mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 1da177e4c3
			
		
	
	
		1da177e4c3
		
	
	
	
	
		
			
			Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			1114 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1114 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* +++ trees.c */
 | |
| /* trees.c -- output deflated data using Huffman coding
 | |
|  * Copyright (C) 1995-1996 Jean-loup Gailly
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h 
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  ALGORITHM
 | |
|  *
 | |
|  *      The "deflation" process uses several Huffman trees. The more
 | |
|  *      common source values are represented by shorter bit sequences.
 | |
|  *
 | |
|  *      Each code tree is stored in a compressed form which is itself
 | |
|  * a Huffman encoding of the lengths of all the code strings (in
 | |
|  * ascending order by source values).  The actual code strings are
 | |
|  * reconstructed from the lengths in the inflate process, as described
 | |
|  * in the deflate specification.
 | |
|  *
 | |
|  *  REFERENCES
 | |
|  *
 | |
|  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
 | |
|  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 | |
|  *
 | |
|  *      Storer, James A.
 | |
|  *          Data Compression:  Methods and Theory, pp. 49-50.
 | |
|  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 | |
|  *
 | |
|  *      Sedgewick, R.
 | |
|  *          Algorithms, p290.
 | |
|  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 | |
|  */
 | |
| 
 | |
| /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
 | |
| 
 | |
| /* #include "deflate.h" */
 | |
| 
 | |
| #include <linux/zutil.h>
 | |
| #include "defutil.h"
 | |
| 
 | |
| #ifdef DEBUG_ZLIB
 | |
| #  include <ctype.h>
 | |
| #endif
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Constants
 | |
|  */
 | |
| 
 | |
| #define MAX_BL_BITS 7
 | |
| /* Bit length codes must not exceed MAX_BL_BITS bits */
 | |
| 
 | |
| #define END_BLOCK 256
 | |
| /* end of block literal code */
 | |
| 
 | |
| #define REP_3_6      16
 | |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */
 | |
| 
 | |
| #define REPZ_3_10    17
 | |
| /* repeat a zero length 3-10 times  (3 bits of repeat count) */
 | |
| 
 | |
| #define REPZ_11_138  18
 | |
| /* repeat a zero length 11-138 times  (7 bits of repeat count) */
 | |
| 
 | |
| static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
 | |
|    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
 | |
| 
 | |
| static const int extra_dbits[D_CODES] /* extra bits for each distance code */
 | |
|    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
 | |
| 
 | |
| static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
 | |
|    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
 | |
| 
 | |
| static const uch bl_order[BL_CODES]
 | |
|    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
 | |
| /* The lengths of the bit length codes are sent in order of decreasing
 | |
|  * probability, to avoid transmitting the lengths for unused bit length codes.
 | |
|  */
 | |
| 
 | |
| #define Buf_size (8 * 2*sizeof(char))
 | |
| /* Number of bits used within bi_buf. (bi_buf might be implemented on
 | |
|  * more than 16 bits on some systems.)
 | |
|  */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Local data. These are initialized only once.
 | |
|  */
 | |
| 
 | |
| static ct_data static_ltree[L_CODES+2];
 | |
| /* The static literal tree. Since the bit lengths are imposed, there is no
 | |
|  * need for the L_CODES extra codes used during heap construction. However
 | |
|  * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
 | |
|  * below).
 | |
|  */
 | |
| 
 | |
| static ct_data static_dtree[D_CODES];
 | |
| /* The static distance tree. (Actually a trivial tree since all codes use
 | |
|  * 5 bits.)
 | |
|  */
 | |
| 
 | |
| static uch dist_code[512];
 | |
| /* distance codes. The first 256 values correspond to the distances
 | |
|  * 3 .. 258, the last 256 values correspond to the top 8 bits of
 | |
|  * the 15 bit distances.
 | |
|  */
 | |
| 
 | |
| static uch length_code[MAX_MATCH-MIN_MATCH+1];
 | |
| /* length code for each normalized match length (0 == MIN_MATCH) */
 | |
| 
 | |
| static int base_length[LENGTH_CODES];
 | |
| /* First normalized length for each code (0 = MIN_MATCH) */
 | |
| 
 | |
| static int base_dist[D_CODES];
 | |
| /* First normalized distance for each code (0 = distance of 1) */
 | |
| 
 | |
| struct static_tree_desc_s {
 | |
|     const ct_data *static_tree;  /* static tree or NULL */
 | |
|     const int *extra_bits;       /* extra bits for each code or NULL */
 | |
|     int     extra_base;          /* base index for extra_bits */
 | |
|     int     elems;               /* max number of elements in the tree */
 | |
|     int     max_length;          /* max bit length for the codes */
 | |
| };
 | |
| 
 | |
| static static_tree_desc  static_l_desc =
 | |
| {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
 | |
| 
 | |
| static static_tree_desc  static_d_desc =
 | |
| {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
 | |
| 
 | |
| static static_tree_desc  static_bl_desc =
 | |
| {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Local (static) routines in this file.
 | |
|  */
 | |
| 
 | |
| static void tr_static_init (void);
 | |
| static void init_block     (deflate_state *s);
 | |
| static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
 | |
| static void gen_bitlen     (deflate_state *s, tree_desc *desc);
 | |
| static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
 | |
| static void build_tree     (deflate_state *s, tree_desc *desc);
 | |
| static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
 | |
| static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
 | |
| static int  build_bl_tree  (deflate_state *s);
 | |
| static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
 | |
|                            int blcodes);
 | |
| static void compress_block (deflate_state *s, ct_data *ltree,
 | |
|                            ct_data *dtree);
 | |
| static void set_data_type  (deflate_state *s);
 | |
| static unsigned bi_reverse (unsigned value, int length);
 | |
| static void bi_windup      (deflate_state *s);
 | |
| static void bi_flush       (deflate_state *s);
 | |
| static void copy_block     (deflate_state *s, char *buf, unsigned len,
 | |
|                            int header);
 | |
| 
 | |
| #ifndef DEBUG_ZLIB
 | |
| #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
 | |
|    /* Send a code of the given tree. c and tree must not have side effects */
 | |
| 
 | |
| #else /* DEBUG_ZLIB */
 | |
| #  define send_code(s, c, tree) \
 | |
|      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
 | |
|        send_bits(s, tree[c].Code, tree[c].Len); }
 | |
| #endif
 | |
| 
 | |
| #define d_code(dist) \
 | |
|    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
 | |
| /* Mapping from a distance to a distance code. dist is the distance - 1 and
 | |
|  * must not have side effects. dist_code[256] and dist_code[257] are never
 | |
|  * used.
 | |
|  */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a value on a given number of bits.
 | |
|  * IN assertion: length <= 16 and value fits in length bits.
 | |
|  */
 | |
| #ifdef DEBUG_ZLIB
 | |
| static void send_bits      (deflate_state *s, int value, int length);
 | |
| 
 | |
| static void send_bits(
 | |
| 	deflate_state *s,
 | |
| 	int value,  /* value to send */
 | |
| 	int length  /* number of bits */
 | |
| )
 | |
| {
 | |
|     Tracevv((stderr," l %2d v %4x ", length, value));
 | |
|     Assert(length > 0 && length <= 15, "invalid length");
 | |
|     s->bits_sent += (ulg)length;
 | |
| 
 | |
|     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 | |
|      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 | |
|      * unused bits in value.
 | |
|      */
 | |
|     if (s->bi_valid > (int)Buf_size - length) {
 | |
|         s->bi_buf |= (value << s->bi_valid);
 | |
|         put_short(s, s->bi_buf);
 | |
|         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
 | |
|         s->bi_valid += length - Buf_size;
 | |
|     } else {
 | |
|         s->bi_buf |= value << s->bi_valid;
 | |
|         s->bi_valid += length;
 | |
|     }
 | |
| }
 | |
| #else /* !DEBUG_ZLIB */
 | |
| 
 | |
| #define send_bits(s, value, length) \
 | |
| { int len = length;\
 | |
|   if (s->bi_valid > (int)Buf_size - len) {\
 | |
|     int val = value;\
 | |
|     s->bi_buf |= (val << s->bi_valid);\
 | |
|     put_short(s, s->bi_buf);\
 | |
|     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
 | |
|     s->bi_valid += len - Buf_size;\
 | |
|   } else {\
 | |
|     s->bi_buf |= (value) << s->bi_valid;\
 | |
|     s->bi_valid += len;\
 | |
|   }\
 | |
| }
 | |
| #endif /* DEBUG_ZLIB */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the various 'constant' tables. In a multi-threaded environment,
 | |
|  * this function may be called by two threads concurrently, but this is
 | |
|  * harmless since both invocations do exactly the same thing.
 | |
|  */
 | |
| static void tr_static_init(void)
 | |
| {
 | |
|     static int static_init_done;
 | |
|     int n;        /* iterates over tree elements */
 | |
|     int bits;     /* bit counter */
 | |
|     int length;   /* length value */
 | |
|     int code;     /* code value */
 | |
|     int dist;     /* distance index */
 | |
|     ush bl_count[MAX_BITS+1];
 | |
|     /* number of codes at each bit length for an optimal tree */
 | |
| 
 | |
|     if (static_init_done) return;
 | |
| 
 | |
|     /* Initialize the mapping length (0..255) -> length code (0..28) */
 | |
|     length = 0;
 | |
|     for (code = 0; code < LENGTH_CODES-1; code++) {
 | |
|         base_length[code] = length;
 | |
|         for (n = 0; n < (1<<extra_lbits[code]); n++) {
 | |
|             length_code[length++] = (uch)code;
 | |
|         }
 | |
|     }
 | |
|     Assert (length == 256, "tr_static_init: length != 256");
 | |
|     /* Note that the length 255 (match length 258) can be represented
 | |
|      * in two different ways: code 284 + 5 bits or code 285, so we
 | |
|      * overwrite length_code[255] to use the best encoding:
 | |
|      */
 | |
|     length_code[length-1] = (uch)code;
 | |
| 
 | |
|     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 | |
|     dist = 0;
 | |
|     for (code = 0 ; code < 16; code++) {
 | |
|         base_dist[code] = dist;
 | |
|         for (n = 0; n < (1<<extra_dbits[code]); n++) {
 | |
|             dist_code[dist++] = (uch)code;
 | |
|         }
 | |
|     }
 | |
|     Assert (dist == 256, "tr_static_init: dist != 256");
 | |
|     dist >>= 7; /* from now on, all distances are divided by 128 */
 | |
|     for ( ; code < D_CODES; code++) {
 | |
|         base_dist[code] = dist << 7;
 | |
|         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
 | |
|             dist_code[256 + dist++] = (uch)code;
 | |
|         }
 | |
|     }
 | |
|     Assert (dist == 256, "tr_static_init: 256+dist != 512");
 | |
| 
 | |
|     /* Construct the codes of the static literal tree */
 | |
|     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
 | |
|     n = 0;
 | |
|     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
 | |
|     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
 | |
|     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
 | |
|     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
 | |
|     /* Codes 286 and 287 do not exist, but we must include them in the
 | |
|      * tree construction to get a canonical Huffman tree (longest code
 | |
|      * all ones)
 | |
|      */
 | |
|     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 | |
| 
 | |
|     /* The static distance tree is trivial: */
 | |
|     for (n = 0; n < D_CODES; n++) {
 | |
|         static_dtree[n].Len = 5;
 | |
|         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
 | |
|     }
 | |
|     static_init_done = 1;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the tree data structures for a new zlib stream.
 | |
|  */
 | |
| void zlib_tr_init(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     tr_static_init();
 | |
| 
 | |
|     s->compressed_len = 0L;
 | |
| 
 | |
|     s->l_desc.dyn_tree = s->dyn_ltree;
 | |
|     s->l_desc.stat_desc = &static_l_desc;
 | |
| 
 | |
|     s->d_desc.dyn_tree = s->dyn_dtree;
 | |
|     s->d_desc.stat_desc = &static_d_desc;
 | |
| 
 | |
|     s->bl_desc.dyn_tree = s->bl_tree;
 | |
|     s->bl_desc.stat_desc = &static_bl_desc;
 | |
| 
 | |
|     s->bi_buf = 0;
 | |
|     s->bi_valid = 0;
 | |
|     s->last_eob_len = 8; /* enough lookahead for inflate */
 | |
| #ifdef DEBUG_ZLIB
 | |
|     s->bits_sent = 0L;
 | |
| #endif
 | |
| 
 | |
|     /* Initialize the first block of the first file: */
 | |
|     init_block(s);
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize a new block.
 | |
|  */
 | |
| static void init_block(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     int n; /* iterates over tree elements */
 | |
| 
 | |
|     /* Initialize the trees. */
 | |
|     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
 | |
|     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
 | |
|     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
 | |
| 
 | |
|     s->dyn_ltree[END_BLOCK].Freq = 1;
 | |
|     s->opt_len = s->static_len = 0L;
 | |
|     s->last_lit = s->matches = 0;
 | |
| }
 | |
| 
 | |
| #define SMALLEST 1
 | |
| /* Index within the heap array of least frequent node in the Huffman tree */
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Remove the smallest element from the heap and recreate the heap with
 | |
|  * one less element. Updates heap and heap_len.
 | |
|  */
 | |
| #define pqremove(s, tree, top) \
 | |
| {\
 | |
|     top = s->heap[SMALLEST]; \
 | |
|     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
 | |
|     pqdownheap(s, tree, SMALLEST); \
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compares to subtrees, using the tree depth as tie breaker when
 | |
|  * the subtrees have equal frequency. This minimizes the worst case length.
 | |
|  */
 | |
| #define smaller(tree, n, m, depth) \
 | |
|    (tree[n].Freq < tree[m].Freq || \
 | |
|    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Restore the heap property by moving down the tree starting at node k,
 | |
|  * exchanging a node with the smallest of its two sons if necessary, stopping
 | |
|  * when the heap property is re-established (each father smaller than its
 | |
|  * two sons).
 | |
|  */
 | |
| static void pqdownheap(
 | |
| 	deflate_state *s,
 | |
| 	ct_data *tree,  /* the tree to restore */
 | |
| 	int k		/* node to move down */
 | |
| )
 | |
| {
 | |
|     int v = s->heap[k];
 | |
|     int j = k << 1;  /* left son of k */
 | |
|     while (j <= s->heap_len) {
 | |
|         /* Set j to the smallest of the two sons: */
 | |
|         if (j < s->heap_len &&
 | |
|             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
 | |
|             j++;
 | |
|         }
 | |
|         /* Exit if v is smaller than both sons */
 | |
|         if (smaller(tree, v, s->heap[j], s->depth)) break;
 | |
| 
 | |
|         /* Exchange v with the smallest son */
 | |
|         s->heap[k] = s->heap[j];  k = j;
 | |
| 
 | |
|         /* And continue down the tree, setting j to the left son of k */
 | |
|         j <<= 1;
 | |
|     }
 | |
|     s->heap[k] = v;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compute the optimal bit lengths for a tree and update the total bit length
 | |
|  * for the current block.
 | |
|  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 | |
|  *    above are the tree nodes sorted by increasing frequency.
 | |
|  * OUT assertions: the field len is set to the optimal bit length, the
 | |
|  *     array bl_count contains the frequencies for each bit length.
 | |
|  *     The length opt_len is updated; static_len is also updated if stree is
 | |
|  *     not null.
 | |
|  */
 | |
| static void gen_bitlen(
 | |
| 	deflate_state *s,
 | |
| 	tree_desc *desc    /* the tree descriptor */
 | |
| )
 | |
| {
 | |
|     ct_data *tree        = desc->dyn_tree;
 | |
|     int max_code         = desc->max_code;
 | |
|     const ct_data *stree = desc->stat_desc->static_tree;
 | |
|     const int *extra     = desc->stat_desc->extra_bits;
 | |
|     int base             = desc->stat_desc->extra_base;
 | |
|     int max_length       = desc->stat_desc->max_length;
 | |
|     int h;              /* heap index */
 | |
|     int n, m;           /* iterate over the tree elements */
 | |
|     int bits;           /* bit length */
 | |
|     int xbits;          /* extra bits */
 | |
|     ush f;              /* frequency */
 | |
|     int overflow = 0;   /* number of elements with bit length too large */
 | |
| 
 | |
|     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
 | |
| 
 | |
|     /* In a first pass, compute the optimal bit lengths (which may
 | |
|      * overflow in the case of the bit length tree).
 | |
|      */
 | |
|     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
 | |
| 
 | |
|     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
 | |
|         n = s->heap[h];
 | |
|         bits = tree[tree[n].Dad].Len + 1;
 | |
|         if (bits > max_length) bits = max_length, overflow++;
 | |
|         tree[n].Len = (ush)bits;
 | |
|         /* We overwrite tree[n].Dad which is no longer needed */
 | |
| 
 | |
|         if (n > max_code) continue; /* not a leaf node */
 | |
| 
 | |
|         s->bl_count[bits]++;
 | |
|         xbits = 0;
 | |
|         if (n >= base) xbits = extra[n-base];
 | |
|         f = tree[n].Freq;
 | |
|         s->opt_len += (ulg)f * (bits + xbits);
 | |
|         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
 | |
|     }
 | |
|     if (overflow == 0) return;
 | |
| 
 | |
|     Trace((stderr,"\nbit length overflow\n"));
 | |
|     /* This happens for example on obj2 and pic of the Calgary corpus */
 | |
| 
 | |
|     /* Find the first bit length which could increase: */
 | |
|     do {
 | |
|         bits = max_length-1;
 | |
|         while (s->bl_count[bits] == 0) bits--;
 | |
|         s->bl_count[bits]--;      /* move one leaf down the tree */
 | |
|         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
 | |
|         s->bl_count[max_length]--;
 | |
|         /* The brother of the overflow item also moves one step up,
 | |
|          * but this does not affect bl_count[max_length]
 | |
|          */
 | |
|         overflow -= 2;
 | |
|     } while (overflow > 0);
 | |
| 
 | |
|     /* Now recompute all bit lengths, scanning in increasing frequency.
 | |
|      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 | |
|      * lengths instead of fixing only the wrong ones. This idea is taken
 | |
|      * from 'ar' written by Haruhiko Okumura.)
 | |
|      */
 | |
|     for (bits = max_length; bits != 0; bits--) {
 | |
|         n = s->bl_count[bits];
 | |
|         while (n != 0) {
 | |
|             m = s->heap[--h];
 | |
|             if (m > max_code) continue;
 | |
|             if (tree[m].Len != (unsigned) bits) {
 | |
|                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
 | |
|                 s->opt_len += ((long)bits - (long)tree[m].Len)
 | |
|                               *(long)tree[m].Freq;
 | |
|                 tree[m].Len = (ush)bits;
 | |
|             }
 | |
|             n--;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Generate the codes for a given tree and bit counts (which need not be
 | |
|  * optimal).
 | |
|  * IN assertion: the array bl_count contains the bit length statistics for
 | |
|  * the given tree and the field len is set for all tree elements.
 | |
|  * OUT assertion: the field code is set for all tree elements of non
 | |
|  *     zero code length.
 | |
|  */
 | |
| static void gen_codes(
 | |
| 	ct_data *tree,             /* the tree to decorate */
 | |
| 	int max_code,              /* largest code with non zero frequency */
 | |
| 	ush *bl_count             /* number of codes at each bit length */
 | |
| )
 | |
| {
 | |
|     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
 | |
|     ush code = 0;              /* running code value */
 | |
|     int bits;                  /* bit index */
 | |
|     int n;                     /* code index */
 | |
| 
 | |
|     /* The distribution counts are first used to generate the code values
 | |
|      * without bit reversal.
 | |
|      */
 | |
|     for (bits = 1; bits <= MAX_BITS; bits++) {
 | |
|         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
 | |
|     }
 | |
|     /* Check that the bit counts in bl_count are consistent. The last code
 | |
|      * must be all ones.
 | |
|      */
 | |
|     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | |
|             "inconsistent bit counts");
 | |
|     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | |
| 
 | |
|     for (n = 0;  n <= max_code; n++) {
 | |
|         int len = tree[n].Len;
 | |
|         if (len == 0) continue;
 | |
|         /* Now reverse the bits */
 | |
|         tree[n].Code = bi_reverse(next_code[len]++, len);
 | |
| 
 | |
|         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | |
|              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct one Huffman tree and assigns the code bit strings and lengths.
 | |
|  * Update the total bit length for the current block.
 | |
|  * IN assertion: the field freq is set for all tree elements.
 | |
|  * OUT assertions: the fields len and code are set to the optimal bit length
 | |
|  *     and corresponding code. The length opt_len is updated; static_len is
 | |
|  *     also updated if stree is not null. The field max_code is set.
 | |
|  */
 | |
| static void build_tree(
 | |
| 	deflate_state *s,
 | |
| 	tree_desc *desc	 /* the tree descriptor */
 | |
| )
 | |
| {
 | |
|     ct_data *tree         = desc->dyn_tree;
 | |
|     const ct_data *stree  = desc->stat_desc->static_tree;
 | |
|     int elems             = desc->stat_desc->elems;
 | |
|     int n, m;          /* iterate over heap elements */
 | |
|     int max_code = -1; /* largest code with non zero frequency */
 | |
|     int node;          /* new node being created */
 | |
| 
 | |
|     /* Construct the initial heap, with least frequent element in
 | |
|      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 | |
|      * heap[0] is not used.
 | |
|      */
 | |
|     s->heap_len = 0, s->heap_max = HEAP_SIZE;
 | |
| 
 | |
|     for (n = 0; n < elems; n++) {
 | |
|         if (tree[n].Freq != 0) {
 | |
|             s->heap[++(s->heap_len)] = max_code = n;
 | |
|             s->depth[n] = 0;
 | |
|         } else {
 | |
|             tree[n].Len = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The pkzip format requires that at least one distance code exists,
 | |
|      * and that at least one bit should be sent even if there is only one
 | |
|      * possible code. So to avoid special checks later on we force at least
 | |
|      * two codes of non zero frequency.
 | |
|      */
 | |
|     while (s->heap_len < 2) {
 | |
|         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
 | |
|         tree[node].Freq = 1;
 | |
|         s->depth[node] = 0;
 | |
|         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
 | |
|         /* node is 0 or 1 so it does not have extra bits */
 | |
|     }
 | |
|     desc->max_code = max_code;
 | |
| 
 | |
|     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | |
|      * establish sub-heaps of increasing lengths:
 | |
|      */
 | |
|     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
 | |
| 
 | |
|     /* Construct the Huffman tree by repeatedly combining the least two
 | |
|      * frequent nodes.
 | |
|      */
 | |
|     node = elems;              /* next internal node of the tree */
 | |
|     do {
 | |
|         pqremove(s, tree, n);  /* n = node of least frequency */
 | |
|         m = s->heap[SMALLEST]; /* m = node of next least frequency */
 | |
| 
 | |
|         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
 | |
|         s->heap[--(s->heap_max)] = m;
 | |
| 
 | |
|         /* Create a new node father of n and m */
 | |
|         tree[node].Freq = tree[n].Freq + tree[m].Freq;
 | |
|         s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1);
 | |
|         tree[n].Dad = tree[m].Dad = (ush)node;
 | |
| #ifdef DUMP_BL_TREE
 | |
|         if (tree == s->bl_tree) {
 | |
|             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
 | |
|                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
 | |
|         }
 | |
| #endif
 | |
|         /* and insert the new node in the heap */
 | |
|         s->heap[SMALLEST] = node++;
 | |
|         pqdownheap(s, tree, SMALLEST);
 | |
| 
 | |
|     } while (s->heap_len >= 2);
 | |
| 
 | |
|     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
 | |
| 
 | |
|     /* At this point, the fields freq and dad are set. We can now
 | |
|      * generate the bit lengths.
 | |
|      */
 | |
|     gen_bitlen(s, (tree_desc *)desc);
 | |
| 
 | |
|     /* The field len is now set, we can generate the bit codes */
 | |
|     gen_codes ((ct_data *)tree, max_code, s->bl_count);
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Scan a literal or distance tree to determine the frequencies of the codes
 | |
|  * in the bit length tree.
 | |
|  */
 | |
| static void scan_tree(
 | |
| 	deflate_state *s,
 | |
| 	ct_data *tree,   /* the tree to be scanned */
 | |
| 	int max_code     /* and its largest code of non zero frequency */
 | |
| )
 | |
| {
 | |
|     int n;                     /* iterates over all tree elements */
 | |
|     int prevlen = -1;          /* last emitted length */
 | |
|     int curlen;                /* length of current code */
 | |
|     int nextlen = tree[0].Len; /* length of next code */
 | |
|     int count = 0;             /* repeat count of the current code */
 | |
|     int max_count = 7;         /* max repeat count */
 | |
|     int min_count = 4;         /* min repeat count */
 | |
| 
 | |
|     if (nextlen == 0) max_count = 138, min_count = 3;
 | |
|     tree[max_code+1].Len = (ush)0xffff; /* guard */
 | |
| 
 | |
|     for (n = 0; n <= max_code; n++) {
 | |
|         curlen = nextlen; nextlen = tree[n+1].Len;
 | |
|         if (++count < max_count && curlen == nextlen) {
 | |
|             continue;
 | |
|         } else if (count < min_count) {
 | |
|             s->bl_tree[curlen].Freq += count;
 | |
|         } else if (curlen != 0) {
 | |
|             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
 | |
|             s->bl_tree[REP_3_6].Freq++;
 | |
|         } else if (count <= 10) {
 | |
|             s->bl_tree[REPZ_3_10].Freq++;
 | |
|         } else {
 | |
|             s->bl_tree[REPZ_11_138].Freq++;
 | |
|         }
 | |
|         count = 0; prevlen = curlen;
 | |
|         if (nextlen == 0) {
 | |
|             max_count = 138, min_count = 3;
 | |
|         } else if (curlen == nextlen) {
 | |
|             max_count = 6, min_count = 3;
 | |
|         } else {
 | |
|             max_count = 7, min_count = 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a literal or distance tree in compressed form, using the codes in
 | |
|  * bl_tree.
 | |
|  */
 | |
| static void send_tree(
 | |
| 	deflate_state *s,
 | |
| 	ct_data *tree, /* the tree to be scanned */
 | |
| 	int max_code   /* and its largest code of non zero frequency */
 | |
| )
 | |
| {
 | |
|     int n;                     /* iterates over all tree elements */
 | |
|     int prevlen = -1;          /* last emitted length */
 | |
|     int curlen;                /* length of current code */
 | |
|     int nextlen = tree[0].Len; /* length of next code */
 | |
|     int count = 0;             /* repeat count of the current code */
 | |
|     int max_count = 7;         /* max repeat count */
 | |
|     int min_count = 4;         /* min repeat count */
 | |
| 
 | |
|     /* tree[max_code+1].Len = -1; */  /* guard already set */
 | |
|     if (nextlen == 0) max_count = 138, min_count = 3;
 | |
| 
 | |
|     for (n = 0; n <= max_code; n++) {
 | |
|         curlen = nextlen; nextlen = tree[n+1].Len;
 | |
|         if (++count < max_count && curlen == nextlen) {
 | |
|             continue;
 | |
|         } else if (count < min_count) {
 | |
|             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
 | |
| 
 | |
|         } else if (curlen != 0) {
 | |
|             if (curlen != prevlen) {
 | |
|                 send_code(s, curlen, s->bl_tree); count--;
 | |
|             }
 | |
|             Assert(count >= 3 && count <= 6, " 3_6?");
 | |
|             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
 | |
| 
 | |
|         } else if (count <= 10) {
 | |
|             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
 | |
| 
 | |
|         } else {
 | |
|             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
 | |
|         }
 | |
|         count = 0; prevlen = curlen;
 | |
|         if (nextlen == 0) {
 | |
|             max_count = 138, min_count = 3;
 | |
|         } else if (curlen == nextlen) {
 | |
|             max_count = 6, min_count = 3;
 | |
|         } else {
 | |
|             max_count = 7, min_count = 4;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Construct the Huffman tree for the bit lengths and return the index in
 | |
|  * bl_order of the last bit length code to send.
 | |
|  */
 | |
| static int build_bl_tree(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     int max_blindex;  /* index of last bit length code of non zero freq */
 | |
| 
 | |
|     /* Determine the bit length frequencies for literal and distance trees */
 | |
|     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
 | |
|     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
 | |
| 
 | |
|     /* Build the bit length tree: */
 | |
|     build_tree(s, (tree_desc *)(&(s->bl_desc)));
 | |
|     /* opt_len now includes the length of the tree representations, except
 | |
|      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | |
|      */
 | |
| 
 | |
|     /* Determine the number of bit length codes to send. The pkzip format
 | |
|      * requires that at least 4 bit length codes be sent. (appnote.txt says
 | |
|      * 3 but the actual value used is 4.)
 | |
|      */
 | |
|     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
 | |
|         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
 | |
|     }
 | |
|     /* Update opt_len to include the bit length tree and counts */
 | |
|     s->opt_len += 3*(max_blindex+1) + 5+5+4;
 | |
|     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | |
|             s->opt_len, s->static_len));
 | |
| 
 | |
|     return max_blindex;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the header for a block using dynamic Huffman trees: the counts, the
 | |
|  * lengths of the bit length codes, the literal tree and the distance tree.
 | |
|  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | |
|  */
 | |
| static void send_all_trees(
 | |
| 	deflate_state *s,
 | |
| 	int lcodes,  /* number of codes for each tree */
 | |
| 	int dcodes,  /* number of codes for each tree */
 | |
| 	int blcodes  /* number of codes for each tree */
 | |
| )
 | |
| {
 | |
|     int rank;                    /* index in bl_order */
 | |
| 
 | |
|     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | |
|     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | |
|             "too many codes");
 | |
|     Tracev((stderr, "\nbl counts: "));
 | |
|     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
 | |
|     send_bits(s, dcodes-1,   5);
 | |
|     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
 | |
|     for (rank = 0; rank < blcodes; rank++) {
 | |
|         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | |
|         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
 | |
|     }
 | |
|     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
 | |
|     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 | |
| 
 | |
|     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
 | |
|     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send a stored block
 | |
|  */
 | |
| void zlib_tr_stored_block(
 | |
| 	deflate_state *s,
 | |
| 	char *buf,        /* input block */
 | |
| 	ulg stored_len,   /* length of input block */
 | |
| 	int eof           /* true if this is the last block for a file */
 | |
| )
 | |
| {
 | |
|     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
 | |
|     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
 | |
|     s->compressed_len += (stored_len + 4) << 3;
 | |
| 
 | |
|     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
 | |
| }
 | |
| 
 | |
| /* Send just the `stored block' type code without any length bytes or data.
 | |
|  */
 | |
| void zlib_tr_stored_type_only(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     send_bits(s, (STORED_BLOCK << 1), 3);
 | |
|     bi_windup(s);
 | |
|     s->compressed_len = (s->compressed_len + 3) & ~7L;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send one empty static block to give enough lookahead for inflate.
 | |
|  * This takes 10 bits, of which 7 may remain in the bit buffer.
 | |
|  * The current inflate code requires 9 bits of lookahead. If the
 | |
|  * last two codes for the previous block (real code plus EOB) were coded
 | |
|  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 | |
|  * the last real code. In this case we send two empty static blocks instead
 | |
|  * of one. (There are no problems if the previous block is stored or fixed.)
 | |
|  * To simplify the code, we assume the worst case of last real code encoded
 | |
|  * on one bit only.
 | |
|  */
 | |
| void zlib_tr_align(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     send_bits(s, STATIC_TREES<<1, 3);
 | |
|     send_code(s, END_BLOCK, static_ltree);
 | |
|     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
 | |
|     bi_flush(s);
 | |
|     /* Of the 10 bits for the empty block, we have already sent
 | |
|      * (10 - bi_valid) bits. The lookahead for the last real code (before
 | |
|      * the EOB of the previous block) was thus at least one plus the length
 | |
|      * of the EOB plus what we have just sent of the empty static block.
 | |
|      */
 | |
|     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
 | |
|         send_bits(s, STATIC_TREES<<1, 3);
 | |
|         send_code(s, END_BLOCK, static_ltree);
 | |
|         s->compressed_len += 10L;
 | |
|         bi_flush(s);
 | |
|     }
 | |
|     s->last_eob_len = 7;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Determine the best encoding for the current block: dynamic trees, static
 | |
|  * trees or store, and output the encoded block to the zip file. This function
 | |
|  * returns the total compressed length for the file so far.
 | |
|  */
 | |
| ulg zlib_tr_flush_block(
 | |
| 	deflate_state *s,
 | |
| 	char *buf,        /* input block, or NULL if too old */
 | |
| 	ulg stored_len,   /* length of input block */
 | |
| 	int eof           /* true if this is the last block for a file */
 | |
| )
 | |
| {
 | |
|     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
 | |
|     int max_blindex = 0;  /* index of last bit length code of non zero freq */
 | |
| 
 | |
|     /* Build the Huffman trees unless a stored block is forced */
 | |
|     if (s->level > 0) {
 | |
| 
 | |
| 	 /* Check if the file is ascii or binary */
 | |
| 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
 | |
| 
 | |
| 	/* Construct the literal and distance trees */
 | |
| 	build_tree(s, (tree_desc *)(&(s->l_desc)));
 | |
| 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
 | |
| 		s->static_len));
 | |
| 
 | |
| 	build_tree(s, (tree_desc *)(&(s->d_desc)));
 | |
| 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
 | |
| 		s->static_len));
 | |
| 	/* At this point, opt_len and static_len are the total bit lengths of
 | |
| 	 * the compressed block data, excluding the tree representations.
 | |
| 	 */
 | |
| 
 | |
| 	/* Build the bit length tree for the above two trees, and get the index
 | |
| 	 * in bl_order of the last bit length code to send.
 | |
| 	 */
 | |
| 	max_blindex = build_bl_tree(s);
 | |
| 
 | |
| 	/* Determine the best encoding. Compute first the block length in bytes*/
 | |
| 	opt_lenb = (s->opt_len+3+7)>>3;
 | |
| 	static_lenb = (s->static_len+3+7)>>3;
 | |
| 
 | |
| 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
 | |
| 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
 | |
| 		s->last_lit));
 | |
| 
 | |
| 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
 | |
| 
 | |
|     } else {
 | |
|         Assert(buf != (char*)0, "lost buf");
 | |
| 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
 | |
|     }
 | |
| 
 | |
|     /* If compression failed and this is the first and last block,
 | |
|      * and if the .zip file can be seeked (to rewrite the local header),
 | |
|      * the whole file is transformed into a stored file:
 | |
|      */
 | |
| #ifdef STORED_FILE_OK
 | |
| #  ifdef FORCE_STORED_FILE
 | |
|     if (eof && s->compressed_len == 0L) { /* force stored file */
 | |
| #  else
 | |
|     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
 | |
| #  endif
 | |
|         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
 | |
|         if (buf == (char*)0) error ("block vanished");
 | |
| 
 | |
|         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
 | |
|         s->compressed_len = stored_len << 3;
 | |
|         s->method = STORED;
 | |
|     } else
 | |
| #endif /* STORED_FILE_OK */
 | |
| 
 | |
| #ifdef FORCE_STORED
 | |
|     if (buf != (char*)0) { /* force stored block */
 | |
| #else
 | |
|     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
 | |
|                        /* 4: two words for the lengths */
 | |
| #endif
 | |
|         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | |
|          * Otherwise we can't have processed more than WSIZE input bytes since
 | |
|          * the last block flush, because compression would have been
 | |
|          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | |
|          * transform a block into a stored block.
 | |
|          */
 | |
|         zlib_tr_stored_block(s, buf, stored_len, eof);
 | |
| 
 | |
| #ifdef FORCE_STATIC
 | |
|     } else if (static_lenb >= 0) { /* force static trees */
 | |
| #else
 | |
|     } else if (static_lenb == opt_lenb) {
 | |
| #endif
 | |
|         send_bits(s, (STATIC_TREES<<1)+eof, 3);
 | |
|         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
 | |
|         s->compressed_len += 3 + s->static_len;
 | |
|     } else {
 | |
|         send_bits(s, (DYN_TREES<<1)+eof, 3);
 | |
|         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
 | |
|                        max_blindex+1);
 | |
|         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
 | |
|         s->compressed_len += 3 + s->opt_len;
 | |
|     }
 | |
|     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
 | |
|     init_block(s);
 | |
| 
 | |
|     if (eof) {
 | |
|         bi_windup(s);
 | |
|         s->compressed_len += 7;  /* align on byte boundary */
 | |
|     }
 | |
|     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
 | |
|            s->compressed_len-7*eof));
 | |
| 
 | |
|     return s->compressed_len >> 3;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Save the match info and tally the frequency counts. Return true if
 | |
|  * the current block must be flushed.
 | |
|  */
 | |
| int zlib_tr_tally(
 | |
| 	deflate_state *s,
 | |
| 	unsigned dist,  /* distance of matched string */
 | |
| 	unsigned lc     /* match length-MIN_MATCH or unmatched char (if dist==0) */
 | |
| )
 | |
| {
 | |
|     s->d_buf[s->last_lit] = (ush)dist;
 | |
|     s->l_buf[s->last_lit++] = (uch)lc;
 | |
|     if (dist == 0) {
 | |
|         /* lc is the unmatched char */
 | |
|         s->dyn_ltree[lc].Freq++;
 | |
|     } else {
 | |
|         s->matches++;
 | |
|         /* Here, lc is the match length - MIN_MATCH */
 | |
|         dist--;             /* dist = match distance - 1 */
 | |
|         Assert((ush)dist < (ush)MAX_DIST(s) &&
 | |
|                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | |
|                (ush)d_code(dist) < (ush)D_CODES,  "zlib_tr_tally: bad match");
 | |
| 
 | |
|         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
 | |
|         s->dyn_dtree[d_code(dist)].Freq++;
 | |
|     }
 | |
| 
 | |
|     /* Try to guess if it is profitable to stop the current block here */
 | |
|     if ((s->last_lit & 0xfff) == 0 && s->level > 2) {
 | |
|         /* Compute an upper bound for the compressed length */
 | |
|         ulg out_length = (ulg)s->last_lit*8L;
 | |
|         ulg in_length = (ulg)((long)s->strstart - s->block_start);
 | |
|         int dcode;
 | |
|         for (dcode = 0; dcode < D_CODES; dcode++) {
 | |
|             out_length += (ulg)s->dyn_dtree[dcode].Freq *
 | |
|                 (5L+extra_dbits[dcode]);
 | |
|         }
 | |
|         out_length >>= 3;
 | |
|         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
 | |
|                s->last_lit, in_length, out_length,
 | |
|                100L - out_length*100L/in_length));
 | |
|         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
 | |
|     }
 | |
|     return (s->last_lit == s->lit_bufsize-1);
 | |
|     /* We avoid equality with lit_bufsize because of wraparound at 64K
 | |
|      * on 16 bit machines and because stored blocks are restricted to
 | |
|      * 64K-1 bytes.
 | |
|      */
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Send the block data compressed using the given Huffman trees
 | |
|  */
 | |
| static void compress_block(
 | |
| 	deflate_state *s,
 | |
| 	ct_data *ltree, /* literal tree */
 | |
| 	ct_data *dtree  /* distance tree */
 | |
| )
 | |
| {
 | |
|     unsigned dist;      /* distance of matched string */
 | |
|     int lc;             /* match length or unmatched char (if dist == 0) */
 | |
|     unsigned lx = 0;    /* running index in l_buf */
 | |
|     unsigned code;      /* the code to send */
 | |
|     int extra;          /* number of extra bits to send */
 | |
| 
 | |
|     if (s->last_lit != 0) do {
 | |
|         dist = s->d_buf[lx];
 | |
|         lc = s->l_buf[lx++];
 | |
|         if (dist == 0) {
 | |
|             send_code(s, lc, ltree); /* send a literal byte */
 | |
|             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | |
|         } else {
 | |
|             /* Here, lc is the match length - MIN_MATCH */
 | |
|             code = length_code[lc];
 | |
|             send_code(s, code+LITERALS+1, ltree); /* send the length code */
 | |
|             extra = extra_lbits[code];
 | |
|             if (extra != 0) {
 | |
|                 lc -= base_length[code];
 | |
|                 send_bits(s, lc, extra);       /* send the extra length bits */
 | |
|             }
 | |
|             dist--; /* dist is now the match distance - 1 */
 | |
|             code = d_code(dist);
 | |
|             Assert (code < D_CODES, "bad d_code");
 | |
| 
 | |
|             send_code(s, code, dtree);       /* send the distance code */
 | |
|             extra = extra_dbits[code];
 | |
|             if (extra != 0) {
 | |
|                 dist -= base_dist[code];
 | |
|                 send_bits(s, dist, extra);   /* send the extra distance bits */
 | |
|             }
 | |
|         } /* literal or match pair ? */
 | |
| 
 | |
|         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
 | |
|         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
 | |
| 
 | |
|     } while (lx < s->last_lit);
 | |
| 
 | |
|     send_code(s, END_BLOCK, ltree);
 | |
|     s->last_eob_len = ltree[END_BLOCK].Len;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Set the data type to ASCII or BINARY, using a crude approximation:
 | |
|  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 | |
|  * IN assertion: the fields freq of dyn_ltree are set and the total of all
 | |
|  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 | |
|  */
 | |
| static void set_data_type(
 | |
| 	deflate_state *s
 | |
| )
 | |
| {
 | |
|     int n = 0;
 | |
|     unsigned ascii_freq = 0;
 | |
|     unsigned bin_freq = 0;
 | |
|     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
 | |
|     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
 | |
|     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
 | |
|     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Copy a stored block, storing first the length and its
 | |
|  * one's complement if requested.
 | |
|  */
 | |
| static void copy_block(
 | |
| 	deflate_state *s,
 | |
| 	char    *buf,     /* the input data */
 | |
| 	unsigned len,     /* its length */
 | |
| 	int      header   /* true if block header must be written */
 | |
| )
 | |
| {
 | |
|     bi_windup(s);        /* align on byte boundary */
 | |
|     s->last_eob_len = 8; /* enough lookahead for inflate */
 | |
| 
 | |
|     if (header) {
 | |
|         put_short(s, (ush)len);   
 | |
|         put_short(s, (ush)~len);
 | |
| #ifdef DEBUG_ZLIB
 | |
|         s->bits_sent += 2*16;
 | |
| #endif
 | |
|     }
 | |
| #ifdef DEBUG_ZLIB
 | |
|     s->bits_sent += (ulg)len<<3;
 | |
| #endif
 | |
|     /* bundle up the put_byte(s, *buf++) calls */
 | |
|     memcpy(&s->pending_buf[s->pending], buf, len);
 | |
|     s->pending += len;
 | |
| }
 | |
| 
 |