mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 01a3ee2b20
			
		
	
	
		01a3ee2b20
		
	
	
	
	
		
			
			lib/bitmap.c:bitmap_parse() is a library function that received as input a user buffer. This seemed to have originated from the way the write_proc function of the /proc filesystem operates. This has been reworked to not use kmalloc and eliminates a lot of get_user() overhead by performing one access_ok before using __get_user(). We need to test if we are in kernel or user space (is_user) and access the buffer differently. We cannot use __get_user() to access kernel addresses in all cases, for example in architectures with separate address space for kernel and user. This function will be useful for other uses as well; for example, taking input for /sysfs instead of /proc, so it was changed to accept kernel buffers. We have this use for the Linux UWB project, as part as the upcoming bandwidth allocator code. Only a few routines used this function and they were changed too. Signed-off-by: Reinette Chatre <reinette.chatre@linux.intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Cc: Paul Jackson <pj@sgi.com> Cc: Joe Korty <joe.korty@ccur.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			837 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			837 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * lib/bitmap.c
 | |
|  * Helper functions for bitmap.h.
 | |
|  *
 | |
|  * This source code is licensed under the GNU General Public License,
 | |
|  * Version 2.  See the file COPYING for more details.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /*
 | |
|  * bitmaps provide an array of bits, implemented using an an
 | |
|  * array of unsigned longs.  The number of valid bits in a
 | |
|  * given bitmap does _not_ need to be an exact multiple of
 | |
|  * BITS_PER_LONG.
 | |
|  *
 | |
|  * The possible unused bits in the last, partially used word
 | |
|  * of a bitmap are 'don't care'.  The implementation makes
 | |
|  * no particular effort to keep them zero.  It ensures that
 | |
|  * their value will not affect the results of any operation.
 | |
|  * The bitmap operations that return Boolean (bitmap_empty,
 | |
|  * for example) or scalar (bitmap_weight, for example) results
 | |
|  * carefully filter out these unused bits from impacting their
 | |
|  * results.
 | |
|  *
 | |
|  * These operations actually hold to a slightly stronger rule:
 | |
|  * if you don't input any bitmaps to these ops that have some
 | |
|  * unused bits set, then they won't output any set unused bits
 | |
|  * in output bitmaps.
 | |
|  *
 | |
|  * The byte ordering of bitmaps is more natural on little
 | |
|  * endian architectures.  See the big-endian headers
 | |
|  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 | |
|  * for the best explanations of this ordering.
 | |
|  */
 | |
| 
 | |
| int __bitmap_empty(const unsigned long *bitmap, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_empty);
 | |
| 
 | |
| int __bitmap_full(const unsigned long *bitmap, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (~bitmap[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_full);
 | |
| 
 | |
| int __bitmap_equal(const unsigned long *bitmap1,
 | |
| 		const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] != bitmap2[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_equal);
 | |
| 
 | |
| void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		dst[k] = ~src[k];
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_complement);
 | |
| 
 | |
| /*
 | |
|  * __bitmap_shift_right - logical right shift of the bits in a bitmap
 | |
|  *   @dst - destination bitmap
 | |
|  *   @src - source bitmap
 | |
|  *   @nbits - shift by this many bits
 | |
|  *   @bits - bitmap size, in bits
 | |
|  *
 | |
|  * Shifting right (dividing) means moving bits in the MS -> LS bit
 | |
|  * direction.  Zeros are fed into the vacated MS positions and the
 | |
|  * LS bits shifted off the bottom are lost.
 | |
|  */
 | |
| void __bitmap_shift_right(unsigned long *dst,
 | |
| 			const unsigned long *src, int shift, int bits)
 | |
| {
 | |
| 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 | |
| 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | |
| 	unsigned long mask = (1UL << left) - 1;
 | |
| 	for (k = 0; off + k < lim; ++k) {
 | |
| 		unsigned long upper, lower;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shift is not word aligned, take lower rem bits of
 | |
| 		 * word above and make them the top rem bits of result.
 | |
| 		 */
 | |
| 		if (!rem || off + k + 1 >= lim)
 | |
| 			upper = 0;
 | |
| 		else {
 | |
| 			upper = src[off + k + 1];
 | |
| 			if (off + k + 1 == lim - 1 && left)
 | |
| 				upper &= mask;
 | |
| 		}
 | |
| 		lower = src[off + k];
 | |
| 		if (left && off + k == lim - 1)
 | |
| 			lower &= mask;
 | |
| 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
 | |
| 		if (left && k == lim - 1)
 | |
| 			dst[k] &= mask;
 | |
| 	}
 | |
| 	if (off)
 | |
| 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_shift_right);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * __bitmap_shift_left - logical left shift of the bits in a bitmap
 | |
|  *   @dst - destination bitmap
 | |
|  *   @src - source bitmap
 | |
|  *   @nbits - shift by this many bits
 | |
|  *   @bits - bitmap size, in bits
 | |
|  *
 | |
|  * Shifting left (multiplying) means moving bits in the LS -> MS
 | |
|  * direction.  Zeros are fed into the vacated LS bit positions
 | |
|  * and those MS bits shifted off the top are lost.
 | |
|  */
 | |
| 
 | |
| void __bitmap_shift_left(unsigned long *dst,
 | |
| 			const unsigned long *src, int shift, int bits)
 | |
| {
 | |
| 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 | |
| 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | |
| 	for (k = lim - off - 1; k >= 0; --k) {
 | |
| 		unsigned long upper, lower;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shift is not word aligned, take upper rem bits of
 | |
| 		 * word below and make them the bottom rem bits of result.
 | |
| 		 */
 | |
| 		if (rem && k > 0)
 | |
| 			lower = src[k - 1];
 | |
| 		else
 | |
| 			lower = 0;
 | |
| 		upper = src[k];
 | |
| 		if (left && k == lim - 1)
 | |
| 			upper &= (1UL << left) - 1;
 | |
| 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
 | |
| 		if (left && k + off == lim - 1)
 | |
| 			dst[k + off] &= (1UL << left) - 1;
 | |
| 	}
 | |
| 	if (off)
 | |
| 		memset(dst, 0, off*sizeof(unsigned long));
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_shift_left);
 | |
| 
 | |
| void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k;
 | |
| 	int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] & bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_and);
 | |
| 
 | |
| void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k;
 | |
| 	int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] | bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_or);
 | |
| 
 | |
| void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k;
 | |
| 	int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] ^ bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_xor);
 | |
| 
 | |
| void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k;
 | |
| 	int nr = BITS_TO_LONGS(bits);
 | |
| 
 | |
| 	for (k = 0; k < nr; k++)
 | |
| 		dst[k] = bitmap1[k] & ~bitmap2[k];
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_andnot);
 | |
| 
 | |
| int __bitmap_intersects(const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] & bitmap2[k])
 | |
| 			return 1;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_intersects);
 | |
| 
 | |
| int __bitmap_subset(const unsigned long *bitmap1,
 | |
| 				const unsigned long *bitmap2, int bits)
 | |
| {
 | |
| 	int k, lim = bits/BITS_PER_LONG;
 | |
| 	for (k = 0; k < lim; ++k)
 | |
| 		if (bitmap1[k] & ~bitmap2[k])
 | |
| 			return 0;
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_subset);
 | |
| 
 | |
| int __bitmap_weight(const unsigned long *bitmap, int bits)
 | |
| {
 | |
| 	int k, w = 0, lim = bits/BITS_PER_LONG;
 | |
| 
 | |
| 	for (k = 0; k < lim; k++)
 | |
| 		w += hweight_long(bitmap[k]);
 | |
| 
 | |
| 	if (bits % BITS_PER_LONG)
 | |
| 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 | |
| 
 | |
| 	return w;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_weight);
 | |
| 
 | |
| /*
 | |
|  * Bitmap printing & parsing functions: first version by Bill Irwin,
 | |
|  * second version by Paul Jackson, third by Joe Korty.
 | |
|  */
 | |
| 
 | |
| #define CHUNKSZ				32
 | |
| #define nbits_to_hold_value(val)	fls(val)
 | |
| #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
 | |
| #define BASEDEC 10		/* fancier cpuset lists input in decimal */
 | |
| 
 | |
| /**
 | |
|  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
 | |
|  * @buf: byte buffer into which string is placed
 | |
|  * @buflen: reserved size of @buf, in bytes
 | |
|  * @maskp: pointer to bitmap to convert
 | |
|  * @nmaskbits: size of bitmap, in bits
 | |
|  *
 | |
|  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
 | |
|  * comma-separated sets of eight digits per set.
 | |
|  */
 | |
| int bitmap_scnprintf(char *buf, unsigned int buflen,
 | |
| 	const unsigned long *maskp, int nmaskbits)
 | |
| {
 | |
| 	int i, word, bit, len = 0;
 | |
| 	unsigned long val;
 | |
| 	const char *sep = "";
 | |
| 	int chunksz;
 | |
| 	u32 chunkmask;
 | |
| 
 | |
| 	chunksz = nmaskbits & (CHUNKSZ - 1);
 | |
| 	if (chunksz == 0)
 | |
| 		chunksz = CHUNKSZ;
 | |
| 
 | |
| 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
 | |
| 	for (; i >= 0; i -= CHUNKSZ) {
 | |
| 		chunkmask = ((1ULL << chunksz) - 1);
 | |
| 		word = i / BITS_PER_LONG;
 | |
| 		bit = i % BITS_PER_LONG;
 | |
| 		val = (maskp[word] >> bit) & chunkmask;
 | |
| 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
 | |
| 			(chunksz+3)/4, val);
 | |
| 		chunksz = CHUNKSZ;
 | |
| 		sep = ",";
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_scnprintf);
 | |
| 
 | |
| /**
 | |
|  * __bitmap_parse - convert an ASCII hex string into a bitmap.
 | |
|  * @buf: pointer to buffer containing string.
 | |
|  * @buflen: buffer size in bytes.  If string is smaller than this
 | |
|  *    then it must be terminated with a \0.
 | |
|  * @is_user: location of buffer, 0 indicates kernel space
 | |
|  * @maskp: pointer to bitmap array that will contain result.
 | |
|  * @nmaskbits: size of bitmap, in bits.
 | |
|  *
 | |
|  * Commas group hex digits into chunks.  Each chunk defines exactly 32
 | |
|  * bits of the resultant bitmask.  No chunk may specify a value larger
 | |
|  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 | |
|  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 | |
|  * characters and for grouping errors such as "1,,5", ",44", "," and "".
 | |
|  * Leading and trailing whitespace accepted, but not embedded whitespace.
 | |
|  */
 | |
| int __bitmap_parse(const char *buf, unsigned int buflen,
 | |
| 		int is_user, unsigned long *maskp,
 | |
| 		int nmaskbits)
 | |
| {
 | |
| 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 | |
| 	u32 chunk;
 | |
| 	const char __user *ubuf = buf;
 | |
| 
 | |
| 	bitmap_zero(maskp, nmaskbits);
 | |
| 
 | |
| 	nchunks = nbits = totaldigits = c = 0;
 | |
| 	do {
 | |
| 		chunk = ndigits = 0;
 | |
| 
 | |
| 		/* Get the next chunk of the bitmap */
 | |
| 		while (buflen) {
 | |
| 			old_c = c;
 | |
| 			if (is_user) {
 | |
| 				if (__get_user(c, ubuf++))
 | |
| 					return -EFAULT;
 | |
| 			}
 | |
| 			else
 | |
| 				c = *buf++;
 | |
| 			buflen--;
 | |
| 			if (isspace(c))
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the last character was a space and the current
 | |
| 			 * character isn't '\0', we've got embedded whitespace.
 | |
| 			 * This is a no-no, so throw an error.
 | |
| 			 */
 | |
| 			if (totaldigits && c && isspace(old_c))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* A '\0' or a ',' signal the end of the chunk */
 | |
| 			if (c == '\0' || c == ',')
 | |
| 				break;
 | |
| 
 | |
| 			if (!isxdigit(c))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/*
 | |
| 			 * Make sure there are at least 4 free bits in 'chunk'.
 | |
| 			 * If not, this hexdigit will overflow 'chunk', so
 | |
| 			 * throw an error.
 | |
| 			 */
 | |
| 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 | |
| 				return -EOVERFLOW;
 | |
| 
 | |
| 			chunk = (chunk << 4) | unhex(c);
 | |
| 			ndigits++; totaldigits++;
 | |
| 		}
 | |
| 		if (ndigits == 0)
 | |
| 			return -EINVAL;
 | |
| 		if (nchunks == 0 && chunk == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 | |
| 		*maskp |= chunk;
 | |
| 		nchunks++;
 | |
| 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 | |
| 		if (nbits > nmaskbits)
 | |
| 			return -EOVERFLOW;
 | |
| 	} while (buflen && c == ',');
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__bitmap_parse);
 | |
| 
 | |
| /**
 | |
|  * bitmap_parse_user()
 | |
|  *
 | |
|  * @ubuf: pointer to user buffer containing string.
 | |
|  * @ulen: buffer size in bytes.  If string is smaller than this
 | |
|  *    then it must be terminated with a \0.
 | |
|  * @maskp: pointer to bitmap array that will contain result.
 | |
|  * @nmaskbits: size of bitmap, in bits.
 | |
|  *
 | |
|  * Wrapper for __bitmap_parse(), providing it with user buffer.
 | |
|  *
 | |
|  * We cannot have this as an inline function in bitmap.h because it needs
 | |
|  * linux/uaccess.h to get the access_ok() declaration and this causes
 | |
|  * cyclic dependencies.
 | |
|  */
 | |
| int bitmap_parse_user(const char __user *ubuf,
 | |
| 			unsigned int ulen, unsigned long *maskp,
 | |
| 			int nmaskbits)
 | |
| {
 | |
| 	if (!access_ok(VERIFY_READ, ubuf, ulen))
 | |
| 		return -EFAULT;
 | |
| 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parse_user);
 | |
| 
 | |
| /*
 | |
|  * bscnl_emit(buf, buflen, rbot, rtop, bp)
 | |
|  *
 | |
|  * Helper routine for bitmap_scnlistprintf().  Write decimal number
 | |
|  * or range to buf, suppressing output past buf+buflen, with optional
 | |
|  * comma-prefix.  Return len of what would be written to buf, if it
 | |
|  * all fit.
 | |
|  */
 | |
| static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
 | |
| {
 | |
| 	if (len > 0)
 | |
| 		len += scnprintf(buf + len, buflen - len, ",");
 | |
| 	if (rbot == rtop)
 | |
| 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
 | |
| 	else
 | |
| 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
 | |
|  * @buf: byte buffer into which string is placed
 | |
|  * @buflen: reserved size of @buf, in bytes
 | |
|  * @maskp: pointer to bitmap to convert
 | |
|  * @nmaskbits: size of bitmap, in bits
 | |
|  *
 | |
|  * Output format is a comma-separated list of decimal numbers and
 | |
|  * ranges.  Consecutively set bits are shown as two hyphen-separated
 | |
|  * decimal numbers, the smallest and largest bit numbers set in
 | |
|  * the range.  Output format is compatible with the format
 | |
|  * accepted as input by bitmap_parselist().
 | |
|  *
 | |
|  * The return value is the number of characters which would be
 | |
|  * generated for the given input, excluding the trailing '\0', as
 | |
|  * per ISO C99.
 | |
|  */
 | |
| int bitmap_scnlistprintf(char *buf, unsigned int buflen,
 | |
| 	const unsigned long *maskp, int nmaskbits)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
 | |
| 	int cur, rbot, rtop;
 | |
| 
 | |
| 	rbot = cur = find_first_bit(maskp, nmaskbits);
 | |
| 	while (cur < nmaskbits) {
 | |
| 		rtop = cur;
 | |
| 		cur = find_next_bit(maskp, nmaskbits, cur+1);
 | |
| 		if (cur >= nmaskbits || cur > rtop + 1) {
 | |
| 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
 | |
| 			rbot = cur;
 | |
| 		}
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_scnlistprintf);
 | |
| 
 | |
| /**
 | |
|  * bitmap_parselist - convert list format ASCII string to bitmap
 | |
|  * @bp: read nul-terminated user string from this buffer
 | |
|  * @maskp: write resulting mask here
 | |
|  * @nmaskbits: number of bits in mask to be written
 | |
|  *
 | |
|  * Input format is a comma-separated list of decimal numbers and
 | |
|  * ranges.  Consecutively set bits are shown as two hyphen-separated
 | |
|  * decimal numbers, the smallest and largest bit numbers set in
 | |
|  * the range.
 | |
|  *
 | |
|  * Returns 0 on success, -errno on invalid input strings.
 | |
|  * Error values:
 | |
|  *    %-EINVAL: second number in range smaller than first
 | |
|  *    %-EINVAL: invalid character in string
 | |
|  *    %-ERANGE: bit number specified too large for mask
 | |
|  */
 | |
| int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 | |
| {
 | |
| 	unsigned a, b;
 | |
| 
 | |
| 	bitmap_zero(maskp, nmaskbits);
 | |
| 	do {
 | |
| 		if (!isdigit(*bp))
 | |
| 			return -EINVAL;
 | |
| 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
 | |
| 		if (*bp == '-') {
 | |
| 			bp++;
 | |
| 			if (!isdigit(*bp))
 | |
| 				return -EINVAL;
 | |
| 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
 | |
| 		}
 | |
| 		if (!(a <= b))
 | |
| 			return -EINVAL;
 | |
| 		if (b >= nmaskbits)
 | |
| 			return -ERANGE;
 | |
| 		while (a <= b) {
 | |
| 			set_bit(a, maskp);
 | |
| 			a++;
 | |
| 		}
 | |
| 		if (*bp == ',')
 | |
| 			bp++;
 | |
| 	} while (*bp != '\0' && *bp != '\n');
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_parselist);
 | |
| 
 | |
| /*
 | |
|  * bitmap_pos_to_ord(buf, pos, bits)
 | |
|  *	@buf: pointer to a bitmap
 | |
|  *	@pos: a bit position in @buf (0 <= @pos < @bits)
 | |
|  *	@bits: number of valid bit positions in @buf
 | |
|  *
 | |
|  * Map the bit at position @pos in @buf (of length @bits) to the
 | |
|  * ordinal of which set bit it is.  If it is not set or if @pos
 | |
|  * is not a valid bit position, map to -1.
 | |
|  *
 | |
|  * If for example, just bits 4 through 7 are set in @buf, then @pos
 | |
|  * values 4 through 7 will get mapped to 0 through 3, respectively,
 | |
|  * and other @pos values will get mapped to 0.  When @pos value 7
 | |
|  * gets mapped to (returns) @ord value 3 in this example, that means
 | |
|  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 | |
|  *
 | |
|  * The bit positions 0 through @bits are valid positions in @buf.
 | |
|  */
 | |
| static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
 | |
| {
 | |
| 	int i, ord;
 | |
| 
 | |
| 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
 | |
| 		return -1;
 | |
| 
 | |
| 	i = find_first_bit(buf, bits);
 | |
| 	ord = 0;
 | |
| 	while (i < pos) {
 | |
| 		i = find_next_bit(buf, bits, i + 1);
 | |
| 	     	ord++;
 | |
| 	}
 | |
| 	BUG_ON(i != pos);
 | |
| 
 | |
| 	return ord;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_ord_to_pos(buf, ord, bits)
 | |
|  *	@buf: pointer to bitmap
 | |
|  *	@ord: ordinal bit position (n-th set bit, n >= 0)
 | |
|  *	@bits: number of valid bit positions in @buf
 | |
|  *
 | |
|  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 | |
|  * Value of @ord should be in range 0 <= @ord < weight(buf), else
 | |
|  * results are undefined.
 | |
|  *
 | |
|  * If for example, just bits 4 through 7 are set in @buf, then @ord
 | |
|  * values 0 through 3 will get mapped to 4 through 7, respectively,
 | |
|  * and all other @ord values return undefined values.  When @ord value 3
 | |
|  * gets mapped to (returns) @pos value 7 in this example, that means
 | |
|  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 | |
|  *
 | |
|  * The bit positions 0 through @bits are valid positions in @buf.
 | |
|  */
 | |
| static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
 | |
| {
 | |
| 	int pos = 0;
 | |
| 
 | |
| 	if (ord >= 0 && ord < bits) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = find_first_bit(buf, bits);
 | |
| 		     i < bits && ord > 0;
 | |
| 		     i = find_next_bit(buf, bits, i + 1))
 | |
| 	     		ord--;
 | |
| 		if (i < bits && ord == 0)
 | |
| 			pos = i;
 | |
| 	}
 | |
| 
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 | |
|  *	@dst: remapped result
 | |
|  *	@src: subset to be remapped
 | |
|  *	@old: defines domain of map
 | |
|  *	@new: defines range of map
 | |
|  *	@bits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Let @old and @new define a mapping of bit positions, such that
 | |
|  * whatever position is held by the n-th set bit in @old is mapped
 | |
|  * to the n-th set bit in @new.  In the more general case, allowing
 | |
|  * for the possibility that the weight 'w' of @new is less than the
 | |
|  * weight of @old, map the position of the n-th set bit in @old to
 | |
|  * the position of the m-th set bit in @new, where m == n % w.
 | |
|  *
 | |
|  * If either of the @old and @new bitmaps are empty, or if @src and
 | |
|  * @dst point to the same location, then this routine copies @src
 | |
|  * to @dst.
 | |
|  *
 | |
|  * The positions of unset bits in @old are mapped to themselves
 | |
|  * (the identify map).
 | |
|  *
 | |
|  * Apply the above specified mapping to @src, placing the result in
 | |
|  * @dst, clearing any bits previously set in @dst.
 | |
|  *
 | |
|  * For example, lets say that @old has bits 4 through 7 set, and
 | |
|  * @new has bits 12 through 15 set.  This defines the mapping of bit
 | |
|  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | |
|  * bit positions unchanged.  So if say @src comes into this routine
 | |
|  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 | |
|  * 13 and 15 set.
 | |
|  */
 | |
| void bitmap_remap(unsigned long *dst, const unsigned long *src,
 | |
| 		const unsigned long *old, const unsigned long *new,
 | |
| 		int bits)
 | |
| {
 | |
| 	int oldbit, w;
 | |
| 
 | |
| 	if (dst == src)		/* following doesn't handle inplace remaps */
 | |
| 		return;
 | |
| 	bitmap_zero(dst, bits);
 | |
| 
 | |
| 	w = bitmap_weight(new, bits);
 | |
| 	for (oldbit = find_first_bit(src, bits);
 | |
| 	     oldbit < bits;
 | |
| 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
 | |
| 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
 | |
| 		if (n < 0 || w == 0)
 | |
| 			set_bit(oldbit, dst);	/* identity map */
 | |
| 		else
 | |
| 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_remap);
 | |
| 
 | |
| /**
 | |
|  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 | |
|  *	@oldbit: bit position to be mapped
 | |
|  *	@old: defines domain of map
 | |
|  *	@new: defines range of map
 | |
|  *	@bits: number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Let @old and @new define a mapping of bit positions, such that
 | |
|  * whatever position is held by the n-th set bit in @old is mapped
 | |
|  * to the n-th set bit in @new.  In the more general case, allowing
 | |
|  * for the possibility that the weight 'w' of @new is less than the
 | |
|  * weight of @old, map the position of the n-th set bit in @old to
 | |
|  * the position of the m-th set bit in @new, where m == n % w.
 | |
|  *
 | |
|  * The positions of unset bits in @old are mapped to themselves
 | |
|  * (the identify map).
 | |
|  *
 | |
|  * Apply the above specified mapping to bit position @oldbit, returning
 | |
|  * the new bit position.
 | |
|  *
 | |
|  * For example, lets say that @old has bits 4 through 7 set, and
 | |
|  * @new has bits 12 through 15 set.  This defines the mapping of bit
 | |
|  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | |
|  * bit positions unchanged.  So if say @oldbit is 5, then this routine
 | |
|  * returns 13.
 | |
|  */
 | |
| int bitmap_bitremap(int oldbit, const unsigned long *old,
 | |
| 				const unsigned long *new, int bits)
 | |
| {
 | |
| 	int w = bitmap_weight(new, bits);
 | |
| 	int n = bitmap_pos_to_ord(old, oldbit, bits);
 | |
| 	if (n < 0 || w == 0)
 | |
| 		return oldbit;
 | |
| 	else
 | |
| 		return bitmap_ord_to_pos(new, n % w, bits);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_bitremap);
 | |
| 
 | |
| /*
 | |
|  * Common code for bitmap_*_region() routines.
 | |
|  *	bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	pos: the beginning of the region
 | |
|  *	order: region size (log base 2 of number of bits)
 | |
|  *	reg_op: operation(s) to perform on that region of bitmap
 | |
|  *
 | |
|  * Can set, verify and/or release a region of bits in a bitmap,
 | |
|  * depending on which combination of REG_OP_* flag bits is set.
 | |
|  *
 | |
|  * A region of a bitmap is a sequence of bits in the bitmap, of
 | |
|  * some size '1 << order' (a power of two), aligned to that same
 | |
|  * '1 << order' power of two.
 | |
|  *
 | |
|  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 | |
|  * Returns 0 in all other cases and reg_ops.
 | |
|  */
 | |
| 
 | |
| enum {
 | |
| 	REG_OP_ISFREE,		/* true if region is all zero bits */
 | |
| 	REG_OP_ALLOC,		/* set all bits in region */
 | |
| 	REG_OP_RELEASE,		/* clear all bits in region */
 | |
| };
 | |
| 
 | |
| static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
 | |
| {
 | |
| 	int nbits_reg;		/* number of bits in region */
 | |
| 	int index;		/* index first long of region in bitmap */
 | |
| 	int offset;		/* bit offset region in bitmap[index] */
 | |
| 	int nlongs_reg;		/* num longs spanned by region in bitmap */
 | |
| 	int nbitsinlong;	/* num bits of region in each spanned long */
 | |
| 	unsigned long mask;	/* bitmask for one long of region */
 | |
| 	int i;			/* scans bitmap by longs */
 | |
| 	int ret = 0;		/* return value */
 | |
| 
 | |
| 	/*
 | |
| 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
 | |
| 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 | |
| 	 */
 | |
| 	nbits_reg = 1 << order;
 | |
| 	index = pos / BITS_PER_LONG;
 | |
| 	offset = pos - (index * BITS_PER_LONG);
 | |
| 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
 | |
| 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 | |
| 	 * overflows if nbitsinlong == BITS_PER_LONG.
 | |
| 	 */
 | |
| 	mask = (1UL << (nbitsinlong - 1));
 | |
| 	mask += mask - 1;
 | |
| 	mask <<= offset;
 | |
| 
 | |
| 	switch (reg_op) {
 | |
| 	case REG_OP_ISFREE:
 | |
| 		for (i = 0; i < nlongs_reg; i++) {
 | |
| 			if (bitmap[index + i] & mask)
 | |
| 				goto done;
 | |
| 		}
 | |
| 		ret = 1;	/* all bits in region free (zero) */
 | |
| 		break;
 | |
| 
 | |
| 	case REG_OP_ALLOC:
 | |
| 		for (i = 0; i < nlongs_reg; i++)
 | |
| 			bitmap[index + i] |= mask;
 | |
| 		break;
 | |
| 
 | |
| 	case REG_OP_RELEASE:
 | |
| 		for (i = 0; i < nlongs_reg; i++)
 | |
| 			bitmap[index + i] &= ~mask;
 | |
| 		break;
 | |
| 	}
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_find_free_region - find a contiguous aligned mem region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@bits: number of bits in the bitmap
 | |
|  *	@order: region size (log base 2 of number of bits) to find
 | |
|  *
 | |
|  * Find a region of free (zero) bits in a @bitmap of @bits bits and
 | |
|  * allocate them (set them to one).  Only consider regions of length
 | |
|  * a power (@order) of two, aligned to that power of two, which
 | |
|  * makes the search algorithm much faster.
 | |
|  *
 | |
|  * Return the bit offset in bitmap of the allocated region,
 | |
|  * or -errno on failure.
 | |
|  */
 | |
| int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
 | |
| {
 | |
| 	int pos;		/* scans bitmap by regions of size order */
 | |
| 
 | |
| 	for (pos = 0; pos < bits; pos += (1 << order))
 | |
| 		if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | |
| 			break;
 | |
| 	if (pos == bits)
 | |
| 		return -ENOMEM;
 | |
| 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | |
| 	return pos;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_find_free_region);
 | |
| 
 | |
| /**
 | |
|  * bitmap_release_region - release allocated bitmap region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@pos: beginning of bit region to release
 | |
|  *	@order: region size (log base 2 of number of bits) to release
 | |
|  *
 | |
|  * This is the complement to __bitmap_find_free_region and releases
 | |
|  * the found region (by clearing it in the bitmap).
 | |
|  *
 | |
|  * No return value.
 | |
|  */
 | |
| void bitmap_release_region(unsigned long *bitmap, int pos, int order)
 | |
| {
 | |
| 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_release_region);
 | |
| 
 | |
| /**
 | |
|  * bitmap_allocate_region - allocate bitmap region
 | |
|  *	@bitmap: array of unsigned longs corresponding to the bitmap
 | |
|  *	@pos: beginning of bit region to allocate
 | |
|  *	@order: region size (log base 2 of number of bits) to allocate
 | |
|  *
 | |
|  * Allocate (set bits in) a specified region of a bitmap.
 | |
|  *
 | |
|  * Return 0 on success, or %-EBUSY if specified region wasn't
 | |
|  * free (not all bits were zero).
 | |
|  */
 | |
| int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
 | |
| {
 | |
| 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | |
| 		return -EBUSY;
 | |
| 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(bitmap_allocate_region);
 |