | |
| 	spin_unlock(&sp->lock);
 | |
| 	if (new2) {
 | |
| 		mpol_free(new2->policy);
 | |
| 		kmem_cache_free(sn_cache, new2);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void mpol_shared_policy_init(struct shared_policy *info, int policy,
 | |
| 				nodemask_t *policy_nodes)
 | |
| {
 | |
| 	info->root = RB_ROOT;
 | |
| 	spin_lock_init(&info->lock);
 | |
| 
 | |
| 	if (policy != MPOL_DEFAULT) {
 | |
| 		struct mempolicy *newpol;
 | |
| 
 | |
| 		/* Falls back to MPOL_DEFAULT on any error */
 | |
| 		newpol = mpol_new(policy, policy_nodes);
 | |
| 		if (!IS_ERR(newpol)) {
 | |
| 			/* Create pseudo-vma that contains just the policy */
 | |
| 			struct vm_area_struct pvma;
 | |
| 
 | |
| 			memset(&pvma, 0, sizeof(struct vm_area_struct));
 | |
| 			/* Policy covers entire file */
 | |
| 			pvma.vm_end = TASK_SIZE;
 | |
| 			mpol_set_shared_policy(info, &pvma, newpol);
 | |
| 			mpol_free(newpol);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int mpol_set_shared_policy(struct shared_policy *info,
 | |
| 			struct vm_area_struct *vma, struct mempolicy *npol)
 | |
| {
 | |
| 	int err;
 | |
| 	struct sp_node *new = NULL;
 | |
| 	unsigned long sz = vma_pages(vma);
 | |
| 
 | |
| 	PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
 | |
| 		 vma->vm_pgoff,
 | |
| 		 sz, npol? npol->policy : -1,
 | |
| 		npol ? nodes_addr(npol->v.nodes)[0] : -1);
 | |
| 
 | |
| 	if (npol) {
 | |
| 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
 | |
| 	if (err && new)
 | |
| 		kmem_cache_free(sn_cache, new);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Free a backing policy store on inode delete. */
 | |
| void mpol_free_shared_policy(struct shared_policy *p)
 | |
| {
 | |
| 	struct sp_node *n;
 | |
| 	struct rb_node *next;
 | |
| 
 | |
| 	if (!p->root.rb_node)
 | |
| 		return;
 | |
| 	spin_lock(&p->lock);
 | |
| 	next = rb_first(&p->root);
 | |
| 	while (next) {
 | |
| 		n = rb_entry(next, struct sp_node, nd);
 | |
| 		next = rb_next(&n->nd);
 | |
| 		rb_erase(&n->nd, &p->root);
 | |
| 		mpol_free(n->policy);
 | |
| 		kmem_cache_free(sn_cache, n);
 | |
| 	}
 | |
| 	spin_unlock(&p->lock);
 | |
| }
 | |
| 
 | |
| /* assumes fs == KERNEL_DS */
 | |
| void __init numa_policy_init(void)
 | |
| {
 | |
| 	policy_cache = kmem_cache_create("numa_policy",
 | |
| 					 sizeof(struct mempolicy),
 | |
| 					 0, SLAB_PANIC, NULL, NULL);
 | |
| 
 | |
| 	sn_cache = kmem_cache_create("shared_policy_node",
 | |
| 				     sizeof(struct sp_node),
 | |
| 				     0, SLAB_PANIC, NULL, NULL);
 | |
| 
 | |
| 	/* Set interleaving policy for system init. This way not all
 | |
| 	   the data structures allocated at system boot end up in node zero. */
 | |
| 
 | |
| 	if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
 | |
| 		printk("numa_policy_init: interleaving failed\n");
 | |
| }
 | |
| 
 | |
| /* Reset policy of current process to default */
 | |
| void numa_default_policy(void)
 | |
| {
 | |
| 	do_set_mempolicy(MPOL_DEFAULT, NULL);
 | |
| }
 | |
| 
 | |
| /* Migrate a policy to a different set of nodes */
 | |
| void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 | |
| {
 | |
| 	nodemask_t *mpolmask;
 | |
| 	nodemask_t tmp;
 | |
| 
 | |
| 	if (!pol)
 | |
| 		return;
 | |
| 	mpolmask = &pol->cpuset_mems_allowed;
 | |
| 	if (nodes_equal(*mpolmask, *newmask))
 | |
| 		return;
 | |
| 
 | |
| 	switch (pol->policy) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 		break;
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
 | |
| 		pol->v.nodes = tmp;
 | |
| 		*mpolmask = *newmask;
 | |
| 		current->il_next = node_remap(current->il_next,
 | |
| 						*mpolmask, *newmask);
 | |
| 		break;
 | |
| 	case MPOL_PREFERRED:
 | |
| 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 | |
| 						*mpolmask, *newmask);
 | |
| 		*mpolmask = *newmask;
 | |
| 		break;
 | |
| 	case MPOL_BIND: {
 | |
| 		nodemask_t nodes;
 | |
| 		struct zone **z;
 | |
| 		struct zonelist *zonelist;
 | |
| 
 | |
| 		nodes_clear(nodes);
 | |
| 		for (z = pol->v.zonelist->zones; *z; z++)
 | |
| 			node_set(zone_to_nid(*z), nodes);
 | |
| 		nodes_remap(tmp, nodes, *mpolmask, *newmask);
 | |
| 		nodes = tmp;
 | |
| 
 | |
| 		zonelist = bind_zonelist(&nodes);
 | |
| 
 | |
| 		/* If no mem, then zonelist is NULL and we keep old zonelist.
 | |
| 		 * If that old zonelist has no remaining mems_allowed nodes,
 | |
| 		 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
 | |
| 		 */
 | |
| 
 | |
| 		if (zonelist) {
 | |
| 			/* Good - got mem - substitute new zonelist */
 | |
| 			kfree(pol->v.zonelist);
 | |
| 			pol->v.zonelist = zonelist;
 | |
| 		}
 | |
| 		*mpolmask = *newmask;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper for mpol_rebind_policy() that just requires task
 | |
|  * pointer, and updates task mempolicy.
 | |
|  */
 | |
| 
 | |
| void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 | |
| {
 | |
| 	mpol_rebind_policy(tsk->mempolicy, new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rebind each vma in mm to new nodemask.
 | |
|  *
 | |
|  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 | |
|  */
 | |
| 
 | |
| void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next)
 | |
| 		mpol_rebind_policy(vma->vm_policy, new);
 | |
| 	up_write(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Display pages allocated per node and memory policy via /proc.
 | |
|  */
 | |
| 
 | |
| static const char *policy_types[] = { "default", "prefer", "bind",
 | |
| 				      "interleave" };
 | |
| 
 | |
| /*
 | |
|  * Convert a mempolicy into a string.
 | |
|  * Returns the number of characters in buffer (if positive)
 | |
|  * or an error (negative)
 | |
|  */
 | |
| static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
 | |
| {
 | |
| 	char *p = buffer;
 | |
| 	int l;
 | |
| 	nodemask_t nodes;
 | |
| 	int mode = pol ? pol->policy : MPOL_DEFAULT;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPOL_DEFAULT:
 | |
| 		nodes_clear(nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_PREFERRED:
 | |
| 		nodes_clear(nodes);
 | |
| 		node_set(pol->v.preferred_node, nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_BIND:
 | |
| 		get_zonemask(pol, &nodes);
 | |
| 		break;
 | |
| 
 | |
| 	case MPOL_INTERLEAVE:
 | |
| 		nodes = pol->v.nodes;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	l = strlen(policy_types[mode]);
 | |
|  	if (buffer + maxlen < p + l + 1)
 | |
|  		return -ENOSPC;
 | |
| 
 | |
| 	strcpy(p, policy_types[mode]);
 | |
| 	p += l;
 | |
| 
 | |
| 	if (!nodes_empty(nodes)) {
 | |
| 		if (buffer + maxlen < p + 2)
 | |
| 			return -ENOSPC;
 | |
| 		*p++ = '=';
 | |
| 	 	p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
 | |
| 	}
 | |
| 	return p - buffer;
 | |
| }
 | |
| 
 | |
| struct numa_maps {
 | |
| 	unsigned long pages;
 | |
| 	unsigned long anon;
 | |
| 	unsigned long active;
 | |
| 	unsigned long writeback;
 | |
| 	unsigned long mapcount_max;
 | |
| 	unsigned long dirty;
 | |
| 	unsigned long swapcache;
 | |
| 	unsigned long node[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| static void gather_stats(struct page *page, void *private, int pte_dirty)
 | |
| {
 | |
| 	struct numa_maps *md = private;
 | |
| 	int count = page_mapcount(page);
 | |
| 
 | |
| 	md->pages++;
 | |
| 	if (pte_dirty || PageDirty(page))
 | |
| 		md->dirty++;
 | |
| 
 | |
| 	if (PageSwapCache(page))
 | |
| 		md->swapcache++;
 | |
| 
 | |
| 	if (PageActive(page))
 | |
| 		md->active++;
 | |
| 
 | |
| 	if (PageWriteback(page))
 | |
| 		md->writeback++;
 | |
| 
 | |
| 	if (PageAnon(page))
 | |
| 		md->anon++;
 | |
| 
 | |
| 	if (count > md->mapcount_max)
 | |
| 		md->mapcount_max = count;
 | |
| 
 | |
| 	md->node[page_to_nid(page)]++;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| static void check_huge_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end,
 | |
| 		struct numa_maps *md)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for (addr = start; addr < end; addr += HPAGE_SIZE) {
 | |
| 		pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
 | |
| 		pte_t pte;
 | |
| 
 | |
| 		if (!ptep)
 | |
| 			continue;
 | |
| 
 | |
| 		pte = *ptep;
 | |
| 		if (pte_none(pte))
 | |
| 			continue;
 | |
| 
 | |
| 		page = pte_page(pte);
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 
 | |
| 		gather_stats(page, md, pte_dirty(*ptep));
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void check_huge_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end,
 | |
| 		struct numa_maps *md)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int show_numa_map(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct proc_maps_private *priv = m->private;
 | |
| 	struct vm_area_struct *vma = v;
 | |
| 	struct numa_maps *md;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	int n;
 | |
| 	char buffer[50];
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return 0;
 | |
| 
 | |
| 	md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
 | |
| 	if (!md)
 | |
| 		return 0;
 | |
| 
 | |
| 	mpol_to_str(buffer, sizeof(buffer),
 | |
| 			    get_vma_policy(priv->task, vma, vma->vm_start));
 | |
| 
 | |
| 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
 | |
| 
 | |
| 	if (file) {
 | |
| 		seq_printf(m, " file=");
 | |
| 		seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
 | |
| 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
 | |
| 		seq_printf(m, " heap");
 | |
| 	} else if (vma->vm_start <= mm->start_stack &&
 | |
| 			vma->vm_end >= mm->start_stack) {
 | |
| 		seq_printf(m, " stack");
 | |
| 	}
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		check_huge_range(vma, vma->vm_start, vma->vm_end, md);
 | |
| 		seq_printf(m, " huge");
 | |
| 	} else {
 | |
| 		check_pgd_range(vma, vma->vm_start, vma->vm_end,
 | |
| 				&node_online_map, MPOL_MF_STATS, md);
 | |
| 	}
 | |
| 
 | |
| 	if (!md->pages)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (md->anon)
 | |
| 		seq_printf(m," anon=%lu",md->anon);
 | |
| 
 | |
| 	if (md->dirty)
 | |
| 		seq_printf(m," dirty=%lu",md->dirty);
 | |
| 
 | |
| 	if (md->pages != md->anon && md->pages != md->dirty)
 | |
| 		seq_printf(m, " mapped=%lu", md->pages);
 | |
| 
 | |
| 	if (md->mapcount_max > 1)
 | |
| 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
 | |
| 
 | |
| 	if (md->swapcache)
 | |
| 		seq_printf(m," swapcache=%lu", md->swapcache);
 | |
| 
 | |
| 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
 | |
| 		seq_printf(m," active=%lu", md->active);
 | |
| 
 | |
| 	if (md->writeback)
 | |
| 		seq_printf(m," writeback=%lu", md->writeback);
 | |
| 
 | |
| 	for_each_online_node(n)
 | |
| 		if (md->node[n])
 | |
| 			seq_printf(m, " N%d=%lu", n, md->node[n]);
 | |
| out:
 | |
| 	seq_putc(m, '\n');
 | |
| 	kfree(md);
 | |
| 
 | |
| 	if (m->count < m->size)
 | |
| 		m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 |