mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 2425c08b37
			
		
	
	
		2425c08b37
		
	
	
	
	
		
			
			The problem with remembering a user space process by its pid is that it is possible that the process will exit, pid wrap around will occur. Converting to a struct pid avoid that problem, and paves the way for implementing a pid namespace. Also since usb is the only user of kill_proc_info_as_uid rename kill_proc_info_as_uid to kill_pid_info_as_uid and have the new version take a struct pid. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2628 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2628 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/signal.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
 | |
|  *
 | |
|  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
 | |
|  *		Changes to use preallocated sigqueue structures
 | |
|  *		to allow signals to be sent reliably.
 | |
|  */
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/tty.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/capability.h>
 | |
| #include <asm/param.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/siginfo.h>
 | |
| #include "audit.h"	/* audit_signal_info() */
 | |
| 
 | |
| /*
 | |
|  * SLAB caches for signal bits.
 | |
|  */
 | |
| 
 | |
| static kmem_cache_t *sigqueue_cachep;
 | |
| 
 | |
| /*
 | |
|  * In POSIX a signal is sent either to a specific thread (Linux task)
 | |
|  * or to the process as a whole (Linux thread group).  How the signal
 | |
|  * is sent determines whether it's to one thread or the whole group,
 | |
|  * which determines which signal mask(s) are involved in blocking it
 | |
|  * from being delivered until later.  When the signal is delivered,
 | |
|  * either it's caught or ignored by a user handler or it has a default
 | |
|  * effect that applies to the whole thread group (POSIX process).
 | |
|  *
 | |
|  * The possible effects an unblocked signal set to SIG_DFL can have are:
 | |
|  *   ignore	- Nothing Happens
 | |
|  *   terminate	- kill the process, i.e. all threads in the group,
 | |
|  * 		  similar to exit_group.  The group leader (only) reports
 | |
|  *		  WIFSIGNALED status to its parent.
 | |
|  *   coredump	- write a core dump file describing all threads using
 | |
|  *		  the same mm and then kill all those threads
 | |
|  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
 | |
|  *
 | |
|  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
 | |
|  * Other signals when not blocked and set to SIG_DFL behaves as follows.
 | |
|  * The job control signals also have other special effects.
 | |
|  *
 | |
|  *	+--------------------+------------------+
 | |
|  *	|  POSIX signal      |  default action  |
 | |
|  *	+--------------------+------------------+
 | |
|  *	|  SIGHUP            |  terminate	|
 | |
|  *	|  SIGINT            |	terminate	|
 | |
|  *	|  SIGQUIT           |	coredump 	|
 | |
|  *	|  SIGILL            |	coredump 	|
 | |
|  *	|  SIGTRAP           |	coredump 	|
 | |
|  *	|  SIGABRT/SIGIOT    |	coredump 	|
 | |
|  *	|  SIGBUS            |	coredump 	|
 | |
|  *	|  SIGFPE            |	coredump 	|
 | |
|  *	|  SIGKILL           |	terminate(+)	|
 | |
|  *	|  SIGUSR1           |	terminate	|
 | |
|  *	|  SIGSEGV           |	coredump 	|
 | |
|  *	|  SIGUSR2           |	terminate	|
 | |
|  *	|  SIGPIPE           |	terminate	|
 | |
|  *	|  SIGALRM           |	terminate	|
 | |
|  *	|  SIGTERM           |	terminate	|
 | |
|  *	|  SIGCHLD           |	ignore   	|
 | |
|  *	|  SIGCONT           |	ignore(*)	|
 | |
|  *	|  SIGSTOP           |	stop(*)(+)  	|
 | |
|  *	|  SIGTSTP           |	stop(*)  	|
 | |
|  *	|  SIGTTIN           |	stop(*)  	|
 | |
|  *	|  SIGTTOU           |	stop(*)  	|
 | |
|  *	|  SIGURG            |	ignore   	|
 | |
|  *	|  SIGXCPU           |	coredump 	|
 | |
|  *	|  SIGXFSZ           |	coredump 	|
 | |
|  *	|  SIGVTALRM         |	terminate	|
 | |
|  *	|  SIGPROF           |	terminate	|
 | |
|  *	|  SIGPOLL/SIGIO     |	terminate	|
 | |
|  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
 | |
|  *	|  SIGSTKFLT         |	terminate	|
 | |
|  *	|  SIGWINCH          |	ignore   	|
 | |
|  *	|  SIGPWR            |	terminate	|
 | |
|  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
 | |
|  *	+--------------------+------------------+
 | |
|  *	|  non-POSIX signal  |  default action  |
 | |
|  *	+--------------------+------------------+
 | |
|  *	|  SIGEMT            |  coredump	|
 | |
|  *	+--------------------+------------------+
 | |
|  *
 | |
|  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
 | |
|  * (*) Special job control effects:
 | |
|  * When SIGCONT is sent, it resumes the process (all threads in the group)
 | |
|  * from TASK_STOPPED state and also clears any pending/queued stop signals
 | |
|  * (any of those marked with "stop(*)").  This happens regardless of blocking,
 | |
|  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
 | |
|  * any pending/queued SIGCONT signals; this happens regardless of blocking,
 | |
|  * catching, or ignored the stop signal, though (except for SIGSTOP) the
 | |
|  * default action of stopping the process may happen later or never.
 | |
|  */
 | |
| 
 | |
| #ifdef SIGEMT
 | |
| #define M_SIGEMT	M(SIGEMT)
 | |
| #else
 | |
| #define M_SIGEMT	0
 | |
| #endif
 | |
| 
 | |
| #if SIGRTMIN > BITS_PER_LONG
 | |
| #define M(sig) (1ULL << ((sig)-1))
 | |
| #else
 | |
| #define M(sig) (1UL << ((sig)-1))
 | |
| #endif
 | |
| #define T(sig, mask) (M(sig) & (mask))
 | |
| 
 | |
| #define SIG_KERNEL_ONLY_MASK (\
 | |
| 	M(SIGKILL)   |  M(SIGSTOP)                                   )
 | |
| 
 | |
| #define SIG_KERNEL_STOP_MASK (\
 | |
| 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
 | |
| 
 | |
| #define SIG_KERNEL_COREDUMP_MASK (\
 | |
|         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
 | |
|         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
 | |
|         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
 | |
| 
 | |
| #define SIG_KERNEL_IGNORE_MASK (\
 | |
|         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
 | |
| 
 | |
| #define sig_kernel_only(sig) \
 | |
| 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
 | |
| #define sig_kernel_coredump(sig) \
 | |
| 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
 | |
| #define sig_kernel_ignore(sig) \
 | |
| 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
 | |
| #define sig_kernel_stop(sig) \
 | |
| 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
 | |
| 
 | |
| #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
 | |
| 
 | |
| #define sig_user_defined(t, signr) \
 | |
| 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
 | |
| 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
 | |
| 
 | |
| #define sig_fatal(t, signr) \
 | |
| 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
 | |
| 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
 | |
| 
 | |
| static int sig_ignored(struct task_struct *t, int sig)
 | |
| {
 | |
| 	void __user * handler;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tracers always want to know about signals..
 | |
| 	 */
 | |
| 	if (t->ptrace & PT_PTRACED)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Blocked signals are never ignored, since the
 | |
| 	 * signal handler may change by the time it is
 | |
| 	 * unblocked.
 | |
| 	 */
 | |
| 	if (sigismember(&t->blocked, sig))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Is it explicitly or implicitly ignored? */
 | |
| 	handler = t->sighand->action[sig-1].sa.sa_handler;
 | |
| 	return   handler == SIG_IGN ||
 | |
| 		(handler == SIG_DFL && sig_kernel_ignore(sig));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-calculate pending state from the set of locally pending
 | |
|  * signals, globally pending signals, and blocked signals.
 | |
|  */
 | |
| static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 | |
| {
 | |
| 	unsigned long ready;
 | |
| 	long i;
 | |
| 
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 | |
| 			ready |= signal->sig[i] &~ blocked->sig[i];
 | |
| 		break;
 | |
| 
 | |
| 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 | |
| 		ready |= signal->sig[2] &~ blocked->sig[2];
 | |
| 		ready |= signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 | |
| 		ready |= signal->sig[0] &~ blocked->sig[0];
 | |
| 		break;
 | |
| 
 | |
| 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 | |
| 	}
 | |
| 	return ready !=	0;
 | |
| }
 | |
| 
 | |
| #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 | |
| 
 | |
| fastcall void recalc_sigpending_tsk(struct task_struct *t)
 | |
| {
 | |
| 	if (t->signal->group_stop_count > 0 ||
 | |
| 	    (freezing(t)) ||
 | |
| 	    PENDING(&t->pending, &t->blocked) ||
 | |
| 	    PENDING(&t->signal->shared_pending, &t->blocked))
 | |
| 		set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 	else
 | |
| 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| }
 | |
| 
 | |
| void recalc_sigpending(void)
 | |
| {
 | |
| 	recalc_sigpending_tsk(current);
 | |
| }
 | |
| 
 | |
| /* Given the mask, find the first available signal that should be serviced. */
 | |
| 
 | |
| static int
 | |
| next_signal(struct sigpending *pending, sigset_t *mask)
 | |
| {
 | |
| 	unsigned long i, *s, *m, x;
 | |
| 	int sig = 0;
 | |
| 	
 | |
| 	s = pending->signal.sig;
 | |
| 	m = mask->sig;
 | |
| 	switch (_NSIG_WORDS) {
 | |
| 	default:
 | |
| 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
 | |
| 			if ((x = *s &~ *m) != 0) {
 | |
| 				sig = ffz(~x) + i*_NSIG_BPW + 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		break;
 | |
| 
 | |
| 	case 2: if ((x = s[0] &~ m[0]) != 0)
 | |
| 			sig = 1;
 | |
| 		else if ((x = s[1] &~ m[1]) != 0)
 | |
| 			sig = _NSIG_BPW + 1;
 | |
| 		else
 | |
| 			break;
 | |
| 		sig += ffz(~x);
 | |
| 		break;
 | |
| 
 | |
| 	case 1: if ((x = *s &~ *m) != 0)
 | |
| 			sig = ffz(~x) + 1;
 | |
| 		break;
 | |
| 	}
 | |
| 	
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
 | |
| 					 int override_rlimit)
 | |
| {
 | |
| 	struct sigqueue *q = NULL;
 | |
| 
 | |
| 	atomic_inc(&t->user->sigpending);
 | |
| 	if (override_rlimit ||
 | |
| 	    atomic_read(&t->user->sigpending) <=
 | |
| 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
 | |
| 		q = kmem_cache_alloc(sigqueue_cachep, flags);
 | |
| 	if (unlikely(q == NULL)) {
 | |
| 		atomic_dec(&t->user->sigpending);
 | |
| 	} else {
 | |
| 		INIT_LIST_HEAD(&q->list);
 | |
| 		q->flags = 0;
 | |
| 		q->user = get_uid(t->user);
 | |
| 	}
 | |
| 	return(q);
 | |
| }
 | |
| 
 | |
| static void __sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	if (q->flags & SIGQUEUE_PREALLOC)
 | |
| 		return;
 | |
| 	atomic_dec(&q->user->sigpending);
 | |
| 	free_uid(q->user);
 | |
| 	kmem_cache_free(sigqueue_cachep, q);
 | |
| }
 | |
| 
 | |
| void flush_sigqueue(struct sigpending *queue)
 | |
| {
 | |
| 	struct sigqueue *q;
 | |
| 
 | |
| 	sigemptyset(&queue->signal);
 | |
| 	while (!list_empty(&queue->list)) {
 | |
| 		q = list_entry(queue->list.next, struct sigqueue , list);
 | |
| 		list_del_init(&q->list);
 | |
| 		__sigqueue_free(q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all pending signals for a task.
 | |
|  */
 | |
| void flush_signals(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
 | |
| 	flush_sigqueue(&t->pending);
 | |
| 	flush_sigqueue(&t->signal->shared_pending);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all handlers for a task.
 | |
|  */
 | |
| 
 | |
| void
 | |
| flush_signal_handlers(struct task_struct *t, int force_default)
 | |
| {
 | |
| 	int i;
 | |
| 	struct k_sigaction *ka = &t->sighand->action[0];
 | |
| 	for (i = _NSIG ; i != 0 ; i--) {
 | |
| 		if (force_default || ka->sa.sa_handler != SIG_IGN)
 | |
| 			ka->sa.sa_handler = SIG_DFL;
 | |
| 		ka->sa.sa_flags = 0;
 | |
| 		sigemptyset(&ka->sa.sa_mask);
 | |
| 		ka++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Notify the system that a driver wants to block all signals for this
 | |
|  * process, and wants to be notified if any signals at all were to be
 | |
|  * sent/acted upon.  If the notifier routine returns non-zero, then the
 | |
|  * signal will be acted upon after all.  If the notifier routine returns 0,
 | |
|  * then then signal will be blocked.  Only one block per process is
 | |
|  * allowed.  priv is a pointer to private data that the notifier routine
 | |
|  * can use to determine if the signal should be blocked or not.  */
 | |
| 
 | |
| void
 | |
| block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(¤t->sighand->siglock, flags);
 | |
| 	current->notifier_mask = mask;
 | |
| 	current->notifier_data = priv;
 | |
| 	current->notifier = notifier;
 | |
| 	spin_unlock_irqrestore(¤t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| /* Notify the system that blocking has ended. */
 | |
| 
 | |
| void
 | |
| unblock_all_signals(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(¤t->sighand->siglock, flags);
 | |
| 	current->notifier = NULL;
 | |
| 	current->notifier_data = NULL;
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irqrestore(¤t->sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 | |
| {
 | |
| 	struct sigqueue *q, *first = NULL;
 | |
| 	int still_pending = 0;
 | |
| 
 | |
| 	if (unlikely(!sigismember(&list->signal, sig)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the siginfo appropriate to this signal.  Check if
 | |
| 	 * there is another siginfo for the same signal.
 | |
| 	*/
 | |
| 	list_for_each_entry(q, &list->list, list) {
 | |
| 		if (q->info.si_signo == sig) {
 | |
| 			if (first) {
 | |
| 				still_pending = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			first = q;
 | |
| 		}
 | |
| 	}
 | |
| 	if (first) {
 | |
| 		list_del_init(&first->list);
 | |
| 		copy_siginfo(info, &first->info);
 | |
| 		__sigqueue_free(first);
 | |
| 		if (!still_pending)
 | |
| 			sigdelset(&list->signal, sig);
 | |
| 	} else {
 | |
| 
 | |
| 		/* Ok, it wasn't in the queue.  This must be
 | |
| 		   a fast-pathed signal or we must have been
 | |
| 		   out of queue space.  So zero out the info.
 | |
| 		 */
 | |
| 		sigdelset(&list->signal, sig);
 | |
| 		info->si_signo = sig;
 | |
| 		info->si_errno = 0;
 | |
| 		info->si_code = 0;
 | |
| 		info->si_pid = 0;
 | |
| 		info->si_uid = 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 | |
| 			siginfo_t *info)
 | |
| {
 | |
| 	int sig = next_signal(pending, mask);
 | |
| 
 | |
| 	if (sig) {
 | |
| 		if (current->notifier) {
 | |
| 			if (sigismember(current->notifier_mask, sig)) {
 | |
| 				if (!(current->notifier)(current->notifier_data)) {
 | |
| 					clear_thread_flag(TIF_SIGPENDING);
 | |
| 					return 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!collect_signal(sig, pending, info))
 | |
| 			sig = 0;
 | |
| 	}
 | |
| 
 | |
| 	return sig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dequeue a signal and return the element to the caller, which is 
 | |
|  * expected to free it.
 | |
|  *
 | |
|  * All callers have to hold the siglock.
 | |
|  */
 | |
| int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 | |
| {
 | |
| 	int signr = __dequeue_signal(&tsk->pending, mask, info);
 | |
| 	if (!signr)
 | |
| 		signr = __dequeue_signal(&tsk->signal->shared_pending,
 | |
| 					 mask, info);
 | |
| 	recalc_sigpending_tsk(tsk);
 | |
|  	if (signr && unlikely(sig_kernel_stop(signr))) {
 | |
|  		/*
 | |
|  		 * Set a marker that we have dequeued a stop signal.  Our
 | |
|  		 * caller might release the siglock and then the pending
 | |
|  		 * stop signal it is about to process is no longer in the
 | |
|  		 * pending bitmasks, but must still be cleared by a SIGCONT
 | |
|  		 * (and overruled by a SIGKILL).  So those cases clear this
 | |
|  		 * shared flag after we've set it.  Note that this flag may
 | |
|  		 * remain set after the signal we return is ignored or
 | |
|  		 * handled.  That doesn't matter because its only purpose
 | |
|  		 * is to alert stop-signal processing code when another
 | |
|  		 * processor has come along and cleared the flag.
 | |
|  		 */
 | |
|  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
 | |
|  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
 | |
|  	}
 | |
| 	if ( signr &&
 | |
| 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
 | |
| 	     info->si_sys_private){
 | |
| 		/*
 | |
| 		 * Release the siglock to ensure proper locking order
 | |
| 		 * of timer locks outside of siglocks.  Note, we leave
 | |
| 		 * irqs disabled here, since the posix-timers code is
 | |
| 		 * about to disable them again anyway.
 | |
| 		 */
 | |
| 		spin_unlock(&tsk->sighand->siglock);
 | |
| 		do_schedule_next_timer(info);
 | |
| 		spin_lock(&tsk->sighand->siglock);
 | |
| 	}
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell a process that it has a new active signal..
 | |
|  *
 | |
|  * NOTE! we rely on the previous spin_lock to
 | |
|  * lock interrupts for us! We can only be called with
 | |
|  * "siglock" held, and the local interrupt must
 | |
|  * have been disabled when that got acquired!
 | |
|  *
 | |
|  * No need to set need_resched since signal event passing
 | |
|  * goes through ->blocked
 | |
|  */
 | |
| void signal_wake_up(struct task_struct *t, int resume)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 
 | |
| 	set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 
 | |
| 	/*
 | |
| 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
 | |
| 	 * We don't check t->state here because there is a race with it
 | |
| 	 * executing another processor and just now entering stopped state.
 | |
| 	 * By using wake_up_state, we ensure the process will wake up and
 | |
| 	 * handle its death signal.
 | |
| 	 */
 | |
| 	mask = TASK_INTERRUPTIBLE;
 | |
| 	if (resume)
 | |
| 		mask |= TASK_STOPPED | TASK_TRACED;
 | |
| 	if (!wake_up_state(t, mask))
 | |
| 		kick_process(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove signals in mask from the pending set and queue.
 | |
|  * Returns 1 if any signals were found.
 | |
|  *
 | |
|  * All callers must be holding the siglock.
 | |
|  *
 | |
|  * This version takes a sigset mask and looks at all signals,
 | |
|  * not just those in the first mask word.
 | |
|  */
 | |
| static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 | |
| {
 | |
| 	struct sigqueue *q, *n;
 | |
| 	sigset_t m;
 | |
| 
 | |
| 	sigandsets(&m, mask, &s->signal);
 | |
| 	if (sigisemptyset(&m))
 | |
| 		return 0;
 | |
| 
 | |
| 	signandsets(&s->signal, &s->signal, mask);
 | |
| 	list_for_each_entry_safe(q, n, &s->list, list) {
 | |
| 		if (sigismember(mask, q->info.si_signo)) {
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| /*
 | |
|  * Remove signals in mask from the pending set and queue.
 | |
|  * Returns 1 if any signals were found.
 | |
|  *
 | |
|  * All callers must be holding the siglock.
 | |
|  */
 | |
| static int rm_from_queue(unsigned long mask, struct sigpending *s)
 | |
| {
 | |
| 	struct sigqueue *q, *n;
 | |
| 
 | |
| 	if (!sigtestsetmask(&s->signal, mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	sigdelsetmask(&s->signal, mask);
 | |
| 	list_for_each_entry_safe(q, n, &s->list, list) {
 | |
| 		if (q->info.si_signo < SIGRTMIN &&
 | |
| 		    (mask & sigmask(q->info.si_signo))) {
 | |
| 			list_del_init(&q->list);
 | |
| 			__sigqueue_free(q);
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bad permissions for sending the signal
 | |
|  */
 | |
| static int check_kill_permission(int sig, struct siginfo *info,
 | |
| 				 struct task_struct *t)
 | |
| {
 | |
| 	int error = -EINVAL;
 | |
| 	if (!valid_signal(sig))
 | |
| 		return error;
 | |
| 	error = -EPERM;
 | |
| 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
 | |
| 	    && ((sig != SIGCONT) ||
 | |
| 		(current->signal->session != t->signal->session))
 | |
| 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
 | |
| 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
 | |
| 	    && !capable(CAP_KILL))
 | |
| 		return error;
 | |
| 
 | |
| 	error = security_task_kill(t, info, sig, 0);
 | |
| 	if (!error)
 | |
| 		audit_signal_info(sig, t); /* Let audit system see the signal */
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* forward decl */
 | |
| static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
 | |
| 
 | |
| /*
 | |
|  * Handle magic process-wide effects of stop/continue signals.
 | |
|  * Unlike the signal actions, these happen immediately at signal-generation
 | |
|  * time regardless of blocking, ignoring, or handling.  This does the
 | |
|  * actual continuing for SIGCONT, but not the actual stopping for stop
 | |
|  * signals.  The process stop is done as a signal action for SIG_DFL.
 | |
|  */
 | |
| static void handle_stop_signal(int sig, struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 		/*
 | |
| 		 * The process is in the middle of dying already.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	if (sig_kernel_stop(sig)) {
 | |
| 		/*
 | |
| 		 * This is a stop signal.  Remove SIGCONT from all queues.
 | |
| 		 */
 | |
| 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
 | |
| 		t = p;
 | |
| 		do {
 | |
| 			rm_from_queue(sigmask(SIGCONT), &t->pending);
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 	} else if (sig == SIGCONT) {
 | |
| 		/*
 | |
| 		 * Remove all stop signals from all queues,
 | |
| 		 * and wake all threads.
 | |
| 		 */
 | |
| 		if (unlikely(p->signal->group_stop_count > 0)) {
 | |
| 			/*
 | |
| 			 * There was a group stop in progress.  We'll
 | |
| 			 * pretend it finished before we got here.  We are
 | |
| 			 * obliged to report it to the parent: if the
 | |
| 			 * SIGSTOP happened "after" this SIGCONT, then it
 | |
| 			 * would have cleared this pending SIGCONT.  If it
 | |
| 			 * happened "before" this SIGCONT, then the parent
 | |
| 			 * got the SIGCHLD about the stop finishing before
 | |
| 			 * the continue happened.  We do the notification
 | |
| 			 * now, and it's as if the stop had finished and
 | |
| 			 * the SIGCHLD was pending on entry to this kill.
 | |
| 			 */
 | |
| 			p->signal->group_stop_count = 0;
 | |
| 			p->signal->flags = SIGNAL_STOP_CONTINUED;
 | |
| 			spin_unlock(&p->sighand->siglock);
 | |
| 			do_notify_parent_cldstop(p, CLD_STOPPED);
 | |
| 			spin_lock(&p->sighand->siglock);
 | |
| 		}
 | |
| 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
 | |
| 		t = p;
 | |
| 		do {
 | |
| 			unsigned int state;
 | |
| 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 | |
| 			
 | |
| 			/*
 | |
| 			 * If there is a handler for SIGCONT, we must make
 | |
| 			 * sure that no thread returns to user mode before
 | |
| 			 * we post the signal, in case it was the only
 | |
| 			 * thread eligible to run the signal handler--then
 | |
| 			 * it must not do anything between resuming and
 | |
| 			 * running the handler.  With the TIF_SIGPENDING
 | |
| 			 * flag set, the thread will pause and acquire the
 | |
| 			 * siglock that we hold now and until we've queued
 | |
| 			 * the pending signal. 
 | |
| 			 *
 | |
| 			 * Wake up the stopped thread _after_ setting
 | |
| 			 * TIF_SIGPENDING
 | |
| 			 */
 | |
| 			state = TASK_STOPPED;
 | |
| 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
 | |
| 				set_tsk_thread_flag(t, TIF_SIGPENDING);
 | |
| 				state |= TASK_INTERRUPTIBLE;
 | |
| 			}
 | |
| 			wake_up_state(t, state);
 | |
| 
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 
 | |
| 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
 | |
| 			/*
 | |
| 			 * We were in fact stopped, and are now continued.
 | |
| 			 * Notify the parent with CLD_CONTINUED.
 | |
| 			 */
 | |
| 			p->signal->flags = SIGNAL_STOP_CONTINUED;
 | |
| 			p->signal->group_exit_code = 0;
 | |
| 			spin_unlock(&p->sighand->siglock);
 | |
| 			do_notify_parent_cldstop(p, CLD_CONTINUED);
 | |
| 			spin_lock(&p->sighand->siglock);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We are not stopped, but there could be a stop
 | |
| 			 * signal in the middle of being processed after
 | |
| 			 * being removed from the queue.  Clear that too.
 | |
| 			 */
 | |
| 			p->signal->flags = 0;
 | |
| 		}
 | |
| 	} else if (sig == SIGKILL) {
 | |
| 		/*
 | |
| 		 * Make sure that any pending stop signal already dequeued
 | |
| 		 * is undone by the wakeup for SIGKILL.
 | |
| 		 */
 | |
| 		p->signal->flags = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
 | |
| 			struct sigpending *signals)
 | |
| {
 | |
| 	struct sigqueue * q = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * fast-pathed signals for kernel-internal things like SIGSTOP
 | |
| 	 * or SIGKILL.
 | |
| 	 */
 | |
| 	if (info == SEND_SIG_FORCED)
 | |
| 		goto out_set;
 | |
| 
 | |
| 	/* Real-time signals must be queued if sent by sigqueue, or
 | |
| 	   some other real-time mechanism.  It is implementation
 | |
| 	   defined whether kill() does so.  We attempt to do so, on
 | |
| 	   the principle of least surprise, but since kill is not
 | |
| 	   allowed to fail with EAGAIN when low on memory we just
 | |
| 	   make sure at least one signal gets delivered and don't
 | |
| 	   pass on the info struct.  */
 | |
| 
 | |
| 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
 | |
| 					     (is_si_special(info) ||
 | |
| 					      info->si_code >= 0)));
 | |
| 	if (q) {
 | |
| 		list_add_tail(&q->list, &signals->list);
 | |
| 		switch ((unsigned long) info) {
 | |
| 		case (unsigned long) SEND_SIG_NOINFO:
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_USER;
 | |
| 			q->info.si_pid = current->pid;
 | |
| 			q->info.si_uid = current->uid;
 | |
| 			break;
 | |
| 		case (unsigned long) SEND_SIG_PRIV:
 | |
| 			q->info.si_signo = sig;
 | |
| 			q->info.si_errno = 0;
 | |
| 			q->info.si_code = SI_KERNEL;
 | |
| 			q->info.si_pid = 0;
 | |
| 			q->info.si_uid = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			copy_siginfo(&q->info, info);
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (!is_si_special(info)) {
 | |
| 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
 | |
| 		/*
 | |
| 		 * Queue overflow, abort.  We may abort if the signal was rt
 | |
| 		 * and sent by user using something other than kill().
 | |
| 		 */
 | |
| 			return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| out_set:
 | |
| 	sigaddset(&signals->signal, sig);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define LEGACY_QUEUE(sigptr, sig) \
 | |
| 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
 | |
| 
 | |
| 
 | |
| static int
 | |
| specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	assert_spin_locked(&t->sighand->siglock);
 | |
| 
 | |
| 	/* Short-circuit ignored signals.  */
 | |
| 	if (sig_ignored(t, sig))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Support queueing exactly one non-rt signal, so that we
 | |
| 	   can get more detailed information about the cause of
 | |
| 	   the signal. */
 | |
| 	if (LEGACY_QUEUE(&t->pending, sig))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = send_signal(sig, info, t, &t->pending);
 | |
| 	if (!ret && !sigismember(&t->blocked, sig))
 | |
| 		signal_wake_up(t, sig == SIGKILL);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force a signal that the process can't ignore: if necessary
 | |
|  * we unblock the signal and change any SIG_IGN to SIG_DFL.
 | |
|  *
 | |
|  * Note: If we unblock the signal, we always reset it to SIG_DFL,
 | |
|  * since we do not want to have a signal handler that was blocked
 | |
|  * be invoked when user space had explicitly blocked it.
 | |
|  *
 | |
|  * We don't want to have recursive SIGSEGV's etc, for example.
 | |
|  */
 | |
| int
 | |
| force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 | |
| {
 | |
| 	unsigned long int flags;
 | |
| 	int ret, blocked, ignored;
 | |
| 	struct k_sigaction *action;
 | |
| 
 | |
| 	spin_lock_irqsave(&t->sighand->siglock, flags);
 | |
| 	action = &t->sighand->action[sig-1];
 | |
| 	ignored = action->sa.sa_handler == SIG_IGN;
 | |
| 	blocked = sigismember(&t->blocked, sig);
 | |
| 	if (blocked || ignored) {
 | |
| 		action->sa.sa_handler = SIG_DFL;
 | |
| 		if (blocked) {
 | |
| 			sigdelset(&t->blocked, sig);
 | |
| 			recalc_sigpending_tsk(t);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = specific_send_sig_info(sig, info, t);
 | |
| 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| force_sig_specific(int sig, struct task_struct *t)
 | |
| {
 | |
| 	force_sig_info(sig, SEND_SIG_FORCED, t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if P wants to take SIG.  After we've checked all threads with this,
 | |
|  * it's equivalent to finding no threads not blocking SIG.  Any threads not
 | |
|  * blocking SIG were ruled out because they are not running and already
 | |
|  * have pending signals.  Such threads will dequeue from the shared queue
 | |
|  * as soon as they're available, so putting the signal on the shared queue
 | |
|  * will be equivalent to sending it to one such thread.
 | |
|  */
 | |
| static inline int wants_signal(int sig, struct task_struct *p)
 | |
| {
 | |
| 	if (sigismember(&p->blocked, sig))
 | |
| 		return 0;
 | |
| 	if (p->flags & PF_EXITING)
 | |
| 		return 0;
 | |
| 	if (sig == SIGKILL)
 | |
| 		return 1;
 | |
| 	if (p->state & (TASK_STOPPED | TASK_TRACED))
 | |
| 		return 0;
 | |
| 	return task_curr(p) || !signal_pending(p);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __group_complete_signal(int sig, struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now find a thread we can wake up to take the signal off the queue.
 | |
| 	 *
 | |
| 	 * If the main thread wants the signal, it gets first crack.
 | |
| 	 * Probably the least surprising to the average bear.
 | |
| 	 */
 | |
| 	if (wants_signal(sig, p))
 | |
| 		t = p;
 | |
| 	else if (thread_group_empty(p))
 | |
| 		/*
 | |
| 		 * There is just one thread and it does not need to be woken.
 | |
| 		 * It will dequeue unblocked signals before it runs again.
 | |
| 		 */
 | |
| 		return;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * Otherwise try to find a suitable thread.
 | |
| 		 */
 | |
| 		t = p->signal->curr_target;
 | |
| 		if (t == NULL)
 | |
| 			/* restart balancing at this thread */
 | |
| 			t = p->signal->curr_target = p;
 | |
| 
 | |
| 		while (!wants_signal(sig, t)) {
 | |
| 			t = next_thread(t);
 | |
| 			if (t == p->signal->curr_target)
 | |
| 				/*
 | |
| 				 * No thread needs to be woken.
 | |
| 				 * Any eligible threads will see
 | |
| 				 * the signal in the queue soon.
 | |
| 				 */
 | |
| 				return;
 | |
| 		}
 | |
| 		p->signal->curr_target = t;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Found a killable thread.  If the signal will be fatal,
 | |
| 	 * then start taking the whole group down immediately.
 | |
| 	 */
 | |
| 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
 | |
| 	    !sigismember(&t->real_blocked, sig) &&
 | |
| 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
 | |
| 		/*
 | |
| 		 * This signal will be fatal to the whole group.
 | |
| 		 */
 | |
| 		if (!sig_kernel_coredump(sig)) {
 | |
| 			/*
 | |
| 			 * Start a group exit and wake everybody up.
 | |
| 			 * This way we don't have other threads
 | |
| 			 * running and doing things after a slower
 | |
| 			 * thread has the fatal signal pending.
 | |
| 			 */
 | |
| 			p->signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 			p->signal->group_exit_code = sig;
 | |
| 			p->signal->group_stop_count = 0;
 | |
| 			t = p;
 | |
| 			do {
 | |
| 				sigaddset(&t->pending.signal, SIGKILL);
 | |
| 				signal_wake_up(t, 1);
 | |
| 				t = next_thread(t);
 | |
| 			} while (t != p);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * There will be a core dump.  We make all threads other
 | |
| 		 * than the chosen one go into a group stop so that nothing
 | |
| 		 * happens until it gets scheduled, takes the signal off
 | |
| 		 * the shared queue, and does the core dump.  This is a
 | |
| 		 * little more complicated than strictly necessary, but it
 | |
| 		 * keeps the signal state that winds up in the core dump
 | |
| 		 * unchanged from the death state, e.g. which thread had
 | |
| 		 * the core-dump signal unblocked.
 | |
| 		 */
 | |
| 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 | |
| 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
 | |
| 		p->signal->group_stop_count = 0;
 | |
| 		p->signal->group_exit_task = t;
 | |
| 		t = p;
 | |
| 		do {
 | |
| 			p->signal->group_stop_count++;
 | |
| 			signal_wake_up(t, 0);
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		wake_up_process(p->signal->group_exit_task);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The signal is already in the shared-pending queue.
 | |
| 	 * Tell the chosen thread to wake up and dequeue it.
 | |
| 	 */
 | |
| 	signal_wake_up(t, sig == SIGKILL);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| int
 | |
| __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	assert_spin_locked(&p->sighand->siglock);
 | |
| 	handle_stop_signal(sig, p);
 | |
| 
 | |
| 	/* Short-circuit ignored signals.  */
 | |
| 	if (sig_ignored(p, sig))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
 | |
| 		/* This is a non-RT signal and we already have one queued.  */
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
 | |
| 	 * We always use the shared queue for process-wide signals,
 | |
| 	 * to avoid several races.
 | |
| 	 */
 | |
| 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	__group_complete_signal(sig, p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Nuke all other threads in the group.
 | |
|  */
 | |
| void zap_other_threads(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	p->signal->flags = SIGNAL_GROUP_EXIT;
 | |
| 	p->signal->group_stop_count = 0;
 | |
| 
 | |
| 	if (thread_group_empty(p))
 | |
| 		return;
 | |
| 
 | |
| 	for (t = next_thread(p); t != p; t = next_thread(t)) {
 | |
| 		/*
 | |
| 		 * Don't bother with already dead threads
 | |
| 		 */
 | |
| 		if (t->exit_state)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't want to notify the parent, since we are
 | |
| 		 * killed as part of a thread group due to another
 | |
| 		 * thread doing an execve() or similar. So set the
 | |
| 		 * exit signal to -1 to allow immediate reaping of
 | |
| 		 * the process.  But don't detach the thread group
 | |
| 		 * leader.
 | |
| 		 */
 | |
| 		if (t != p->group_leader)
 | |
| 			t->exit_signal = -1;
 | |
| 
 | |
| 		/* SIGKILL will be handled before any pending SIGSTOP */
 | |
| 		sigaddset(&t->pending.signal, SIGKILL);
 | |
| 		signal_wake_up(t, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
 | |
|  */
 | |
| struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
 | |
| {
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		sighand = rcu_dereference(tsk->sighand);
 | |
| 		if (unlikely(sighand == NULL))
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock_irqsave(&sighand->siglock, *flags);
 | |
| 		if (likely(sighand == tsk->sighand))
 | |
| 			break;
 | |
| 		spin_unlock_irqrestore(&sighand->siglock, *flags);
 | |
| 	}
 | |
| 
 | |
| 	return sighand;
 | |
| }
 | |
| 
 | |
| int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = check_kill_permission(sig, info, p);
 | |
| 
 | |
| 	if (!ret && sig) {
 | |
| 		ret = -ESRCH;
 | |
| 		if (lock_task_sighand(p, &flags)) {
 | |
| 			ret = __group_send_sig_info(sig, info, p);
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kill_pgrp_info() sends a signal to a process group: this is what the tty
 | |
|  * control characters do (^C, ^Z etc)
 | |
|  */
 | |
| 
 | |
| int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
 | |
| {
 | |
| 	struct task_struct *p = NULL;
 | |
| 	int retval, success;
 | |
| 
 | |
| 	success = 0;
 | |
| 	retval = -ESRCH;
 | |
| 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | |
| 		int err = group_send_sig_info(sig, info, p);
 | |
| 		success |= !err;
 | |
| 		retval = err;
 | |
| 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | |
| 	return success ? 0 : retval;
 | |
| }
 | |
| 
 | |
| int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	retval = __kill_pgrp_info(sig, info, pgrp);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
 | |
| {
 | |
| 	if (pgrp <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return __kill_pgrp_info(sig, info, find_pid(pgrp));
 | |
| }
 | |
| 
 | |
| int
 | |
| kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	retval = __kill_pg_info(sig, info, pgrp);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
 | |
| {
 | |
| 	int error;
 | |
| 	int acquired_tasklist_lock = 0;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (unlikely(sig_needs_tasklist(sig))) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		acquired_tasklist_lock = 1;
 | |
| 	}
 | |
| 	p = pid_task(pid, PIDTYPE_PID);
 | |
| 	error = -ESRCH;
 | |
| 	if (p)
 | |
| 		error = group_send_sig_info(sig, info, p);
 | |
| 	if (unlikely(acquired_tasklist_lock))
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| kill_proc_info(int sig, struct siginfo *info, pid_t pid)
 | |
| {
 | |
| 	int error;
 | |
| 	rcu_read_lock();
 | |
| 	error = kill_pid_info(sig, info, find_pid(pid));
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* like kill_pid_info(), but doesn't use uid/euid of "current" */
 | |
| int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
 | |
| 		      uid_t uid, uid_t euid, u32 secid)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (!valid_signal(sig))
 | |
| 		return ret;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!p) {
 | |
| 		ret = -ESRCH;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
 | |
| 	    && (euid != p->suid) && (euid != p->uid)
 | |
| 	    && (uid != p->suid) && (uid != p->uid)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	ret = security_task_kill(p, info, sig, secid);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 	if (sig && p->sighand) {
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 		ret = __group_send_sig_info(sig, info, p);
 | |
| 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	}
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
 | |
| 
 | |
| /*
 | |
|  * kill_something_info() interprets pid in interesting ways just like kill(2).
 | |
|  *
 | |
|  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
 | |
|  * is probably wrong.  Should make it like BSD or SYSV.
 | |
|  */
 | |
| 
 | |
| static int kill_something_info(int sig, struct siginfo *info, int pid)
 | |
| {
 | |
| 	if (!pid) {
 | |
| 		return kill_pg_info(sig, info, process_group(current));
 | |
| 	} else if (pid == -1) {
 | |
| 		int retval = 0, count = 0;
 | |
| 		struct task_struct * p;
 | |
| 
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		for_each_process(p) {
 | |
| 			if (p->pid > 1 && p->tgid != current->tgid) {
 | |
| 				int err = group_send_sig_info(sig, info, p);
 | |
| 				++count;
 | |
| 				if (err != -EPERM)
 | |
| 					retval = err;
 | |
| 			}
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		return count ? retval : -ESRCH;
 | |
| 	} else if (pid < 0) {
 | |
| 		return kill_pg_info(sig, info, -pid);
 | |
| 	} else {
 | |
| 		return kill_proc_info(sig, info, pid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are for backward compatibility with the rest of the kernel source.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * These two are the most common entry points.  They send a signal
 | |
|  * just to the specific thread.
 | |
|  */
 | |
| int
 | |
| send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure legacy kernel users don't send in bad values
 | |
| 	 * (normal paths check this in check_kill_permission).
 | |
| 	 */
 | |
| 	if (!valid_signal(sig))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need the tasklist lock even for the specific
 | |
| 	 * thread case (when we don't need to follow the group
 | |
| 	 * lists) in order to avoid races with "p->sighand"
 | |
| 	 * going away or changing from under us.
 | |
| 	 */
 | |
| 	read_lock(&tasklist_lock);  
 | |
| 	spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 	ret = specific_send_sig_info(sig, info, p);
 | |
| 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define __si_special(priv) \
 | |
| 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
 | |
| 
 | |
| int
 | |
| send_sig(int sig, struct task_struct *p, int priv)
 | |
| {
 | |
| 	return send_sig_info(sig, __si_special(priv), p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the entry point for "process-wide" signals.
 | |
|  * They will go to an appropriate thread in the thread group.
 | |
|  */
 | |
| int
 | |
| send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 | |
| {
 | |
| 	int ret;
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	ret = group_send_sig_info(sig, info, p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| force_sig(int sig, struct task_struct *p)
 | |
| {
 | |
| 	force_sig_info(sig, SEND_SIG_PRIV, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When things go south during signal handling, we
 | |
|  * will force a SIGSEGV. And if the signal that caused
 | |
|  * the problem was already a SIGSEGV, we'll want to
 | |
|  * make sure we don't even try to deliver the signal..
 | |
|  */
 | |
| int
 | |
| force_sigsegv(int sig, struct task_struct *p)
 | |
| {
 | |
| 	if (sig == SIGSEGV) {
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
 | |
| 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	}
 | |
| 	force_sig(SIGSEGV, p);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kill_pgrp(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	return kill_pgrp_info(sig, __si_special(priv), pid);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pgrp);
 | |
| 
 | |
| int kill_pid(struct pid *pid, int sig, int priv)
 | |
| {
 | |
| 	return kill_pid_info(sig, __si_special(priv), pid);
 | |
| }
 | |
| EXPORT_SYMBOL(kill_pid);
 | |
| 
 | |
| int
 | |
| kill_pg(pid_t pgrp, int sig, int priv)
 | |
| {
 | |
| 	return kill_pg_info(sig, __si_special(priv), pgrp);
 | |
| }
 | |
| 
 | |
| int
 | |
| kill_proc(pid_t pid, int sig, int priv)
 | |
| {
 | |
| 	return kill_proc_info(sig, __si_special(priv), pid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These functions support sending signals using preallocated sigqueue
 | |
|  * structures.  This is needed "because realtime applications cannot
 | |
|  * afford to lose notifications of asynchronous events, like timer
 | |
|  * expirations or I/O completions".  In the case of Posix Timers 
 | |
|  * we allocate the sigqueue structure from the timer_create.  If this
 | |
|  * allocation fails we are able to report the failure to the application
 | |
|  * with an EAGAIN error.
 | |
|  */
 | |
|  
 | |
| struct sigqueue *sigqueue_alloc(void)
 | |
| {
 | |
| 	struct sigqueue *q;
 | |
| 
 | |
| 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
 | |
| 		q->flags |= SIGQUEUE_PREALLOC;
 | |
| 	return(q);
 | |
| }
 | |
| 
 | |
| void sigqueue_free(struct sigqueue *q)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 	/*
 | |
| 	 * If the signal is still pending remove it from the
 | |
| 	 * pending queue.
 | |
| 	 */
 | |
| 	if (unlikely(!list_empty(&q->list))) {
 | |
| 		spinlock_t *lock = ¤t->sighand->siglock;
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		spin_lock_irqsave(lock, flags);
 | |
| 		if (!list_empty(&q->list))
 | |
| 			list_del_init(&q->list);
 | |
| 		spin_unlock_irqrestore(lock, flags);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 	q->flags &= ~SIGQUEUE_PREALLOC;
 | |
| 	__sigqueue_free(q);
 | |
| }
 | |
| 
 | |
| int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 
 | |
| 	/*
 | |
| 	 * The rcu based delayed sighand destroy makes it possible to
 | |
| 	 * run this without tasklist lock held. The task struct itself
 | |
| 	 * cannot go away as create_timer did get_task_struct().
 | |
| 	 *
 | |
| 	 * We return -1, when the task is marked exiting, so
 | |
| 	 * posix_timer_event can redirect it to the group leader
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	if (!likely(lock_task_sighand(p, &flags))) {
 | |
| 		ret = -1;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!list_empty(&q->list))) {
 | |
| 		/*
 | |
| 		 * If an SI_TIMER entry is already queue just increment
 | |
| 		 * the overrun count.
 | |
| 		 */
 | |
| 		BUG_ON(q->info.si_code != SI_TIMER);
 | |
| 		q->info.si_overrun++;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* Short-circuit ignored signals.  */
 | |
| 	if (sig_ignored(p, sig)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&q->list, &p->pending.list);
 | |
| 	sigaddset(&p->pending.signal, sig);
 | |
| 	if (!sigismember(&p->blocked, sig))
 | |
| 		signal_wake_up(p, sig == SIGKILL);
 | |
| 
 | |
| out:
 | |
| 	unlock_task_sighand(p, &flags);
 | |
| out_err:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int
 | |
| send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/* Since it_lock is held, p->sighand cannot be NULL. */
 | |
| 	spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 	handle_stop_signal(sig, p);
 | |
| 
 | |
| 	/* Short-circuit ignored signals.  */
 | |
| 	if (sig_ignored(p, sig)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!list_empty(&q->list))) {
 | |
| 		/*
 | |
| 		 * If an SI_TIMER entry is already queue just increment
 | |
| 		 * the overrun count.  Other uses should not try to
 | |
| 		 * send the signal multiple times.
 | |
| 		 */
 | |
| 		BUG_ON(q->info.si_code != SI_TIMER);
 | |
| 		q->info.si_overrun++;
 | |
| 		goto out;
 | |
| 	} 
 | |
| 
 | |
| 	/*
 | |
| 	 * Put this signal on the shared-pending queue.
 | |
| 	 * We always use the shared queue for process-wide signals,
 | |
| 	 * to avoid several races.
 | |
| 	 */
 | |
| 	list_add_tail(&q->list, &p->signal->shared_pending.list);
 | |
| 	sigaddset(&p->signal->shared_pending.signal, sig);
 | |
| 
 | |
| 	__group_complete_signal(sig, p);
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up any threads in the parent blocked in wait* syscalls.
 | |
|  */
 | |
| static inline void __wake_up_parent(struct task_struct *p,
 | |
| 				    struct task_struct *parent)
 | |
| {
 | |
| 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Let a parent know about the death of a child.
 | |
|  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
 | |
|  */
 | |
| 
 | |
| void do_notify_parent(struct task_struct *tsk, int sig)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct sighand_struct *psig;
 | |
| 
 | |
| 	BUG_ON(sig == -1);
 | |
| 
 | |
|  	/* do_notify_parent_cldstop should have been called instead.  */
 | |
|  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
 | |
| 
 | |
| 	BUG_ON(!tsk->ptrace &&
 | |
| 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
 | |
| 
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_pid = tsk->pid;
 | |
| 	info.si_uid = tsk->uid;
 | |
| 
 | |
| 	/* FIXME: find out whether or not this is supposed to be c*time. */
 | |
| 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
 | |
| 						       tsk->signal->utime));
 | |
| 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
 | |
| 						       tsk->signal->stime));
 | |
| 
 | |
| 	info.si_status = tsk->exit_code & 0x7f;
 | |
| 	if (tsk->exit_code & 0x80)
 | |
| 		info.si_code = CLD_DUMPED;
 | |
| 	else if (tsk->exit_code & 0x7f)
 | |
| 		info.si_code = CLD_KILLED;
 | |
| 	else {
 | |
| 		info.si_code = CLD_EXITED;
 | |
| 		info.si_status = tsk->exit_code >> 8;
 | |
| 	}
 | |
| 
 | |
| 	psig = tsk->parent->sighand;
 | |
| 	spin_lock_irqsave(&psig->siglock, flags);
 | |
| 	if (!tsk->ptrace && sig == SIGCHLD &&
 | |
| 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
 | |
| 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
 | |
| 		/*
 | |
| 		 * We are exiting and our parent doesn't care.  POSIX.1
 | |
| 		 * defines special semantics for setting SIGCHLD to SIG_IGN
 | |
| 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
 | |
| 		 * automatically and not left for our parent's wait4 call.
 | |
| 		 * Rather than having the parent do it as a magic kind of
 | |
| 		 * signal handler, we just set this to tell do_exit that we
 | |
| 		 * can be cleaned up without becoming a zombie.  Note that
 | |
| 		 * we still call __wake_up_parent in this case, because a
 | |
| 		 * blocked sys_wait4 might now return -ECHILD.
 | |
| 		 *
 | |
| 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
 | |
| 		 * is implementation-defined: we do (if you don't want
 | |
| 		 * it, just use SIG_IGN instead).
 | |
| 		 */
 | |
| 		tsk->exit_signal = -1;
 | |
| 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
 | |
| 			sig = 0;
 | |
| 	}
 | |
| 	if (valid_signal(sig) && sig > 0)
 | |
| 		__group_send_sig_info(sig, &info, tsk->parent);
 | |
| 	__wake_up_parent(tsk, tsk->parent);
 | |
| 	spin_unlock_irqrestore(&psig->siglock, flags);
 | |
| }
 | |
| 
 | |
| static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *parent;
 | |
| 	struct sighand_struct *sighand;
 | |
| 
 | |
| 	if (tsk->ptrace & PT_PTRACED)
 | |
| 		parent = tsk->parent;
 | |
| 	else {
 | |
| 		tsk = tsk->group_leader;
 | |
| 		parent = tsk->real_parent;
 | |
| 	}
 | |
| 
 | |
| 	info.si_signo = SIGCHLD;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_pid = tsk->pid;
 | |
| 	info.si_uid = tsk->uid;
 | |
| 
 | |
| 	/* FIXME: find out whether or not this is supposed to be c*time. */
 | |
| 	info.si_utime = cputime_to_jiffies(tsk->utime);
 | |
| 	info.si_stime = cputime_to_jiffies(tsk->stime);
 | |
| 
 | |
|  	info.si_code = why;
 | |
|  	switch (why) {
 | |
|  	case CLD_CONTINUED:
 | |
|  		info.si_status = SIGCONT;
 | |
|  		break;
 | |
|  	case CLD_STOPPED:
 | |
|  		info.si_status = tsk->signal->group_exit_code & 0x7f;
 | |
|  		break;
 | |
|  	case CLD_TRAPPED:
 | |
|  		info.si_status = tsk->exit_code & 0x7f;
 | |
|  		break;
 | |
|  	default:
 | |
|  		BUG();
 | |
|  	}
 | |
| 
 | |
| 	sighand = parent->sighand;
 | |
| 	spin_lock_irqsave(&sighand->siglock, flags);
 | |
| 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
 | |
| 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
 | |
| 		__group_send_sig_info(SIGCHLD, &info, parent);
 | |
| 	/*
 | |
| 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
 | |
| 	 */
 | |
| 	__wake_up_parent(tsk, parent);
 | |
| 	spin_unlock_irqrestore(&sighand->siglock, flags);
 | |
| }
 | |
| 
 | |
| static inline int may_ptrace_stop(void)
 | |
| {
 | |
| 	if (!likely(current->ptrace & PT_PTRACED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(current->parent == current->real_parent &&
 | |
| 		    (current->ptrace & PT_ATTACHED)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(current->signal == current->parent->signal) &&
 | |
| 	    unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we in the middle of do_coredump?
 | |
| 	 * If so and our tracer is also part of the coredump stopping
 | |
| 	 * is a deadlock situation, and pointless because our tracer
 | |
| 	 * is dead so don't allow us to stop.
 | |
| 	 * If SIGKILL was already sent before the caller unlocked
 | |
| 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
 | |
| 	 * is safe to enter schedule().
 | |
| 	 */
 | |
| 	if (unlikely(current->mm->core_waiters) &&
 | |
| 	    unlikely(current->mm == current->parent->mm))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be called with current->sighand->siglock held.
 | |
|  *
 | |
|  * This should be the path for all ptrace stops.
 | |
|  * We always set current->last_siginfo while stopped here.
 | |
|  * That makes it a way to test a stopped process for
 | |
|  * being ptrace-stopped vs being job-control-stopped.
 | |
|  *
 | |
|  * If we actually decide not to stop at all because the tracer is gone,
 | |
|  * we leave nostop_code in current->exit_code.
 | |
|  */
 | |
| static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there is a group stop in progress,
 | |
| 	 * we must participate in the bookkeeping.
 | |
| 	 */
 | |
| 	if (current->signal->group_stop_count > 0)
 | |
| 		--current->signal->group_stop_count;
 | |
| 
 | |
| 	current->last_siginfo = info;
 | |
| 	current->exit_code = exit_code;
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	set_current_state(TASK_TRACED);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	try_to_freeze();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (may_ptrace_stop()) {
 | |
| 		do_notify_parent_cldstop(current, CLD_TRAPPED);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		schedule();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * By the time we got the lock, our tracer went away.
 | |
| 		 * Don't stop here.
 | |
| 		 */
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		set_current_state(TASK_RUNNING);
 | |
| 		current->exit_code = nostop_code;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are back.  Now reacquire the siglock before touching
 | |
| 	 * last_siginfo, so that we are sure to have synchronized with
 | |
| 	 * any signal-sending on another CPU that wants to examine it.
 | |
| 	 */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->last_siginfo = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Queued signals ignored us while we were stopped for tracing.
 | |
| 	 * So check for any that we should take before resuming user mode.
 | |
| 	 */
 | |
| 	recalc_sigpending();
 | |
| }
 | |
| 
 | |
| void ptrace_notify(int exit_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 | |
| 
 | |
| 	memset(&info, 0, sizeof info);
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_code = exit_code;
 | |
| 	info.si_pid = current->pid;
 | |
| 	info.si_uid = current->uid;
 | |
| 
 | |
| 	/* Let the debugger run.  */
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	ptrace_stop(exit_code, 0, &info);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| finish_stop(int stop_count)
 | |
| {
 | |
| 	/*
 | |
| 	 * If there are no other threads in the group, or if there is
 | |
| 	 * a group stop in progress and we are the last to stop,
 | |
| 	 * report to the parent.  When ptraced, every thread reports itself.
 | |
| 	 */
 | |
| 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		do_notify_parent_cldstop(current, CLD_STOPPED);
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	schedule();
 | |
| 	/*
 | |
| 	 * Now we don't run again until continued.
 | |
| 	 */
 | |
| 	current->exit_code = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This performs the stopping for SIGSTOP and other stop signals.
 | |
|  * We have to stop all threads in the thread group.
 | |
|  * Returns nonzero if we've actually stopped and released the siglock.
 | |
|  * Returns zero if we didn't stop and still hold the siglock.
 | |
|  */
 | |
| static int do_signal_stop(int signr)
 | |
| {
 | |
| 	struct signal_struct *sig = current->signal;
 | |
| 	int stop_count;
 | |
| 
 | |
| 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sig->group_stop_count > 0) {
 | |
| 		/*
 | |
| 		 * There is a group stop in progress.  We don't need to
 | |
| 		 * start another one.
 | |
| 		 */
 | |
| 		stop_count = --sig->group_stop_count;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * There is no group stop already in progress.
 | |
| 		 * We must initiate one now.
 | |
| 		 */
 | |
| 		struct task_struct *t;
 | |
| 
 | |
| 		sig->group_exit_code = signr;
 | |
| 
 | |
| 		stop_count = 0;
 | |
| 		for (t = next_thread(current); t != current; t = next_thread(t))
 | |
| 			/*
 | |
| 			 * Setting state to TASK_STOPPED for a group
 | |
| 			 * stop is always done with the siglock held,
 | |
| 			 * so this check has no races.
 | |
| 			 */
 | |
| 			if (!t->exit_state &&
 | |
| 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
 | |
| 				stop_count++;
 | |
| 				signal_wake_up(t, 0);
 | |
| 			}
 | |
| 		sig->group_stop_count = stop_count;
 | |
| 	}
 | |
| 
 | |
| 	if (stop_count == 0)
 | |
| 		sig->flags = SIGNAL_STOP_STOPPED;
 | |
| 	current->exit_code = sig->group_exit_code;
 | |
| 	__set_current_state(TASK_STOPPED);
 | |
| 
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	finish_stop(stop_count);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do appropriate magic when group_stop_count > 0.
 | |
|  * We return nonzero if we stopped, after releasing the siglock.
 | |
|  * We return zero if we still hold the siglock and should look
 | |
|  * for another signal without checking group_stop_count again.
 | |
|  */
 | |
| static int handle_group_stop(void)
 | |
| {
 | |
| 	int stop_count;
 | |
| 
 | |
| 	if (current->signal->group_exit_task == current) {
 | |
| 		/*
 | |
| 		 * Group stop is so we can do a core dump,
 | |
| 		 * We are the initiating thread, so get on with it.
 | |
| 		 */
 | |
| 		current->signal->group_exit_task = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
 | |
| 		/*
 | |
| 		 * Group stop is so another thread can do a core dump,
 | |
| 		 * or else we are racing against a death signal.
 | |
| 		 * Just punt the stop so we can get the next signal.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is a group stop in progress.  We stop
 | |
| 	 * without any associated signal being in our queue.
 | |
| 	 */
 | |
| 	stop_count = --current->signal->group_stop_count;
 | |
| 	if (stop_count == 0)
 | |
| 		current->signal->flags = SIGNAL_STOP_STOPPED;
 | |
| 	current->exit_code = current->signal->group_exit_code;
 | |
| 	set_current_state(TASK_STOPPED);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	finish_stop(stop_count);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
 | |
| 			  struct pt_regs *regs, void *cookie)
 | |
| {
 | |
| 	sigset_t *mask = ¤t->blocked;
 | |
| 	int signr = 0;
 | |
| 
 | |
| 	try_to_freeze();
 | |
| 
 | |
| relock:
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	for (;;) {
 | |
| 		struct k_sigaction *ka;
 | |
| 
 | |
| 		if (unlikely(current->signal->group_stop_count > 0) &&
 | |
| 		    handle_group_stop())
 | |
| 			goto relock;
 | |
| 
 | |
| 		signr = dequeue_signal(current, mask, info);
 | |
| 
 | |
| 		if (!signr)
 | |
| 			break; /* will return 0 */
 | |
| 
 | |
| 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
 | |
| 			ptrace_signal_deliver(regs, cookie);
 | |
| 
 | |
| 			/* Let the debugger run.  */
 | |
| 			ptrace_stop(signr, signr, info);
 | |
| 
 | |
| 			/* We're back.  Did the debugger cancel the sig?  */
 | |
| 			signr = current->exit_code;
 | |
| 			if (signr == 0)
 | |
| 				continue;
 | |
| 
 | |
| 			current->exit_code = 0;
 | |
| 
 | |
| 			/* Update the siginfo structure if the signal has
 | |
| 			   changed.  If the debugger wanted something
 | |
| 			   specific in the siginfo structure then it should
 | |
| 			   have updated *info via PTRACE_SETSIGINFO.  */
 | |
| 			if (signr != info->si_signo) {
 | |
| 				info->si_signo = signr;
 | |
| 				info->si_errno = 0;
 | |
| 				info->si_code = SI_USER;
 | |
| 				info->si_pid = current->parent->pid;
 | |
| 				info->si_uid = current->parent->uid;
 | |
| 			}
 | |
| 
 | |
| 			/* If the (new) signal is now blocked, requeue it.  */
 | |
| 			if (sigismember(¤t->blocked, signr)) {
 | |
| 				specific_send_sig_info(signr, info, current);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ka = ¤t->sighand->action[signr-1];
 | |
| 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
 | |
| 			continue;
 | |
| 		if (ka->sa.sa_handler != SIG_DFL) {
 | |
| 			/* Run the handler.  */
 | |
| 			*return_ka = *ka;
 | |
| 
 | |
| 			if (ka->sa.sa_flags & SA_ONESHOT)
 | |
| 				ka->sa.sa_handler = SIG_DFL;
 | |
| 
 | |
| 			break; /* will return non-zero "signr" value */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now we are doing the default action for this signal.
 | |
| 		 */
 | |
| 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
 | |
| 			continue;
 | |
| 
 | |
| 		/* Init gets no signals it doesn't want.  */
 | |
| 		if (current == child_reaper)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sig_kernel_stop(signr)) {
 | |
| 			/*
 | |
| 			 * The default action is to stop all threads in
 | |
| 			 * the thread group.  The job control signals
 | |
| 			 * do nothing in an orphaned pgrp, but SIGSTOP
 | |
| 			 * always works.  Note that siglock needs to be
 | |
| 			 * dropped during the call to is_orphaned_pgrp()
 | |
| 			 * because of lock ordering with tasklist_lock.
 | |
| 			 * This allows an intervening SIGCONT to be posted.
 | |
| 			 * We need to check for that and bail out if necessary.
 | |
| 			 */
 | |
| 			if (signr != SIGSTOP) {
 | |
| 				spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 				/* signals can be posted during this window */
 | |
| 
 | |
| 				if (is_orphaned_pgrp(process_group(current)))
 | |
| 					goto relock;
 | |
| 
 | |
| 				spin_lock_irq(¤t->sighand->siglock);
 | |
| 			}
 | |
| 
 | |
| 			if (likely(do_signal_stop(signr))) {
 | |
| 				/* It released the siglock.  */
 | |
| 				goto relock;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We didn't actually stop, due to a race
 | |
| 			 * with SIGCONT or something like that.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Anything else is fatal, maybe with a core dump.
 | |
| 		 */
 | |
| 		current->flags |= PF_SIGNALED;
 | |
| 		if (sig_kernel_coredump(signr)) {
 | |
| 			/*
 | |
| 			 * If it was able to dump core, this kills all
 | |
| 			 * other threads in the group and synchronizes with
 | |
| 			 * their demise.  If we lost the race with another
 | |
| 			 * thread getting here, it set group_exit_code
 | |
| 			 * first and our do_group_exit call below will use
 | |
| 			 * that value and ignore the one we pass it.
 | |
| 			 */
 | |
| 			do_coredump((long)signr, signr, regs);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Death signals, no core dump.
 | |
| 		 */
 | |
| 		do_group_exit(signr);
 | |
| 		/* NOTREACHED */
 | |
| 	}
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return signr;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(recalc_sigpending);
 | |
| EXPORT_SYMBOL_GPL(dequeue_signal);
 | |
| EXPORT_SYMBOL(flush_signals);
 | |
| EXPORT_SYMBOL(force_sig);
 | |
| EXPORT_SYMBOL(kill_pg);
 | |
| EXPORT_SYMBOL(kill_proc);
 | |
| EXPORT_SYMBOL(ptrace_notify);
 | |
| EXPORT_SYMBOL(send_sig);
 | |
| EXPORT_SYMBOL(send_sig_info);
 | |
| EXPORT_SYMBOL(sigprocmask);
 | |
| EXPORT_SYMBOL(block_all_signals);
 | |
| EXPORT_SYMBOL(unblock_all_signals);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * System call entry points.
 | |
|  */
 | |
| 
 | |
| asmlinkage long sys_restart_syscall(void)
 | |
| {
 | |
| 	struct restart_block *restart = ¤t_thread_info()->restart_block;
 | |
| 	return restart->fn(restart);
 | |
| }
 | |
| 
 | |
| long do_no_restart_syscall(struct restart_block *param)
 | |
| {
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We don't need to get the kernel lock - this is all local to this
 | |
|  * particular thread.. (and that's good, because this is _heavily_
 | |
|  * used by various programs)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is also useful for kernel threads that want to temporarily
 | |
|  * (or permanently) block certain signals.
 | |
|  *
 | |
|  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
 | |
|  * interface happily blocks "unblockable" signals like SIGKILL
 | |
|  * and friends.
 | |
|  */
 | |
| int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (oldset)
 | |
| 		*oldset = current->blocked;
 | |
| 
 | |
| 	error = 0;
 | |
| 	switch (how) {
 | |
| 	case SIG_BLOCK:
 | |
| 		sigorsets(¤t->blocked, ¤t->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_UNBLOCK:
 | |
| 		signandsets(¤t->blocked, ¤t->blocked, set);
 | |
| 		break;
 | |
| 	case SIG_SETMASK:
 | |
| 		current->blocked = *set;
 | |
| 		break;
 | |
| 	default:
 | |
| 		error = -EINVAL;
 | |
| 	}
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
 | |
| {
 | |
| 	int error = -EINVAL;
 | |
| 	sigset_t old_set, new_set;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (set) {
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_from_user(&new_set, set, sizeof(*set)))
 | |
| 			goto out;
 | |
| 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 		error = sigprocmask(how, &new_set, &old_set);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		if (oset)
 | |
| 			goto set_old;
 | |
| 	} else if (oset) {
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		old_set = current->blocked;
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	set_old:
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| long do_sigpending(void __user *set, unsigned long sigsetsize)
 | |
| {
 | |
| 	long error = -EINVAL;
 | |
| 	sigset_t pending;
 | |
| 
 | |
| 	if (sigsetsize > sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sigorsets(&pending, ¤t->pending.signal,
 | |
| 		  ¤t->signal->shared_pending.signal);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* Outside the lock because only this thread touches it.  */
 | |
| 	sigandsets(&pending, ¤t->blocked, &pending);
 | |
| 
 | |
| 	error = -EFAULT;
 | |
| 	if (!copy_to_user(set, &pending, sigsetsize))
 | |
| 		error = 0;
 | |
| 
 | |
| out:
 | |
| 	return error;
 | |
| }	
 | |
| 
 | |
| asmlinkage long
 | |
| sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
 | |
| {
 | |
| 	return do_sigpending(set, sigsetsize);
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 | |
| 
 | |
| int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 | |
| 		return -EFAULT;
 | |
| 	if (from->si_code < 0)
 | |
| 		return __copy_to_user(to, from, sizeof(siginfo_t))
 | |
| 			? -EFAULT : 0;
 | |
| 	/*
 | |
| 	 * If you change siginfo_t structure, please be sure
 | |
| 	 * this code is fixed accordingly.
 | |
| 	 * It should never copy any pad contained in the structure
 | |
| 	 * to avoid security leaks, but must copy the generic
 | |
| 	 * 3 ints plus the relevant union member.
 | |
| 	 */
 | |
| 	err = __put_user(from->si_signo, &to->si_signo);
 | |
| 	err |= __put_user(from->si_errno, &to->si_errno);
 | |
| 	err |= __put_user((short)from->si_code, &to->si_code);
 | |
| 	switch (from->si_code & __SI_MASK) {
 | |
| 	case __SI_KILL:
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		break;
 | |
| 	case __SI_TIMER:
 | |
| 		 err |= __put_user(from->si_tid, &to->si_tid);
 | |
| 		 err |= __put_user(from->si_overrun, &to->si_overrun);
 | |
| 		 err |= __put_user(from->si_ptr, &to->si_ptr);
 | |
| 		break;
 | |
| 	case __SI_POLL:
 | |
| 		err |= __put_user(from->si_band, &to->si_band);
 | |
| 		err |= __put_user(from->si_fd, &to->si_fd);
 | |
| 		break;
 | |
| 	case __SI_FAULT:
 | |
| 		err |= __put_user(from->si_addr, &to->si_addr);
 | |
| #ifdef __ARCH_SI_TRAPNO
 | |
| 		err |= __put_user(from->si_trapno, &to->si_trapno);
 | |
| #endif
 | |
| 		break;
 | |
| 	case __SI_CHLD:
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		err |= __put_user(from->si_status, &to->si_status);
 | |
| 		err |= __put_user(from->si_utime, &to->si_utime);
 | |
| 		err |= __put_user(from->si_stime, &to->si_stime);
 | |
| 		break;
 | |
| 	case __SI_RT: /* This is not generated by the kernel as of now. */
 | |
| 	case __SI_MESGQ: /* But this is */
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		err |= __put_user(from->si_ptr, &to->si_ptr);
 | |
| 		break;
 | |
| 	default: /* this is just in case for now ... */
 | |
| 		err |= __put_user(from->si_pid, &to->si_pid);
 | |
| 		err |= __put_user(from->si_uid, &to->si_uid);
 | |
| 		break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| asmlinkage long
 | |
| sys_rt_sigtimedwait(const sigset_t __user *uthese,
 | |
| 		    siginfo_t __user *uinfo,
 | |
| 		    const struct timespec __user *uts,
 | |
| 		    size_t sigsetsize)
 | |
| {
 | |
| 	int ret, sig;
 | |
| 	sigset_t these;
 | |
| 	struct timespec ts;
 | |
| 	siginfo_t info;
 | |
| 	long timeout = 0;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&these, uthese, sizeof(these)))
 | |
| 		return -EFAULT;
 | |
| 		
 | |
| 	/*
 | |
| 	 * Invert the set of allowed signals to get those we
 | |
| 	 * want to block.
 | |
| 	 */
 | |
| 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 	signotset(&these);
 | |
| 
 | |
| 	if (uts) {
 | |
| 		if (copy_from_user(&ts, uts, sizeof(ts)))
 | |
| 			return -EFAULT;
 | |
| 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
 | |
| 		    || ts.tv_sec < 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	sig = dequeue_signal(current, &these, &info);
 | |
| 	if (!sig) {
 | |
| 		timeout = MAX_SCHEDULE_TIMEOUT;
 | |
| 		if (uts)
 | |
| 			timeout = (timespec_to_jiffies(&ts)
 | |
| 				   + (ts.tv_sec || ts.tv_nsec));
 | |
| 
 | |
| 		if (timeout) {
 | |
| 			/* None ready -- temporarily unblock those we're
 | |
| 			 * interested while we are sleeping in so that we'll
 | |
| 			 * be awakened when they arrive.  */
 | |
| 			current->real_blocked = current->blocked;
 | |
| 			sigandsets(¤t->blocked, ¤t->blocked, &these);
 | |
| 			recalc_sigpending();
 | |
| 			spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 			timeout = schedule_timeout_interruptible(timeout);
 | |
| 
 | |
| 			spin_lock_irq(¤t->sighand->siglock);
 | |
| 			sig = dequeue_signal(current, &these, &info);
 | |
| 			current->blocked = current->real_blocked;
 | |
| 			siginitset(¤t->real_blocked, 0);
 | |
| 			recalc_sigpending();
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	if (sig) {
 | |
| 		ret = sig;
 | |
| 		if (uinfo) {
 | |
| 			if (copy_siginfo_to_user(uinfo, &info))
 | |
| 				ret = -EFAULT;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ret = -EAGAIN;
 | |
| 		if (timeout)
 | |
| 			ret = -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_kill(int pid, int sig)
 | |
| {
 | |
| 	struct siginfo info;
 | |
| 
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_USER;
 | |
| 	info.si_pid = current->tgid;
 | |
| 	info.si_uid = current->uid;
 | |
| 
 | |
| 	return kill_something_info(sig, &info, pid);
 | |
| }
 | |
| 
 | |
| static int do_tkill(int tgid, int pid, int sig)
 | |
| {
 | |
| 	int error;
 | |
| 	struct siginfo info;
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	error = -ESRCH;
 | |
| 	info.si_signo = sig;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = SI_TKILL;
 | |
| 	info.si_pid = current->tgid;
 | |
| 	info.si_uid = current->uid;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_task_by_pid(pid);
 | |
| 	if (p && (tgid <= 0 || p->tgid == tgid)) {
 | |
| 		error = check_kill_permission(sig, &info, p);
 | |
| 		/*
 | |
| 		 * The null signal is a permissions and process existence
 | |
| 		 * probe.  No signal is actually delivered.
 | |
| 		 */
 | |
| 		if (!error && sig && p->sighand) {
 | |
| 			spin_lock_irq(&p->sighand->siglock);
 | |
| 			handle_stop_signal(sig, p);
 | |
| 			error = specific_send_sig_info(sig, &info, p);
 | |
| 			spin_unlock_irq(&p->sighand->siglock);
 | |
| 		}
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  sys_tgkill - send signal to one specific thread
 | |
|  *  @tgid: the thread group ID of the thread
 | |
|  *  @pid: the PID of the thread
 | |
|  *  @sig: signal to be sent
 | |
|  *
 | |
|  *  This syscall also checks the tgid and returns -ESRCH even if the PID
 | |
|  *  exists but it's not belonging to the target process anymore. This
 | |
|  *  method solves the problem of threads exiting and PIDs getting reused.
 | |
|  */
 | |
| asmlinkage long sys_tgkill(int tgid, int pid, int sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0 || tgid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(tgid, pid, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
 | |
|  */
 | |
| asmlinkage long
 | |
| sys_tkill(int pid, int sig)
 | |
| {
 | |
| 	/* This is only valid for single tasks */
 | |
| 	if (pid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_tkill(0, pid, sig);
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Not even root can pretend to send signals from the kernel.
 | |
| 	   Nor can they impersonate a kill(), which adds source info.  */
 | |
| 	if (info.si_code >= 0)
 | |
| 		return -EPERM;
 | |
| 	info.si_signo = sig;
 | |
| 
 | |
| 	/* POSIX.1b doesn't mention process groups.  */
 | |
| 	return kill_proc_info(sig, &info, pid);
 | |
| }
 | |
| 
 | |
| int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
 | |
| {
 | |
| 	struct k_sigaction *k;
 | |
| 	sigset_t mask;
 | |
| 
 | |
| 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	k = ¤t->sighand->action[sig-1];
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	if (signal_pending(current)) {
 | |
| 		/*
 | |
| 		 * If there might be a fatal signal pending on multiple
 | |
| 		 * threads, make sure we take it before changing the action.
 | |
| 		 */
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		return -ERESTARTNOINTR;
 | |
| 	}
 | |
| 
 | |
| 	if (oact)
 | |
| 		*oact = *k;
 | |
| 
 | |
| 	if (act) {
 | |
| 		sigdelsetmask(&act->sa.sa_mask,
 | |
| 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 		*k = *act;
 | |
| 		/*
 | |
| 		 * POSIX 3.3.1.3:
 | |
| 		 *  "Setting a signal action to SIG_IGN for a signal that is
 | |
| 		 *   pending shall cause the pending signal to be discarded,
 | |
| 		 *   whether or not it is blocked."
 | |
| 		 *
 | |
| 		 *  "Setting a signal action to SIG_DFL for a signal that is
 | |
| 		 *   pending and whose default action is to ignore the signal
 | |
| 		 *   (for example, SIGCHLD), shall cause the pending signal to
 | |
| 		 *   be discarded, whether or not it is blocked"
 | |
| 		 */
 | |
| 		if (act->sa.sa_handler == SIG_IGN ||
 | |
| 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
 | |
| 			struct task_struct *t = current;
 | |
| 			sigemptyset(&mask);
 | |
| 			sigaddset(&mask, sig);
 | |
| 			rm_from_queue_full(&mask, &t->signal->shared_pending);
 | |
| 			do {
 | |
| 				rm_from_queue_full(&mask, &t->pending);
 | |
| 				recalc_sigpending_tsk(t);
 | |
| 				t = next_thread(t);
 | |
| 			} while (t != current);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int 
 | |
| do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 | |
| {
 | |
| 	stack_t oss;
 | |
| 	int error;
 | |
| 
 | |
| 	if (uoss) {
 | |
| 		oss.ss_sp = (void __user *) current->sas_ss_sp;
 | |
| 		oss.ss_size = current->sas_ss_size;
 | |
| 		oss.ss_flags = sas_ss_flags(sp);
 | |
| 	}
 | |
| 
 | |
| 	if (uss) {
 | |
| 		void __user *ss_sp;
 | |
| 		size_t ss_size;
 | |
| 		int ss_flags;
 | |
| 
 | |
| 		error = -EFAULT;
 | |
| 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
 | |
| 		    || __get_user(ss_sp, &uss->ss_sp)
 | |
| 		    || __get_user(ss_flags, &uss->ss_flags)
 | |
| 		    || __get_user(ss_size, &uss->ss_size))
 | |
| 			goto out;
 | |
| 
 | |
| 		error = -EPERM;
 | |
| 		if (on_sig_stack(sp))
 | |
| 			goto out;
 | |
| 
 | |
| 		error = -EINVAL;
 | |
| 		/*
 | |
| 		 *
 | |
| 		 * Note - this code used to test ss_flags incorrectly
 | |
| 		 *  	  old code may have been written using ss_flags==0
 | |
| 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
 | |
| 		 *	  way that worked) - this fix preserves that older
 | |
| 		 *	  mechanism
 | |
| 		 */
 | |
| 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (ss_flags == SS_DISABLE) {
 | |
| 			ss_size = 0;
 | |
| 			ss_sp = NULL;
 | |
| 		} else {
 | |
| 			error = -ENOMEM;
 | |
| 			if (ss_size < MINSIGSTKSZ)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		current->sas_ss_sp = (unsigned long) ss_sp;
 | |
| 		current->sas_ss_size = ss_size;
 | |
| 	}
 | |
| 
 | |
| 	if (uoss) {
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_to_user(uoss, &oss, sizeof(oss)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPENDING
 | |
| 
 | |
| asmlinkage long
 | |
| sys_sigpending(old_sigset_t __user *set)
 | |
| {
 | |
| 	return do_sigpending(set, sizeof(*set));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGPROCMASK
 | |
| /* Some platforms have their own version with special arguments others
 | |
|    support only sys_rt_sigprocmask.  */
 | |
| 
 | |
| asmlinkage long
 | |
| sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
 | |
| {
 | |
| 	int error;
 | |
| 	old_sigset_t old_set, new_set;
 | |
| 
 | |
| 	if (set) {
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_from_user(&new_set, set, sizeof(*set)))
 | |
| 			goto out;
 | |
| 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
 | |
| 
 | |
| 		spin_lock_irq(¤t->sighand->siglock);
 | |
| 		old_set = current->blocked.sig[0];
 | |
| 
 | |
| 		error = 0;
 | |
| 		switch (how) {
 | |
| 		default:
 | |
| 			error = -EINVAL;
 | |
| 			break;
 | |
| 		case SIG_BLOCK:
 | |
| 			sigaddsetmask(¤t->blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_UNBLOCK:
 | |
| 			sigdelsetmask(¤t->blocked, new_set);
 | |
| 			break;
 | |
| 		case SIG_SETMASK:
 | |
| 			current->blocked.sig[0] = new_set;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		recalc_sigpending();
 | |
| 		spin_unlock_irq(¤t->sighand->siglock);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 		if (oset)
 | |
| 			goto set_old;
 | |
| 	} else if (oset) {
 | |
| 		old_set = current->blocked.sig[0];
 | |
| 	set_old:
 | |
| 		error = -EFAULT;
 | |
| 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
 | |
| 			goto out;
 | |
| 	}
 | |
| 	error = 0;
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_RT_SIGACTION
 | |
| asmlinkage long
 | |
| sys_rt_sigaction(int sig,
 | |
| 		 const struct sigaction __user *act,
 | |
| 		 struct sigaction __user *oact,
 | |
| 		 size_t sigsetsize)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (act) {
 | |
| 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 | |
| 
 | |
| 	if (!ret && oact) {
 | |
| 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SGETMASK
 | |
| 
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigprocmask.
 | |
|  */
 | |
| asmlinkage long
 | |
| sys_sgetmask(void)
 | |
| {
 | |
| 	/* SMP safe */
 | |
| 	return current->blocked.sig[0];
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_ssetmask(int newmask)
 | |
| {
 | |
| 	int old;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	old = current->blocked.sig[0];
 | |
| 
 | |
| 	siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
 | |
| 						  sigmask(SIGSTOP)));
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SGETMASK */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_SIGNAL
 | |
| /*
 | |
|  * For backwards compatibility.  Functionality superseded by sigaction.
 | |
|  */
 | |
| asmlinkage unsigned long
 | |
| sys_signal(int sig, __sighandler_t handler)
 | |
| {
 | |
| 	struct k_sigaction new_sa, old_sa;
 | |
| 	int ret;
 | |
| 
 | |
| 	new_sa.sa.sa_handler = handler;
 | |
| 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
 | |
| 	sigemptyset(&new_sa.sa.sa_mask);
 | |
| 
 | |
| 	ret = do_sigaction(sig, &new_sa, &old_sa);
 | |
| 
 | |
| 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_SIGNAL */
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_PAUSE
 | |
| 
 | |
| asmlinkage long
 | |
| sys_pause(void)
 | |
| {
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 	schedule();
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
 | |
| asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
 | |
| {
 | |
| 	sigset_t newset;
 | |
| 
 | |
| 	/* XXX: Don't preclude handling different sized sigset_t's.  */
 | |
| 	if (sigsetsize != sizeof(sigset_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&newset, unewset, sizeof(newset)))
 | |
| 		return -EFAULT;
 | |
| 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	current->saved_sigmask = current->blocked;
 | |
| 	current->blocked = newset;
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 	schedule();
 | |
| 	set_thread_flag(TIF_RESTORE_SIGMASK);
 | |
| 	return -ERESTARTNOHAND;
 | |
| }
 | |
| #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 | |
| 
 | |
| __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void __init signals_init(void)
 | |
| {
 | |
| 	sigqueue_cachep =
 | |
| 		kmem_cache_create("sigqueue",
 | |
| 				  sizeof(struct sigqueue),
 | |
| 				  __alignof__(struct sigqueue),
 | |
| 				  SLAB_PANIC, NULL, NULL);
 | |
| }
 |