mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 469340236a
			
		
	
	
		469340236a
		
	
	
	
	
		
			
			Switch the memory policy of the kevent threads to MPOL_DEFAULT while leaving the kzalloc of the workqueue structure on interleave. This means that all code executed in the context of the kevent thread is allocating node local. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: Alok Kataria <alok.kataria@calsoftinc.com> Cc: Andi Kleen <ak@suse.de> Cc: <pj@sgi.com> Cc: <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			705 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			705 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/kernel/workqueue.c
 | |
|  *
 | |
|  * Generic mechanism for defining kernel helper threads for running
 | |
|  * arbitrary tasks in process context.
 | |
|  *
 | |
|  * Started by Ingo Molnar, Copyright (C) 2002
 | |
|  *
 | |
|  * Derived from the taskqueue/keventd code by:
 | |
|  *
 | |
|  *   David Woodhouse <dwmw2@infradead.org>
 | |
|  *   Andrew Morton <andrewm@uow.edu.au>
 | |
|  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
 | |
|  *   Theodore Ts'o <tytso@mit.edu>
 | |
|  *
 | |
|  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/mempolicy.h>
 | |
| 
 | |
| /*
 | |
|  * The per-CPU workqueue (if single thread, we always use the first
 | |
|  * possible cpu).
 | |
|  *
 | |
|  * The sequence counters are for flush_scheduled_work().  It wants to wait
 | |
|  * until all currently-scheduled works are completed, but it doesn't
 | |
|  * want to be livelocked by new, incoming ones.  So it waits until
 | |
|  * remove_sequence is >= the insert_sequence which pertained when
 | |
|  * flush_scheduled_work() was called.
 | |
|  */
 | |
| struct cpu_workqueue_struct {
 | |
| 
 | |
| 	spinlock_t lock;
 | |
| 
 | |
| 	long remove_sequence;	/* Least-recently added (next to run) */
 | |
| 	long insert_sequence;	/* Next to add */
 | |
| 
 | |
| 	struct list_head worklist;
 | |
| 	wait_queue_head_t more_work;
 | |
| 	wait_queue_head_t work_done;
 | |
| 
 | |
| 	struct workqueue_struct *wq;
 | |
| 	struct task_struct *thread;
 | |
| 
 | |
| 	int run_depth;		/* Detect run_workqueue() recursion depth */
 | |
| } ____cacheline_aligned;
 | |
| 
 | |
| /*
 | |
|  * The externally visible workqueue abstraction is an array of
 | |
|  * per-CPU workqueues:
 | |
|  */
 | |
| struct workqueue_struct {
 | |
| 	struct cpu_workqueue_struct *cpu_wq;
 | |
| 	const char *name;
 | |
| 	struct list_head list; 	/* Empty if single thread */
 | |
| };
 | |
| 
 | |
| /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
 | |
|    threads to each one as cpus come/go. */
 | |
| static DEFINE_MUTEX(workqueue_mutex);
 | |
| static LIST_HEAD(workqueues);
 | |
| 
 | |
| static int singlethread_cpu;
 | |
| 
 | |
| /* If it's single threaded, it isn't in the list of workqueues. */
 | |
| static inline int is_single_threaded(struct workqueue_struct *wq)
 | |
| {
 | |
| 	return list_empty(&wq->list);
 | |
| }
 | |
| 
 | |
| /* Preempt must be disabled. */
 | |
| static void __queue_work(struct cpu_workqueue_struct *cwq,
 | |
| 			 struct work_struct *work)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&cwq->lock, flags);
 | |
| 	work->wq_data = cwq;
 | |
| 	list_add_tail(&work->entry, &cwq->worklist);
 | |
| 	cwq->insert_sequence++;
 | |
| 	wake_up(&cwq->more_work);
 | |
| 	spin_unlock_irqrestore(&cwq->lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * queue_work - queue work on a workqueue
 | |
|  * @wq: workqueue to use
 | |
|  * @work: work to queue
 | |
|  *
 | |
|  * Returns non-zero if it was successfully added.
 | |
|  *
 | |
|  * We queue the work to the CPU it was submitted, but there is no
 | |
|  * guarantee that it will be processed by that CPU.
 | |
|  */
 | |
| int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
 | |
| {
 | |
| 	int ret = 0, cpu = get_cpu();
 | |
| 
 | |
| 	if (!test_and_set_bit(0, &work->pending)) {
 | |
| 		if (unlikely(is_single_threaded(wq)))
 | |
| 			cpu = singlethread_cpu;
 | |
| 		BUG_ON(!list_empty(&work->entry));
 | |
| 		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	put_cpu();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(queue_work);
 | |
| 
 | |
| static void delayed_work_timer_fn(unsigned long __data)
 | |
| {
 | |
| 	struct work_struct *work = (struct work_struct *)__data;
 | |
| 	struct workqueue_struct *wq = work->wq_data;
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (unlikely(is_single_threaded(wq)))
 | |
| 		cpu = singlethread_cpu;
 | |
| 
 | |
| 	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * queue_delayed_work - queue work on a workqueue after delay
 | |
|  * @wq: workqueue to use
 | |
|  * @work: work to queue
 | |
|  * @delay: number of jiffies to wait before queueing
 | |
|  *
 | |
|  * Returns non-zero if it was successfully added.
 | |
|  */
 | |
| int fastcall queue_delayed_work(struct workqueue_struct *wq,
 | |
| 			struct work_struct *work, unsigned long delay)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct timer_list *timer = &work->timer;
 | |
| 
 | |
| 	if (!test_and_set_bit(0, &work->pending)) {
 | |
| 		BUG_ON(timer_pending(timer));
 | |
| 		BUG_ON(!list_empty(&work->entry));
 | |
| 
 | |
| 		/* This stores wq for the moment, for the timer_fn */
 | |
| 		work->wq_data = wq;
 | |
| 		timer->expires = jiffies + delay;
 | |
| 		timer->data = (unsigned long)work;
 | |
| 		timer->function = delayed_work_timer_fn;
 | |
| 		add_timer(timer);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(queue_delayed_work);
 | |
| 
 | |
| /**
 | |
|  * queue_delayed_work_on - queue work on specific CPU after delay
 | |
|  * @cpu: CPU number to execute work on
 | |
|  * @wq: workqueue to use
 | |
|  * @work: work to queue
 | |
|  * @delay: number of jiffies to wait before queueing
 | |
|  *
 | |
|  * Returns non-zero if it was successfully added.
 | |
|  */
 | |
| int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 | |
| 			struct work_struct *work, unsigned long delay)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct timer_list *timer = &work->timer;
 | |
| 
 | |
| 	if (!test_and_set_bit(0, &work->pending)) {
 | |
| 		BUG_ON(timer_pending(timer));
 | |
| 		BUG_ON(!list_empty(&work->entry));
 | |
| 
 | |
| 		/* This stores wq for the moment, for the timer_fn */
 | |
| 		work->wq_data = wq;
 | |
| 		timer->expires = jiffies + delay;
 | |
| 		timer->data = (unsigned long)work;
 | |
| 		timer->function = delayed_work_timer_fn;
 | |
| 		add_timer_on(timer, cpu);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(queue_delayed_work_on);
 | |
| 
 | |
| static void run_workqueue(struct cpu_workqueue_struct *cwq)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep taking off work from the queue until
 | |
| 	 * done.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&cwq->lock, flags);
 | |
| 	cwq->run_depth++;
 | |
| 	if (cwq->run_depth > 3) {
 | |
| 		/* morton gets to eat his hat */
 | |
| 		printk("%s: recursion depth exceeded: %d\n",
 | |
| 			__FUNCTION__, cwq->run_depth);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 	while (!list_empty(&cwq->worklist)) {
 | |
| 		struct work_struct *work = list_entry(cwq->worklist.next,
 | |
| 						struct work_struct, entry);
 | |
| 		void (*f) (void *) = work->func;
 | |
| 		void *data = work->data;
 | |
| 
 | |
| 		list_del_init(cwq->worklist.next);
 | |
| 		spin_unlock_irqrestore(&cwq->lock, flags);
 | |
| 
 | |
| 		BUG_ON(work->wq_data != cwq);
 | |
| 		clear_bit(0, &work->pending);
 | |
| 		f(data);
 | |
| 
 | |
| 		spin_lock_irqsave(&cwq->lock, flags);
 | |
| 		cwq->remove_sequence++;
 | |
| 		wake_up(&cwq->work_done);
 | |
| 	}
 | |
| 	cwq->run_depth--;
 | |
| 	spin_unlock_irqrestore(&cwq->lock, flags);
 | |
| }
 | |
| 
 | |
| static int worker_thread(void *__cwq)
 | |
| {
 | |
| 	struct cpu_workqueue_struct *cwq = __cwq;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	struct k_sigaction sa;
 | |
| 	sigset_t blocked;
 | |
| 
 | |
| 	current->flags |= PF_NOFREEZE;
 | |
| 
 | |
| 	set_user_nice(current, -5);
 | |
| 
 | |
| 	/* Block and flush all signals */
 | |
| 	sigfillset(&blocked);
 | |
| 	sigprocmask(SIG_BLOCK, &blocked, NULL);
 | |
| 	flush_signals(current);
 | |
| 
 | |
| 	/*
 | |
| 	 * We inherited MPOL_INTERLEAVE from the booting kernel.
 | |
| 	 * Set MPOL_DEFAULT to insure node local allocations.
 | |
| 	 */
 | |
| 	numa_default_policy();
 | |
| 
 | |
| 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
 | |
| 	sa.sa.sa_handler = SIG_IGN;
 | |
| 	sa.sa.sa_flags = 0;
 | |
| 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
 | |
| 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
 | |
| 
 | |
| 	set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		add_wait_queue(&cwq->more_work, &wait);
 | |
| 		if (list_empty(&cwq->worklist))
 | |
| 			schedule();
 | |
| 		else
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 		remove_wait_queue(&cwq->more_work, &wait);
 | |
| 
 | |
| 		if (!list_empty(&cwq->worklist))
 | |
| 			run_workqueue(cwq);
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
 | |
| {
 | |
| 	if (cwq->thread == current) {
 | |
| 		/*
 | |
| 		 * Probably keventd trying to flush its own queue. So simply run
 | |
| 		 * it by hand rather than deadlocking.
 | |
| 		 */
 | |
| 		run_workqueue(cwq);
 | |
| 	} else {
 | |
| 		DEFINE_WAIT(wait);
 | |
| 		long sequence_needed;
 | |
| 
 | |
| 		spin_lock_irq(&cwq->lock);
 | |
| 		sequence_needed = cwq->insert_sequence;
 | |
| 
 | |
| 		while (sequence_needed - cwq->remove_sequence > 0) {
 | |
| 			prepare_to_wait(&cwq->work_done, &wait,
 | |
| 					TASK_UNINTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&cwq->lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&cwq->lock);
 | |
| 		}
 | |
| 		finish_wait(&cwq->work_done, &wait);
 | |
| 		spin_unlock_irq(&cwq->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * flush_workqueue - ensure that any scheduled work has run to completion.
 | |
|  * @wq: workqueue to flush
 | |
|  *
 | |
|  * Forces execution of the workqueue and blocks until its completion.
 | |
|  * This is typically used in driver shutdown handlers.
 | |
|  *
 | |
|  * This function will sample each workqueue's current insert_sequence number and
 | |
|  * will sleep until the head sequence is greater than or equal to that.  This
 | |
|  * means that we sleep until all works which were queued on entry have been
 | |
|  * handled, but we are not livelocked by new incoming ones.
 | |
|  *
 | |
|  * This function used to run the workqueues itself.  Now we just wait for the
 | |
|  * helper threads to do it.
 | |
|  */
 | |
| void fastcall flush_workqueue(struct workqueue_struct *wq)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (is_single_threaded(wq)) {
 | |
| 		/* Always use first cpu's area. */
 | |
| 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
 | |
| 	} else {
 | |
| 		int cpu;
 | |
| 
 | |
| 		mutex_lock(&workqueue_mutex);
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
 | |
| 		mutex_unlock(&workqueue_mutex);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(flush_workqueue);
 | |
| 
 | |
| static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
 | |
| 						   int cpu)
 | |
| {
 | |
| 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	spin_lock_init(&cwq->lock);
 | |
| 	cwq->wq = wq;
 | |
| 	cwq->thread = NULL;
 | |
| 	cwq->insert_sequence = 0;
 | |
| 	cwq->remove_sequence = 0;
 | |
| 	INIT_LIST_HEAD(&cwq->worklist);
 | |
| 	init_waitqueue_head(&cwq->more_work);
 | |
| 	init_waitqueue_head(&cwq->work_done);
 | |
| 
 | |
| 	if (is_single_threaded(wq))
 | |
| 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
 | |
| 	else
 | |
| 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
 | |
| 	if (IS_ERR(p))
 | |
| 		return NULL;
 | |
| 	cwq->thread = p;
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| struct workqueue_struct *__create_workqueue(const char *name,
 | |
| 					    int singlethread)
 | |
| {
 | |
| 	int cpu, destroy = 0;
 | |
| 	struct workqueue_struct *wq;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
 | |
| 	if (!wq)
 | |
| 		return NULL;
 | |
| 
 | |
| 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
 | |
| 	if (!wq->cpu_wq) {
 | |
| 		kfree(wq);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	wq->name = name;
 | |
| 	mutex_lock(&workqueue_mutex);
 | |
| 	if (singlethread) {
 | |
| 		INIT_LIST_HEAD(&wq->list);
 | |
| 		p = create_workqueue_thread(wq, singlethread_cpu);
 | |
| 		if (!p)
 | |
| 			destroy = 1;
 | |
| 		else
 | |
| 			wake_up_process(p);
 | |
| 	} else {
 | |
| 		list_add(&wq->list, &workqueues);
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			p = create_workqueue_thread(wq, cpu);
 | |
| 			if (p) {
 | |
| 				kthread_bind(p, cpu);
 | |
| 				wake_up_process(p);
 | |
| 			} else
 | |
| 				destroy = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&workqueue_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Was there any error during startup? If yes then clean up:
 | |
| 	 */
 | |
| 	if (destroy) {
 | |
| 		destroy_workqueue(wq);
 | |
| 		wq = NULL;
 | |
| 	}
 | |
| 	return wq;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__create_workqueue);
 | |
| 
 | |
| static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
 | |
| {
 | |
| 	struct cpu_workqueue_struct *cwq;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
 | |
| 	spin_lock_irqsave(&cwq->lock, flags);
 | |
| 	p = cwq->thread;
 | |
| 	cwq->thread = NULL;
 | |
| 	spin_unlock_irqrestore(&cwq->lock, flags);
 | |
| 	if (p)
 | |
| 		kthread_stop(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * destroy_workqueue - safely terminate a workqueue
 | |
|  * @wq: target workqueue
 | |
|  *
 | |
|  * Safely destroy a workqueue. All work currently pending will be done first.
 | |
|  */
 | |
| void destroy_workqueue(struct workqueue_struct *wq)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	flush_workqueue(wq);
 | |
| 
 | |
| 	/* We don't need the distraction of CPUs appearing and vanishing. */
 | |
| 	mutex_lock(&workqueue_mutex);
 | |
| 	if (is_single_threaded(wq))
 | |
| 		cleanup_workqueue_thread(wq, singlethread_cpu);
 | |
| 	else {
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			cleanup_workqueue_thread(wq, cpu);
 | |
| 		list_del(&wq->list);
 | |
| 	}
 | |
| 	mutex_unlock(&workqueue_mutex);
 | |
| 	free_percpu(wq->cpu_wq);
 | |
| 	kfree(wq);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(destroy_workqueue);
 | |
| 
 | |
| static struct workqueue_struct *keventd_wq;
 | |
| 
 | |
| /**
 | |
|  * schedule_work - put work task in global workqueue
 | |
|  * @work: job to be done
 | |
|  *
 | |
|  * This puts a job in the kernel-global workqueue.
 | |
|  */
 | |
| int fastcall schedule_work(struct work_struct *work)
 | |
| {
 | |
| 	return queue_work(keventd_wq, work);
 | |
| }
 | |
| EXPORT_SYMBOL(schedule_work);
 | |
| 
 | |
| /**
 | |
|  * schedule_delayed_work - put work task in global workqueue after delay
 | |
|  * @work: job to be done
 | |
|  * @delay: number of jiffies to wait
 | |
|  *
 | |
|  * After waiting for a given time this puts a job in the kernel-global
 | |
|  * workqueue.
 | |
|  */
 | |
| int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
 | |
| {
 | |
| 	return queue_delayed_work(keventd_wq, work, delay);
 | |
| }
 | |
| EXPORT_SYMBOL(schedule_delayed_work);
 | |
| 
 | |
| /**
 | |
|  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 | |
|  * @cpu: cpu to use
 | |
|  * @work: job to be done
 | |
|  * @delay: number of jiffies to wait
 | |
|  *
 | |
|  * After waiting for a given time this puts a job in the kernel-global
 | |
|  * workqueue on the specified CPU.
 | |
|  */
 | |
| int schedule_delayed_work_on(int cpu,
 | |
| 			struct work_struct *work, unsigned long delay)
 | |
| {
 | |
| 	return queue_delayed_work_on(cpu, keventd_wq, work, delay);
 | |
| }
 | |
| EXPORT_SYMBOL(schedule_delayed_work_on);
 | |
| 
 | |
| /**
 | |
|  * schedule_on_each_cpu - call a function on each online CPU from keventd
 | |
|  * @func: the function to call
 | |
|  * @info: a pointer to pass to func()
 | |
|  *
 | |
|  * Returns zero on success.
 | |
|  * Returns -ve errno on failure.
 | |
|  *
 | |
|  * Appears to be racy against CPU hotplug.
 | |
|  *
 | |
|  * schedule_on_each_cpu() is very slow.
 | |
|  */
 | |
| int schedule_on_each_cpu(void (*func)(void *info), void *info)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct work_struct *works;
 | |
| 
 | |
| 	works = alloc_percpu(struct work_struct);
 | |
| 	if (!works)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&workqueue_mutex);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		INIT_WORK(per_cpu_ptr(works, cpu), func, info);
 | |
| 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
 | |
| 				per_cpu_ptr(works, cpu));
 | |
| 	}
 | |
| 	mutex_unlock(&workqueue_mutex);
 | |
| 	flush_workqueue(keventd_wq);
 | |
| 	free_percpu(works);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void flush_scheduled_work(void)
 | |
| {
 | |
| 	flush_workqueue(keventd_wq);
 | |
| }
 | |
| EXPORT_SYMBOL(flush_scheduled_work);
 | |
| 
 | |
| /**
 | |
|  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
 | |
|  *			work whose handler rearms the delayed work.
 | |
|  * @wq:   the controlling workqueue structure
 | |
|  * @work: the delayed work struct
 | |
|  */
 | |
| void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
 | |
| 				       struct work_struct *work)
 | |
| {
 | |
| 	while (!cancel_delayed_work(work))
 | |
| 		flush_workqueue(wq);
 | |
| }
 | |
| EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
 | |
| 
 | |
| /**
 | |
|  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
 | |
|  *			work whose handler rearms the delayed work.
 | |
|  * @work: the delayed work struct
 | |
|  */
 | |
| void cancel_rearming_delayed_work(struct work_struct *work)
 | |
| {
 | |
| 	cancel_rearming_delayed_workqueue(keventd_wq, work);
 | |
| }
 | |
| EXPORT_SYMBOL(cancel_rearming_delayed_work);
 | |
| 
 | |
| /**
 | |
|  * execute_in_process_context - reliably execute the routine with user context
 | |
|  * @fn:		the function to execute
 | |
|  * @data:	data to pass to the function
 | |
|  * @ew:		guaranteed storage for the execute work structure (must
 | |
|  *		be available when the work executes)
 | |
|  *
 | |
|  * Executes the function immediately if process context is available,
 | |
|  * otherwise schedules the function for delayed execution.
 | |
|  *
 | |
|  * Returns:	0 - function was executed
 | |
|  *		1 - function was scheduled for execution
 | |
|  */
 | |
| int execute_in_process_context(void (*fn)(void *data), void *data,
 | |
| 			       struct execute_work *ew)
 | |
| {
 | |
| 	if (!in_interrupt()) {
 | |
| 		fn(data);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	INIT_WORK(&ew->work, fn, data);
 | |
| 	schedule_work(&ew->work);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(execute_in_process_context);
 | |
| 
 | |
| int keventd_up(void)
 | |
| {
 | |
| 	return keventd_wq != NULL;
 | |
| }
 | |
| 
 | |
| int current_is_keventd(void)
 | |
| {
 | |
| 	struct cpu_workqueue_struct *cwq;
 | |
| 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!keventd_wq);
 | |
| 
 | |
| 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
 | |
| 	if (current == cwq->thread)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /* Take the work from this (downed) CPU. */
 | |
| static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
 | |
| {
 | |
| 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
 | |
| 	struct list_head list;
 | |
| 	struct work_struct *work;
 | |
| 
 | |
| 	spin_lock_irq(&cwq->lock);
 | |
| 	list_replace_init(&cwq->worklist, &list);
 | |
| 
 | |
| 	while (!list_empty(&list)) {
 | |
| 		printk("Taking work for %s\n", wq->name);
 | |
| 		work = list_entry(list.next,struct work_struct,entry);
 | |
| 		list_del(&work->entry);
 | |
| 		__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
 | |
| 	}
 | |
| 	spin_unlock_irq(&cwq->lock);
 | |
| }
 | |
| 
 | |
| /* We're holding the cpucontrol mutex here */
 | |
| static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
 | |
| 				  unsigned long action,
 | |
| 				  void *hcpu)
 | |
| {
 | |
| 	unsigned int hotcpu = (unsigned long)hcpu;
 | |
| 	struct workqueue_struct *wq;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		mutex_lock(&workqueue_mutex);
 | |
| 		/* Create a new workqueue thread for it. */
 | |
| 		list_for_each_entry(wq, &workqueues, list) {
 | |
| 			if (!create_workqueue_thread(wq, hotcpu)) {
 | |
| 				printk("workqueue for %i failed\n", hotcpu);
 | |
| 				return NOTIFY_BAD;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_ONLINE:
 | |
| 		/* Kick off worker threads. */
 | |
| 		list_for_each_entry(wq, &workqueues, list) {
 | |
| 			struct cpu_workqueue_struct *cwq;
 | |
| 
 | |
| 			cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
 | |
| 			kthread_bind(cwq->thread, hotcpu);
 | |
| 			wake_up_process(cwq->thread);
 | |
| 		}
 | |
| 		mutex_unlock(&workqueue_mutex);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_UP_CANCELED:
 | |
| 		list_for_each_entry(wq, &workqueues, list) {
 | |
| 			if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
 | |
| 				continue;
 | |
| 			/* Unbind so it can run. */
 | |
| 			kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
 | |
| 				     any_online_cpu(cpu_online_map));
 | |
| 			cleanup_workqueue_thread(wq, hotcpu);
 | |
| 		}
 | |
| 		mutex_unlock(&workqueue_mutex);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		mutex_lock(&workqueue_mutex);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 		mutex_unlock(&workqueue_mutex);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DEAD:
 | |
| 		list_for_each_entry(wq, &workqueues, list)
 | |
| 			cleanup_workqueue_thread(wq, hotcpu);
 | |
| 		list_for_each_entry(wq, &workqueues, list)
 | |
| 			take_over_work(wq, hotcpu);
 | |
| 		mutex_unlock(&workqueue_mutex);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void init_workqueues(void)
 | |
| {
 | |
| 	singlethread_cpu = first_cpu(cpu_possible_map);
 | |
| 	hotcpu_notifier(workqueue_cpu_callback, 0);
 | |
| 	keventd_wq = create_workqueue("events");
 | |
| 	BUG_ON(!keventd_wq);
 | |
| }
 | |
| 
 |