mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 91fcdd4e03
			
		
	
	
		91fcdd4e03
		
	
	
	
	
		
			
			Signed-off-by: Borislav Petkov <petkov@math.uni-muenster.de> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			6953 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6953 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  kernel/sched.c
 | |
|  *
 | |
|  *  Kernel scheduler and related syscalls
 | |
|  *
 | |
|  *  Copyright (C) 1991-2002  Linus Torvalds
 | |
|  *
 | |
|  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 | |
|  *		make semaphores SMP safe
 | |
|  *  1998-11-19	Implemented schedule_timeout() and related stuff
 | |
|  *		by Andrea Arcangeli
 | |
|  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 | |
|  *		hybrid priority-list and round-robin design with
 | |
|  *		an array-switch method of distributing timeslices
 | |
|  *		and per-CPU runqueues.  Cleanups and useful suggestions
 | |
|  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 | |
|  *  2003-09-03	Interactivity tuning by Con Kolivas.
 | |
|  *  2004-04-02	Scheduler domains code by Nick Piggin
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/init.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/times.h>
 | |
| #include <linux/tsacct_kern.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include <asm/unistd.h>
 | |
| 
 | |
| /*
 | |
|  * Convert user-nice values [ -20 ... 0 ... 19 ]
 | |
|  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 | |
|  * and back.
 | |
|  */
 | |
| #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
 | |
| #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
 | |
| #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
 | |
| 
 | |
| /*
 | |
|  * 'User priority' is the nice value converted to something we
 | |
|  * can work with better when scaling various scheduler parameters,
 | |
|  * it's a [ 0 ... 39 ] range.
 | |
|  */
 | |
| #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
 | |
| #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
 | |
| #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
 | |
| 
 | |
| /*
 | |
|  * Some helpers for converting nanosecond timing to jiffy resolution
 | |
|  */
 | |
| #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
 | |
| #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))
 | |
| 
 | |
| /*
 | |
|  * These are the 'tuning knobs' of the scheduler:
 | |
|  *
 | |
|  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 | |
|  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 | |
|  * Timeslices get refilled after they expire.
 | |
|  */
 | |
| #define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
 | |
| #define DEF_TIMESLICE		(100 * HZ / 1000)
 | |
| #define ON_RUNQUEUE_WEIGHT	 30
 | |
| #define CHILD_PENALTY		 95
 | |
| #define PARENT_PENALTY		100
 | |
| #define EXIT_WEIGHT		  3
 | |
| #define PRIO_BONUS_RATIO	 25
 | |
| #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
 | |
| #define INTERACTIVE_DELTA	  2
 | |
| #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
 | |
| #define STARVATION_LIMIT	(MAX_SLEEP_AVG)
 | |
| #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))
 | |
| 
 | |
| /*
 | |
|  * If a task is 'interactive' then we reinsert it in the active
 | |
|  * array after it has expired its current timeslice. (it will not
 | |
|  * continue to run immediately, it will still roundrobin with
 | |
|  * other interactive tasks.)
 | |
|  *
 | |
|  * This part scales the interactivity limit depending on niceness.
 | |
|  *
 | |
|  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 | |
|  * Here are a few examples of different nice levels:
 | |
|  *
 | |
|  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 | |
|  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 | |
|  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 | |
|  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 | |
|  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 | |
|  *
 | |
|  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 | |
|  *  priority range a task can explore, a value of '1' means the
 | |
|  *  task is rated interactive.)
 | |
|  *
 | |
|  * Ie. nice +19 tasks can never get 'interactive' enough to be
 | |
|  * reinserted into the active array. And only heavily CPU-hog nice -20
 | |
|  * tasks will be expired. Default nice 0 tasks are somewhere between,
 | |
|  * it takes some effort for them to get interactive, but it's not
 | |
|  * too hard.
 | |
|  */
 | |
| 
 | |
| #define CURRENT_BONUS(p) \
 | |
| 	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
 | |
| 		MAX_SLEEP_AVG)
 | |
| 
 | |
| #define GRANULARITY	(10 * HZ / 1000 ? : 1)
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
 | |
| 		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
 | |
| 			num_online_cpus())
 | |
| #else
 | |
| #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
 | |
| 		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
 | |
| #endif
 | |
| 
 | |
| #define SCALE(v1,v1_max,v2_max) \
 | |
| 	(v1) * (v2_max) / (v1_max)
 | |
| 
 | |
| #define DELTA(p) \
 | |
| 	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
 | |
| 		INTERACTIVE_DELTA)
 | |
| 
 | |
| #define TASK_INTERACTIVE(p) \
 | |
| 	((p)->prio <= (p)->static_prio - DELTA(p))
 | |
| 
 | |
| #define INTERACTIVE_SLEEP(p) \
 | |
| 	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
 | |
| 		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
 | |
| 
 | |
| #define TASK_PREEMPTS_CURR(p, rq) \
 | |
| 	((p)->prio < (rq)->curr->prio)
 | |
| 
 | |
| #define SCALE_PRIO(x, prio) \
 | |
| 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
 | |
| 
 | |
| static unsigned int static_prio_timeslice(int static_prio)
 | |
| {
 | |
| 	if (static_prio < NICE_TO_PRIO(0))
 | |
| 		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
 | |
| 	else
 | |
| 		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 | |
|  * to time slice values: [800ms ... 100ms ... 5ms]
 | |
|  *
 | |
|  * The higher a thread's priority, the bigger timeslices
 | |
|  * it gets during one round of execution. But even the lowest
 | |
|  * priority thread gets MIN_TIMESLICE worth of execution time.
 | |
|  */
 | |
| 
 | |
| static inline unsigned int task_timeslice(struct task_struct *p)
 | |
| {
 | |
| 	return static_prio_timeslice(p->static_prio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the runqueue data structures:
 | |
|  */
 | |
| 
 | |
| struct prio_array {
 | |
| 	unsigned int nr_active;
 | |
| 	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
 | |
| 	struct list_head queue[MAX_PRIO];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is the main, per-CPU runqueue data structure.
 | |
|  *
 | |
|  * Locking rule: those places that want to lock multiple runqueues
 | |
|  * (such as the load balancing or the thread migration code), lock
 | |
|  * acquire operations must be ordered by ascending &runqueue.
 | |
|  */
 | |
| struct rq {
 | |
| 	spinlock_t lock;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr_running and cpu_load should be in the same cacheline because
 | |
| 	 * remote CPUs use both these fields when doing load calculation.
 | |
| 	 */
 | |
| 	unsigned long nr_running;
 | |
| 	unsigned long raw_weighted_load;
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long cpu_load[3];
 | |
| #endif
 | |
| 	unsigned long long nr_switches;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is part of a global counter where only the total sum
 | |
| 	 * over all CPUs matters. A task can increase this counter on
 | |
| 	 * one CPU and if it got migrated afterwards it may decrease
 | |
| 	 * it on another CPU. Always updated under the runqueue lock:
 | |
| 	 */
 | |
| 	unsigned long nr_uninterruptible;
 | |
| 
 | |
| 	unsigned long expired_timestamp;
 | |
| 	unsigned long long timestamp_last_tick;
 | |
| 	struct task_struct *curr, *idle;
 | |
| 	struct mm_struct *prev_mm;
 | |
| 	struct prio_array *active, *expired, arrays[2];
 | |
| 	int best_expired_prio;
 | |
| 	atomic_t nr_iowait;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	/* For active balancing */
 | |
| 	int active_balance;
 | |
| 	int push_cpu;
 | |
| 	int cpu;		/* cpu of this runqueue */
 | |
| 
 | |
| 	struct task_struct *migration_thread;
 | |
| 	struct list_head migration_queue;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/* latency stats */
 | |
| 	struct sched_info rq_sched_info;
 | |
| 
 | |
| 	/* sys_sched_yield() stats */
 | |
| 	unsigned long yld_exp_empty;
 | |
| 	unsigned long yld_act_empty;
 | |
| 	unsigned long yld_both_empty;
 | |
| 	unsigned long yld_cnt;
 | |
| 
 | |
| 	/* schedule() stats */
 | |
| 	unsigned long sched_switch;
 | |
| 	unsigned long sched_cnt;
 | |
| 	unsigned long sched_goidle;
 | |
| 
 | |
| 	/* try_to_wake_up() stats */
 | |
| 	unsigned long ttwu_cnt;
 | |
| 	unsigned long ttwu_local;
 | |
| #endif
 | |
| 	struct lock_class_key rq_lock_key;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct rq, runqueues);
 | |
| 
 | |
| static inline int cpu_of(struct rq *rq)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return rq->cpu;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 | |
|  * See detach_destroy_domains: synchronize_sched for details.
 | |
|  *
 | |
|  * The domain tree of any CPU may only be accessed from within
 | |
|  * preempt-disabled sections.
 | |
|  */
 | |
| #define for_each_domain(cpu, __sd) \
 | |
| 	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
 | |
| 
 | |
| #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 | |
| #define this_rq()		(&__get_cpu_var(runqueues))
 | |
| #define task_rq(p)		cpu_rq(task_cpu(p))
 | |
| #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 | |
| 
 | |
| #ifndef prepare_arch_switch
 | |
| # define prepare_arch_switch(next)	do { } while (0)
 | |
| #endif
 | |
| #ifndef finish_arch_switch
 | |
| # define finish_arch_switch(prev)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| static inline int task_running(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	return rq->curr == p;
 | |
| }
 | |
| 
 | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_SPINLOCK
 | |
| 	/* this is a valid case when another task releases the spinlock */
 | |
| 	rq->lock.owner = current;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If we are tracking spinlock dependencies then we have to
 | |
| 	 * fix up the runqueue lock - which gets 'carried over' from
 | |
| 	 * prev into current:
 | |
| 	 */
 | |
| 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 | |
| 
 | |
| 	spin_unlock_irq(&rq->lock);
 | |
| }
 | |
| 
 | |
| #else /* __ARCH_WANT_UNLOCKED_CTXSW */
 | |
| static inline int task_running(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return p->oncpu;
 | |
| #else
 | |
| 	return rq->curr == p;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * We can optimise this out completely for !SMP, because the
 | |
| 	 * SMP rebalancing from interrupt is the only thing that cares
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	next->oncpu = 1;
 | |
| #endif
 | |
| #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	spin_unlock_irq(&rq->lock);
 | |
| #else
 | |
| 	spin_unlock(&rq->lock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * After ->oncpu is cleared, the task can be moved to a different CPU.
 | |
| 	 * We must ensure this doesn't happen until the switch is completely
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	prev->oncpu = 0;
 | |
| #endif
 | |
| #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
 | |
| 	local_irq_enable();
 | |
| #endif
 | |
| }
 | |
| #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 | |
| 
 | |
| /*
 | |
|  * __task_rq_lock - lock the runqueue a given task resides on.
 | |
|  * Must be called interrupts disabled.
 | |
|  */
 | |
| static inline struct rq *__task_rq_lock(struct task_struct *p)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| repeat_lock_task:
 | |
| 	rq = task_rq(p);
 | |
| 	spin_lock(&rq->lock);
 | |
| 	if (unlikely(rq != task_rq(p))) {
 | |
| 		spin_unlock(&rq->lock);
 | |
| 		goto repeat_lock_task;
 | |
| 	}
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task_rq_lock - lock the runqueue a given task resides on and disable
 | |
|  * interrupts.  Note the ordering: we can safely lookup the task_rq without
 | |
|  * explicitly disabling preemption.
 | |
|  */
 | |
| static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| repeat_lock_task:
 | |
| 	local_irq_save(*flags);
 | |
| 	rq = task_rq(p);
 | |
| 	spin_lock(&rq->lock);
 | |
| 	if (unlikely(rq != task_rq(p))) {
 | |
| 		spin_unlock_irqrestore(&rq->lock, *flags);
 | |
| 		goto repeat_lock_task;
 | |
| 	}
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| static inline void __task_rq_unlock(struct rq *rq)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	spin_unlock(&rq->lock);
 | |
| }
 | |
| 
 | |
| static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&rq->lock, *flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| /*
 | |
|  * bump this up when changing the output format or the meaning of an existing
 | |
|  * format, so that tools can adapt (or abort)
 | |
|  */
 | |
| #define SCHEDSTAT_VERSION 12
 | |
| 
 | |
| static int show_schedstat(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
 | |
| 	seq_printf(seq, "timestamp %lu\n", jiffies);
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct rq *rq = cpu_rq(cpu);
 | |
| #ifdef CONFIG_SMP
 | |
| 		struct sched_domain *sd;
 | |
| 		int dcnt = 0;
 | |
| #endif
 | |
| 
 | |
| 		/* runqueue-specific stats */
 | |
| 		seq_printf(seq,
 | |
| 		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
 | |
| 		    cpu, rq->yld_both_empty,
 | |
| 		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
 | |
| 		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
 | |
| 		    rq->ttwu_cnt, rq->ttwu_local,
 | |
| 		    rq->rq_sched_info.cpu_time,
 | |
| 		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
 | |
| 
 | |
| 		seq_printf(seq, "\n");
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		/* domain-specific stats */
 | |
| 		preempt_disable();
 | |
| 		for_each_domain(cpu, sd) {
 | |
| 			enum idle_type itype;
 | |
| 			char mask_str[NR_CPUS];
 | |
| 
 | |
| 			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
 | |
| 			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
 | |
| 			for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
 | |
| 					itype++) {
 | |
| 				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
 | |
| 				    sd->lb_cnt[itype],
 | |
| 				    sd->lb_balanced[itype],
 | |
| 				    sd->lb_failed[itype],
 | |
| 				    sd->lb_imbalance[itype],
 | |
| 				    sd->lb_gained[itype],
 | |
| 				    sd->lb_hot_gained[itype],
 | |
| 				    sd->lb_nobusyq[itype],
 | |
| 				    sd->lb_nobusyg[itype]);
 | |
| 			}
 | |
| 			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
 | |
| 			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
 | |
| 			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
 | |
| 			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
 | |
| 			    sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| #endif
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int schedstat_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
 | |
| 	char *buf = kmalloc(size, GFP_KERNEL);
 | |
| 	struct seq_file *m;
 | |
| 	int res;
 | |
| 
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 	res = single_open(file, show_schedstat, NULL);
 | |
| 	if (!res) {
 | |
| 		m = file->private_data;
 | |
| 		m->buf = buf;
 | |
| 		m->size = size;
 | |
| 	} else
 | |
| 		kfree(buf);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| struct file_operations proc_schedstat_operations = {
 | |
| 	.open    = schedstat_open,
 | |
| 	.read    = seq_read,
 | |
| 	.llseek  = seq_lseek,
 | |
| 	.release = single_release,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Expects runqueue lock to be held for atomicity of update
 | |
|  */
 | |
| static inline void
 | |
| rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
 | |
| {
 | |
| 	if (rq) {
 | |
| 		rq->rq_sched_info.run_delay += delta_jiffies;
 | |
| 		rq->rq_sched_info.pcnt++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expects runqueue lock to be held for atomicity of update
 | |
|  */
 | |
| static inline void
 | |
| rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
 | |
| {
 | |
| 	if (rq)
 | |
| 		rq->rq_sched_info.cpu_time += delta_jiffies;
 | |
| }
 | |
| # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0)
 | |
| # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0)
 | |
| #else /* !CONFIG_SCHEDSTATS */
 | |
| static inline void
 | |
| rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
 | |
| {}
 | |
| static inline void
 | |
| rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
 | |
| {}
 | |
| # define schedstat_inc(rq, field)	do { } while (0)
 | |
| # define schedstat_add(rq, field, amt)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * rq_lock - lock a given runqueue and disable interrupts.
 | |
|  */
 | |
| static inline struct rq *this_rq_lock(void)
 | |
| 	__acquires(rq->lock)
 | |
| {
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	rq = this_rq();
 | |
| 	spin_lock(&rq->lock);
 | |
| 
 | |
| 	return rq;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 | |
| /*
 | |
|  * Called when a process is dequeued from the active array and given
 | |
|  * the cpu.  We should note that with the exception of interactive
 | |
|  * tasks, the expired queue will become the active queue after the active
 | |
|  * queue is empty, without explicitly dequeuing and requeuing tasks in the
 | |
|  * expired queue.  (Interactive tasks may be requeued directly to the
 | |
|  * active queue, thus delaying tasks in the expired queue from running;
 | |
|  * see scheduler_tick()).
 | |
|  *
 | |
|  * This function is only called from sched_info_arrive(), rather than
 | |
|  * dequeue_task(). Even though a task may be queued and dequeued multiple
 | |
|  * times as it is shuffled about, we're really interested in knowing how
 | |
|  * long it was from the *first* time it was queued to the time that it
 | |
|  * finally hit a cpu.
 | |
|  */
 | |
| static inline void sched_info_dequeued(struct task_struct *t)
 | |
| {
 | |
| 	t->sched_info.last_queued = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a task finally hits the cpu.  We can now calculate how
 | |
|  * long it was waiting to run.  We also note when it began so that we
 | |
|  * can keep stats on how long its timeslice is.
 | |
|  */
 | |
| static void sched_info_arrive(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long now = jiffies, delta_jiffies = 0;
 | |
| 
 | |
| 	if (t->sched_info.last_queued)
 | |
| 		delta_jiffies = now - t->sched_info.last_queued;
 | |
| 	sched_info_dequeued(t);
 | |
| 	t->sched_info.run_delay += delta_jiffies;
 | |
| 	t->sched_info.last_arrival = now;
 | |
| 	t->sched_info.pcnt++;
 | |
| 
 | |
| 	rq_sched_info_arrive(task_rq(t), delta_jiffies);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a process is queued into either the active or expired
 | |
|  * array.  The time is noted and later used to determine how long we
 | |
|  * had to wait for us to reach the cpu.  Since the expired queue will
 | |
|  * become the active queue after active queue is empty, without dequeuing
 | |
|  * and requeuing any tasks, we are interested in queuing to either. It
 | |
|  * is unusual but not impossible for tasks to be dequeued and immediately
 | |
|  * requeued in the same or another array: this can happen in sched_yield(),
 | |
|  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
 | |
|  * to runqueue.
 | |
|  *
 | |
|  * This function is only called from enqueue_task(), but also only updates
 | |
|  * the timestamp if it is already not set.  It's assumed that
 | |
|  * sched_info_dequeued() will clear that stamp when appropriate.
 | |
|  */
 | |
| static inline void sched_info_queued(struct task_struct *t)
 | |
| {
 | |
| 	if (unlikely(sched_info_on()))
 | |
| 		if (!t->sched_info.last_queued)
 | |
| 			t->sched_info.last_queued = jiffies;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a process ceases being the active-running process, either
 | |
|  * voluntarily or involuntarily.  Now we can calculate how long we ran.
 | |
|  */
 | |
| static inline void sched_info_depart(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
 | |
| 
 | |
| 	t->sched_info.cpu_time += delta_jiffies;
 | |
| 	rq_sched_info_depart(task_rq(t), delta_jiffies);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when tasks are switched involuntarily due, typically, to expiring
 | |
|  * their time slice.  (This may also be called when switching to or from
 | |
|  * the idle task.)  We are only called when prev != next.
 | |
|  */
 | |
| static inline void
 | |
| __sched_info_switch(struct task_struct *prev, struct task_struct *next)
 | |
| {
 | |
| 	struct rq *rq = task_rq(prev);
 | |
| 
 | |
| 	/*
 | |
| 	 * prev now departs the cpu.  It's not interesting to record
 | |
| 	 * stats about how efficient we were at scheduling the idle
 | |
| 	 * process, however.
 | |
| 	 */
 | |
| 	if (prev != rq->idle)
 | |
| 		sched_info_depart(prev);
 | |
| 
 | |
| 	if (next != rq->idle)
 | |
| 		sched_info_arrive(next);
 | |
| }
 | |
| static inline void
 | |
| sched_info_switch(struct task_struct *prev, struct task_struct *next)
 | |
| {
 | |
| 	if (unlikely(sched_info_on()))
 | |
| 		__sched_info_switch(prev, next);
 | |
| }
 | |
| #else
 | |
| #define sched_info_queued(t)		do { } while (0)
 | |
| #define sched_info_switch(t, next)	do { } while (0)
 | |
| #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
 | |
| 
 | |
| /*
 | |
|  * Adding/removing a task to/from a priority array:
 | |
|  */
 | |
| static void dequeue_task(struct task_struct *p, struct prio_array *array)
 | |
| {
 | |
| 	array->nr_active--;
 | |
| 	list_del(&p->run_list);
 | |
| 	if (list_empty(array->queue + p->prio))
 | |
| 		__clear_bit(p->prio, array->bitmap);
 | |
| }
 | |
| 
 | |
| static void enqueue_task(struct task_struct *p, struct prio_array *array)
 | |
| {
 | |
| 	sched_info_queued(p);
 | |
| 	list_add_tail(&p->run_list, array->queue + p->prio);
 | |
| 	__set_bit(p->prio, array->bitmap);
 | |
| 	array->nr_active++;
 | |
| 	p->array = array;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put task to the end of the run list without the overhead of dequeue
 | |
|  * followed by enqueue.
 | |
|  */
 | |
| static void requeue_task(struct task_struct *p, struct prio_array *array)
 | |
| {
 | |
| 	list_move_tail(&p->run_list, array->queue + p->prio);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| enqueue_task_head(struct task_struct *p, struct prio_array *array)
 | |
| {
 | |
| 	list_add(&p->run_list, array->queue + p->prio);
 | |
| 	__set_bit(p->prio, array->bitmap);
 | |
| 	array->nr_active++;
 | |
| 	p->array = array;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __normal_prio - return the priority that is based on the static
 | |
|  * priority but is modified by bonuses/penalties.
 | |
|  *
 | |
|  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 | |
|  * into the -5 ... 0 ... +5 bonus/penalty range.
 | |
|  *
 | |
|  * We use 25% of the full 0...39 priority range so that:
 | |
|  *
 | |
|  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 | |
|  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 | |
|  *
 | |
|  * Both properties are important to certain workloads.
 | |
|  */
 | |
| 
 | |
| static inline int __normal_prio(struct task_struct *p)
 | |
| {
 | |
| 	int bonus, prio;
 | |
| 
 | |
| 	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
 | |
| 
 | |
| 	prio = p->static_prio - bonus;
 | |
| 	if (prio < MAX_RT_PRIO)
 | |
| 		prio = MAX_RT_PRIO;
 | |
| 	if (prio > MAX_PRIO-1)
 | |
| 		prio = MAX_PRIO-1;
 | |
| 	return prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To aid in avoiding the subversion of "niceness" due to uneven distribution
 | |
|  * of tasks with abnormal "nice" values across CPUs the contribution that
 | |
|  * each task makes to its run queue's load is weighted according to its
 | |
|  * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 | |
|  * scaled version of the new time slice allocation that they receive on time
 | |
|  * slice expiry etc.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 | |
|  * If static_prio_timeslice() is ever changed to break this assumption then
 | |
|  * this code will need modification
 | |
|  */
 | |
| #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
 | |
| #define LOAD_WEIGHT(lp) \
 | |
| 	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
 | |
| #define PRIO_TO_LOAD_WEIGHT(prio) \
 | |
| 	LOAD_WEIGHT(static_prio_timeslice(prio))
 | |
| #define RTPRIO_TO_LOAD_WEIGHT(rp) \
 | |
| 	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
 | |
| 
 | |
| static void set_load_weight(struct task_struct *p)
 | |
| {
 | |
| 	if (has_rt_policy(p)) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		if (p == task_rq(p)->migration_thread)
 | |
| 			/*
 | |
| 			 * The migration thread does the actual balancing.
 | |
| 			 * Giving its load any weight will skew balancing
 | |
| 			 * adversely.
 | |
| 			 */
 | |
| 			p->load_weight = 0;
 | |
| 		else
 | |
| #endif
 | |
| 			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
 | |
| 	} else
 | |
| 		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 | |
| {
 | |
| 	rq->raw_weighted_load += p->load_weight;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
 | |
| {
 | |
| 	rq->raw_weighted_load -= p->load_weight;
 | |
| }
 | |
| 
 | |
| static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	rq->nr_running++;
 | |
| 	inc_raw_weighted_load(rq, p);
 | |
| }
 | |
| 
 | |
| static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	rq->nr_running--;
 | |
| 	dec_raw_weighted_load(rq, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the expected normal priority: i.e. priority
 | |
|  * without taking RT-inheritance into account. Might be
 | |
|  * boosted by interactivity modifiers. Changes upon fork,
 | |
|  * setprio syscalls, and whenever the interactivity
 | |
|  * estimator recalculates.
 | |
|  */
 | |
| static inline int normal_prio(struct task_struct *p)
 | |
| {
 | |
| 	int prio;
 | |
| 
 | |
| 	if (has_rt_policy(p))
 | |
| 		prio = MAX_RT_PRIO-1 - p->rt_priority;
 | |
| 	else
 | |
| 		prio = __normal_prio(p);
 | |
| 	return prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the current priority, i.e. the priority
 | |
|  * taken into account by the scheduler. This value might
 | |
|  * be boosted by RT tasks, or might be boosted by
 | |
|  * interactivity modifiers. Will be RT if the task got
 | |
|  * RT-boosted. If not then it returns p->normal_prio.
 | |
|  */
 | |
| static int effective_prio(struct task_struct *p)
 | |
| {
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	/*
 | |
| 	 * If we are RT tasks or we were boosted to RT priority,
 | |
| 	 * keep the priority unchanged. Otherwise, update priority
 | |
| 	 * to the normal priority:
 | |
| 	 */
 | |
| 	if (!rt_prio(p->prio))
 | |
| 		return p->normal_prio;
 | |
| 	return p->prio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __activate_task - move a task to the runqueue.
 | |
|  */
 | |
| static void __activate_task(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	struct prio_array *target = rq->active;
 | |
| 
 | |
| 	if (batch_task(p))
 | |
| 		target = rq->expired;
 | |
| 	enqueue_task(p, target);
 | |
| 	inc_nr_running(p, rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __activate_idle_task - move idle task to the _front_ of runqueue.
 | |
|  */
 | |
| static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	enqueue_task_head(p, rq->active);
 | |
| 	inc_nr_running(p, rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recalculate p->normal_prio and p->prio after having slept,
 | |
|  * updating the sleep-average too:
 | |
|  */
 | |
| static int recalc_task_prio(struct task_struct *p, unsigned long long now)
 | |
| {
 | |
| 	/* Caller must always ensure 'now >= p->timestamp' */
 | |
| 	unsigned long sleep_time = now - p->timestamp;
 | |
| 
 | |
| 	if (batch_task(p))
 | |
| 		sleep_time = 0;
 | |
| 
 | |
| 	if (likely(sleep_time > 0)) {
 | |
| 		/*
 | |
| 		 * This ceiling is set to the lowest priority that would allow
 | |
| 		 * a task to be reinserted into the active array on timeslice
 | |
| 		 * completion.
 | |
| 		 */
 | |
| 		unsigned long ceiling = INTERACTIVE_SLEEP(p);
 | |
| 
 | |
| 		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
 | |
| 			/*
 | |
| 			 * Prevents user tasks from achieving best priority
 | |
| 			 * with one single large enough sleep.
 | |
| 			 */
 | |
| 			p->sleep_avg = ceiling;
 | |
| 			/*
 | |
| 			 * Using INTERACTIVE_SLEEP() as a ceiling places a
 | |
| 			 * nice(0) task 1ms sleep away from promotion, and
 | |
| 			 * gives it 700ms to round-robin with no chance of
 | |
| 			 * being demoted.  This is more than generous, so
 | |
| 			 * mark this sleep as non-interactive to prevent the
 | |
| 			 * on-runqueue bonus logic from intervening should
 | |
| 			 * this task not receive cpu immediately.
 | |
| 			 */
 | |
| 			p->sleep_type = SLEEP_NONINTERACTIVE;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Tasks waking from uninterruptible sleep are
 | |
| 			 * limited in their sleep_avg rise as they
 | |
| 			 * are likely to be waiting on I/O
 | |
| 			 */
 | |
| 			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
 | |
| 				if (p->sleep_avg >= ceiling)
 | |
| 					sleep_time = 0;
 | |
| 				else if (p->sleep_avg + sleep_time >=
 | |
| 					 ceiling) {
 | |
| 						p->sleep_avg = ceiling;
 | |
| 						sleep_time = 0;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * This code gives a bonus to interactive tasks.
 | |
| 			 *
 | |
| 			 * The boost works by updating the 'average sleep time'
 | |
| 			 * value here, based on ->timestamp. The more time a
 | |
| 			 * task spends sleeping, the higher the average gets -
 | |
| 			 * and the higher the priority boost gets as well.
 | |
| 			 */
 | |
| 			p->sleep_avg += sleep_time;
 | |
| 
 | |
| 		}
 | |
| 		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
 | |
| 			p->sleep_avg = NS_MAX_SLEEP_AVG;
 | |
| 	}
 | |
| 
 | |
| 	return effective_prio(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * activate_task - move a task to the runqueue and do priority recalculation
 | |
|  *
 | |
|  * Update all the scheduling statistics stuff. (sleep average
 | |
|  * calculation, priority modifiers, etc.)
 | |
|  */
 | |
| static void activate_task(struct task_struct *p, struct rq *rq, int local)
 | |
| {
 | |
| 	unsigned long long now;
 | |
| 
 | |
| 	now = sched_clock();
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (!local) {
 | |
| 		/* Compensate for drifting sched_clock */
 | |
| 		struct rq *this_rq = this_rq();
 | |
| 		now = (now - this_rq->timestamp_last_tick)
 | |
| 			+ rq->timestamp_last_tick;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!rt_task(p))
 | |
| 		p->prio = recalc_task_prio(p, now);
 | |
| 
 | |
| 	/*
 | |
| 	 * This checks to make sure it's not an uninterruptible task
 | |
| 	 * that is now waking up.
 | |
| 	 */
 | |
| 	if (p->sleep_type == SLEEP_NORMAL) {
 | |
| 		/*
 | |
| 		 * Tasks which were woken up by interrupts (ie. hw events)
 | |
| 		 * are most likely of interactive nature. So we give them
 | |
| 		 * the credit of extending their sleep time to the period
 | |
| 		 * of time they spend on the runqueue, waiting for execution
 | |
| 		 * on a CPU, first time around:
 | |
| 		 */
 | |
| 		if (in_interrupt())
 | |
| 			p->sleep_type = SLEEP_INTERRUPTED;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * Normal first-time wakeups get a credit too for
 | |
| 			 * on-runqueue time, but it will be weighted down:
 | |
| 			 */
 | |
| 			p->sleep_type = SLEEP_INTERACTIVE;
 | |
| 		}
 | |
| 	}
 | |
| 	p->timestamp = now;
 | |
| 
 | |
| 	__activate_task(p, rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * deactivate_task - remove a task from the runqueue.
 | |
|  */
 | |
| static void deactivate_task(struct task_struct *p, struct rq *rq)
 | |
| {
 | |
| 	dec_nr_running(p, rq);
 | |
| 	dequeue_task(p, p->array);
 | |
| 	p->array = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * resched_task - mark a task 'to be rescheduled now'.
 | |
|  *
 | |
|  * On UP this means the setting of the need_resched flag, on SMP it
 | |
|  * might also involve a cross-CPU call to trigger the scheduler on
 | |
|  * the target CPU.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifndef tsk_is_polling
 | |
| #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
 | |
| #endif
 | |
| 
 | |
| static void resched_task(struct task_struct *p)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	assert_spin_locked(&task_rq(p)->lock);
 | |
| 
 | |
| 	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
 | |
| 		return;
 | |
| 
 | |
| 	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
 | |
| 
 | |
| 	cpu = task_cpu(p);
 | |
| 	if (cpu == smp_processor_id())
 | |
| 		return;
 | |
| 
 | |
| 	/* NEED_RESCHED must be visible before we test polling */
 | |
| 	smp_mb();
 | |
| 	if (!tsk_is_polling(p))
 | |
| 		smp_send_reschedule(cpu);
 | |
| }
 | |
| #else
 | |
| static inline void resched_task(struct task_struct *p)
 | |
| {
 | |
| 	assert_spin_locked(&task_rq(p)->lock);
 | |
| 	set_tsk_need_resched(p);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * task_curr - is this task currently executing on a CPU?
 | |
|  * @p: the task in question.
 | |
|  */
 | |
| inline int task_curr(const struct task_struct *p)
 | |
| {
 | |
| 	return cpu_curr(task_cpu(p)) == p;
 | |
| }
 | |
| 
 | |
| /* Used instead of source_load when we know the type == 0 */
 | |
| unsigned long weighted_cpuload(const int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->raw_weighted_load;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| struct migration_req {
 | |
| 	struct list_head list;
 | |
| 
 | |
| 	struct task_struct *task;
 | |
| 	int dest_cpu;
 | |
| 
 | |
| 	struct completion done;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The task's runqueue lock must be held.
 | |
|  * Returns true if you have to wait for migration thread.
 | |
|  */
 | |
| static int
 | |
| migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
 | |
| {
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is not on a runqueue (and not running), then
 | |
| 	 * it is sufficient to simply update the task's cpu field.
 | |
| 	 */
 | |
| 	if (!p->array && !task_running(rq, p)) {
 | |
| 		set_task_cpu(p, dest_cpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&req->done);
 | |
| 	req->task = p;
 | |
| 	req->dest_cpu = dest_cpu;
 | |
| 	list_add(&req->list, &rq->migration_queue);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wait_task_inactive - wait for a thread to unschedule.
 | |
|  *
 | |
|  * The caller must ensure that the task *will* unschedule sometime soon,
 | |
|  * else this function might spin for a *long* time. This function can't
 | |
|  * be called with interrupts off, or it may introduce deadlock with
 | |
|  * smp_call_function() if an IPI is sent by the same process we are
 | |
|  * waiting to become inactive.
 | |
|  */
 | |
| void wait_task_inactive(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	int preempted;
 | |
| 
 | |
| repeat:
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	/* Must be off runqueue entirely, not preempted. */
 | |
| 	if (unlikely(p->array || task_running(rq, p))) {
 | |
| 		/* If it's preempted, we yield.  It could be a while. */
 | |
| 		preempted = !task_running(rq, p);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		cpu_relax();
 | |
| 		if (preempted)
 | |
| 			yield();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| }
 | |
| 
 | |
| /***
 | |
|  * kick_process - kick a running thread to enter/exit the kernel
 | |
|  * @p: the to-be-kicked thread
 | |
|  *
 | |
|  * Cause a process which is running on another CPU to enter
 | |
|  * kernel-mode, without any delay. (to get signals handled.)
 | |
|  *
 | |
|  * NOTE: this function doesnt have to take the runqueue lock,
 | |
|  * because all it wants to ensure is that the remote task enters
 | |
|  * the kernel. If the IPI races and the task has been migrated
 | |
|  * to another CPU then no harm is done and the purpose has been
 | |
|  * achieved as well.
 | |
|  */
 | |
| void kick_process(struct task_struct *p)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	cpu = task_cpu(p);
 | |
| 	if ((cpu != smp_processor_id()) && task_curr(p))
 | |
| 		smp_send_reschedule(cpu);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a low guess at the load of a migration-source cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  *
 | |
|  * We want to under-estimate the load of migration sources, to
 | |
|  * balance conservatively.
 | |
|  */
 | |
| static inline unsigned long source_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (type == 0)
 | |
| 		return rq->raw_weighted_load;
 | |
| 
 | |
| 	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a high guess at the load of a migration-target cpu weighted
 | |
|  * according to the scheduling class and "nice" value.
 | |
|  */
 | |
| static inline unsigned long target_load(int cpu, int type)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	if (type == 0)
 | |
| 		return rq->raw_weighted_load;
 | |
| 
 | |
| 	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the average load per task on the cpu's run queue
 | |
|  */
 | |
| static inline unsigned long cpu_avg_load_per_task(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long n = rq->nr_running;
 | |
| 
 | |
| 	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_group finds and returns the least busy CPU group within the
 | |
|  * domain.
 | |
|  */
 | |
| static struct sched_group *
 | |
| find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
 | |
| 	unsigned long min_load = ULONG_MAX, this_load = 0;
 | |
| 	int load_idx = sd->forkexec_idx;
 | |
| 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long load, avg_load;
 | |
| 		int local_group;
 | |
| 		int i;
 | |
| 
 | |
| 		/* Skip over this group if it has no CPUs allowed */
 | |
| 		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
 | |
| 			goto nextgroup;
 | |
| 
 | |
| 		local_group = cpu_isset(this_cpu, group->cpumask);
 | |
| 
 | |
| 		/* Tally up the load of all CPUs in the group */
 | |
| 		avg_load = 0;
 | |
| 
 | |
| 		for_each_cpu_mask(i, group->cpumask) {
 | |
| 			/* Bias balancing toward cpus of our domain */
 | |
| 			if (local_group)
 | |
| 				load = source_load(i, load_idx);
 | |
| 			else
 | |
| 				load = target_load(i, load_idx);
 | |
| 
 | |
| 			avg_load += load;
 | |
| 		}
 | |
| 
 | |
| 		/* Adjust by relative CPU power of the group */
 | |
| 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			this_load = avg_load;
 | |
| 			this = group;
 | |
| 		} else if (avg_load < min_load) {
 | |
| 			min_load = avg_load;
 | |
| 			idlest = group;
 | |
| 		}
 | |
| nextgroup:
 | |
| 		group = group->next;
 | |
| 	} while (group != sd->groups);
 | |
| 
 | |
| 	if (!idlest || 100*this_load < imbalance*min_load)
 | |
| 		return NULL;
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_cpu - find the idlest cpu among the cpus in group.
 | |
|  */
 | |
| static int
 | |
| find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	cpumask_t tmp;
 | |
| 	unsigned long load, min_load = ULONG_MAX;
 | |
| 	int idlest = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Traverse only the allowed CPUs */
 | |
| 	cpus_and(tmp, group->cpumask, p->cpus_allowed);
 | |
| 
 | |
| 	for_each_cpu_mask(i, tmp) {
 | |
| 		load = weighted_cpuload(i);
 | |
| 
 | |
| 		if (load < min_load || (load == min_load && i == this_cpu)) {
 | |
| 			min_load = load;
 | |
| 			idlest = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_balance_self: balance the current task (running on cpu) in domains
 | |
|  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 | |
|  * SD_BALANCE_EXEC.
 | |
|  *
 | |
|  * Balance, ie. select the least loaded group.
 | |
|  *
 | |
|  * Returns the target CPU number, or the same CPU if no balancing is needed.
 | |
|  *
 | |
|  * preempt must be disabled.
 | |
|  */
 | |
| static int sched_balance_self(int cpu, int flag)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	struct sched_domain *tmp, *sd = NULL;
 | |
| 
 | |
| 	for_each_domain(cpu, tmp) {
 | |
|  		/*
 | |
|  	 	 * If power savings logic is enabled for a domain, stop there.
 | |
|  	 	 */
 | |
| 		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
 | |
| 			break;
 | |
| 		if (tmp->flags & flag)
 | |
| 			sd = tmp;
 | |
| 	}
 | |
| 
 | |
| 	while (sd) {
 | |
| 		cpumask_t span;
 | |
| 		struct sched_group *group;
 | |
| 		int new_cpu, weight;
 | |
| 
 | |
| 		if (!(sd->flags & flag)) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		span = sd->span;
 | |
| 		group = find_idlest_group(sd, t, cpu);
 | |
| 		if (!group) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		new_cpu = find_idlest_cpu(group, t, cpu);
 | |
| 		if (new_cpu == -1 || new_cpu == cpu) {
 | |
| 			/* Now try balancing at a lower domain level of cpu */
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Now try balancing at a lower domain level of new_cpu */
 | |
| 		cpu = new_cpu;
 | |
| 		sd = NULL;
 | |
| 		weight = cpus_weight(span);
 | |
| 		for_each_domain(cpu, tmp) {
 | |
| 			if (weight <= cpus_weight(tmp->span))
 | |
| 				break;
 | |
| 			if (tmp->flags & flag)
 | |
| 				sd = tmp;
 | |
| 		}
 | |
| 		/* while loop will break here if sd == NULL */
 | |
| 	}
 | |
| 
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * wake_idle() will wake a task on an idle cpu if task->cpu is
 | |
|  * not idle and an idle cpu is available.  The span of cpus to
 | |
|  * search starts with cpus closest then further out as needed,
 | |
|  * so we always favor a closer, idle cpu.
 | |
|  *
 | |
|  * Returns the CPU we should wake onto.
 | |
|  */
 | |
| #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
 | |
| static int wake_idle(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	cpumask_t tmp;
 | |
| 	struct sched_domain *sd;
 | |
| 	int i;
 | |
| 
 | |
| 	if (idle_cpu(cpu))
 | |
| 		return cpu;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (sd->flags & SD_WAKE_IDLE) {
 | |
| 			cpus_and(tmp, sd->span, p->cpus_allowed);
 | |
| 			for_each_cpu_mask(i, tmp) {
 | |
| 				if (idle_cpu(i))
 | |
| 					return i;
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	return cpu;
 | |
| }
 | |
| #else
 | |
| static inline int wake_idle(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /***
 | |
|  * try_to_wake_up - wake up a thread
 | |
|  * @p: the to-be-woken-up thread
 | |
|  * @state: the mask of task states that can be woken
 | |
|  * @sync: do a synchronous wakeup?
 | |
|  *
 | |
|  * Put it on the run-queue if it's not already there. The "current"
 | |
|  * thread is always on the run-queue (except when the actual
 | |
|  * re-schedule is in progress), and as such you're allowed to do
 | |
|  * the simpler "current->state = TASK_RUNNING" to mark yourself
 | |
|  * runnable without the overhead of this.
 | |
|  *
 | |
|  * returns failure only if the task is already active.
 | |
|  */
 | |
| static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 | |
| {
 | |
| 	int cpu, this_cpu, success = 0;
 | |
| 	unsigned long flags;
 | |
| 	long old_state;
 | |
| 	struct rq *rq;
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct sched_domain *sd, *this_sd = NULL;
 | |
| 	unsigned long load, this_load;
 | |
| 	int new_cpu;
 | |
| #endif
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	old_state = p->state;
 | |
| 	if (!(old_state & state))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (p->array)
 | |
| 		goto out_running;
 | |
| 
 | |
| 	cpu = task_cpu(p);
 | |
| 	this_cpu = smp_processor_id();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (unlikely(task_running(rq, p)))
 | |
| 		goto out_activate;
 | |
| 
 | |
| 	new_cpu = cpu;
 | |
| 
 | |
| 	schedstat_inc(rq, ttwu_cnt);
 | |
| 	if (cpu == this_cpu) {
 | |
| 		schedstat_inc(rq, ttwu_local);
 | |
| 		goto out_set_cpu;
 | |
| 	}
 | |
| 
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		if (cpu_isset(cpu, sd->span)) {
 | |
| 			schedstat_inc(sd, ttwu_wake_remote);
 | |
| 			this_sd = sd;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
 | |
| 		goto out_set_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for affine wakeup and passive balancing possibilities.
 | |
| 	 */
 | |
| 	if (this_sd) {
 | |
| 		int idx = this_sd->wake_idx;
 | |
| 		unsigned int imbalance;
 | |
| 
 | |
| 		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
 | |
| 
 | |
| 		load = source_load(cpu, idx);
 | |
| 		this_load = target_load(this_cpu, idx);
 | |
| 
 | |
| 		new_cpu = this_cpu; /* Wake to this CPU if we can */
 | |
| 
 | |
| 		if (this_sd->flags & SD_WAKE_AFFINE) {
 | |
| 			unsigned long tl = this_load;
 | |
| 			unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
 | |
| 
 | |
| 			/*
 | |
| 			 * If sync wakeup then subtract the (maximum possible)
 | |
| 			 * effect of the currently running task from the load
 | |
| 			 * of the current CPU:
 | |
| 			 */
 | |
| 			if (sync)
 | |
| 				tl -= current->load_weight;
 | |
| 
 | |
| 			if ((tl <= load &&
 | |
| 				tl + target_load(cpu, idx) <= tl_per_task) ||
 | |
| 				100*(tl + p->load_weight) <= imbalance*load) {
 | |
| 				/*
 | |
| 				 * This domain has SD_WAKE_AFFINE and
 | |
| 				 * p is cache cold in this domain, and
 | |
| 				 * there is no bad imbalance.
 | |
| 				 */
 | |
| 				schedstat_inc(this_sd, ttwu_move_affine);
 | |
| 				goto out_set_cpu;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Start passive balancing when half the imbalance_pct
 | |
| 		 * limit is reached.
 | |
| 		 */
 | |
| 		if (this_sd->flags & SD_WAKE_BALANCE) {
 | |
| 			if (imbalance*this_load <= 100*load) {
 | |
| 				schedstat_inc(this_sd, ttwu_move_balance);
 | |
| 				goto out_set_cpu;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
 | |
| out_set_cpu:
 | |
| 	new_cpu = wake_idle(new_cpu, p);
 | |
| 	if (new_cpu != cpu) {
 | |
| 		set_task_cpu(p, new_cpu);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		/* might preempt at this point */
 | |
| 		rq = task_rq_lock(p, &flags);
 | |
| 		old_state = p->state;
 | |
| 		if (!(old_state & state))
 | |
| 			goto out;
 | |
| 		if (p->array)
 | |
| 			goto out_running;
 | |
| 
 | |
| 		this_cpu = smp_processor_id();
 | |
| 		cpu = task_cpu(p);
 | |
| 	}
 | |
| 
 | |
| out_activate:
 | |
| #endif /* CONFIG_SMP */
 | |
| 	if (old_state == TASK_UNINTERRUPTIBLE) {
 | |
| 		rq->nr_uninterruptible--;
 | |
| 		/*
 | |
| 		 * Tasks on involuntary sleep don't earn
 | |
| 		 * sleep_avg beyond just interactive state.
 | |
| 		 */
 | |
| 		p->sleep_type = SLEEP_NONINTERACTIVE;
 | |
| 	} else
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks that have marked their sleep as noninteractive get
 | |
| 	 * woken up with their sleep average not weighted in an
 | |
| 	 * interactive way.
 | |
| 	 */
 | |
| 		if (old_state & TASK_NONINTERACTIVE)
 | |
| 			p->sleep_type = SLEEP_NONINTERACTIVE;
 | |
| 
 | |
| 
 | |
| 	activate_task(p, rq, cpu == this_cpu);
 | |
| 	/*
 | |
| 	 * Sync wakeups (i.e. those types of wakeups where the waker
 | |
| 	 * has indicated that it will leave the CPU in short order)
 | |
| 	 * don't trigger a preemption, if the woken up task will run on
 | |
| 	 * this cpu. (in this case the 'I will reschedule' promise of
 | |
| 	 * the waker guarantees that the freshly woken up task is going
 | |
| 	 * to be considered on this CPU.)
 | |
| 	 */
 | |
| 	if (!sync || cpu != this_cpu) {
 | |
| 		if (TASK_PREEMPTS_CURR(p, rq))
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| 	success = 1;
 | |
| 
 | |
| out_running:
 | |
| 	p->state = TASK_RUNNING;
 | |
| out:
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| 
 | |
| 	return success;
 | |
| }
 | |
| 
 | |
| int fastcall wake_up_process(struct task_struct *p)
 | |
| {
 | |
| 	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
 | |
| 				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(wake_up_process);
 | |
| 
 | |
| int fastcall wake_up_state(struct task_struct *p, unsigned int state)
 | |
| {
 | |
| 	return try_to_wake_up(p, state, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform scheduler related setup for a newly forked process p.
 | |
|  * p is forked by current.
 | |
|  */
 | |
| void fastcall sched_fork(struct task_struct *p, int clone_flags)
 | |
| {
 | |
| 	int cpu = get_cpu();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
 | |
| #endif
 | |
| 	set_task_cpu(p, cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * We mark the process as running here, but have not actually
 | |
| 	 * inserted it onto the runqueue yet. This guarantees that
 | |
| 	 * nobody will actually run it, and a signal or other external
 | |
| 	 * event cannot wake it up and insert it on the runqueue either.
 | |
| 	 */
 | |
| 	p->state = TASK_RUNNING;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we do not leak PI boosting priority to the child:
 | |
| 	 */
 | |
| 	p->prio = current->normal_prio;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&p->run_list);
 | |
| 	p->array = NULL;
 | |
| #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 | |
| 	if (unlikely(sched_info_on()))
 | |
| 		memset(&p->sched_info, 0, sizeof(p->sched_info));
 | |
| #endif
 | |
| #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
 | |
| 	p->oncpu = 0;
 | |
| #endif
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	/* Want to start with kernel preemption disabled. */
 | |
| 	task_thread_info(p)->preempt_count = 1;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Share the timeslice between parent and child, thus the
 | |
| 	 * total amount of pending timeslices in the system doesn't change,
 | |
| 	 * resulting in more scheduling fairness.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	p->time_slice = (current->time_slice + 1) >> 1;
 | |
| 	/*
 | |
| 	 * The remainder of the first timeslice might be recovered by
 | |
| 	 * the parent if the child exits early enough.
 | |
| 	 */
 | |
| 	p->first_time_slice = 1;
 | |
| 	current->time_slice >>= 1;
 | |
| 	p->timestamp = sched_clock();
 | |
| 	if (unlikely(!current->time_slice)) {
 | |
| 		/*
 | |
| 		 * This case is rare, it happens when the parent has only
 | |
| 		 * a single jiffy left from its timeslice. Taking the
 | |
| 		 * runqueue lock is not a problem.
 | |
| 		 */
 | |
| 		current->time_slice = 1;
 | |
| 		scheduler_tick();
 | |
| 	}
 | |
| 	local_irq_enable();
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * wake_up_new_task - wake up a newly created task for the first time.
 | |
|  *
 | |
|  * This function will do some initial scheduler statistics housekeeping
 | |
|  * that must be done for every newly created context, then puts the task
 | |
|  * on the runqueue and wakes it.
 | |
|  */
 | |
| void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
 | |
| {
 | |
| 	struct rq *rq, *this_rq;
 | |
| 	unsigned long flags;
 | |
| 	int this_cpu, cpu;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	BUG_ON(p->state != TASK_RUNNING);
 | |
| 	this_cpu = smp_processor_id();
 | |
| 	cpu = task_cpu(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * We decrease the sleep average of forking parents
 | |
| 	 * and children as well, to keep max-interactive tasks
 | |
| 	 * from forking tasks that are max-interactive. The parent
 | |
| 	 * (current) is done further down, under its lock.
 | |
| 	 */
 | |
| 	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
 | |
| 		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 | |
| 
 | |
| 	p->prio = effective_prio(p);
 | |
| 
 | |
| 	if (likely(cpu == this_cpu)) {
 | |
| 		if (!(clone_flags & CLONE_VM)) {
 | |
| 			/*
 | |
| 			 * The VM isn't cloned, so we're in a good position to
 | |
| 			 * do child-runs-first in anticipation of an exec. This
 | |
| 			 * usually avoids a lot of COW overhead.
 | |
| 			 */
 | |
| 			if (unlikely(!current->array))
 | |
| 				__activate_task(p, rq);
 | |
| 			else {
 | |
| 				p->prio = current->prio;
 | |
| 				p->normal_prio = current->normal_prio;
 | |
| 				list_add_tail(&p->run_list, ¤t->run_list);
 | |
| 				p->array = current->array;
 | |
| 				p->array->nr_active++;
 | |
| 				inc_nr_running(p, rq);
 | |
| 			}
 | |
| 			set_need_resched();
 | |
| 		} else
 | |
| 			/* Run child last */
 | |
| 			__activate_task(p, rq);
 | |
| 		/*
 | |
| 		 * We skip the following code due to cpu == this_cpu
 | |
| 	 	 *
 | |
| 		 *   task_rq_unlock(rq, &flags);
 | |
| 		 *   this_rq = task_rq_lock(current, &flags);
 | |
| 		 */
 | |
| 		this_rq = rq;
 | |
| 	} else {
 | |
| 		this_rq = cpu_rq(this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Not the local CPU - must adjust timestamp. This should
 | |
| 		 * get optimised away in the !CONFIG_SMP case.
 | |
| 		 */
 | |
| 		p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
 | |
| 					+ rq->timestamp_last_tick;
 | |
| 		__activate_task(p, rq);
 | |
| 		if (TASK_PREEMPTS_CURR(p, rq))
 | |
| 			resched_task(rq->curr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Parent and child are on different CPUs, now get the
 | |
| 		 * parent runqueue to update the parent's ->sleep_avg:
 | |
| 		 */
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		this_rq = task_rq_lock(current, &flags);
 | |
| 	}
 | |
| 	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
 | |
| 		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
 | |
| 	task_rq_unlock(this_rq, &flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Potentially available exiting-child timeslices are
 | |
|  * retrieved here - this way the parent does not get
 | |
|  * penalized for creating too many threads.
 | |
|  *
 | |
|  * (this cannot be used to 'generate' timeslices
 | |
|  * artificially, because any timeslice recovered here
 | |
|  * was given away by the parent in the first place.)
 | |
|  */
 | |
| void fastcall sched_exit(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the child was a (relative-) CPU hog then decrease
 | |
| 	 * the sleep_avg of the parent as well.
 | |
| 	 */
 | |
| 	rq = task_rq_lock(p->parent, &flags);
 | |
| 	if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
 | |
| 		p->parent->time_slice += p->time_slice;
 | |
| 		if (unlikely(p->parent->time_slice > task_timeslice(p)))
 | |
| 			p->parent->time_slice = task_timeslice(p);
 | |
| 	}
 | |
| 	if (p->sleep_avg < p->parent->sleep_avg)
 | |
| 		p->parent->sleep_avg = p->parent->sleep_avg /
 | |
| 		(EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
 | |
| 		(EXIT_WEIGHT + 1);
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prepare_task_switch - prepare to switch tasks
 | |
|  * @rq: the runqueue preparing to switch
 | |
|  * @next: the task we are going to switch to.
 | |
|  *
 | |
|  * This is called with the rq lock held and interrupts off. It must
 | |
|  * be paired with a subsequent finish_task_switch after the context
 | |
|  * switch.
 | |
|  *
 | |
|  * prepare_task_switch sets up locking and calls architecture specific
 | |
|  * hooks.
 | |
|  */
 | |
| static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
 | |
| {
 | |
| 	prepare_lock_switch(rq, next);
 | |
| 	prepare_arch_switch(next);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * finish_task_switch - clean up after a task-switch
 | |
|  * @rq: runqueue associated with task-switch
 | |
|  * @prev: the thread we just switched away from.
 | |
|  *
 | |
|  * finish_task_switch must be called after the context switch, paired
 | |
|  * with a prepare_task_switch call before the context switch.
 | |
|  * finish_task_switch will reconcile locking set up by prepare_task_switch,
 | |
|  * and do any other architecture-specific cleanup actions.
 | |
|  *
 | |
|  * Note that we may have delayed dropping an mm in context_switch(). If
 | |
|  * so, we finish that here outside of the runqueue lock.  (Doing it
 | |
|  * with the lock held can cause deadlocks; see schedule() for
 | |
|  * details.)
 | |
|  */
 | |
| static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	struct mm_struct *mm = rq->prev_mm;
 | |
| 	long prev_state;
 | |
| 
 | |
| 	rq->prev_mm = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * A task struct has one reference for the use as "current".
 | |
| 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 | |
| 	 * schedule one last time. The schedule call will never return, and
 | |
| 	 * the scheduled task must drop that reference.
 | |
| 	 * The test for TASK_DEAD must occur while the runqueue locks are
 | |
| 	 * still held, otherwise prev could be scheduled on another cpu, die
 | |
| 	 * there before we look at prev->state, and then the reference would
 | |
| 	 * be dropped twice.
 | |
| 	 *		Manfred Spraul <manfred@colorfullife.com>
 | |
| 	 */
 | |
| 	prev_state = prev->state;
 | |
| 	finish_arch_switch(prev);
 | |
| 	finish_lock_switch(rq, prev);
 | |
| 	if (mm)
 | |
| 		mmdrop(mm);
 | |
| 	if (unlikely(prev_state == TASK_DEAD)) {
 | |
| 		/*
 | |
| 		 * Remove function-return probe instances associated with this
 | |
| 		 * task and put them back on the free list.
 | |
| 	 	 */
 | |
| 		kprobe_flush_task(prev);
 | |
| 		put_task_struct(prev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * schedule_tail - first thing a freshly forked thread must call.
 | |
|  * @prev: the thread we just switched away from.
 | |
|  */
 | |
| asmlinkage void schedule_tail(struct task_struct *prev)
 | |
| 	__releases(rq->lock)
 | |
| {
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	finish_task_switch(rq, prev);
 | |
| #ifdef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| 	/* In this case, finish_task_switch does not reenable preemption */
 | |
| 	preempt_enable();
 | |
| #endif
 | |
| 	if (current->set_child_tid)
 | |
| 		put_user(current->pid, current->set_child_tid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * context_switch - switch to the new MM and the new
 | |
|  * thread's register state.
 | |
|  */
 | |
| static inline struct task_struct *
 | |
| context_switch(struct rq *rq, struct task_struct *prev,
 | |
| 	       struct task_struct *next)
 | |
| {
 | |
| 	struct mm_struct *mm = next->mm;
 | |
| 	struct mm_struct *oldmm = prev->active_mm;
 | |
| 
 | |
| 	if (!mm) {
 | |
| 		next->active_mm = oldmm;
 | |
| 		atomic_inc(&oldmm->mm_count);
 | |
| 		enter_lazy_tlb(oldmm, next);
 | |
| 	} else
 | |
| 		switch_mm(oldmm, mm, next);
 | |
| 
 | |
| 	if (!prev->mm) {
 | |
| 		prev->active_mm = NULL;
 | |
| 		WARN_ON(rq->prev_mm);
 | |
| 		rq->prev_mm = oldmm;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Since the runqueue lock will be released by the next
 | |
| 	 * task (which is an invalid locking op but in the case
 | |
| 	 * of the scheduler it's an obvious special-case), so we
 | |
| 	 * do an early lockdep release here:
 | |
| 	 */
 | |
| #ifndef __ARCH_WANT_UNLOCKED_CTXSW
 | |
| 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 | |
| #endif
 | |
| 
 | |
| 	/* Here we just switch the register state and the stack. */
 | |
| 	switch_to(prev, next, prev);
 | |
| 
 | |
| 	return prev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nr_running, nr_uninterruptible and nr_context_switches:
 | |
|  *
 | |
|  * externally visible scheduler statistics: current number of runnable
 | |
|  * threads, current number of uninterruptible-sleeping threads, total
 | |
|  * number of context switches performed since bootup.
 | |
|  */
 | |
| unsigned long nr_running(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_online_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_running;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_uninterruptible(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_uninterruptible;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we read the counters lockless, it might be slightly
 | |
| 	 * inaccurate. Do not allow it to go below zero though:
 | |
| 	 */
 | |
| 	if (unlikely((long)sum < 0))
 | |
| 		sum = 0;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long long nr_context_switches(void)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += cpu_rq(i)->nr_switches;
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_iowait(void)
 | |
| {
 | |
| 	unsigned long i, sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| unsigned long nr_active(void)
 | |
| {
 | |
| 	unsigned long i, running = 0, uninterruptible = 0;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		running += cpu_rq(i)->nr_running;
 | |
| 		uninterruptible += cpu_rq(i)->nr_uninterruptible;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((long)uninterruptible < 0))
 | |
| 		uninterruptible = 0;
 | |
| 
 | |
| 	return running + uninterruptible;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * Is this task likely cache-hot:
 | |
|  */
 | |
| static inline int
 | |
| task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
 | |
| {
 | |
| 	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_lock - safely lock two runqueues
 | |
|  *
 | |
|  * Note this does not disable interrupts like task_rq_lock,
 | |
|  * you need to do so manually before calling.
 | |
|  */
 | |
| static void double_rq_lock(struct rq *rq1, struct rq *rq2)
 | |
| 	__acquires(rq1->lock)
 | |
| 	__acquires(rq2->lock)
 | |
| {
 | |
| 	if (rq1 == rq2) {
 | |
| 		spin_lock(&rq1->lock);
 | |
| 		__acquire(rq2->lock);	/* Fake it out ;) */
 | |
| 	} else {
 | |
| 		if (rq1 < rq2) {
 | |
| 			spin_lock(&rq1->lock);
 | |
| 			spin_lock(&rq2->lock);
 | |
| 		} else {
 | |
| 			spin_lock(&rq2->lock);
 | |
| 			spin_lock(&rq1->lock);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_rq_unlock - safely unlock two runqueues
 | |
|  *
 | |
|  * Note this does not restore interrupts like task_rq_unlock,
 | |
|  * you need to do so manually after calling.
 | |
|  */
 | |
| static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
 | |
| 	__releases(rq1->lock)
 | |
| 	__releases(rq2->lock)
 | |
| {
 | |
| 	spin_unlock(&rq1->lock);
 | |
| 	if (rq1 != rq2)
 | |
| 		spin_unlock(&rq2->lock);
 | |
| 	else
 | |
| 		__release(rq2->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 | |
|  */
 | |
| static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
 | |
| 	__releases(this_rq->lock)
 | |
| 	__acquires(busiest->lock)
 | |
| 	__acquires(this_rq->lock)
 | |
| {
 | |
| 	if (unlikely(!spin_trylock(&busiest->lock))) {
 | |
| 		if (busiest < this_rq) {
 | |
| 			spin_unlock(&this_rq->lock);
 | |
| 			spin_lock(&busiest->lock);
 | |
| 			spin_lock(&this_rq->lock);
 | |
| 		} else
 | |
| 			spin_lock(&busiest->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If dest_cpu is allowed for this process, migrate the task to it.
 | |
|  * This is accomplished by forcing the cpu_allowed mask to only
 | |
|  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 | |
|  * the cpu_allowed mask is restored.
 | |
|  */
 | |
| static void sched_migrate_task(struct task_struct *p, int dest_cpu)
 | |
| {
 | |
| 	struct migration_req req;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	if (!cpu_isset(dest_cpu, p->cpus_allowed)
 | |
| 	    || unlikely(cpu_is_offline(dest_cpu)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* force the process onto the specified CPU */
 | |
| 	if (migrate_task(p, dest_cpu, &req)) {
 | |
| 		/* Need to wait for migration thread (might exit: take ref). */
 | |
| 		struct task_struct *mt = rq->migration_thread;
 | |
| 
 | |
| 		get_task_struct(mt);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		wake_up_process(mt);
 | |
| 		put_task_struct(mt);
 | |
| 		wait_for_completion(&req.done);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| out:
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_exec - execve() is a valuable balancing opportunity, because at
 | |
|  * this point the task has the smallest effective memory and cache footprint.
 | |
|  */
 | |
| void sched_exec(void)
 | |
| {
 | |
| 	int new_cpu, this_cpu = get_cpu();
 | |
| 	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
 | |
| 	put_cpu();
 | |
| 	if (new_cpu != this_cpu)
 | |
| 		sched_migrate_task(current, new_cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pull_task - move a task from a remote runqueue to the local runqueue.
 | |
|  * Both runqueues must be locked.
 | |
|  */
 | |
| static void pull_task(struct rq *src_rq, struct prio_array *src_array,
 | |
| 		      struct task_struct *p, struct rq *this_rq,
 | |
| 		      struct prio_array *this_array, int this_cpu)
 | |
| {
 | |
| 	dequeue_task(p, src_array);
 | |
| 	dec_nr_running(p, src_rq);
 | |
| 	set_task_cpu(p, this_cpu);
 | |
| 	inc_nr_running(p, this_rq);
 | |
| 	enqueue_task(p, this_array);
 | |
| 	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
 | |
| 				+ this_rq->timestamp_last_tick;
 | |
| 	/*
 | |
| 	 * Note that idle threads have a prio of MAX_PRIO, for this test
 | |
| 	 * to be always true for them.
 | |
| 	 */
 | |
| 	if (TASK_PREEMPTS_CURR(p, this_rq))
 | |
| 		resched_task(this_rq->curr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 | |
|  */
 | |
| static
 | |
| int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
 | |
| 		     struct sched_domain *sd, enum idle_type idle,
 | |
| 		     int *all_pinned)
 | |
| {
 | |
| 	/*
 | |
| 	 * We do not migrate tasks that are:
 | |
| 	 * 1) running (obviously), or
 | |
| 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 | |
| 	 * 3) are cache-hot on their current CPU.
 | |
| 	 */
 | |
| 	if (!cpu_isset(this_cpu, p->cpus_allowed))
 | |
| 		return 0;
 | |
| 	*all_pinned = 0;
 | |
| 
 | |
| 	if (task_running(rq, p))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggressive migration if:
 | |
| 	 * 1) task is cache cold, or
 | |
| 	 * 2) too many balance attempts have failed.
 | |
| 	 */
 | |
| 
 | |
| 	if (sd->nr_balance_failed > sd->cache_nice_tries)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (task_hot(p, rq->timestamp_last_tick, sd))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
 | |
| 
 | |
| /*
 | |
|  * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 | |
|  * load from busiest to this_rq, as part of a balancing operation within
 | |
|  * "domain". Returns the number of tasks moved.
 | |
|  *
 | |
|  * Called with both runqueues locked.
 | |
|  */
 | |
| static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		      unsigned long max_nr_move, unsigned long max_load_move,
 | |
| 		      struct sched_domain *sd, enum idle_type idle,
 | |
| 		      int *all_pinned)
 | |
| {
 | |
| 	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
 | |
| 	    best_prio_seen, skip_for_load;
 | |
| 	struct prio_array *array, *dst_array;
 | |
| 	struct list_head *head, *curr;
 | |
| 	struct task_struct *tmp;
 | |
| 	long rem_load_move;
 | |
| 
 | |
| 	if (max_nr_move == 0 || max_load_move == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	rem_load_move = max_load_move;
 | |
| 	pinned = 1;
 | |
| 	this_best_prio = rq_best_prio(this_rq);
 | |
| 	best_prio = rq_best_prio(busiest);
 | |
| 	/*
 | |
| 	 * Enable handling of the case where there is more than one task
 | |
| 	 * with the best priority.   If the current running task is one
 | |
| 	 * of those with prio==best_prio we know it won't be moved
 | |
| 	 * and therefore it's safe to override the skip (based on load) of
 | |
| 	 * any task we find with that prio.
 | |
| 	 */
 | |
| 	best_prio_seen = best_prio == busiest->curr->prio;
 | |
| 
 | |
| 	/*
 | |
| 	 * We first consider expired tasks. Those will likely not be
 | |
| 	 * executed in the near future, and they are most likely to
 | |
| 	 * be cache-cold, thus switching CPUs has the least effect
 | |
| 	 * on them.
 | |
| 	 */
 | |
| 	if (busiest->expired->nr_active) {
 | |
| 		array = busiest->expired;
 | |
| 		dst_array = this_rq->expired;
 | |
| 	} else {
 | |
| 		array = busiest->active;
 | |
| 		dst_array = this_rq->active;
 | |
| 	}
 | |
| 
 | |
| new_array:
 | |
| 	/* Start searching at priority 0: */
 | |
| 	idx = 0;
 | |
| skip_bitmap:
 | |
| 	if (!idx)
 | |
| 		idx = sched_find_first_bit(array->bitmap);
 | |
| 	else
 | |
| 		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
 | |
| 	if (idx >= MAX_PRIO) {
 | |
| 		if (array == busiest->expired && busiest->active->nr_active) {
 | |
| 			array = busiest->active;
 | |
| 			dst_array = this_rq->active;
 | |
| 			goto new_array;
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	head = array->queue + idx;
 | |
| 	curr = head->prev;
 | |
| skip_queue:
 | |
| 	tmp = list_entry(curr, struct task_struct, run_list);
 | |
| 
 | |
| 	curr = curr->prev;
 | |
| 
 | |
| 	/*
 | |
| 	 * To help distribute high priority tasks accross CPUs we don't
 | |
| 	 * skip a task if it will be the highest priority task (i.e. smallest
 | |
| 	 * prio value) on its new queue regardless of its load weight
 | |
| 	 */
 | |
| 	skip_for_load = tmp->load_weight > rem_load_move;
 | |
| 	if (skip_for_load && idx < this_best_prio)
 | |
| 		skip_for_load = !best_prio_seen && idx == best_prio;
 | |
| 	if (skip_for_load ||
 | |
| 	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
 | |
| 
 | |
| 		best_prio_seen |= idx == best_prio;
 | |
| 		if (curr != head)
 | |
| 			goto skip_queue;
 | |
| 		idx++;
 | |
| 		goto skip_bitmap;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	if (task_hot(tmp, busiest->timestamp_last_tick, sd))
 | |
| 		schedstat_inc(sd, lb_hot_gained[idle]);
 | |
| #endif
 | |
| 
 | |
| 	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
 | |
| 	pulled++;
 | |
| 	rem_load_move -= tmp->load_weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only want to steal up to the prescribed number of tasks
 | |
| 	 * and the prescribed amount of weighted load.
 | |
| 	 */
 | |
| 	if (pulled < max_nr_move && rem_load_move > 0) {
 | |
| 		if (idx < this_best_prio)
 | |
| 			this_best_prio = idx;
 | |
| 		if (curr != head)
 | |
| 			goto skip_queue;
 | |
| 		idx++;
 | |
| 		goto skip_bitmap;
 | |
| 	}
 | |
| out:
 | |
| 	/*
 | |
| 	 * Right now, this is the only place pull_task() is called,
 | |
| 	 * so we can safely collect pull_task() stats here rather than
 | |
| 	 * inside pull_task().
 | |
| 	 */
 | |
| 	schedstat_add(sd, lb_gained[idle], pulled);
 | |
| 
 | |
| 	if (all_pinned)
 | |
| 		*all_pinned = pinned;
 | |
| 	return pulled;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_busiest_group finds and returns the busiest CPU group within the
 | |
|  * domain. It calculates and returns the amount of weighted load which
 | |
|  * should be moved to restore balance via the imbalance parameter.
 | |
|  */
 | |
| static struct sched_group *
 | |
| find_busiest_group(struct sched_domain *sd, int this_cpu,
 | |
| 		   unsigned long *imbalance, enum idle_type idle, int *sd_idle,
 | |
| 		   cpumask_t *cpus)
 | |
| {
 | |
| 	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
 | |
| 	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
 | |
| 	unsigned long max_pull;
 | |
| 	unsigned long busiest_load_per_task, busiest_nr_running;
 | |
| 	unsigned long this_load_per_task, this_nr_running;
 | |
| 	int load_idx;
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| 	int power_savings_balance = 1;
 | |
| 	unsigned long leader_nr_running = 0, min_load_per_task = 0;
 | |
| 	unsigned long min_nr_running = ULONG_MAX;
 | |
| 	struct sched_group *group_min = NULL, *group_leader = NULL;
 | |
| #endif
 | |
| 
 | |
| 	max_load = this_load = total_load = total_pwr = 0;
 | |
| 	busiest_load_per_task = busiest_nr_running = 0;
 | |
| 	this_load_per_task = this_nr_running = 0;
 | |
| 	if (idle == NOT_IDLE)
 | |
| 		load_idx = sd->busy_idx;
 | |
| 	else if (idle == NEWLY_IDLE)
 | |
| 		load_idx = sd->newidle_idx;
 | |
| 	else
 | |
| 		load_idx = sd->idle_idx;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long load, group_capacity;
 | |
| 		int local_group;
 | |
| 		int i;
 | |
| 		unsigned long sum_nr_running, sum_weighted_load;
 | |
| 
 | |
| 		local_group = cpu_isset(this_cpu, group->cpumask);
 | |
| 
 | |
| 		/* Tally up the load of all CPUs in the group */
 | |
| 		sum_weighted_load = sum_nr_running = avg_load = 0;
 | |
| 
 | |
| 		for_each_cpu_mask(i, group->cpumask) {
 | |
| 			struct rq *rq;
 | |
| 
 | |
| 			if (!cpu_isset(i, *cpus))
 | |
| 				continue;
 | |
| 
 | |
| 			rq = cpu_rq(i);
 | |
| 
 | |
| 			if (*sd_idle && !idle_cpu(i))
 | |
| 				*sd_idle = 0;
 | |
| 
 | |
| 			/* Bias balancing toward cpus of our domain */
 | |
| 			if (local_group)
 | |
| 				load = target_load(i, load_idx);
 | |
| 			else
 | |
| 				load = source_load(i, load_idx);
 | |
| 
 | |
| 			avg_load += load;
 | |
| 			sum_nr_running += rq->nr_running;
 | |
| 			sum_weighted_load += rq->raw_weighted_load;
 | |
| 		}
 | |
| 
 | |
| 		total_load += avg_load;
 | |
| 		total_pwr += group->cpu_power;
 | |
| 
 | |
| 		/* Adjust by relative CPU power of the group */
 | |
| 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 | |
| 
 | |
| 		group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			this_load = avg_load;
 | |
| 			this = group;
 | |
| 			this_nr_running = sum_nr_running;
 | |
| 			this_load_per_task = sum_weighted_load;
 | |
| 		} else if (avg_load > max_load &&
 | |
| 			   sum_nr_running > group_capacity) {
 | |
| 			max_load = avg_load;
 | |
| 			busiest = group;
 | |
| 			busiest_nr_running = sum_nr_running;
 | |
| 			busiest_load_per_task = sum_weighted_load;
 | |
| 		}
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| 		/*
 | |
| 		 * Busy processors will not participate in power savings
 | |
| 		 * balance.
 | |
| 		 */
 | |
|  		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 | |
|  			goto group_next;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the local group is idle or completely loaded
 | |
| 		 * no need to do power savings balance at this domain
 | |
| 		 */
 | |
| 		if (local_group && (this_nr_running >= group_capacity ||
 | |
| 				    !this_nr_running))
 | |
| 			power_savings_balance = 0;
 | |
| 
 | |
|  		/*
 | |
| 		 * If a group is already running at full capacity or idle,
 | |
| 		 * don't include that group in power savings calculations
 | |
|  		 */
 | |
|  		if (!power_savings_balance || sum_nr_running >= group_capacity
 | |
| 		    || !sum_nr_running)
 | |
|  			goto group_next;
 | |
| 
 | |
|  		/*
 | |
| 		 * Calculate the group which has the least non-idle load.
 | |
|  		 * This is the group from where we need to pick up the load
 | |
|  		 * for saving power
 | |
|  		 */
 | |
|  		if ((sum_nr_running < min_nr_running) ||
 | |
|  		    (sum_nr_running == min_nr_running &&
 | |
| 		     first_cpu(group->cpumask) <
 | |
| 		     first_cpu(group_min->cpumask))) {
 | |
|  			group_min = group;
 | |
|  			min_nr_running = sum_nr_running;
 | |
| 			min_load_per_task = sum_weighted_load /
 | |
| 						sum_nr_running;
 | |
|  		}
 | |
| 
 | |
|  		/*
 | |
| 		 * Calculate the group which is almost near its
 | |
|  		 * capacity but still has some space to pick up some load
 | |
|  		 * from other group and save more power
 | |
|  		 */
 | |
|  		if (sum_nr_running <= group_capacity - 1) {
 | |
|  			if (sum_nr_running > leader_nr_running ||
 | |
|  			    (sum_nr_running == leader_nr_running &&
 | |
|  			     first_cpu(group->cpumask) >
 | |
|  			      first_cpu(group_leader->cpumask))) {
 | |
|  				group_leader = group;
 | |
|  				leader_nr_running = sum_nr_running;
 | |
|  			}
 | |
| 		}
 | |
| group_next:
 | |
| #endif
 | |
| 		group = group->next;
 | |
| 	} while (group != sd->groups);
 | |
| 
 | |
| 	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
 | |
| 
 | |
| 	if (this_load >= avg_load ||
 | |
| 			100*max_load <= sd->imbalance_pct*this_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	busiest_load_per_task /= busiest_nr_running;
 | |
| 	/*
 | |
| 	 * We're trying to get all the cpus to the average_load, so we don't
 | |
| 	 * want to push ourselves above the average load, nor do we wish to
 | |
| 	 * reduce the max loaded cpu below the average load, as either of these
 | |
| 	 * actions would just result in more rebalancing later, and ping-pong
 | |
| 	 * tasks around. Thus we look for the minimum possible imbalance.
 | |
| 	 * Negative imbalances (*we* are more loaded than anyone else) will
 | |
| 	 * be counted as no imbalance for these purposes -- we can't fix that
 | |
| 	 * by pulling tasks to us.  Be careful of negative numbers as they'll
 | |
| 	 * appear as very large values with unsigned longs.
 | |
| 	 */
 | |
| 	if (max_load <= busiest_load_per_task)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the presence of smp nice balancing, certain scenarios can have
 | |
| 	 * max load less than avg load(as we skip the groups at or below
 | |
| 	 * its cpu_power, while calculating max_load..)
 | |
| 	 */
 | |
| 	if (max_load < avg_load) {
 | |
| 		*imbalance = 0;
 | |
| 		goto small_imbalance;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't want to pull so many tasks that a group would go idle */
 | |
| 	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
 | |
| 
 | |
| 	/* How much load to actually move to equalise the imbalance */
 | |
| 	*imbalance = min(max_pull * busiest->cpu_power,
 | |
| 				(avg_load - this_load) * this->cpu_power)
 | |
| 			/ SCHED_LOAD_SCALE;
 | |
| 
 | |
| 	/*
 | |
| 	 * if *imbalance is less than the average load per runnable task
 | |
| 	 * there is no gaurantee that any tasks will be moved so we'll have
 | |
| 	 * a think about bumping its value to force at least one task to be
 | |
| 	 * moved
 | |
| 	 */
 | |
| 	if (*imbalance < busiest_load_per_task) {
 | |
| 		unsigned long tmp, pwr_now, pwr_move;
 | |
| 		unsigned int imbn;
 | |
| 
 | |
| small_imbalance:
 | |
| 		pwr_move = pwr_now = 0;
 | |
| 		imbn = 2;
 | |
| 		if (this_nr_running) {
 | |
| 			this_load_per_task /= this_nr_running;
 | |
| 			if (busiest_load_per_task > this_load_per_task)
 | |
| 				imbn = 1;
 | |
| 		} else
 | |
| 			this_load_per_task = SCHED_LOAD_SCALE;
 | |
| 
 | |
| 		if (max_load - this_load >= busiest_load_per_task * imbn) {
 | |
| 			*imbalance = busiest_load_per_task;
 | |
| 			return busiest;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * OK, we don't have enough imbalance to justify moving tasks,
 | |
| 		 * however we may be able to increase total CPU power used by
 | |
| 		 * moving them.
 | |
| 		 */
 | |
| 
 | |
| 		pwr_now += busiest->cpu_power *
 | |
| 			min(busiest_load_per_task, max_load);
 | |
| 		pwr_now += this->cpu_power *
 | |
| 			min(this_load_per_task, this_load);
 | |
| 		pwr_now /= SCHED_LOAD_SCALE;
 | |
| 
 | |
| 		/* Amount of load we'd subtract */
 | |
| 		tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
 | |
| 		if (max_load > tmp)
 | |
| 			pwr_move += busiest->cpu_power *
 | |
| 				min(busiest_load_per_task, max_load - tmp);
 | |
| 
 | |
| 		/* Amount of load we'd add */
 | |
| 		if (max_load*busiest->cpu_power <
 | |
| 				busiest_load_per_task*SCHED_LOAD_SCALE)
 | |
| 			tmp = max_load*busiest->cpu_power/this->cpu_power;
 | |
| 		else
 | |
| 			tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
 | |
| 		pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
 | |
| 		pwr_move /= SCHED_LOAD_SCALE;
 | |
| 
 | |
| 		/* Move if we gain throughput */
 | |
| 		if (pwr_move <= pwr_now)
 | |
| 			goto out_balanced;
 | |
| 
 | |
| 		*imbalance = busiest_load_per_task;
 | |
| 	}
 | |
| 
 | |
| 	return busiest;
 | |
| 
 | |
| out_balanced:
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| 	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 | |
| 		goto ret;
 | |
| 
 | |
| 	if (this == group_leader && group_leader != group_min) {
 | |
| 		*imbalance = min_load_per_task;
 | |
| 		return group_min;
 | |
| 	}
 | |
| ret:
 | |
| #endif
 | |
| 	*imbalance = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_busiest_queue - find the busiest runqueue among the cpus in group.
 | |
|  */
 | |
| static struct rq *
 | |
| find_busiest_queue(struct sched_group *group, enum idle_type idle,
 | |
| 		   unsigned long imbalance, cpumask_t *cpus)
 | |
| {
 | |
| 	struct rq *busiest = NULL, *rq;
 | |
| 	unsigned long max_load = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_mask(i, group->cpumask) {
 | |
| 
 | |
| 		if (!cpu_isset(i, *cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 
 | |
| 		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
 | |
| 			continue;
 | |
| 
 | |
| 		if (rq->raw_weighted_load > max_load) {
 | |
| 			max_load = rq->raw_weighted_load;
 | |
| 			busiest = rq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return busiest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 | |
|  * so long as it is large enough.
 | |
|  */
 | |
| #define MAX_PINNED_INTERVAL	512
 | |
| 
 | |
| static inline unsigned long minus_1_or_zero(unsigned long n)
 | |
| {
 | |
| 	return n > 0 ? n - 1 : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | |
|  * tasks if there is an imbalance.
 | |
|  *
 | |
|  * Called with this_rq unlocked.
 | |
|  */
 | |
| static int load_balance(int this_cpu, struct rq *this_rq,
 | |
| 			struct sched_domain *sd, enum idle_type idle)
 | |
| {
 | |
| 	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
 | |
| 	struct sched_group *group;
 | |
| 	unsigned long imbalance;
 | |
| 	struct rq *busiest;
 | |
| 	cpumask_t cpus = CPU_MASK_ALL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When power savings policy is enabled for the parent domain, idle
 | |
| 	 * sibling can pick up load irrespective of busy siblings. In this case,
 | |
| 	 * let the state of idle sibling percolate up as IDLE, instead of
 | |
| 	 * portraying it as NOT_IDLE.
 | |
| 	 */
 | |
| 	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		sd_idle = 1;
 | |
| 
 | |
| 	schedstat_inc(sd, lb_cnt[idle]);
 | |
| 
 | |
| redo:
 | |
| 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
 | |
| 							&cpus);
 | |
| 	if (!group) {
 | |
| 		schedstat_inc(sd, lb_nobusyg[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
 | |
| 	if (!busiest) {
 | |
| 		schedstat_inc(sd, lb_nobusyq[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(busiest == this_rq);
 | |
| 
 | |
| 	schedstat_add(sd, lb_imbalance[idle], imbalance);
 | |
| 
 | |
| 	nr_moved = 0;
 | |
| 	if (busiest->nr_running > 1) {
 | |
| 		/*
 | |
| 		 * Attempt to move tasks. If find_busiest_group has found
 | |
| 		 * an imbalance but busiest->nr_running <= 1, the group is
 | |
| 		 * still unbalanced. nr_moved simply stays zero, so it is
 | |
| 		 * correctly treated as an imbalance.
 | |
| 		 */
 | |
| 		double_rq_lock(this_rq, busiest);
 | |
| 		nr_moved = move_tasks(this_rq, this_cpu, busiest,
 | |
| 				      minus_1_or_zero(busiest->nr_running),
 | |
| 				      imbalance, sd, idle, &all_pinned);
 | |
| 		double_rq_unlock(this_rq, busiest);
 | |
| 
 | |
| 		/* All tasks on this runqueue were pinned by CPU affinity */
 | |
| 		if (unlikely(all_pinned)) {
 | |
| 			cpu_clear(cpu_of(busiest), cpus);
 | |
| 			if (!cpus_empty(cpus))
 | |
| 				goto redo;
 | |
| 			goto out_balanced;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_moved) {
 | |
| 		schedstat_inc(sd, lb_failed[idle]);
 | |
| 		sd->nr_balance_failed++;
 | |
| 
 | |
| 		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
 | |
| 
 | |
| 			spin_lock(&busiest->lock);
 | |
| 
 | |
| 			/* don't kick the migration_thread, if the curr
 | |
| 			 * task on busiest cpu can't be moved to this_cpu
 | |
| 			 */
 | |
| 			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
 | |
| 				spin_unlock(&busiest->lock);
 | |
| 				all_pinned = 1;
 | |
| 				goto out_one_pinned;
 | |
| 			}
 | |
| 
 | |
| 			if (!busiest->active_balance) {
 | |
| 				busiest->active_balance = 1;
 | |
| 				busiest->push_cpu = this_cpu;
 | |
| 				active_balance = 1;
 | |
| 			}
 | |
| 			spin_unlock(&busiest->lock);
 | |
| 			if (active_balance)
 | |
| 				wake_up_process(busiest->migration_thread);
 | |
| 
 | |
| 			/*
 | |
| 			 * We've kicked active balancing, reset the failure
 | |
| 			 * counter.
 | |
| 			 */
 | |
| 			sd->nr_balance_failed = sd->cache_nice_tries+1;
 | |
| 		}
 | |
| 	} else
 | |
| 		sd->nr_balance_failed = 0;
 | |
| 
 | |
| 	if (likely(!active_balance)) {
 | |
| 		/* We were unbalanced, so reset the balancing interval */
 | |
| 		sd->balance_interval = sd->min_interval;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we've begun active balancing, start to back off. This
 | |
| 		 * case may not be covered by the all_pinned logic if there
 | |
| 		 * is only 1 task on the busy runqueue (because we don't call
 | |
| 		 * move_tasks).
 | |
| 		 */
 | |
| 		if (sd->balance_interval < sd->max_interval)
 | |
| 			sd->balance_interval *= 2;
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		return -1;
 | |
| 	return nr_moved;
 | |
| 
 | |
| out_balanced:
 | |
| 	schedstat_inc(sd, lb_balanced[idle]);
 | |
| 
 | |
| 	sd->nr_balance_failed = 0;
 | |
| 
 | |
| out_one_pinned:
 | |
| 	/* tune up the balancing interval */
 | |
| 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
 | |
| 			(sd->balance_interval < sd->max_interval))
 | |
| 		sd->balance_interval *= 2;
 | |
| 
 | |
| 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | |
|  * tasks if there is an imbalance.
 | |
|  *
 | |
|  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
 | |
|  * this_rq is locked.
 | |
|  */
 | |
| static int
 | |
| load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
 | |
| {
 | |
| 	struct sched_group *group;
 | |
| 	struct rq *busiest = NULL;
 | |
| 	unsigned long imbalance;
 | |
| 	int nr_moved = 0;
 | |
| 	int sd_idle = 0;
 | |
| 	cpumask_t cpus = CPU_MASK_ALL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When power savings policy is enabled for the parent domain, idle
 | |
| 	 * sibling can pick up load irrespective of busy siblings. In this case,
 | |
| 	 * let the state of idle sibling percolate up as IDLE, instead of
 | |
| 	 * portraying it as NOT_IDLE.
 | |
| 	 */
 | |
| 	if (sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		sd_idle = 1;
 | |
| 
 | |
| 	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
 | |
| redo:
 | |
| 	group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
 | |
| 				&sd_idle, &cpus);
 | |
| 	if (!group) {
 | |
| 		schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
 | |
| 				&cpus);
 | |
| 	if (!busiest) {
 | |
| 		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(busiest == this_rq);
 | |
| 
 | |
| 	schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
 | |
| 
 | |
| 	nr_moved = 0;
 | |
| 	if (busiest->nr_running > 1) {
 | |
| 		/* Attempt to move tasks */
 | |
| 		double_lock_balance(this_rq, busiest);
 | |
| 		nr_moved = move_tasks(this_rq, this_cpu, busiest,
 | |
| 					minus_1_or_zero(busiest->nr_running),
 | |
| 					imbalance, sd, NEWLY_IDLE, NULL);
 | |
| 		spin_unlock(&busiest->lock);
 | |
| 
 | |
| 		if (!nr_moved) {
 | |
| 			cpu_clear(cpu_of(busiest), cpus);
 | |
| 			if (!cpus_empty(cpus))
 | |
| 				goto redo;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_moved) {
 | |
| 		schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
 | |
| 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 			return -1;
 | |
| 	} else
 | |
| 		sd->nr_balance_failed = 0;
 | |
| 
 | |
| 	return nr_moved;
 | |
| 
 | |
| out_balanced:
 | |
| 	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
 | |
| 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		return -1;
 | |
| 	sd->nr_balance_failed = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * idle_balance is called by schedule() if this_cpu is about to become
 | |
|  * idle. Attempts to pull tasks from other CPUs.
 | |
|  */
 | |
| static void idle_balance(int this_cpu, struct rq *this_rq)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		if (sd->flags & SD_BALANCE_NEWIDLE) {
 | |
| 			/* If we've pulled tasks over stop searching: */
 | |
| 			if (load_balance_newidle(this_cpu, this_rq, sd))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * active_load_balance is run by migration threads. It pushes running tasks
 | |
|  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 | |
|  * running on each physical CPU where possible, and avoids physical /
 | |
|  * logical imbalances.
 | |
|  *
 | |
|  * Called with busiest_rq locked.
 | |
|  */
 | |
| static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
 | |
| {
 | |
| 	int target_cpu = busiest_rq->push_cpu;
 | |
| 	struct sched_domain *sd;
 | |
| 	struct rq *target_rq;
 | |
| 
 | |
| 	/* Is there any task to move? */
 | |
| 	if (busiest_rq->nr_running <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	target_rq = cpu_rq(target_cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * This condition is "impossible", if it occurs
 | |
| 	 * we need to fix it.  Originally reported by
 | |
| 	 * Bjorn Helgaas on a 128-cpu setup.
 | |
| 	 */
 | |
| 	BUG_ON(busiest_rq == target_rq);
 | |
| 
 | |
| 	/* move a task from busiest_rq to target_rq */
 | |
| 	double_lock_balance(busiest_rq, target_rq);
 | |
| 
 | |
| 	/* Search for an sd spanning us and the target CPU. */
 | |
| 	for_each_domain(target_cpu, sd) {
 | |
| 		if ((sd->flags & SD_LOAD_BALANCE) &&
 | |
| 		    cpu_isset(busiest_cpu, sd->span))
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(sd)) {
 | |
| 		schedstat_inc(sd, alb_cnt);
 | |
| 
 | |
| 		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
 | |
| 			       RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
 | |
| 			       NULL))
 | |
| 			schedstat_inc(sd, alb_pushed);
 | |
| 		else
 | |
| 			schedstat_inc(sd, alb_failed);
 | |
| 	}
 | |
| 	spin_unlock(&target_rq->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rebalance_tick will get called every timer tick, on every CPU.
 | |
|  *
 | |
|  * It checks each scheduling domain to see if it is due to be balanced,
 | |
|  * and initiates a balancing operation if so.
 | |
|  *
 | |
|  * Balancing parameters are set up in arch_init_sched_domains.
 | |
|  */
 | |
| 
 | |
| /* Don't have all balancing operations going off at once: */
 | |
| static inline unsigned long cpu_offset(int cpu)
 | |
| {
 | |
| 	return jiffies + cpu * HZ / NR_CPUS;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
 | |
| {
 | |
| 	unsigned long this_load, interval, j = cpu_offset(this_cpu);
 | |
| 	struct sched_domain *sd;
 | |
| 	int i, scale;
 | |
| 
 | |
| 	this_load = this_rq->raw_weighted_load;
 | |
| 
 | |
| 	/* Update our load: */
 | |
| 	for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
 | |
| 		unsigned long old_load, new_load;
 | |
| 
 | |
| 		old_load = this_rq->cpu_load[i];
 | |
| 		new_load = this_load;
 | |
| 		/*
 | |
| 		 * Round up the averaging division if load is increasing. This
 | |
| 		 * prevents us from getting stuck on 9 if the load is 10, for
 | |
| 		 * example.
 | |
| 		 */
 | |
| 		if (new_load > old_load)
 | |
| 			new_load += scale-1;
 | |
| 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
 | |
| 	}
 | |
| 
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		interval = sd->balance_interval;
 | |
| 		if (idle != SCHED_IDLE)
 | |
| 			interval *= sd->busy_factor;
 | |
| 
 | |
| 		/* scale ms to jiffies */
 | |
| 		interval = msecs_to_jiffies(interval);
 | |
| 		if (unlikely(!interval))
 | |
| 			interval = 1;
 | |
| 
 | |
| 		if (j - sd->last_balance >= interval) {
 | |
| 			if (load_balance(this_cpu, this_rq, sd, idle)) {
 | |
| 				/*
 | |
| 				 * We've pulled tasks over so either we're no
 | |
| 				 * longer idle, or one of our SMT siblings is
 | |
| 				 * not idle.
 | |
| 				 */
 | |
| 				idle = NOT_IDLE;
 | |
| 			}
 | |
| 			sd->last_balance += interval;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| /*
 | |
|  * on UP we do not need to balance between CPUs:
 | |
|  */
 | |
| static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
 | |
| {
 | |
| }
 | |
| static inline void idle_balance(int cpu, struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int wake_priority_sleeper(struct rq *rq)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	spin_lock(&rq->lock);
 | |
| 	/*
 | |
| 	 * If an SMT sibling task has been put to sleep for priority
 | |
| 	 * reasons reschedule the idle task to see if it can now run.
 | |
| 	 */
 | |
| 	if (rq->nr_running) {
 | |
| 		resched_task(rq->idle);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	spin_unlock(&rq->lock);
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| DEFINE_PER_CPU(struct kernel_stat, kstat);
 | |
| 
 | |
| EXPORT_PER_CPU_SYMBOL(kstat);
 | |
| 
 | |
| /*
 | |
|  * This is called on clock ticks and on context switches.
 | |
|  * Bank in p->sched_time the ns elapsed since the last tick or switch.
 | |
|  */
 | |
| static inline void
 | |
| update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
 | |
| {
 | |
| 	p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return current->sched_time plus any more ns on the sched_clock
 | |
|  * that have not yet been banked.
 | |
|  */
 | |
| unsigned long long current_sched_time(const struct task_struct *p)
 | |
| {
 | |
| 	unsigned long long ns;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
 | |
| 	ns = p->sched_time + sched_clock() - ns;
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We place interactive tasks back into the active array, if possible.
 | |
|  *
 | |
|  * To guarantee that this does not starve expired tasks we ignore the
 | |
|  * interactivity of a task if the first expired task had to wait more
 | |
|  * than a 'reasonable' amount of time. This deadline timeout is
 | |
|  * load-dependent, as the frequency of array switched decreases with
 | |
|  * increasing number of running tasks. We also ignore the interactivity
 | |
|  * if a better static_prio task has expired:
 | |
|  */
 | |
| static inline int expired_starving(struct rq *rq)
 | |
| {
 | |
| 	if (rq->curr->static_prio > rq->best_expired_prio)
 | |
| 		return 1;
 | |
| 	if (!STARVATION_LIMIT || !rq->expired_timestamp)
 | |
| 		return 0;
 | |
| 	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account user cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @hardirq_offset: the offset to subtract from hardirq_count()
 | |
|  * @cputime: the cpu time spent in user space since the last update
 | |
|  */
 | |
| void account_user_time(struct task_struct *p, cputime_t cputime)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t tmp;
 | |
| 
 | |
| 	p->utime = cputime_add(p->utime, cputime);
 | |
| 
 | |
| 	/* Add user time to cpustat. */
 | |
| 	tmp = cputime_to_cputime64(cputime);
 | |
| 	if (TASK_NICE(p) > 0)
 | |
| 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
 | |
| 	else
 | |
| 		cpustat->user = cputime64_add(cpustat->user, tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account system cpu time to a process.
 | |
|  * @p: the process that the cpu time gets accounted to
 | |
|  * @hardirq_offset: the offset to subtract from hardirq_count()
 | |
|  * @cputime: the cpu time spent in kernel space since the last update
 | |
|  */
 | |
| void account_system_time(struct task_struct *p, int hardirq_offset,
 | |
| 			 cputime_t cputime)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	struct rq *rq = this_rq();
 | |
| 	cputime64_t tmp;
 | |
| 
 | |
| 	p->stime = cputime_add(p->stime, cputime);
 | |
| 
 | |
| 	/* Add system time to cpustat. */
 | |
| 	tmp = cputime_to_cputime64(cputime);
 | |
| 	if (hardirq_count() - hardirq_offset)
 | |
| 		cpustat->irq = cputime64_add(cpustat->irq, tmp);
 | |
| 	else if (softirq_count())
 | |
| 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
 | |
| 	else if (p != rq->idle)
 | |
| 		cpustat->system = cputime64_add(cpustat->system, tmp);
 | |
| 	else if (atomic_read(&rq->nr_iowait) > 0)
 | |
| 		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
 | |
| 	else
 | |
| 		cpustat->idle = cputime64_add(cpustat->idle, tmp);
 | |
| 	/* Account for system time used */
 | |
| 	acct_update_integrals(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for involuntary wait time.
 | |
|  * @p: the process from which the cpu time has been stolen
 | |
|  * @steal: the cpu time spent in involuntary wait
 | |
|  */
 | |
| void account_steal_time(struct task_struct *p, cputime_t steal)
 | |
| {
 | |
| 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
 | |
| 	cputime64_t tmp = cputime_to_cputime64(steal);
 | |
| 	struct rq *rq = this_rq();
 | |
| 
 | |
| 	if (p == rq->idle) {
 | |
| 		p->stime = cputime_add(p->stime, steal);
 | |
| 		if (atomic_read(&rq->nr_iowait) > 0)
 | |
| 			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
 | |
| 		else
 | |
| 			cpustat->idle = cputime64_add(cpustat->idle, tmp);
 | |
| 	} else
 | |
| 		cpustat->steal = cputime64_add(cpustat->steal, tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function gets called by the timer code, with HZ frequency.
 | |
|  * We call it with interrupts disabled.
 | |
|  *
 | |
|  * It also gets called by the fork code, when changing the parent's
 | |
|  * timeslices.
 | |
|  */
 | |
| void scheduler_tick(void)
 | |
| {
 | |
| 	unsigned long long now = sched_clock();
 | |
| 	struct task_struct *p = current;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 
 | |
| 	update_cpu_clock(p, rq, now);
 | |
| 
 | |
| 	rq->timestamp_last_tick = now;
 | |
| 
 | |
| 	if (p == rq->idle) {
 | |
| 		if (wake_priority_sleeper(rq))
 | |
| 			goto out;
 | |
| 		rebalance_tick(cpu, rq, SCHED_IDLE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Task might have expired already, but not scheduled off yet */
 | |
| 	if (p->array != rq->active) {
 | |
| 		set_tsk_need_resched(p);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_lock(&rq->lock);
 | |
| 	/*
 | |
| 	 * The task was running during this tick - update the
 | |
| 	 * time slice counter. Note: we do not update a thread's
 | |
| 	 * priority until it either goes to sleep or uses up its
 | |
| 	 * timeslice. This makes it possible for interactive tasks
 | |
| 	 * to use up their timeslices at their highest priority levels.
 | |
| 	 */
 | |
| 	if (rt_task(p)) {
 | |
| 		/*
 | |
| 		 * RR tasks need a special form of timeslice management.
 | |
| 		 * FIFO tasks have no timeslices.
 | |
| 		 */
 | |
| 		if ((p->policy == SCHED_RR) && !--p->time_slice) {
 | |
| 			p->time_slice = task_timeslice(p);
 | |
| 			p->first_time_slice = 0;
 | |
| 			set_tsk_need_resched(p);
 | |
| 
 | |
| 			/* put it at the end of the queue: */
 | |
| 			requeue_task(p, rq->active);
 | |
| 		}
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	if (!--p->time_slice) {
 | |
| 		dequeue_task(p, rq->active);
 | |
| 		set_tsk_need_resched(p);
 | |
| 		p->prio = effective_prio(p);
 | |
| 		p->time_slice = task_timeslice(p);
 | |
| 		p->first_time_slice = 0;
 | |
| 
 | |
| 		if (!rq->expired_timestamp)
 | |
| 			rq->expired_timestamp = jiffies;
 | |
| 		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
 | |
| 			enqueue_task(p, rq->expired);
 | |
| 			if (p->static_prio < rq->best_expired_prio)
 | |
| 				rq->best_expired_prio = p->static_prio;
 | |
| 		} else
 | |
| 			enqueue_task(p, rq->active);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Prevent a too long timeslice allowing a task to monopolize
 | |
| 		 * the CPU. We do this by splitting up the timeslice into
 | |
| 		 * smaller pieces.
 | |
| 		 *
 | |
| 		 * Note: this does not mean the task's timeslices expire or
 | |
| 		 * get lost in any way, they just might be preempted by
 | |
| 		 * another task of equal priority. (one with higher
 | |
| 		 * priority would have preempted this task already.) We
 | |
| 		 * requeue this task to the end of the list on this priority
 | |
| 		 * level, which is in essence a round-robin of tasks with
 | |
| 		 * equal priority.
 | |
| 		 *
 | |
| 		 * This only applies to tasks in the interactive
 | |
| 		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
 | |
| 		 */
 | |
| 		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
 | |
| 			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
 | |
| 			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
 | |
| 			(p->array == rq->active)) {
 | |
| 
 | |
| 			requeue_task(p, rq->active);
 | |
| 			set_tsk_need_resched(p);
 | |
| 		}
 | |
| 	}
 | |
| out_unlock:
 | |
| 	spin_unlock(&rq->lock);
 | |
| out:
 | |
| 	rebalance_tick(cpu, rq, NOT_IDLE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| static inline void wakeup_busy_runqueue(struct rq *rq)
 | |
| {
 | |
| 	/* If an SMT runqueue is sleeping due to priority reasons wake it up */
 | |
| 	if (rq->curr == rq->idle && rq->nr_running)
 | |
| 		resched_task(rq->idle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with interrupt disabled and this_rq's runqueue locked.
 | |
|  */
 | |
| static void wake_sleeping_dependent(int this_cpu)
 | |
| {
 | |
| 	struct sched_domain *tmp, *sd = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_domain(this_cpu, tmp) {
 | |
| 		if (tmp->flags & SD_SHARE_CPUPOWER) {
 | |
| 			sd = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!sd)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_cpu_mask(i, sd->span) {
 | |
| 		struct rq *smt_rq = cpu_rq(i);
 | |
| 
 | |
| 		if (i == this_cpu)
 | |
| 			continue;
 | |
| 		if (unlikely(!spin_trylock(&smt_rq->lock)))
 | |
| 			continue;
 | |
| 
 | |
| 		wakeup_busy_runqueue(smt_rq);
 | |
| 		spin_unlock(&smt_rq->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * number of 'lost' timeslices this task wont be able to fully
 | |
|  * utilize, if another task runs on a sibling. This models the
 | |
|  * slowdown effect of other tasks running on siblings:
 | |
|  */
 | |
| static inline unsigned long
 | |
| smt_slice(struct task_struct *p, struct sched_domain *sd)
 | |
| {
 | |
| 	return p->time_slice * (100 - sd->per_cpu_gain) / 100;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * To minimise lock contention and not have to drop this_rq's runlock we only
 | |
|  * trylock the sibling runqueues and bypass those runqueues if we fail to
 | |
|  * acquire their lock. As we only trylock the normal locking order does not
 | |
|  * need to be obeyed.
 | |
|  */
 | |
| static int
 | |
| dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_domain *tmp, *sd = NULL;
 | |
| 	int ret = 0, i;
 | |
| 
 | |
| 	/* kernel/rt threads do not participate in dependent sleeping */
 | |
| 	if (!p->mm || rt_task(p))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_domain(this_cpu, tmp) {
 | |
| 		if (tmp->flags & SD_SHARE_CPUPOWER) {
 | |
| 			sd = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!sd)
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_cpu_mask(i, sd->span) {
 | |
| 		struct task_struct *smt_curr;
 | |
| 		struct rq *smt_rq;
 | |
| 
 | |
| 		if (i == this_cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		smt_rq = cpu_rq(i);
 | |
| 		if (unlikely(!spin_trylock(&smt_rq->lock)))
 | |
| 			continue;
 | |
| 
 | |
| 		smt_curr = smt_rq->curr;
 | |
| 
 | |
| 		if (!smt_curr->mm)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * If a user task with lower static priority than the
 | |
| 		 * running task on the SMT sibling is trying to schedule,
 | |
| 		 * delay it till there is proportionately less timeslice
 | |
| 		 * left of the sibling task to prevent a lower priority
 | |
| 		 * task from using an unfair proportion of the
 | |
| 		 * physical cpu's resources. -ck
 | |
| 		 */
 | |
| 		if (rt_task(smt_curr)) {
 | |
| 			/*
 | |
| 			 * With real time tasks we run non-rt tasks only
 | |
| 			 * per_cpu_gain% of the time.
 | |
| 			 */
 | |
| 			if ((jiffies % DEF_TIMESLICE) >
 | |
| 				(sd->per_cpu_gain * DEF_TIMESLICE / 100))
 | |
| 					ret = 1;
 | |
| 		} else {
 | |
| 			if (smt_curr->static_prio < p->static_prio &&
 | |
| 				!TASK_PREEMPTS_CURR(p, smt_rq) &&
 | |
| 				smt_slice(smt_curr, sd) > task_timeslice(p))
 | |
| 					ret = 1;
 | |
| 		}
 | |
| unlock:
 | |
| 		spin_unlock(&smt_rq->lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static inline void wake_sleeping_dependent(int this_cpu)
 | |
| {
 | |
| }
 | |
| static inline int
 | |
| dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
 | |
| 
 | |
| void fastcall add_preempt_count(int val)
 | |
| {
 | |
| 	/*
 | |
| 	 * Underflow?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 | |
| 		return;
 | |
| 	preempt_count() += val;
 | |
| 	/*
 | |
| 	 * Spinlock count overflowing soon?
 | |
| 	 */
 | |
| 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
 | |
| }
 | |
| EXPORT_SYMBOL(add_preempt_count);
 | |
| 
 | |
| void fastcall sub_preempt_count(int val)
 | |
| {
 | |
| 	/*
 | |
| 	 * Underflow?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Is the spinlock portion underflowing?
 | |
| 	 */
 | |
| 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 | |
| 			!(preempt_count() & PREEMPT_MASK)))
 | |
| 		return;
 | |
| 
 | |
| 	preempt_count() -= val;
 | |
| }
 | |
| EXPORT_SYMBOL(sub_preempt_count);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline int interactive_sleep(enum sleep_type sleep_type)
 | |
| {
 | |
| 	return (sleep_type == SLEEP_INTERACTIVE ||
 | |
| 		sleep_type == SLEEP_INTERRUPTED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * schedule() is the main scheduler function.
 | |
|  */
 | |
| asmlinkage void __sched schedule(void)
 | |
| {
 | |
| 	struct task_struct *prev, *next;
 | |
| 	struct prio_array *array;
 | |
| 	struct list_head *queue;
 | |
| 	unsigned long long now;
 | |
| 	unsigned long run_time;
 | |
| 	int cpu, idx, new_prio;
 | |
| 	long *switch_count;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Test if we are atomic.  Since do_exit() needs to call into
 | |
| 	 * schedule() atomically, we ignore that path for now.
 | |
| 	 * Otherwise, whine if we are scheduling when we should not be.
 | |
| 	 */
 | |
| 	if (unlikely(in_atomic() && !current->exit_state)) {
 | |
| 		printk(KERN_ERR "BUG: scheduling while atomic: "
 | |
| 			"%s/0x%08x/%d\n",
 | |
| 			current->comm, preempt_count(), current->pid);
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 | |
| 
 | |
| need_resched:
 | |
| 	preempt_disable();
 | |
| 	prev = current;
 | |
| 	release_kernel_lock(prev);
 | |
| need_resched_nonpreemptible:
 | |
| 	rq = this_rq();
 | |
| 
 | |
| 	/*
 | |
| 	 * The idle thread is not allowed to schedule!
 | |
| 	 * Remove this check after it has been exercised a bit.
 | |
| 	 */
 | |
| 	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
 | |
| 		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
 | |
| 		dump_stack();
 | |
| 	}
 | |
| 
 | |
| 	schedstat_inc(rq, sched_cnt);
 | |
| 	now = sched_clock();
 | |
| 	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
 | |
| 		run_time = now - prev->timestamp;
 | |
| 		if (unlikely((long long)(now - prev->timestamp) < 0))
 | |
| 			run_time = 0;
 | |
| 	} else
 | |
| 		run_time = NS_MAX_SLEEP_AVG;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tasks charged proportionately less run_time at high sleep_avg to
 | |
| 	 * delay them losing their interactive status
 | |
| 	 */
 | |
| 	run_time /= (CURRENT_BONUS(prev) ? : 1);
 | |
| 
 | |
| 	spin_lock_irq(&rq->lock);
 | |
| 
 | |
| 	switch_count = &prev->nivcsw;
 | |
| 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 | |
| 		switch_count = &prev->nvcsw;
 | |
| 		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
 | |
| 				unlikely(signal_pending(prev))))
 | |
| 			prev->state = TASK_RUNNING;
 | |
| 		else {
 | |
| 			if (prev->state == TASK_UNINTERRUPTIBLE)
 | |
| 				rq->nr_uninterruptible++;
 | |
| 			deactivate_task(prev, rq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	if (unlikely(!rq->nr_running)) {
 | |
| 		idle_balance(cpu, rq);
 | |
| 		if (!rq->nr_running) {
 | |
| 			next = rq->idle;
 | |
| 			rq->expired_timestamp = 0;
 | |
| 			wake_sleeping_dependent(cpu);
 | |
| 			goto switch_tasks;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	array = rq->active;
 | |
| 	if (unlikely(!array->nr_active)) {
 | |
| 		/*
 | |
| 		 * Switch the active and expired arrays.
 | |
| 		 */
 | |
| 		schedstat_inc(rq, sched_switch);
 | |
| 		rq->active = rq->expired;
 | |
| 		rq->expired = array;
 | |
| 		array = rq->active;
 | |
| 		rq->expired_timestamp = 0;
 | |
| 		rq->best_expired_prio = MAX_PRIO;
 | |
| 	}
 | |
| 
 | |
| 	idx = sched_find_first_bit(array->bitmap);
 | |
| 	queue = array->queue + idx;
 | |
| 	next = list_entry(queue->next, struct task_struct, run_list);
 | |
| 
 | |
| 	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
 | |
| 		unsigned long long delta = now - next->timestamp;
 | |
| 		if (unlikely((long long)(now - next->timestamp) < 0))
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (next->sleep_type == SLEEP_INTERACTIVE)
 | |
| 			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
 | |
| 
 | |
| 		array = next->array;
 | |
| 		new_prio = recalc_task_prio(next, next->timestamp + delta);
 | |
| 
 | |
| 		if (unlikely(next->prio != new_prio)) {
 | |
| 			dequeue_task(next, array);
 | |
| 			next->prio = new_prio;
 | |
| 			enqueue_task(next, array);
 | |
| 		}
 | |
| 	}
 | |
| 	next->sleep_type = SLEEP_NORMAL;
 | |
| 	if (dependent_sleeper(cpu, rq, next))
 | |
| 		next = rq->idle;
 | |
| switch_tasks:
 | |
| 	if (next == rq->idle)
 | |
| 		schedstat_inc(rq, sched_goidle);
 | |
| 	prefetch(next);
 | |
| 	prefetch_stack(next);
 | |
| 	clear_tsk_need_resched(prev);
 | |
| 	rcu_qsctr_inc(task_cpu(prev));
 | |
| 
 | |
| 	update_cpu_clock(prev, rq, now);
 | |
| 
 | |
| 	prev->sleep_avg -= run_time;
 | |
| 	if ((long)prev->sleep_avg <= 0)
 | |
| 		prev->sleep_avg = 0;
 | |
| 	prev->timestamp = prev->last_ran = now;
 | |
| 
 | |
| 	sched_info_switch(prev, next);
 | |
| 	if (likely(prev != next)) {
 | |
| 		next->timestamp = now;
 | |
| 		rq->nr_switches++;
 | |
| 		rq->curr = next;
 | |
| 		++*switch_count;
 | |
| 
 | |
| 		prepare_task_switch(rq, next);
 | |
| 		prev = context_switch(rq, prev, next);
 | |
| 		barrier();
 | |
| 		/*
 | |
| 		 * this_rq must be evaluated again because prev may have moved
 | |
| 		 * CPUs since it called schedule(), thus the 'rq' on its stack
 | |
| 		 * frame will be invalid.
 | |
| 		 */
 | |
| 		finish_task_switch(this_rq(), prev);
 | |
| 	} else
 | |
| 		spin_unlock_irq(&rq->lock);
 | |
| 
 | |
| 	prev = current;
 | |
| 	if (unlikely(reacquire_kernel_lock(prev) < 0))
 | |
| 		goto need_resched_nonpreemptible;
 | |
| 	preempt_enable_no_resched();
 | |
| 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | |
| 		goto need_resched;
 | |
| }
 | |
| EXPORT_SYMBOL(schedule);
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| /*
 | |
|  * this is the entry point to schedule() from in-kernel preemption
 | |
|  * off of preempt_enable.  Kernel preemptions off return from interrupt
 | |
|  * occur there and call schedule directly.
 | |
|  */
 | |
| asmlinkage void __sched preempt_schedule(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	struct task_struct *task = current;
 | |
| 	int saved_lock_depth;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If there is a non-zero preempt_count or interrupts are disabled,
 | |
| 	 * we do not want to preempt the current task.  Just return..
 | |
| 	 */
 | |
| 	if (likely(ti->preempt_count || irqs_disabled()))
 | |
| 		return;
 | |
| 
 | |
| need_resched:
 | |
| 	add_preempt_count(PREEMPT_ACTIVE);
 | |
| 	/*
 | |
| 	 * We keep the big kernel semaphore locked, but we
 | |
| 	 * clear ->lock_depth so that schedule() doesnt
 | |
| 	 * auto-release the semaphore:
 | |
| 	 */
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	saved_lock_depth = task->lock_depth;
 | |
| 	task->lock_depth = -1;
 | |
| #endif
 | |
| 	schedule();
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	task->lock_depth = saved_lock_depth;
 | |
| #endif
 | |
| 	sub_preempt_count(PREEMPT_ACTIVE);
 | |
| 
 | |
| 	/* we could miss a preemption opportunity between schedule and now */
 | |
| 	barrier();
 | |
| 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | |
| 		goto need_resched;
 | |
| }
 | |
| EXPORT_SYMBOL(preempt_schedule);
 | |
| 
 | |
| /*
 | |
|  * this is the entry point to schedule() from kernel preemption
 | |
|  * off of irq context.
 | |
|  * Note, that this is called and return with irqs disabled. This will
 | |
|  * protect us against recursive calling from irq.
 | |
|  */
 | |
| asmlinkage void __sched preempt_schedule_irq(void)
 | |
| {
 | |
| 	struct thread_info *ti = current_thread_info();
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	struct task_struct *task = current;
 | |
| 	int saved_lock_depth;
 | |
| #endif
 | |
| 	/* Catch callers which need to be fixed */
 | |
| 	BUG_ON(ti->preempt_count || !irqs_disabled());
 | |
| 
 | |
| need_resched:
 | |
| 	add_preempt_count(PREEMPT_ACTIVE);
 | |
| 	/*
 | |
| 	 * We keep the big kernel semaphore locked, but we
 | |
| 	 * clear ->lock_depth so that schedule() doesnt
 | |
| 	 * auto-release the semaphore:
 | |
| 	 */
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	saved_lock_depth = task->lock_depth;
 | |
| 	task->lock_depth = -1;
 | |
| #endif
 | |
| 	local_irq_enable();
 | |
| 	schedule();
 | |
| 	local_irq_disable();
 | |
| #ifdef CONFIG_PREEMPT_BKL
 | |
| 	task->lock_depth = saved_lock_depth;
 | |
| #endif
 | |
| 	sub_preempt_count(PREEMPT_ACTIVE);
 | |
| 
 | |
| 	/* we could miss a preemption opportunity between schedule and now */
 | |
| 	barrier();
 | |
| 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
 | |
| 		goto need_resched;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT */
 | |
| 
 | |
| int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
 | |
| 			  void *key)
 | |
| {
 | |
| 	return try_to_wake_up(curr->private, mode, sync);
 | |
| }
 | |
| EXPORT_SYMBOL(default_wake_function);
 | |
| 
 | |
| /*
 | |
|  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 | |
|  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 | |
|  * number) then we wake all the non-exclusive tasks and one exclusive task.
 | |
|  *
 | |
|  * There are circumstances in which we can try to wake a task which has already
 | |
|  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 | |
|  * zero in this (rare) case, and we handle it by continuing to scan the queue.
 | |
|  */
 | |
| static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 | |
| 			     int nr_exclusive, int sync, void *key)
 | |
| {
 | |
| 	struct list_head *tmp, *next;
 | |
| 
 | |
| 	list_for_each_safe(tmp, next, &q->task_list) {
 | |
| 		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
 | |
| 		unsigned flags = curr->flags;
 | |
| 
 | |
| 		if (curr->func(curr, mode, sync, key) &&
 | |
| 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __wake_up - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  * @key: is directly passed to the wakeup function
 | |
|  */
 | |
| void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
 | |
| 			int nr_exclusive, void *key)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, 0, key);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(__wake_up);
 | |
| 
 | |
| /*
 | |
|  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 | |
|  */
 | |
| void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
 | |
| {
 | |
| 	__wake_up_common(q, mode, 1, 0, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __wake_up_sync - wake up threads blocked on a waitqueue.
 | |
|  * @q: the waitqueue
 | |
|  * @mode: which threads
 | |
|  * @nr_exclusive: how many wake-one or wake-many threads to wake up
 | |
|  *
 | |
|  * The sync wakeup differs that the waker knows that it will schedule
 | |
|  * away soon, so while the target thread will be woken up, it will not
 | |
|  * be migrated to another CPU - ie. the two threads are 'synchronized'
 | |
|  * with each other. This can prevent needless bouncing between CPUs.
 | |
|  *
 | |
|  * On UP it can prevent extra preemption.
 | |
|  */
 | |
| void fastcall
 | |
| __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int sync = 1;
 | |
| 
 | |
| 	if (unlikely(!q))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(!nr_exclusive))
 | |
| 		sync = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
 | |
| 
 | |
| void fastcall complete(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	x->done++;
 | |
| 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 | |
| 			 1, 0, NULL);
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(complete);
 | |
| 
 | |
| void fastcall complete_all(struct completion *x)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&x->wait.lock, flags);
 | |
| 	x->done += UINT_MAX/2;
 | |
| 	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
 | |
| 			 0, 0, NULL);
 | |
| 	spin_unlock_irqrestore(&x->wait.lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(complete_all);
 | |
| 
 | |
| void fastcall __sched wait_for_completion(struct completion *x)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_irq(&x->wait.lock);
 | |
| 	if (!x->done) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 		__add_wait_queue_tail(&x->wait, &wait);
 | |
| 		do {
 | |
| 			__set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&x->wait.lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&x->wait.lock);
 | |
| 		} while (!x->done);
 | |
| 		__remove_wait_queue(&x->wait, &wait);
 | |
| 	}
 | |
| 	x->done--;
 | |
| 	spin_unlock_irq(&x->wait.lock);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion);
 | |
| 
 | |
| unsigned long fastcall __sched
 | |
| wait_for_completion_timeout(struct completion *x, unsigned long timeout)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_irq(&x->wait.lock);
 | |
| 	if (!x->done) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 		__add_wait_queue_tail(&x->wait, &wait);
 | |
| 		do {
 | |
| 			__set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&x->wait.lock);
 | |
| 			timeout = schedule_timeout(timeout);
 | |
| 			spin_lock_irq(&x->wait.lock);
 | |
| 			if (!timeout) {
 | |
| 				__remove_wait_queue(&x->wait, &wait);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} while (!x->done);
 | |
| 		__remove_wait_queue(&x->wait, &wait);
 | |
| 	}
 | |
| 	x->done--;
 | |
| out:
 | |
| 	spin_unlock_irq(&x->wait.lock);
 | |
| 	return timeout;
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_timeout);
 | |
| 
 | |
| int fastcall __sched wait_for_completion_interruptible(struct completion *x)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_irq(&x->wait.lock);
 | |
| 	if (!x->done) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 		__add_wait_queue_tail(&x->wait, &wait);
 | |
| 		do {
 | |
| 			if (signal_pending(current)) {
 | |
| 				ret = -ERESTARTSYS;
 | |
| 				__remove_wait_queue(&x->wait, &wait);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&x->wait.lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&x->wait.lock);
 | |
| 		} while (!x->done);
 | |
| 		__remove_wait_queue(&x->wait, &wait);
 | |
| 	}
 | |
| 	x->done--;
 | |
| out:
 | |
| 	spin_unlock_irq(&x->wait.lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_interruptible);
 | |
| 
 | |
| unsigned long fastcall __sched
 | |
| wait_for_completion_interruptible_timeout(struct completion *x,
 | |
| 					  unsigned long timeout)
 | |
| {
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock_irq(&x->wait.lock);
 | |
| 	if (!x->done) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 
 | |
| 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 | |
| 		__add_wait_queue_tail(&x->wait, &wait);
 | |
| 		do {
 | |
| 			if (signal_pending(current)) {
 | |
| 				timeout = -ERESTARTSYS;
 | |
| 				__remove_wait_queue(&x->wait, &wait);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&x->wait.lock);
 | |
| 			timeout = schedule_timeout(timeout);
 | |
| 			spin_lock_irq(&x->wait.lock);
 | |
| 			if (!timeout) {
 | |
| 				__remove_wait_queue(&x->wait, &wait);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} while (!x->done);
 | |
| 		__remove_wait_queue(&x->wait, &wait);
 | |
| 	}
 | |
| 	x->done--;
 | |
| out:
 | |
| 	spin_unlock_irq(&x->wait.lock);
 | |
| 	return timeout;
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 | |
| 
 | |
| 
 | |
| #define	SLEEP_ON_VAR					\
 | |
| 	unsigned long flags;				\
 | |
| 	wait_queue_t wait;				\
 | |
| 	init_waitqueue_entry(&wait, current);
 | |
| 
 | |
| #define SLEEP_ON_HEAD					\
 | |
| 	spin_lock_irqsave(&q->lock,flags);		\
 | |
| 	__add_wait_queue(q, &wait);			\
 | |
| 	spin_unlock(&q->lock);
 | |
| 
 | |
| #define	SLEEP_ON_TAIL					\
 | |
| 	spin_lock_irq(&q->lock);			\
 | |
| 	__remove_wait_queue(q, &wait);			\
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| 
 | |
| void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 | |
| {
 | |
| 	SLEEP_ON_VAR
 | |
| 
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 
 | |
| 	SLEEP_ON_HEAD
 | |
| 	schedule();
 | |
| 	SLEEP_ON_TAIL
 | |
| }
 | |
| EXPORT_SYMBOL(interruptible_sleep_on);
 | |
| 
 | |
| long fastcall __sched
 | |
| interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | |
| {
 | |
| 	SLEEP_ON_VAR
 | |
| 
 | |
| 	current->state = TASK_INTERRUPTIBLE;
 | |
| 
 | |
| 	SLEEP_ON_HEAD
 | |
| 	timeout = schedule_timeout(timeout);
 | |
| 	SLEEP_ON_TAIL
 | |
| 
 | |
| 	return timeout;
 | |
| }
 | |
| EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 | |
| 
 | |
| void fastcall __sched sleep_on(wait_queue_head_t *q)
 | |
| {
 | |
| 	SLEEP_ON_VAR
 | |
| 
 | |
| 	current->state = TASK_UNINTERRUPTIBLE;
 | |
| 
 | |
| 	SLEEP_ON_HEAD
 | |
| 	schedule();
 | |
| 	SLEEP_ON_TAIL
 | |
| }
 | |
| EXPORT_SYMBOL(sleep_on);
 | |
| 
 | |
| long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 | |
| {
 | |
| 	SLEEP_ON_VAR
 | |
| 
 | |
| 	current->state = TASK_UNINTERRUPTIBLE;
 | |
| 
 | |
| 	SLEEP_ON_HEAD
 | |
| 	timeout = schedule_timeout(timeout);
 | |
| 	SLEEP_ON_TAIL
 | |
| 
 | |
| 	return timeout;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(sleep_on_timeout);
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 
 | |
| /*
 | |
|  * rt_mutex_setprio - set the current priority of a task
 | |
|  * @p: task
 | |
|  * @prio: prio value (kernel-internal form)
 | |
|  *
 | |
|  * This function changes the 'effective' priority of a task. It does
 | |
|  * not touch ->normal_prio like __setscheduler().
 | |
|  *
 | |
|  * Used by the rt_mutex code to implement priority inheritance logic.
 | |
|  */
 | |
| void rt_mutex_setprio(struct task_struct *p, int prio)
 | |
| {
 | |
| 	struct prio_array *array;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	int oldprio;
 | |
| 
 | |
| 	BUG_ON(prio < 0 || prio > MAX_PRIO);
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 
 | |
| 	oldprio = p->prio;
 | |
| 	array = p->array;
 | |
| 	if (array)
 | |
| 		dequeue_task(p, array);
 | |
| 	p->prio = prio;
 | |
| 
 | |
| 	if (array) {
 | |
| 		/*
 | |
| 		 * If changing to an RT priority then queue it
 | |
| 		 * in the active array!
 | |
| 		 */
 | |
| 		if (rt_task(p))
 | |
| 			array = rq->active;
 | |
| 		enqueue_task(p, array);
 | |
| 		/*
 | |
| 		 * Reschedule if we are currently running on this runqueue and
 | |
| 		 * our priority decreased, or if we are not currently running on
 | |
| 		 * this runqueue and our priority is higher than the current's
 | |
| 		 */
 | |
| 		if (task_running(rq, p)) {
 | |
| 			if (p->prio > oldprio)
 | |
| 				resched_task(rq->curr);
 | |
| 		} else if (TASK_PREEMPTS_CURR(p, rq))
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void set_user_nice(struct task_struct *p, long nice)
 | |
| {
 | |
| 	struct prio_array *array;
 | |
| 	int old_prio, delta;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * We have to be careful, if called from sys_setpriority(),
 | |
| 	 * the task might be in the middle of scheduling on another CPU.
 | |
| 	 */
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	/*
 | |
| 	 * The RT priorities are set via sched_setscheduler(), but we still
 | |
| 	 * allow the 'normal' nice value to be set - but as expected
 | |
| 	 * it wont have any effect on scheduling until the task is
 | |
| 	 * not SCHED_NORMAL/SCHED_BATCH:
 | |
| 	 */
 | |
| 	if (has_rt_policy(p)) {
 | |
| 		p->static_prio = NICE_TO_PRIO(nice);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	array = p->array;
 | |
| 	if (array) {
 | |
| 		dequeue_task(p, array);
 | |
| 		dec_raw_weighted_load(rq, p);
 | |
| 	}
 | |
| 
 | |
| 	p->static_prio = NICE_TO_PRIO(nice);
 | |
| 	set_load_weight(p);
 | |
| 	old_prio = p->prio;
 | |
| 	p->prio = effective_prio(p);
 | |
| 	delta = p->prio - old_prio;
 | |
| 
 | |
| 	if (array) {
 | |
| 		enqueue_task(p, array);
 | |
| 		inc_raw_weighted_load(rq, p);
 | |
| 		/*
 | |
| 		 * If the task increased its priority or is running and
 | |
| 		 * lowered its priority, then reschedule its CPU:
 | |
| 		 */
 | |
| 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| out_unlock:
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| }
 | |
| EXPORT_SYMBOL(set_user_nice);
 | |
| 
 | |
| /*
 | |
|  * can_nice - check if a task can reduce its nice value
 | |
|  * @p: task
 | |
|  * @nice: nice value
 | |
|  */
 | |
| int can_nice(const struct task_struct *p, const int nice)
 | |
| {
 | |
| 	/* convert nice value [19,-20] to rlimit style value [1,40] */
 | |
| 	int nice_rlim = 20 - nice;
 | |
| 
 | |
| 	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
 | |
| 		capable(CAP_SYS_NICE));
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_NICE
 | |
| 
 | |
| /*
 | |
|  * sys_nice - change the priority of the current process.
 | |
|  * @increment: priority increment
 | |
|  *
 | |
|  * sys_setpriority is a more generic, but much slower function that
 | |
|  * does similar things.
 | |
|  */
 | |
| asmlinkage long sys_nice(int increment)
 | |
| {
 | |
| 	long nice, retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setpriority might change our priority at the same moment.
 | |
| 	 * We don't have to worry. Conceptually one call occurs first
 | |
| 	 * and we have a single winner.
 | |
| 	 */
 | |
| 	if (increment < -40)
 | |
| 		increment = -40;
 | |
| 	if (increment > 40)
 | |
| 		increment = 40;
 | |
| 
 | |
| 	nice = PRIO_TO_NICE(current->static_prio) + increment;
 | |
| 	if (nice < -20)
 | |
| 		nice = -20;
 | |
| 	if (nice > 19)
 | |
| 		nice = 19;
 | |
| 
 | |
| 	if (increment < 0 && !can_nice(current, nice))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	retval = security_task_setnice(current, nice);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	set_user_nice(current, nice);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * task_prio - return the priority value of a given task.
 | |
|  * @p: the task in question.
 | |
|  *
 | |
|  * This is the priority value as seen by users in /proc.
 | |
|  * RT tasks are offset by -200. Normal tasks are centered
 | |
|  * around 0, value goes from -16 to +15.
 | |
|  */
 | |
| int task_prio(const struct task_struct *p)
 | |
| {
 | |
| 	return p->prio - MAX_RT_PRIO;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * task_nice - return the nice value of a given task.
 | |
|  * @p: the task in question.
 | |
|  */
 | |
| int task_nice(const struct task_struct *p)
 | |
| {
 | |
| 	return TASK_NICE(p);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(task_nice);
 | |
| 
 | |
| /**
 | |
|  * idle_cpu - is a given cpu idle currently?
 | |
|  * @cpu: the processor in question.
 | |
|  */
 | |
| int idle_cpu(int cpu)
 | |
| {
 | |
| 	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idle_task - return the idle task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  */
 | |
| struct task_struct *idle_task(int cpu)
 | |
| {
 | |
| 	return cpu_rq(cpu)->idle;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_process_by_pid - find a process with a matching PID value.
 | |
|  * @pid: the pid in question.
 | |
|  */
 | |
| static inline struct task_struct *find_process_by_pid(pid_t pid)
 | |
| {
 | |
| 	return pid ? find_task_by_pid(pid) : current;
 | |
| }
 | |
| 
 | |
| /* Actually do priority change: must hold rq lock. */
 | |
| static void __setscheduler(struct task_struct *p, int policy, int prio)
 | |
| {
 | |
| 	BUG_ON(p->array);
 | |
| 
 | |
| 	p->policy = policy;
 | |
| 	p->rt_priority = prio;
 | |
| 	p->normal_prio = normal_prio(p);
 | |
| 	/* we are holding p->pi_lock already */
 | |
| 	p->prio = rt_mutex_getprio(p);
 | |
| 	/*
 | |
| 	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
 | |
| 	 */
 | |
| 	if (policy == SCHED_BATCH)
 | |
| 		p->sleep_avg = 0;
 | |
| 	set_load_weight(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_setscheduler - change the scheduling policy and/or RT priority of
 | |
|  * a thread.
 | |
|  * @p: the task in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  *
 | |
|  * NOTE: the task may be already dead
 | |
|  */
 | |
| int sched_setscheduler(struct task_struct *p, int policy,
 | |
| 		       struct sched_param *param)
 | |
| {
 | |
| 	int retval, oldprio, oldpolicy = -1;
 | |
| 	struct prio_array *array;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	/* may grab non-irq protected spin_locks */
 | |
| 	BUG_ON(in_interrupt());
 | |
| recheck:
 | |
| 	/* double check policy once rq lock held */
 | |
| 	if (policy < 0)
 | |
| 		policy = oldpolicy = p->policy;
 | |
| 	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
 | |
| 			policy != SCHED_NORMAL && policy != SCHED_BATCH)
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 | |
| 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
 | |
| 	 * SCHED_BATCH is 0.
 | |
| 	 */
 | |
| 	if (param->sched_priority < 0 ||
 | |
| 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
 | |
| 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
 | |
| 		return -EINVAL;
 | |
| 	if (is_rt_policy(policy) != (param->sched_priority != 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow unprivileged RT tasks to decrease priority:
 | |
| 	 */
 | |
| 	if (!capable(CAP_SYS_NICE)) {
 | |
| 		if (is_rt_policy(policy)) {
 | |
| 			unsigned long rlim_rtprio;
 | |
| 			unsigned long flags;
 | |
| 
 | |
| 			if (!lock_task_sighand(p, &flags))
 | |
| 				return -ESRCH;
 | |
| 			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
 | |
| 			unlock_task_sighand(p, &flags);
 | |
| 
 | |
| 			/* can't set/change the rt policy */
 | |
| 			if (policy != p->policy && !rlim_rtprio)
 | |
| 				return -EPERM;
 | |
| 
 | |
| 			/* can't increase priority */
 | |
| 			if (param->sched_priority > p->rt_priority &&
 | |
| 			    param->sched_priority > rlim_rtprio)
 | |
| 				return -EPERM;
 | |
| 		}
 | |
| 
 | |
| 		/* can't change other user's priorities */
 | |
| 		if ((current->euid != p->euid) &&
 | |
| 		    (current->euid != p->uid))
 | |
| 			return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	retval = security_task_setscheduler(p, policy, param);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 	/*
 | |
| 	 * make sure no PI-waiters arrive (or leave) while we are
 | |
| 	 * changing the priority of the task:
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 	/*
 | |
| 	 * To be able to change p->policy safely, the apropriate
 | |
| 	 * runqueue lock must be held.
 | |
| 	 */
 | |
| 	rq = __task_rq_lock(p);
 | |
| 	/* recheck policy now with rq lock held */
 | |
| 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 | |
| 		policy = oldpolicy = -1;
 | |
| 		__task_rq_unlock(rq);
 | |
| 		spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 		goto recheck;
 | |
| 	}
 | |
| 	array = p->array;
 | |
| 	if (array)
 | |
| 		deactivate_task(p, rq);
 | |
| 	oldprio = p->prio;
 | |
| 	__setscheduler(p, policy, param->sched_priority);
 | |
| 	if (array) {
 | |
| 		__activate_task(p, rq);
 | |
| 		/*
 | |
| 		 * Reschedule if we are currently running on this runqueue and
 | |
| 		 * our priority decreased, or if we are not currently running on
 | |
| 		 * this runqueue and our priority is higher than the current's
 | |
| 		 */
 | |
| 		if (task_running(rq, p)) {
 | |
| 			if (p->prio > oldprio)
 | |
| 				resched_task(rq->curr);
 | |
| 		} else if (TASK_PREEMPTS_CURR(p, rq))
 | |
| 			resched_task(rq->curr);
 | |
| 	}
 | |
| 	__task_rq_unlock(rq);
 | |
| 	spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 
 | |
| 	rt_mutex_adjust_pi(p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sched_setscheduler);
 | |
| 
 | |
| static int
 | |
| do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 | |
| {
 | |
| 	struct sched_param lparam;
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	if (!param || pid < 0)
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	retval = -ESRCH;
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (p != NULL)
 | |
| 		retval = sched_setscheduler(p, policy, &lparam);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 | |
|  * @pid: the pid in question.
 | |
|  * @policy: new policy.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  */
 | |
| asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
 | |
| 				       struct sched_param __user *param)
 | |
| {
 | |
| 	/* negative values for policy are not valid */
 | |
| 	if (policy < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_sched_setscheduler(pid, policy, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setparam - set/change the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the new RT priority.
 | |
|  */
 | |
| asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
 | |
| {
 | |
| 	return do_sched_setscheduler(pid, -1, param);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 | |
|  * @pid: the pid in question.
 | |
|  */
 | |
| asmlinkage long sys_sched_getscheduler(pid_t pid)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval = -EINVAL;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		goto out_nounlock;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (p) {
 | |
| 		retval = security_task_getscheduler(p);
 | |
| 		if (!retval)
 | |
| 			retval = p->policy;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| out_nounlock:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getscheduler - get the RT priority of a thread
 | |
|  * @pid: the pid in question.
 | |
|  * @param: structure containing the RT priority.
 | |
|  */
 | |
| asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
 | |
| {
 | |
| 	struct sched_param lp;
 | |
| 	struct task_struct *p;
 | |
| 	int retval = -EINVAL;
 | |
| 
 | |
| 	if (!param || pid < 0)
 | |
| 		goto out_nounlock;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	retval = -ESRCH;
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	lp.sched_priority = p->rt_priority;
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * This one might sleep, we cannot do it with a spinlock held ...
 | |
| 	 */
 | |
| 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 | |
| 
 | |
| out_nounlock:
 | |
| 	return retval;
 | |
| 
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| long sched_setaffinity(pid_t pid, cpumask_t new_mask)
 | |
| {
 | |
| 	cpumask_t cpus_allowed;
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	lock_cpu_hotplug();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		unlock_cpu_hotplug();
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is not safe to call set_cpus_allowed with the
 | |
| 	 * tasklist_lock held.  We will bump the task_struct's
 | |
| 	 * usage count and then drop tasklist_lock.
 | |
| 	 */
 | |
| 	get_task_struct(p);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	retval = -EPERM;
 | |
| 	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 | |
| 			!capable(CAP_SYS_NICE))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_setscheduler(p, 0, NULL);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cpus_allowed = cpuset_cpus_allowed(p);
 | |
| 	cpus_and(new_mask, new_mask, cpus_allowed);
 | |
| 	retval = set_cpus_allowed(p, new_mask);
 | |
| 
 | |
| out_unlock:
 | |
| 	put_task_struct(p);
 | |
| 	unlock_cpu_hotplug();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 | |
| 			     cpumask_t *new_mask)
 | |
| {
 | |
| 	if (len < sizeof(cpumask_t)) {
 | |
| 		memset(new_mask, 0, sizeof(cpumask_t));
 | |
| 	} else if (len > sizeof(cpumask_t)) {
 | |
| 		len = sizeof(cpumask_t);
 | |
| 	}
 | |
| 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_setaffinity - set the cpu affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to the new cpu mask
 | |
|  */
 | |
| asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
 | |
| 				      unsigned long __user *user_mask_ptr)
 | |
| {
 | |
| 	cpumask_t new_mask;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	return sched_setaffinity(pid, new_mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Represents all cpu's present in the system
 | |
|  * In systems capable of hotplug, this map could dynamically grow
 | |
|  * as new cpu's are detected in the system via any platform specific
 | |
|  * method, such as ACPI for e.g.
 | |
|  */
 | |
| 
 | |
| cpumask_t cpu_present_map __read_mostly;
 | |
| EXPORT_SYMBOL(cpu_present_map);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
 | |
| EXPORT_SYMBOL(cpu_online_map);
 | |
| 
 | |
| cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
 | |
| EXPORT_SYMBOL(cpu_possible_map);
 | |
| #endif
 | |
| 
 | |
| long sched_getaffinity(pid_t pid, cpumask_t *mask)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval;
 | |
| 
 | |
| 	lock_cpu_hotplug();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
 | |
| 
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	unlock_cpu_hotplug();
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_getaffinity - get the cpu affinity of a process
 | |
|  * @pid: pid of the process
 | |
|  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 | |
|  * @user_mask_ptr: user-space pointer to hold the current cpu mask
 | |
|  */
 | |
| asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
 | |
| 				      unsigned long __user *user_mask_ptr)
 | |
| {
 | |
| 	int ret;
 | |
| 	cpumask_t mask;
 | |
| 
 | |
| 	if (len < sizeof(cpumask_t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = sched_getaffinity(pid, &mask);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return sizeof(cpumask_t);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * this function yields the current CPU by moving the calling thread
 | |
|  * to the expired array. If there are no other threads running on this
 | |
|  * CPU then this function will return.
 | |
|  */
 | |
| asmlinkage long sys_sched_yield(void)
 | |
| {
 | |
| 	struct rq *rq = this_rq_lock();
 | |
| 	struct prio_array *array = current->array, *target = rq->expired;
 | |
| 
 | |
| 	schedstat_inc(rq, yld_cnt);
 | |
| 	/*
 | |
| 	 * We implement yielding by moving the task into the expired
 | |
| 	 * queue.
 | |
| 	 *
 | |
| 	 * (special rule: RT tasks will just roundrobin in the active
 | |
| 	 *  array.)
 | |
| 	 */
 | |
| 	if (rt_task(current))
 | |
| 		target = rq->active;
 | |
| 
 | |
| 	if (array->nr_active == 1) {
 | |
| 		schedstat_inc(rq, yld_act_empty);
 | |
| 		if (!rq->expired->nr_active)
 | |
| 			schedstat_inc(rq, yld_both_empty);
 | |
| 	} else if (!rq->expired->nr_active)
 | |
| 		schedstat_inc(rq, yld_exp_empty);
 | |
| 
 | |
| 	if (array != target) {
 | |
| 		dequeue_task(current, array);
 | |
| 		enqueue_task(current, target);
 | |
| 	} else
 | |
| 		/*
 | |
| 		 * requeue_task is cheaper so perform that if possible.
 | |
| 		 */
 | |
| 		requeue_task(current, array);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are going to call schedule() anyway, there's
 | |
| 	 * no need to preempt or enable interrupts:
 | |
| 	 */
 | |
| 	__release(rq->lock);
 | |
| 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 | |
| 	_raw_spin_unlock(&rq->lock);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	schedule();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int __resched_legal(int expected_preempt_count)
 | |
| {
 | |
| 	if (unlikely(preempt_count() != expected_preempt_count))
 | |
| 		return 0;
 | |
| 	if (unlikely(system_state != SYSTEM_RUNNING))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __cond_resched(void)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
 | |
| 	__might_sleep(__FILE__, __LINE__);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * The BKS might be reacquired before we have dropped
 | |
| 	 * PREEMPT_ACTIVE, which could trigger a second
 | |
| 	 * cond_resched() call.
 | |
| 	 */
 | |
| 	do {
 | |
| 		add_preempt_count(PREEMPT_ACTIVE);
 | |
| 		schedule();
 | |
| 		sub_preempt_count(PREEMPT_ACTIVE);
 | |
| 	} while (need_resched());
 | |
| }
 | |
| 
 | |
| int __sched cond_resched(void)
 | |
| {
 | |
| 	if (need_resched() && __resched_legal(0)) {
 | |
| 		__cond_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(cond_resched);
 | |
| 
 | |
| /*
 | |
|  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 | |
|  * call schedule, and on return reacquire the lock.
 | |
|  *
 | |
|  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 | |
|  * operations here to prevent schedule() from being called twice (once via
 | |
|  * spin_unlock(), once by hand).
 | |
|  */
 | |
| int cond_resched_lock(spinlock_t *lock)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (need_lockbreak(lock)) {
 | |
| 		spin_unlock(lock);
 | |
| 		cpu_relax();
 | |
| 		ret = 1;
 | |
| 		spin_lock(lock);
 | |
| 	}
 | |
| 	if (need_resched() && __resched_legal(1)) {
 | |
| 		spin_release(&lock->dep_map, 1, _THIS_IP_);
 | |
| 		_raw_spin_unlock(lock);
 | |
| 		preempt_enable_no_resched();
 | |
| 		__cond_resched();
 | |
| 		ret = 1;
 | |
| 		spin_lock(lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(cond_resched_lock);
 | |
| 
 | |
| int __sched cond_resched_softirq(void)
 | |
| {
 | |
| 	BUG_ON(!in_softirq());
 | |
| 
 | |
| 	if (need_resched() && __resched_legal(0)) {
 | |
| 		raw_local_irq_disable();
 | |
| 		_local_bh_enable();
 | |
| 		raw_local_irq_enable();
 | |
| 		__cond_resched();
 | |
| 		local_bh_disable();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(cond_resched_softirq);
 | |
| 
 | |
| /**
 | |
|  * yield - yield the current processor to other threads.
 | |
|  *
 | |
|  * this is a shortcut for kernel-space yielding - it marks the
 | |
|  * thread runnable and calls sys_sched_yield().
 | |
|  */
 | |
| void __sched yield(void)
 | |
| {
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| 	sys_sched_yield();
 | |
| }
 | |
| EXPORT_SYMBOL(yield);
 | |
| 
 | |
| /*
 | |
|  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 | |
|  * that process accounting knows that this is a task in IO wait state.
 | |
|  *
 | |
|  * But don't do that if it is a deliberate, throttling IO wait (this task
 | |
|  * has set its backing_dev_info: the queue against which it should throttle)
 | |
|  */
 | |
| void __sched io_schedule(void)
 | |
| {
 | |
| 	struct rq *rq = &__raw_get_cpu_var(runqueues);
 | |
| 
 | |
| 	delayacct_blkio_start();
 | |
| 	atomic_inc(&rq->nr_iowait);
 | |
| 	schedule();
 | |
| 	atomic_dec(&rq->nr_iowait);
 | |
| 	delayacct_blkio_end();
 | |
| }
 | |
| EXPORT_SYMBOL(io_schedule);
 | |
| 
 | |
| long __sched io_schedule_timeout(long timeout)
 | |
| {
 | |
| 	struct rq *rq = &__raw_get_cpu_var(runqueues);
 | |
| 	long ret;
 | |
| 
 | |
| 	delayacct_blkio_start();
 | |
| 	atomic_inc(&rq->nr_iowait);
 | |
| 	ret = schedule_timeout(timeout);
 | |
| 	atomic_dec(&rq->nr_iowait);
 | |
| 	delayacct_blkio_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_max - return maximum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * this syscall returns the maximum rt_priority that can be used
 | |
|  * by a given scheduling class.
 | |
|  */
 | |
| asmlinkage long sys_sched_get_priority_max(int policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = MAX_USER_RT_PRIO-1;
 | |
| 		break;
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_get_priority_min - return minimum RT priority.
 | |
|  * @policy: scheduling class.
 | |
|  *
 | |
|  * this syscall returns the minimum rt_priority that can be used
 | |
|  * by a given scheduling class.
 | |
|  */
 | |
| asmlinkage long sys_sched_get_priority_min(int policy)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	switch (policy) {
 | |
| 	case SCHED_FIFO:
 | |
| 	case SCHED_RR:
 | |
| 		ret = 1;
 | |
| 		break;
 | |
| 	case SCHED_NORMAL:
 | |
| 	case SCHED_BATCH:
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_sched_rr_get_interval - return the default timeslice of a process.
 | |
|  * @pid: pid of the process.
 | |
|  * @interval: userspace pointer to the timeslice value.
 | |
|  *
 | |
|  * this syscall writes the default timeslice value of a given process
 | |
|  * into the user-space timespec buffer. A value of '0' means infinity.
 | |
|  */
 | |
| asmlinkage
 | |
| long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int retval = -EINVAL;
 | |
| 	struct timespec t;
 | |
| 
 | |
| 	if (pid < 0)
 | |
| 		goto out_nounlock;
 | |
| 
 | |
| 	retval = -ESRCH;
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_process_by_pid(pid);
 | |
| 	if (!p)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	retval = security_task_getscheduler(p);
 | |
| 	if (retval)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	jiffies_to_timespec(p->policy == SCHED_FIFO ?
 | |
| 				0 : task_timeslice(p), &t);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
 | |
| out_nounlock:
 | |
| 	return retval;
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *eldest_child(struct task_struct *p)
 | |
| {
 | |
| 	if (list_empty(&p->children))
 | |
| 		return NULL;
 | |
| 	return list_entry(p->children.next,struct task_struct,sibling);
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *older_sibling(struct task_struct *p)
 | |
| {
 | |
| 	if (p->sibling.prev==&p->parent->children)
 | |
| 		return NULL;
 | |
| 	return list_entry(p->sibling.prev,struct task_struct,sibling);
 | |
| }
 | |
| 
 | |
| static inline struct task_struct *younger_sibling(struct task_struct *p)
 | |
| {
 | |
| 	if (p->sibling.next==&p->parent->children)
 | |
| 		return NULL;
 | |
| 	return list_entry(p->sibling.next,struct task_struct,sibling);
 | |
| }
 | |
| 
 | |
| static const char stat_nam[] = "RSDTtZX";
 | |
| 
 | |
| static void show_task(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *relative;
 | |
| 	unsigned long free = 0;
 | |
| 	unsigned state;
 | |
| 
 | |
| 	state = p->state ? __ffs(p->state) + 1 : 0;
 | |
| 	printk("%-13.13s %c", p->comm,
 | |
| 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
 | |
| #if (BITS_PER_LONG == 32)
 | |
| 	if (state == TASK_RUNNING)
 | |
| 		printk(" running ");
 | |
| 	else
 | |
| 		printk(" %08lX ", thread_saved_pc(p));
 | |
| #else
 | |
| 	if (state == TASK_RUNNING)
 | |
| 		printk("  running task   ");
 | |
| 	else
 | |
| 		printk(" %016lx ", thread_saved_pc(p));
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| 	{
 | |
| 		unsigned long *n = end_of_stack(p);
 | |
| 		while (!*n)
 | |
| 			n++;
 | |
| 		free = (unsigned long)n - (unsigned long)end_of_stack(p);
 | |
| 	}
 | |
| #endif
 | |
| 	printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
 | |
| 	if ((relative = eldest_child(p)))
 | |
| 		printk("%5d ", relative->pid);
 | |
| 	else
 | |
| 		printk("      ");
 | |
| 	if ((relative = younger_sibling(p)))
 | |
| 		printk("%7d", relative->pid);
 | |
| 	else
 | |
| 		printk("       ");
 | |
| 	if ((relative = older_sibling(p)))
 | |
| 		printk(" %5d", relative->pid);
 | |
| 	else
 | |
| 		printk("      ");
 | |
| 	if (!p->mm)
 | |
| 		printk(" (L-TLB)\n");
 | |
| 	else
 | |
| 		printk(" (NOTLB)\n");
 | |
| 
 | |
| 	if (state != TASK_RUNNING)
 | |
| 		show_stack(p, NULL);
 | |
| }
 | |
| 
 | |
| void show_state(void)
 | |
| {
 | |
| 	struct task_struct *g, *p;
 | |
| 
 | |
| #if (BITS_PER_LONG == 32)
 | |
| 	printk("\n"
 | |
| 	       "                                               sibling\n");
 | |
| 	printk("  task             PC      pid father child younger older\n");
 | |
| #else
 | |
| 	printk("\n"
 | |
| 	       "                                                       sibling\n");
 | |
| 	printk("  task                 PC          pid father child younger older\n");
 | |
| #endif
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	do_each_thread(g, p) {
 | |
| 		/*
 | |
| 		 * reset the NMI-timeout, listing all files on a slow
 | |
| 		 * console might take alot of time:
 | |
| 		 */
 | |
| 		touch_nmi_watchdog();
 | |
| 		show_task(p);
 | |
| 	} while_each_thread(g, p);
 | |
| 
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	debug_show_all_locks();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_idle - set up an idle thread for a given CPU
 | |
|  * @idle: task in question
 | |
|  * @cpu: cpu the idle task belongs to
 | |
|  *
 | |
|  * NOTE: this function does not set the idle thread's NEED_RESCHED
 | |
|  * flag, to make booting more robust.
 | |
|  */
 | |
| void __cpuinit init_idle(struct task_struct *idle, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	idle->timestamp = sched_clock();
 | |
| 	idle->sleep_avg = 0;
 | |
| 	idle->array = NULL;
 | |
| 	idle->prio = idle->normal_prio = MAX_PRIO;
 | |
| 	idle->state = TASK_RUNNING;
 | |
| 	idle->cpus_allowed = cpumask_of_cpu(cpu);
 | |
| 	set_task_cpu(idle, cpu);
 | |
| 
 | |
| 	spin_lock_irqsave(&rq->lock, flags);
 | |
| 	rq->curr = rq->idle = idle;
 | |
| #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
 | |
| 	idle->oncpu = 1;
 | |
| #endif
 | |
| 	spin_unlock_irqrestore(&rq->lock, flags);
 | |
| 
 | |
| 	/* Set the preempt count _outside_ the spinlocks! */
 | |
| #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
 | |
| 	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
 | |
| #else
 | |
| 	task_thread_info(idle)->preempt_count = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In a system that switches off the HZ timer nohz_cpu_mask
 | |
|  * indicates which cpus entered this state. This is used
 | |
|  * in the rcu update to wait only for active cpus. For system
 | |
|  * which do not switch off the HZ timer nohz_cpu_mask should
 | |
|  * always be CPU_MASK_NONE.
 | |
|  */
 | |
| cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * This is how migration works:
 | |
|  *
 | |
|  * 1) we queue a struct migration_req structure in the source CPU's
 | |
|  *    runqueue and wake up that CPU's migration thread.
 | |
|  * 2) we down() the locked semaphore => thread blocks.
 | |
|  * 3) migration thread wakes up (implicitly it forces the migrated
 | |
|  *    thread off the CPU)
 | |
|  * 4) it gets the migration request and checks whether the migrated
 | |
|  *    task is still in the wrong runqueue.
 | |
|  * 5) if it's in the wrong runqueue then the migration thread removes
 | |
|  *    it and puts it into the right queue.
 | |
|  * 6) migration thread up()s the semaphore.
 | |
|  * 7) we wake up and the migration is done.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Change a given task's CPU affinity. Migrate the thread to a
 | |
|  * proper CPU and schedule it away if the CPU it's executing on
 | |
|  * is removed from the allowed bitmask.
 | |
|  *
 | |
|  * NOTE: the caller must have a valid reference to the task, the
 | |
|  * task must not exit() & deallocate itself prematurely.  The
 | |
|  * call is not atomic; no spinlocks may be held.
 | |
|  */
 | |
| int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
 | |
| {
 | |
| 	struct migration_req req;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	rq = task_rq_lock(p, &flags);
 | |
| 	if (!cpus_intersects(new_mask, cpu_online_map)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	p->cpus_allowed = new_mask;
 | |
| 	/* Can the task run on the task's current CPU? If so, we're done */
 | |
| 	if (cpu_isset(task_cpu(p), new_mask))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
 | |
| 		/* Need help from migration thread: drop lock and wait. */
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		wake_up_process(rq->migration_thread);
 | |
| 		wait_for_completion(&req.done);
 | |
| 		tlb_migrate_finish(p->mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| out:
 | |
| 	task_rq_unlock(rq, &flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_cpus_allowed);
 | |
| 
 | |
| /*
 | |
|  * Move (not current) task off this cpu, onto dest cpu.  We're doing
 | |
|  * this because either it can't run here any more (set_cpus_allowed()
 | |
|  * away from this CPU, or CPU going down), or because we're
 | |
|  * attempting to rebalance this task on exec (sched_exec).
 | |
|  *
 | |
|  * So we race with normal scheduler movements, but that's OK, as long
 | |
|  * as the task is no longer on this CPU.
 | |
|  *
 | |
|  * Returns non-zero if task was successfully migrated.
 | |
|  */
 | |
| static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
 | |
| {
 | |
| 	struct rq *rq_dest, *rq_src;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (unlikely(cpu_is_offline(dest_cpu)))
 | |
| 		return ret;
 | |
| 
 | |
| 	rq_src = cpu_rq(src_cpu);
 | |
| 	rq_dest = cpu_rq(dest_cpu);
 | |
| 
 | |
| 	double_rq_lock(rq_src, rq_dest);
 | |
| 	/* Already moved. */
 | |
| 	if (task_cpu(p) != src_cpu)
 | |
| 		goto out;
 | |
| 	/* Affinity changed (again). */
 | |
| 	if (!cpu_isset(dest_cpu, p->cpus_allowed))
 | |
| 		goto out;
 | |
| 
 | |
| 	set_task_cpu(p, dest_cpu);
 | |
| 	if (p->array) {
 | |
| 		/*
 | |
| 		 * Sync timestamp with rq_dest's before activating.
 | |
| 		 * The same thing could be achieved by doing this step
 | |
| 		 * afterwards, and pretending it was a local activate.
 | |
| 		 * This way is cleaner and logically correct.
 | |
| 		 */
 | |
| 		p->timestamp = p->timestamp - rq_src->timestamp_last_tick
 | |
| 				+ rq_dest->timestamp_last_tick;
 | |
| 		deactivate_task(p, rq_src);
 | |
| 		__activate_task(p, rq_dest);
 | |
| 		if (TASK_PREEMPTS_CURR(p, rq_dest))
 | |
| 			resched_task(rq_dest->curr);
 | |
| 	}
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	double_rq_unlock(rq_src, rq_dest);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migration_thread - this is a highprio system thread that performs
 | |
|  * thread migration by bumping thread off CPU then 'pushing' onto
 | |
|  * another runqueue.
 | |
|  */
 | |
| static int migration_thread(void *data)
 | |
| {
 | |
| 	int cpu = (long)data;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	rq = cpu_rq(cpu);
 | |
| 	BUG_ON(rq->migration_thread != current);
 | |
| 
 | |
| 	set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		struct migration_req *req;
 | |
| 		struct list_head *head;
 | |
| 
 | |
| 		try_to_freeze();
 | |
| 
 | |
| 		spin_lock_irq(&rq->lock);
 | |
| 
 | |
| 		if (cpu_is_offline(cpu)) {
 | |
| 			spin_unlock_irq(&rq->lock);
 | |
| 			goto wait_to_die;
 | |
| 		}
 | |
| 
 | |
| 		if (rq->active_balance) {
 | |
| 			active_load_balance(rq, cpu);
 | |
| 			rq->active_balance = 0;
 | |
| 		}
 | |
| 
 | |
| 		head = &rq->migration_queue;
 | |
| 
 | |
| 		if (list_empty(head)) {
 | |
| 			spin_unlock_irq(&rq->lock);
 | |
| 			schedule();
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			continue;
 | |
| 		}
 | |
| 		req = list_entry(head->next, struct migration_req, list);
 | |
| 		list_del_init(head->next);
 | |
| 
 | |
| 		spin_unlock(&rq->lock);
 | |
| 		__migrate_task(req->task, cpu, req->dest_cpu);
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		complete(&req->done);
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	return 0;
 | |
| 
 | |
| wait_to_die:
 | |
| 	/* Wait for kthread_stop */
 | |
| 	set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		schedule();
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /* Figure out where task on dead CPU should go, use force if neccessary. */
 | |
| static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	cpumask_t mask;
 | |
| 	struct rq *rq;
 | |
| 	int dest_cpu;
 | |
| 
 | |
| restart:
 | |
| 	/* On same node? */
 | |
| 	mask = node_to_cpumask(cpu_to_node(dead_cpu));
 | |
| 	cpus_and(mask, mask, p->cpus_allowed);
 | |
| 	dest_cpu = any_online_cpu(mask);
 | |
| 
 | |
| 	/* On any allowed CPU? */
 | |
| 	if (dest_cpu == NR_CPUS)
 | |
| 		dest_cpu = any_online_cpu(p->cpus_allowed);
 | |
| 
 | |
| 	/* No more Mr. Nice Guy. */
 | |
| 	if (dest_cpu == NR_CPUS) {
 | |
| 		rq = task_rq_lock(p, &flags);
 | |
| 		cpus_setall(p->cpus_allowed);
 | |
| 		dest_cpu = any_online_cpu(p->cpus_allowed);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't tell them about moving exiting tasks or
 | |
| 		 * kernel threads (both mm NULL), since they never
 | |
| 		 * leave kernel.
 | |
| 		 */
 | |
| 		if (p->mm && printk_ratelimit())
 | |
| 			printk(KERN_INFO "process %d (%s) no "
 | |
| 			       "longer affine to cpu%d\n",
 | |
| 			       p->pid, p->comm, dead_cpu);
 | |
| 	}
 | |
| 	if (!__migrate_task(p, dead_cpu, dest_cpu))
 | |
| 		goto restart;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While a dead CPU has no uninterruptible tasks queued at this point,
 | |
|  * it might still have a nonzero ->nr_uninterruptible counter, because
 | |
|  * for performance reasons the counter is not stricly tracking tasks to
 | |
|  * their home CPUs. So we just add the counter to another CPU's counter,
 | |
|  * to keep the global sum constant after CPU-down:
 | |
|  */
 | |
| static void migrate_nr_uninterruptible(struct rq *rq_src)
 | |
| {
 | |
| 	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	double_rq_lock(rq_src, rq_dest);
 | |
| 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
 | |
| 	rq_src->nr_uninterruptible = 0;
 | |
| 	double_rq_unlock(rq_src, rq_dest);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Run through task list and migrate tasks from the dead cpu. */
 | |
| static void migrate_live_tasks(int src_cpu)
 | |
| {
 | |
| 	struct task_struct *p, *t;
 | |
| 
 | |
| 	write_lock_irq(&tasklist_lock);
 | |
| 
 | |
| 	do_each_thread(t, p) {
 | |
| 		if (p == current)
 | |
| 			continue;
 | |
| 
 | |
| 		if (task_cpu(p) == src_cpu)
 | |
| 			move_task_off_dead_cpu(src_cpu, p);
 | |
| 	} while_each_thread(t, p);
 | |
| 
 | |
| 	write_unlock_irq(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| /* Schedules idle task to be the next runnable task on current CPU.
 | |
|  * It does so by boosting its priority to highest possible and adding it to
 | |
|  * the _front_ of the runqueue. Used by CPU offline code.
 | |
|  */
 | |
| void sched_idle_next(void)
 | |
| {
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct rq *rq = cpu_rq(this_cpu);
 | |
| 	struct task_struct *p = rq->idle;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* cpu has to be offline */
 | |
| 	BUG_ON(cpu_online(this_cpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * Strictly not necessary since rest of the CPUs are stopped by now
 | |
| 	 * and interrupts disabled on the current cpu.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 | |
| 
 | |
| 	/* Add idle task to the _front_ of its priority queue: */
 | |
| 	__activate_idle_task(p, rq);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensures that the idle task is using init_mm right before its cpu goes
 | |
|  * offline.
 | |
|  */
 | |
| void idle_task_exit(void)
 | |
| {
 | |
| 	struct mm_struct *mm = current->active_mm;
 | |
| 
 | |
| 	BUG_ON(cpu_online(smp_processor_id()));
 | |
| 
 | |
| 	if (mm != &init_mm)
 | |
| 		switch_mm(mm, &init_mm, current);
 | |
| 	mmdrop(mm);
 | |
| }
 | |
| 
 | |
| static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(dead_cpu);
 | |
| 
 | |
| 	/* Must be exiting, otherwise would be on tasklist. */
 | |
| 	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
 | |
| 
 | |
| 	/* Cannot have done final schedule yet: would have vanished. */
 | |
| 	BUG_ON(p->state == TASK_DEAD);
 | |
| 
 | |
| 	get_task_struct(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop lock around migration; if someone else moves it,
 | |
| 	 * that's OK.  No task can be added to this CPU, so iteration is
 | |
| 	 * fine.
 | |
| 	 */
 | |
| 	spin_unlock_irq(&rq->lock);
 | |
| 	move_task_off_dead_cpu(dead_cpu, p);
 | |
| 	spin_lock_irq(&rq->lock);
 | |
| 
 | |
| 	put_task_struct(p);
 | |
| }
 | |
| 
 | |
| /* release_task() removes task from tasklist, so we won't find dead tasks. */
 | |
| static void migrate_dead_tasks(unsigned int dead_cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(dead_cpu);
 | |
| 	unsigned int arr, i;
 | |
| 
 | |
| 	for (arr = 0; arr < 2; arr++) {
 | |
| 		for (i = 0; i < MAX_PRIO; i++) {
 | |
| 			struct list_head *list = &rq->arrays[arr].queue[i];
 | |
| 
 | |
| 			while (!list_empty(list))
 | |
| 				migrate_dead(dead_cpu, list_entry(list->next,
 | |
| 					     struct task_struct, run_list));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * migration_call - callback that gets triggered when a CPU is added.
 | |
|  * Here we can start up the necessary migration thread for the new CPU.
 | |
|  */
 | |
| static int __cpuinit
 | |
| migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	int cpu = (long)hcpu;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
 | |
| 		if (IS_ERR(p))
 | |
| 			return NOTIFY_BAD;
 | |
| 		p->flags |= PF_NOFREEZE;
 | |
| 		kthread_bind(p, cpu);
 | |
| 		/* Must be high prio: stop_machine expects to yield to it. */
 | |
| 		rq = task_rq_lock(p, &flags);
 | |
| 		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		cpu_rq(cpu)->migration_thread = p;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_ONLINE:
 | |
| 		/* Strictly unneccessary, as first user will wake it. */
 | |
| 		wake_up_process(cpu_rq(cpu)->migration_thread);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_UP_CANCELED:
 | |
| 		if (!cpu_rq(cpu)->migration_thread)
 | |
| 			break;
 | |
| 		/* Unbind it from offline cpu so it can run.  Fall thru. */
 | |
| 		kthread_bind(cpu_rq(cpu)->migration_thread,
 | |
| 			     any_online_cpu(cpu_online_map));
 | |
| 		kthread_stop(cpu_rq(cpu)->migration_thread);
 | |
| 		cpu_rq(cpu)->migration_thread = NULL;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DEAD:
 | |
| 		migrate_live_tasks(cpu);
 | |
| 		rq = cpu_rq(cpu);
 | |
| 		kthread_stop(rq->migration_thread);
 | |
| 		rq->migration_thread = NULL;
 | |
| 		/* Idle task back to normal (off runqueue, low prio) */
 | |
| 		rq = task_rq_lock(rq->idle, &flags);
 | |
| 		deactivate_task(rq->idle, rq);
 | |
| 		rq->idle->static_prio = MAX_PRIO;
 | |
| 		__setscheduler(rq->idle, SCHED_NORMAL, 0);
 | |
| 		migrate_dead_tasks(cpu);
 | |
| 		task_rq_unlock(rq, &flags);
 | |
| 		migrate_nr_uninterruptible(rq);
 | |
| 		BUG_ON(rq->nr_running != 0);
 | |
| 
 | |
| 		/* No need to migrate the tasks: it was best-effort if
 | |
| 		 * they didn't do lock_cpu_hotplug().  Just wake up
 | |
| 		 * the requestors. */
 | |
| 		spin_lock_irq(&rq->lock);
 | |
| 		while (!list_empty(&rq->migration_queue)) {
 | |
| 			struct migration_req *req;
 | |
| 
 | |
| 			req = list_entry(rq->migration_queue.next,
 | |
| 					 struct migration_req, list);
 | |
| 			list_del_init(&req->list);
 | |
| 			complete(&req->done);
 | |
| 		}
 | |
| 		spin_unlock_irq(&rq->lock);
 | |
| 		break;
 | |
| #endif
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /* Register at highest priority so that task migration (migrate_all_tasks)
 | |
|  * happens before everything else.
 | |
|  */
 | |
| static struct notifier_block __cpuinitdata migration_notifier = {
 | |
| 	.notifier_call = migration_call,
 | |
| 	.priority = 10
 | |
| };
 | |
| 
 | |
| int __init migration_init(void)
 | |
| {
 | |
| 	void *cpu = (void *)(long)smp_processor_id();
 | |
| 	int err;
 | |
| 
 | |
| 	/* Start one for the boot CPU: */
 | |
| 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
 | |
| 	BUG_ON(err == NOTIFY_BAD);
 | |
| 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
 | |
| 	register_cpu_notifier(&migration_notifier);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| #undef SCHED_DOMAIN_DEBUG
 | |
| #ifdef SCHED_DOMAIN_DEBUG
 | |
| static void sched_domain_debug(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	int level = 0;
 | |
| 
 | |
| 	if (!sd) {
 | |
| 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
 | |
| 
 | |
| 	do {
 | |
| 		int i;
 | |
| 		char str[NR_CPUS];
 | |
| 		struct sched_group *group = sd->groups;
 | |
| 		cpumask_t groupmask;
 | |
| 
 | |
| 		cpumask_scnprintf(str, NR_CPUS, sd->span);
 | |
| 		cpus_clear(groupmask);
 | |
| 
 | |
| 		printk(KERN_DEBUG);
 | |
| 		for (i = 0; i < level + 1; i++)
 | |
| 			printk(" ");
 | |
| 		printk("domain %d: ", level);
 | |
| 
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE)) {
 | |
| 			printk("does not load-balance\n");
 | |
| 			if (sd->parent)
 | |
| 				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		printk("span %s\n", str);
 | |
| 
 | |
| 		if (!cpu_isset(cpu, sd->span))
 | |
| 			printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
 | |
| 		if (!cpu_isset(cpu, group->cpumask))
 | |
| 			printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 | |
| 
 | |
| 		printk(KERN_DEBUG);
 | |
| 		for (i = 0; i < level + 2; i++)
 | |
| 			printk(" ");
 | |
| 		printk("groups:");
 | |
| 		do {
 | |
| 			if (!group) {
 | |
| 				printk("\n");
 | |
| 				printk(KERN_ERR "ERROR: group is NULL\n");
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (!group->cpu_power) {
 | |
| 				printk("\n");
 | |
| 				printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
 | |
| 			}
 | |
| 
 | |
| 			if (!cpus_weight(group->cpumask)) {
 | |
| 				printk("\n");
 | |
| 				printk(KERN_ERR "ERROR: empty group\n");
 | |
| 			}
 | |
| 
 | |
| 			if (cpus_intersects(groupmask, group->cpumask)) {
 | |
| 				printk("\n");
 | |
| 				printk(KERN_ERR "ERROR: repeated CPUs\n");
 | |
| 			}
 | |
| 
 | |
| 			cpus_or(groupmask, groupmask, group->cpumask);
 | |
| 
 | |
| 			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
 | |
| 			printk(" %s", str);
 | |
| 
 | |
| 			group = group->next;
 | |
| 		} while (group != sd->groups);
 | |
| 		printk("\n");
 | |
| 
 | |
| 		if (!cpus_equal(sd->span, groupmask))
 | |
| 			printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 | |
| 
 | |
| 		level++;
 | |
| 		sd = sd->parent;
 | |
| 
 | |
| 		if (sd) {
 | |
| 			if (!cpus_subset(groupmask, sd->span))
 | |
| 				printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 | |
| 		}
 | |
| 
 | |
| 	} while (sd);
 | |
| }
 | |
| #else
 | |
| # define sched_domain_debug(sd, cpu) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static int sd_degenerate(struct sched_domain *sd)
 | |
| {
 | |
| 	if (cpus_weight(sd->span) == 1)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Following flags need at least 2 groups */
 | |
| 	if (sd->flags & (SD_LOAD_BALANCE |
 | |
| 			 SD_BALANCE_NEWIDLE |
 | |
| 			 SD_BALANCE_FORK |
 | |
| 			 SD_BALANCE_EXEC |
 | |
| 			 SD_SHARE_CPUPOWER |
 | |
| 			 SD_SHARE_PKG_RESOURCES)) {
 | |
| 		if (sd->groups != sd->groups->next)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Following flags don't use groups */
 | |
| 	if (sd->flags & (SD_WAKE_IDLE |
 | |
| 			 SD_WAKE_AFFINE |
 | |
| 			 SD_WAKE_BALANCE))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 | |
| {
 | |
| 	unsigned long cflags = sd->flags, pflags = parent->flags;
 | |
| 
 | |
| 	if (sd_degenerate(parent))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!cpus_equal(sd->span, parent->span))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Does parent contain flags not in child? */
 | |
| 	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
 | |
| 	if (cflags & SD_WAKE_AFFINE)
 | |
| 		pflags &= ~SD_WAKE_BALANCE;
 | |
| 	/* Flags needing groups don't count if only 1 group in parent */
 | |
| 	if (parent->groups == parent->groups->next) {
 | |
| 		pflags &= ~(SD_LOAD_BALANCE |
 | |
| 				SD_BALANCE_NEWIDLE |
 | |
| 				SD_BALANCE_FORK |
 | |
| 				SD_BALANCE_EXEC |
 | |
| 				SD_SHARE_CPUPOWER |
 | |
| 				SD_SHARE_PKG_RESOURCES);
 | |
| 	}
 | |
| 	if (~cflags & pflags)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 | |
|  * hold the hotplug lock.
 | |
|  */
 | |
| static void cpu_attach_domain(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	struct sched_domain *tmp;
 | |
| 
 | |
| 	/* Remove the sched domains which do not contribute to scheduling. */
 | |
| 	for (tmp = sd; tmp; tmp = tmp->parent) {
 | |
| 		struct sched_domain *parent = tmp->parent;
 | |
| 		if (!parent)
 | |
| 			break;
 | |
| 		if (sd_parent_degenerate(tmp, parent)) {
 | |
| 			tmp->parent = parent->parent;
 | |
| 			if (parent->parent)
 | |
| 				parent->parent->child = tmp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sd && sd_degenerate(sd)) {
 | |
| 		sd = sd->parent;
 | |
| 		if (sd)
 | |
| 			sd->child = NULL;
 | |
| 	}
 | |
| 
 | |
| 	sched_domain_debug(sd, cpu);
 | |
| 
 | |
| 	rcu_assign_pointer(rq->sd, sd);
 | |
| }
 | |
| 
 | |
| /* cpus with isolated domains */
 | |
| static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
 | |
| 
 | |
| /* Setup the mask of cpus configured for isolated domains */
 | |
| static int __init isolated_cpu_setup(char *str)
 | |
| {
 | |
| 	int ints[NR_CPUS], i;
 | |
| 
 | |
| 	str = get_options(str, ARRAY_SIZE(ints), ints);
 | |
| 	cpus_clear(cpu_isolated_map);
 | |
| 	for (i = 1; i <= ints[0]; i++)
 | |
| 		if (ints[i] < NR_CPUS)
 | |
| 			cpu_set(ints[i], cpu_isolated_map);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup ("isolcpus=", isolated_cpu_setup);
 | |
| 
 | |
| /*
 | |
|  * init_sched_build_groups takes an array of groups, the cpumask we wish
 | |
|  * to span, and a pointer to a function which identifies what group a CPU
 | |
|  * belongs to. The return value of group_fn must be a valid index into the
 | |
|  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
 | |
|  * keep track of groups covered with a cpumask_t).
 | |
|  *
 | |
|  * init_sched_build_groups will build a circular linked list of the groups
 | |
|  * covered by the given span, and will set each group's ->cpumask correctly,
 | |
|  * and ->cpu_power to 0.
 | |
|  */
 | |
| static void
 | |
| init_sched_build_groups(struct sched_group groups[], cpumask_t span,
 | |
| 			const cpumask_t *cpu_map,
 | |
| 			int (*group_fn)(int cpu, const cpumask_t *cpu_map))
 | |
| {
 | |
| 	struct sched_group *first = NULL, *last = NULL;
 | |
| 	cpumask_t covered = CPU_MASK_NONE;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_mask(i, span) {
 | |
| 		int group = group_fn(i, cpu_map);
 | |
| 		struct sched_group *sg = &groups[group];
 | |
| 		int j;
 | |
| 
 | |
| 		if (cpu_isset(i, covered))
 | |
| 			continue;
 | |
| 
 | |
| 		sg->cpumask = CPU_MASK_NONE;
 | |
| 		sg->cpu_power = 0;
 | |
| 
 | |
| 		for_each_cpu_mask(j, span) {
 | |
| 			if (group_fn(j, cpu_map) != group)
 | |
| 				continue;
 | |
| 
 | |
| 			cpu_set(j, covered);
 | |
| 			cpu_set(j, sg->cpumask);
 | |
| 		}
 | |
| 		if (!first)
 | |
| 			first = sg;
 | |
| 		if (last)
 | |
| 			last->next = sg;
 | |
| 		last = sg;
 | |
| 	}
 | |
| 	last->next = first;
 | |
| }
 | |
| 
 | |
| #define SD_NODES_PER_DOMAIN 16
 | |
| 
 | |
| /*
 | |
|  * Self-tuning task migration cost measurement between source and target CPUs.
 | |
|  *
 | |
|  * This is done by measuring the cost of manipulating buffers of varying
 | |
|  * sizes. For a given buffer-size here are the steps that are taken:
 | |
|  *
 | |
|  * 1) the source CPU reads+dirties a shared buffer
 | |
|  * 2) the target CPU reads+dirties the same shared buffer
 | |
|  *
 | |
|  * We measure how long they take, in the following 4 scenarios:
 | |
|  *
 | |
|  *  - source: CPU1, target: CPU2 | cost1
 | |
|  *  - source: CPU2, target: CPU1 | cost2
 | |
|  *  - source: CPU1, target: CPU1 | cost3
 | |
|  *  - source: CPU2, target: CPU2 | cost4
 | |
|  *
 | |
|  * We then calculate the cost3+cost4-cost1-cost2 difference - this is
 | |
|  * the cost of migration.
 | |
|  *
 | |
|  * We then start off from a small buffer-size and iterate up to larger
 | |
|  * buffer sizes, in 5% steps - measuring each buffer-size separately, and
 | |
|  * doing a maximum search for the cost. (The maximum cost for a migration
 | |
|  * normally occurs when the working set size is around the effective cache
 | |
|  * size.)
 | |
|  */
 | |
| #define SEARCH_SCOPE		2
 | |
| #define MIN_CACHE_SIZE		(64*1024U)
 | |
| #define DEFAULT_CACHE_SIZE	(5*1024*1024U)
 | |
| #define ITERATIONS		1
 | |
| #define SIZE_THRESH		130
 | |
| #define COST_THRESH		130
 | |
| 
 | |
| /*
 | |
|  * The migration cost is a function of 'domain distance'. Domain
 | |
|  * distance is the number of steps a CPU has to iterate down its
 | |
|  * domain tree to share a domain with the other CPU. The farther
 | |
|  * two CPUs are from each other, the larger the distance gets.
 | |
|  *
 | |
|  * Note that we use the distance only to cache measurement results,
 | |
|  * the distance value is not used numerically otherwise. When two
 | |
|  * CPUs have the same distance it is assumed that the migration
 | |
|  * cost is the same. (this is a simplification but quite practical)
 | |
|  */
 | |
| #define MAX_DOMAIN_DISTANCE 32
 | |
| 
 | |
| static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
 | |
| 		{ [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
 | |
| /*
 | |
|  * Architectures may override the migration cost and thus avoid
 | |
|  * boot-time calibration. Unit is nanoseconds. Mostly useful for
 | |
|  * virtualized hardware:
 | |
|  */
 | |
| #ifdef CONFIG_DEFAULT_MIGRATION_COST
 | |
| 			CONFIG_DEFAULT_MIGRATION_COST
 | |
| #else
 | |
| 			-1LL
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Allow override of migration cost - in units of microseconds.
 | |
|  * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
 | |
|  * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
 | |
|  */
 | |
| static int __init migration_cost_setup(char *str)
 | |
| {
 | |
| 	int ints[MAX_DOMAIN_DISTANCE+1], i;
 | |
| 
 | |
| 	str = get_options(str, ARRAY_SIZE(ints), ints);
 | |
| 
 | |
| 	printk("#ints: %d\n", ints[0]);
 | |
| 	for (i = 1; i <= ints[0]; i++) {
 | |
| 		migration_cost[i-1] = (unsigned long long)ints[i]*1000;
 | |
| 		printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup ("migration_cost=", migration_cost_setup);
 | |
| 
 | |
| /*
 | |
|  * Global multiplier (divisor) for migration-cutoff values,
 | |
|  * in percentiles. E.g. use a value of 150 to get 1.5 times
 | |
|  * longer cache-hot cutoff times.
 | |
|  *
 | |
|  * (We scale it from 100 to 128 to long long handling easier.)
 | |
|  */
 | |
| 
 | |
| #define MIGRATION_FACTOR_SCALE 128
 | |
| 
 | |
| static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
 | |
| 
 | |
| static int __init setup_migration_factor(char *str)
 | |
| {
 | |
| 	get_option(&str, &migration_factor);
 | |
| 	migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("migration_factor=", setup_migration_factor);
 | |
| 
 | |
| /*
 | |
|  * Estimated distance of two CPUs, measured via the number of domains
 | |
|  * we have to pass for the two CPUs to be in the same span:
 | |
|  */
 | |
| static unsigned long domain_distance(int cpu1, int cpu2)
 | |
| {
 | |
| 	unsigned long distance = 0;
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	for_each_domain(cpu1, sd) {
 | |
| 		WARN_ON(!cpu_isset(cpu1, sd->span));
 | |
| 		if (cpu_isset(cpu2, sd->span))
 | |
| 			return distance;
 | |
| 		distance++;
 | |
| 	}
 | |
| 	if (distance >= MAX_DOMAIN_DISTANCE) {
 | |
| 		WARN_ON(1);
 | |
| 		distance = MAX_DOMAIN_DISTANCE-1;
 | |
| 	}
 | |
| 
 | |
| 	return distance;
 | |
| }
 | |
| 
 | |
| static unsigned int migration_debug;
 | |
| 
 | |
| static int __init setup_migration_debug(char *str)
 | |
| {
 | |
| 	get_option(&str, &migration_debug);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("migration_debug=", setup_migration_debug);
 | |
| 
 | |
| /*
 | |
|  * Maximum cache-size that the scheduler should try to measure.
 | |
|  * Architectures with larger caches should tune this up during
 | |
|  * bootup. Gets used in the domain-setup code (i.e. during SMP
 | |
|  * bootup).
 | |
|  */
 | |
| unsigned int max_cache_size;
 | |
| 
 | |
| static int __init setup_max_cache_size(char *str)
 | |
| {
 | |
| 	get_option(&str, &max_cache_size);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("max_cache_size=", setup_max_cache_size);
 | |
| 
 | |
| /*
 | |
|  * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
 | |
|  * is the operation that is timed, so we try to generate unpredictable
 | |
|  * cachemisses that still end up filling the L2 cache:
 | |
|  */
 | |
| static void touch_cache(void *__cache, unsigned long __size)
 | |
| {
 | |
| 	unsigned long size = __size/sizeof(long), chunk1 = size/3,
 | |
| 			chunk2 = 2*size/3;
 | |
| 	unsigned long *cache = __cache;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < size/6; i += 8) {
 | |
| 		switch (i % 6) {
 | |
| 			case 0: cache[i]++;
 | |
| 			case 1: cache[size-1-i]++;
 | |
| 			case 2: cache[chunk1-i]++;
 | |
| 			case 3: cache[chunk1+i]++;
 | |
| 			case 4: cache[chunk2-i]++;
 | |
| 			case 5: cache[chunk2+i]++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Measure the cache-cost of one task migration. Returns in units of nsec.
 | |
|  */
 | |
| static unsigned long long
 | |
| measure_one(void *cache, unsigned long size, int source, int target)
 | |
| {
 | |
| 	cpumask_t mask, saved_mask;
 | |
| 	unsigned long long t0, t1, t2, t3, cost;
 | |
| 
 | |
| 	saved_mask = current->cpus_allowed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush source caches to RAM and invalidate them:
 | |
| 	 */
 | |
| 	sched_cacheflush();
 | |
| 
 | |
| 	/*
 | |
| 	 * Migrate to the source CPU:
 | |
| 	 */
 | |
| 	mask = cpumask_of_cpu(source);
 | |
| 	set_cpus_allowed(current, mask);
 | |
| 	WARN_ON(smp_processor_id() != source);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dirty the working set:
 | |
| 	 */
 | |
| 	t0 = sched_clock();
 | |
| 	touch_cache(cache, size);
 | |
| 	t1 = sched_clock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Migrate to the target CPU, dirty the L2 cache and access
 | |
| 	 * the shared buffer. (which represents the working set
 | |
| 	 * of a migrated task.)
 | |
| 	 */
 | |
| 	mask = cpumask_of_cpu(target);
 | |
| 	set_cpus_allowed(current, mask);
 | |
| 	WARN_ON(smp_processor_id() != target);
 | |
| 
 | |
| 	t2 = sched_clock();
 | |
| 	touch_cache(cache, size);
 | |
| 	t3 = sched_clock();
 | |
| 
 | |
| 	cost = t1-t0 + t3-t2;
 | |
| 
 | |
| 	if (migration_debug >= 2)
 | |
| 		printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
 | |
| 			source, target, t1-t0, t1-t0, t3-t2, cost);
 | |
| 	/*
 | |
| 	 * Flush target caches to RAM and invalidate them:
 | |
| 	 */
 | |
| 	sched_cacheflush();
 | |
| 
 | |
| 	set_cpus_allowed(current, saved_mask);
 | |
| 
 | |
| 	return cost;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Measure a series of task migrations and return the average
 | |
|  * result. Since this code runs early during bootup the system
 | |
|  * is 'undisturbed' and the average latency makes sense.
 | |
|  *
 | |
|  * The algorithm in essence auto-detects the relevant cache-size,
 | |
|  * so it will properly detect different cachesizes for different
 | |
|  * cache-hierarchies, depending on how the CPUs are connected.
 | |
|  *
 | |
|  * Architectures can prime the upper limit of the search range via
 | |
|  * max_cache_size, otherwise the search range defaults to 20MB...64K.
 | |
|  */
 | |
| static unsigned long long
 | |
| measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
 | |
| {
 | |
| 	unsigned long long cost1, cost2;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Measure the migration cost of 'size' bytes, over an
 | |
| 	 * average of 10 runs:
 | |
| 	 *
 | |
| 	 * (We perturb the cache size by a small (0..4k)
 | |
| 	 *  value to compensate size/alignment related artifacts.
 | |
| 	 *  We also subtract the cost of the operation done on
 | |
| 	 *  the same CPU.)
 | |
| 	 */
 | |
| 	cost1 = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * dry run, to make sure we start off cache-cold on cpu1,
 | |
| 	 * and to get any vmalloc pagefaults in advance:
 | |
| 	 */
 | |
| 	measure_one(cache, size, cpu1, cpu2);
 | |
| 	for (i = 0; i < ITERATIONS; i++)
 | |
| 		cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
 | |
| 
 | |
| 	measure_one(cache, size, cpu2, cpu1);
 | |
| 	for (i = 0; i < ITERATIONS; i++)
 | |
| 		cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
 | |
| 
 | |
| 	/*
 | |
| 	 * (We measure the non-migrating [cached] cost on both
 | |
| 	 *  cpu1 and cpu2, to handle CPUs with different speeds)
 | |
| 	 */
 | |
| 	cost2 = 0;
 | |
| 
 | |
| 	measure_one(cache, size, cpu1, cpu1);
 | |
| 	for (i = 0; i < ITERATIONS; i++)
 | |
| 		cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
 | |
| 
 | |
| 	measure_one(cache, size, cpu2, cpu2);
 | |
| 	for (i = 0; i < ITERATIONS; i++)
 | |
| 		cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the per-iteration migration cost:
 | |
| 	 */
 | |
| 	do_div(cost1, 2*ITERATIONS);
 | |
| 	do_div(cost2, 2*ITERATIONS);
 | |
| 
 | |
| 	return cost1 - cost2;
 | |
| }
 | |
| 
 | |
| static unsigned long long measure_migration_cost(int cpu1, int cpu2)
 | |
| {
 | |
| 	unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
 | |
| 	unsigned int max_size, size, size_found = 0;
 | |
| 	long long cost = 0, prev_cost;
 | |
| 	void *cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * Search from max_cache_size*5 down to 64K - the real relevant
 | |
| 	 * cachesize has to lie somewhere inbetween.
 | |
| 	 */
 | |
| 	if (max_cache_size) {
 | |
| 		max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
 | |
| 		size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Since we have no estimation about the relevant
 | |
| 		 * search range
 | |
| 		 */
 | |
| 		max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
 | |
| 		size = MIN_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
 | |
| 		printk("cpu %d and %d not both online!\n", cpu1, cpu2);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the working set:
 | |
| 	 */
 | |
| 	cache = vmalloc(max_size);
 | |
| 	if (!cache) {
 | |
| 		printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
 | |
| 		return 1000000; /* return 1 msec on very small boxen */
 | |
| 	}
 | |
| 
 | |
| 	while (size <= max_size) {
 | |
| 		prev_cost = cost;
 | |
| 		cost = measure_cost(cpu1, cpu2, cache, size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Update the max:
 | |
| 		 */
 | |
| 		if (cost > 0) {
 | |
| 			if (max_cost < cost) {
 | |
| 				max_cost = cost;
 | |
| 				size_found = size;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Calculate average fluctuation, we use this to prevent
 | |
| 		 * noise from triggering an early break out of the loop:
 | |
| 		 */
 | |
| 		fluct = abs(cost - prev_cost);
 | |
| 		avg_fluct = (avg_fluct + fluct)/2;
 | |
| 
 | |
| 		if (migration_debug)
 | |
| 			printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
 | |
| 				cpu1, cpu2, size,
 | |
| 				(long)cost / 1000000,
 | |
| 				((long)cost / 100000) % 10,
 | |
| 				(long)max_cost / 1000000,
 | |
| 				((long)max_cost / 100000) % 10,
 | |
| 				domain_distance(cpu1, cpu2),
 | |
| 				cost, avg_fluct);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we iterated at least 20% past the previous maximum,
 | |
| 		 * and the cost has dropped by more than 20% already,
 | |
| 		 * (taking fluctuations into account) then we assume to
 | |
| 		 * have found the maximum and break out of the loop early:
 | |
| 		 */
 | |
| 		if (size_found && (size*100 > size_found*SIZE_THRESH))
 | |
| 			if (cost+avg_fluct <= 0 ||
 | |
| 				max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
 | |
| 
 | |
| 				if (migration_debug)
 | |
| 					printk("-> found max.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 		/*
 | |
| 		 * Increase the cachesize in 10% steps:
 | |
| 		 */
 | |
| 		size = size * 10 / 9;
 | |
| 	}
 | |
| 
 | |
| 	if (migration_debug)
 | |
| 		printk("[%d][%d] working set size found: %d, cost: %Ld\n",
 | |
| 			cpu1, cpu2, size_found, max_cost);
 | |
| 
 | |
| 	vfree(cache);
 | |
| 
 | |
| 	/*
 | |
| 	 * A task is considered 'cache cold' if at least 2 times
 | |
| 	 * the worst-case cost of migration has passed.
 | |
| 	 *
 | |
| 	 * (this limit is only listened to if the load-balancing
 | |
| 	 * situation is 'nice' - if there is a large imbalance we
 | |
| 	 * ignore it for the sake of CPU utilization and
 | |
| 	 * processing fairness.)
 | |
| 	 */
 | |
| 	return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
 | |
| }
 | |
| 
 | |
| static void calibrate_migration_costs(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
 | |
| 	unsigned long j0, j1, distance, max_distance = 0;
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	j0 = jiffies;
 | |
| 
 | |
| 	/*
 | |
| 	 * First pass - calculate the cacheflush times:
 | |
| 	 */
 | |
| 	for_each_cpu_mask(cpu1, *cpu_map) {
 | |
| 		for_each_cpu_mask(cpu2, *cpu_map) {
 | |
| 			if (cpu1 == cpu2)
 | |
| 				continue;
 | |
| 			distance = domain_distance(cpu1, cpu2);
 | |
| 			max_distance = max(max_distance, distance);
 | |
| 			/*
 | |
| 			 * No result cached yet?
 | |
| 			 */
 | |
| 			if (migration_cost[distance] == -1LL)
 | |
| 				migration_cost[distance] =
 | |
| 					measure_migration_cost(cpu1, cpu2);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Second pass - update the sched domain hierarchy with
 | |
| 	 * the new cache-hot-time estimations:
 | |
| 	 */
 | |
| 	for_each_cpu_mask(cpu, *cpu_map) {
 | |
| 		distance = 0;
 | |
| 		for_each_domain(cpu, sd) {
 | |
| 			sd->cache_hot_time = migration_cost[distance];
 | |
| 			distance++;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Print the matrix:
 | |
| 	 */
 | |
| 	if (migration_debug)
 | |
| 		printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
 | |
| 			max_cache_size,
 | |
| #ifdef CONFIG_X86
 | |
| 			cpu_khz/1000
 | |
| #else
 | |
| 			-1
 | |
| #endif
 | |
| 		);
 | |
| 	if (system_state == SYSTEM_BOOTING) {
 | |
| 		if (num_online_cpus() > 1) {
 | |
| 			printk("migration_cost=");
 | |
| 			for (distance = 0; distance <= max_distance; distance++) {
 | |
| 				if (distance)
 | |
| 					printk(",");
 | |
| 				printk("%ld", (long)migration_cost[distance] / 1000);
 | |
| 			}
 | |
| 			printk("\n");
 | |
| 		}
 | |
| 	}
 | |
| 	j1 = jiffies;
 | |
| 	if (migration_debug)
 | |
| 		printk("migration: %ld seconds\n", (j1-j0)/HZ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move back to the original CPU. NUMA-Q gets confused
 | |
| 	 * if we migrate to another quad during bootup.
 | |
| 	 */
 | |
| 	if (raw_smp_processor_id() != orig_cpu) {
 | |
| 		cpumask_t mask = cpumask_of_cpu(orig_cpu),
 | |
| 			saved_mask = current->cpus_allowed;
 | |
| 
 | |
| 		set_cpus_allowed(current, mask);
 | |
| 		set_cpus_allowed(current, saved_mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 
 | |
| /**
 | |
|  * find_next_best_node - find the next node to include in a sched_domain
 | |
|  * @node: node whose sched_domain we're building
 | |
|  * @used_nodes: nodes already in the sched_domain
 | |
|  *
 | |
|  * Find the next node to include in a given scheduling domain.  Simply
 | |
|  * finds the closest node not already in the @used_nodes map.
 | |
|  *
 | |
|  * Should use nodemask_t.
 | |
|  */
 | |
| static int find_next_best_node(int node, unsigned long *used_nodes)
 | |
| {
 | |
| 	int i, n, val, min_val, best_node = 0;
 | |
| 
 | |
| 	min_val = INT_MAX;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		/* Start at @node */
 | |
| 		n = (node + i) % MAX_NUMNODES;
 | |
| 
 | |
| 		if (!nr_cpus_node(n))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Skip already used nodes */
 | |
| 		if (test_bit(n, used_nodes))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Simple min distance search */
 | |
| 		val = node_distance(node, n);
 | |
| 
 | |
| 		if (val < min_val) {
 | |
| 			min_val = val;
 | |
| 			best_node = n;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_bit(best_node, used_nodes);
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sched_domain_node_span - get a cpumask for a node's sched_domain
 | |
|  * @node: node whose cpumask we're constructing
 | |
|  * @size: number of nodes to include in this span
 | |
|  *
 | |
|  * Given a node, construct a good cpumask for its sched_domain to span.  It
 | |
|  * should be one that prevents unnecessary balancing, but also spreads tasks
 | |
|  * out optimally.
 | |
|  */
 | |
| static cpumask_t sched_domain_node_span(int node)
 | |
| {
 | |
| 	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
 | |
| 	cpumask_t span, nodemask;
 | |
| 	int i;
 | |
| 
 | |
| 	cpus_clear(span);
 | |
| 	bitmap_zero(used_nodes, MAX_NUMNODES);
 | |
| 
 | |
| 	nodemask = node_to_cpumask(node);
 | |
| 	cpus_or(span, span, nodemask);
 | |
| 	set_bit(node, used_nodes);
 | |
| 
 | |
| 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
 | |
| 		int next_node = find_next_best_node(node, used_nodes);
 | |
| 
 | |
| 		nodemask = node_to_cpumask(next_node);
 | |
| 		cpus_or(span, span, nodemask);
 | |
| 	}
 | |
| 
 | |
| 	return span;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
 | |
| 
 | |
| /*
 | |
|  * SMT sched-domains:
 | |
|  */
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
 | |
| static struct sched_group sched_group_cpus[NR_CPUS];
 | |
| 
 | |
| static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * multi-core sched-domains:
 | |
|  */
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| static DEFINE_PER_CPU(struct sched_domain, core_domains);
 | |
| static struct sched_group sched_group_core[NR_CPUS];
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
 | |
| static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
 | |
| {
 | |
| 	cpumask_t mask = cpu_sibling_map[cpu];
 | |
| 	cpus_and(mask, mask, *cpu_map);
 | |
| 	return first_cpu(mask);
 | |
| }
 | |
| #elif defined(CONFIG_SCHED_MC)
 | |
| static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
 | |
| {
 | |
| 	return cpu;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PER_CPU(struct sched_domain, phys_domains);
 | |
| static struct sched_group sched_group_phys[NR_CPUS];
 | |
| 
 | |
| static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	cpumask_t mask = cpu_coregroup_map(cpu);
 | |
| 	cpus_and(mask, mask, *cpu_map);
 | |
| 	return first_cpu(mask);
 | |
| #elif defined(CONFIG_SCHED_SMT)
 | |
| 	cpumask_t mask = cpu_sibling_map[cpu];
 | |
| 	cpus_and(mask, mask, *cpu_map);
 | |
| 	return first_cpu(mask);
 | |
| #else
 | |
| 	return cpu;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * The init_sched_build_groups can't handle what we want to do with node
 | |
|  * groups, so roll our own. Now each node has its own list of groups which
 | |
|  * gets dynamically allocated.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct sched_domain, node_domains);
 | |
| static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
 | |
| 
 | |
| static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
 | |
| static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
 | |
| 
 | |
| static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
 | |
| {
 | |
| 	return cpu_to_node(cpu);
 | |
| }
 | |
| static void init_numa_sched_groups_power(struct sched_group *group_head)
 | |
| {
 | |
| 	struct sched_group *sg = group_head;
 | |
| 	int j;
 | |
| 
 | |
| 	if (!sg)
 | |
| 		return;
 | |
| next_sg:
 | |
| 	for_each_cpu_mask(j, sg->cpumask) {
 | |
| 		struct sched_domain *sd;
 | |
| 
 | |
| 		sd = &per_cpu(phys_domains, j);
 | |
| 		if (j != first_cpu(sd->groups->cpumask)) {
 | |
| 			/*
 | |
| 			 * Only add "power" once for each
 | |
| 			 * physical package.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sg->cpu_power += sd->groups->cpu_power;
 | |
| 	}
 | |
| 	sg = sg->next;
 | |
| 	if (sg != group_head)
 | |
| 		goto next_sg;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /* Free memory allocated for various sched_group structures */
 | |
| static void free_sched_groups(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	int cpu, i;
 | |
| 
 | |
| 	for_each_cpu_mask(cpu, *cpu_map) {
 | |
| 		struct sched_group *sched_group_allnodes
 | |
| 			= sched_group_allnodes_bycpu[cpu];
 | |
| 		struct sched_group **sched_group_nodes
 | |
| 			= sched_group_nodes_bycpu[cpu];
 | |
| 
 | |
| 		if (sched_group_allnodes) {
 | |
| 			kfree(sched_group_allnodes);
 | |
| 			sched_group_allnodes_bycpu[cpu] = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (!sched_group_nodes)
 | |
| 			continue;
 | |
| 
 | |
| 		for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 			cpumask_t nodemask = node_to_cpumask(i);
 | |
| 			struct sched_group *oldsg, *sg = sched_group_nodes[i];
 | |
| 
 | |
| 			cpus_and(nodemask, nodemask, *cpu_map);
 | |
| 			if (cpus_empty(nodemask))
 | |
| 				continue;
 | |
| 
 | |
| 			if (sg == NULL)
 | |
| 				continue;
 | |
| 			sg = sg->next;
 | |
| next_sg:
 | |
| 			oldsg = sg;
 | |
| 			sg = sg->next;
 | |
| 			kfree(oldsg);
 | |
| 			if (oldsg != sched_group_nodes[i])
 | |
| 				goto next_sg;
 | |
| 		}
 | |
| 		kfree(sched_group_nodes);
 | |
| 		sched_group_nodes_bycpu[cpu] = NULL;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void free_sched_groups(const cpumask_t *cpu_map)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initialize sched groups cpu_power.
 | |
|  *
 | |
|  * cpu_power indicates the capacity of sched group, which is used while
 | |
|  * distributing the load between different sched groups in a sched domain.
 | |
|  * Typically cpu_power for all the groups in a sched domain will be same unless
 | |
|  * there are asymmetries in the topology. If there are asymmetries, group
 | |
|  * having more cpu_power will pickup more load compared to the group having
 | |
|  * less cpu_power.
 | |
|  *
 | |
|  * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 | |
|  * the maximum number of tasks a group can handle in the presence of other idle
 | |
|  * or lightly loaded groups in the same sched domain.
 | |
|  */
 | |
| static void init_sched_groups_power(int cpu, struct sched_domain *sd)
 | |
| {
 | |
| 	struct sched_domain *child;
 | |
| 	struct sched_group *group;
 | |
| 
 | |
| 	WARN_ON(!sd || !sd->groups);
 | |
| 
 | |
| 	if (cpu != first_cpu(sd->groups->cpumask))
 | |
| 		return;
 | |
| 
 | |
| 	child = sd->child;
 | |
| 
 | |
| 	/*
 | |
| 	 * For perf policy, if the groups in child domain share resources
 | |
| 	 * (for example cores sharing some portions of the cache hierarchy
 | |
| 	 * or SMT), then set this domain groups cpu_power such that each group
 | |
| 	 * can handle only one task, when there are other idle groups in the
 | |
| 	 * same sched domain.
 | |
| 	 */
 | |
| 	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
 | |
| 		       (child->flags &
 | |
| 			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
 | |
| 		sd->groups->cpu_power = SCHED_LOAD_SCALE;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	sd->groups->cpu_power = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * add cpu_power of each child group to this groups cpu_power
 | |
| 	 */
 | |
| 	group = child->groups;
 | |
| 	do {
 | |
| 		sd->groups->cpu_power += group->cpu_power;
 | |
| 		group = group->next;
 | |
| 	} while (group != child->groups);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build sched domains for a given set of cpus and attach the sched domains
 | |
|  * to the individual cpus
 | |
|  */
 | |
| static int build_sched_domains(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sched_domain *sd;
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct sched_group **sched_group_nodes = NULL;
 | |
| 	struct sched_group *sched_group_allnodes = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the per-node list of sched groups
 | |
| 	 */
 | |
| 	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
 | |
| 					   GFP_KERNEL);
 | |
| 	if (!sched_group_nodes) {
 | |
| 		printk(KERN_WARNING "Can not alloc sched group node list\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up domains for cpus specified by the cpu_map.
 | |
| 	 */
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		int group;
 | |
| 		struct sched_domain *sd = NULL, *p;
 | |
| 		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
 | |
| 
 | |
| 		cpus_and(nodemask, nodemask, *cpu_map);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 		if (cpus_weight(*cpu_map)
 | |
| 				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
 | |
| 			if (!sched_group_allnodes) {
 | |
| 				sched_group_allnodes
 | |
| 					= kmalloc_node(sizeof(struct sched_group)
 | |
| 						  	* MAX_NUMNODES,
 | |
| 						  GFP_KERNEL,
 | |
| 						  cpu_to_node(i));
 | |
| 				if (!sched_group_allnodes) {
 | |
| 					printk(KERN_WARNING
 | |
| 					"Can not alloc allnodes sched group\n");
 | |
| 					goto error;
 | |
| 				}
 | |
| 				sched_group_allnodes_bycpu[i]
 | |
| 						= sched_group_allnodes;
 | |
| 			}
 | |
| 			sd = &per_cpu(allnodes_domains, i);
 | |
| 			*sd = SD_ALLNODES_INIT;
 | |
| 			sd->span = *cpu_map;
 | |
| 			group = cpu_to_allnodes_group(i, cpu_map);
 | |
| 			sd->groups = &sched_group_allnodes[group];
 | |
| 			p = sd;
 | |
| 		} else
 | |
| 			p = NULL;
 | |
| 
 | |
| 		sd = &per_cpu(node_domains, i);
 | |
| 		*sd = SD_NODE_INIT;
 | |
| 		sd->span = sched_domain_node_span(cpu_to_node(i));
 | |
| 		sd->parent = p;
 | |
| 		if (p)
 | |
| 			p->child = sd;
 | |
| 		cpus_and(sd->span, sd->span, *cpu_map);
 | |
| #endif
 | |
| 
 | |
| 		p = sd;
 | |
| 		sd = &per_cpu(phys_domains, i);
 | |
| 		group = cpu_to_phys_group(i, cpu_map);
 | |
| 		*sd = SD_CPU_INIT;
 | |
| 		sd->span = nodemask;
 | |
| 		sd->parent = p;
 | |
| 		if (p)
 | |
| 			p->child = sd;
 | |
| 		sd->groups = &sched_group_phys[group];
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 		p = sd;
 | |
| 		sd = &per_cpu(core_domains, i);
 | |
| 		group = cpu_to_core_group(i, cpu_map);
 | |
| 		*sd = SD_MC_INIT;
 | |
| 		sd->span = cpu_coregroup_map(i);
 | |
| 		cpus_and(sd->span, sd->span, *cpu_map);
 | |
| 		sd->parent = p;
 | |
| 		p->child = sd;
 | |
| 		sd->groups = &sched_group_core[group];
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 		p = sd;
 | |
| 		sd = &per_cpu(cpu_domains, i);
 | |
| 		group = cpu_to_cpu_group(i, cpu_map);
 | |
| 		*sd = SD_SIBLING_INIT;
 | |
| 		sd->span = cpu_sibling_map[i];
 | |
| 		cpus_and(sd->span, sd->span, *cpu_map);
 | |
| 		sd->parent = p;
 | |
| 		p->child = sd;
 | |
| 		sd->groups = &sched_group_cpus[group];
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	/* Set up CPU (sibling) groups */
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		cpumask_t this_sibling_map = cpu_sibling_map[i];
 | |
| 		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
 | |
| 		if (i != first_cpu(this_sibling_map))
 | |
| 			continue;
 | |
| 
 | |
| 		init_sched_build_groups(sched_group_cpus, this_sibling_map,
 | |
| 					cpu_map, &cpu_to_cpu_group);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	/* Set up multi-core groups */
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		cpumask_t this_core_map = cpu_coregroup_map(i);
 | |
| 		cpus_and(this_core_map, this_core_map, *cpu_map);
 | |
| 		if (i != first_cpu(this_core_map))
 | |
| 			continue;
 | |
| 		init_sched_build_groups(sched_group_core, this_core_map,
 | |
| 					cpu_map, &cpu_to_core_group);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	/* Set up physical groups */
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		cpumask_t nodemask = node_to_cpumask(i);
 | |
| 
 | |
| 		cpus_and(nodemask, nodemask, *cpu_map);
 | |
| 		if (cpus_empty(nodemask))
 | |
| 			continue;
 | |
| 
 | |
| 		init_sched_build_groups(sched_group_phys, nodemask,
 | |
| 					cpu_map, &cpu_to_phys_group);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/* Set up node groups */
 | |
| 	if (sched_group_allnodes)
 | |
| 		init_sched_build_groups(sched_group_allnodes, *cpu_map,
 | |
| 					cpu_map, &cpu_to_allnodes_group);
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		/* Set up node groups */
 | |
| 		struct sched_group *sg, *prev;
 | |
| 		cpumask_t nodemask = node_to_cpumask(i);
 | |
| 		cpumask_t domainspan;
 | |
| 		cpumask_t covered = CPU_MASK_NONE;
 | |
| 		int j;
 | |
| 
 | |
| 		cpus_and(nodemask, nodemask, *cpu_map);
 | |
| 		if (cpus_empty(nodemask)) {
 | |
| 			sched_group_nodes[i] = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		domainspan = sched_domain_node_span(i);
 | |
| 		cpus_and(domainspan, domainspan, *cpu_map);
 | |
| 
 | |
| 		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
 | |
| 		if (!sg) {
 | |
| 			printk(KERN_WARNING "Can not alloc domain group for "
 | |
| 				"node %d\n", i);
 | |
| 			goto error;
 | |
| 		}
 | |
| 		sched_group_nodes[i] = sg;
 | |
| 		for_each_cpu_mask(j, nodemask) {
 | |
| 			struct sched_domain *sd;
 | |
| 			sd = &per_cpu(node_domains, j);
 | |
| 			sd->groups = sg;
 | |
| 		}
 | |
| 		sg->cpu_power = 0;
 | |
| 		sg->cpumask = nodemask;
 | |
| 		sg->next = sg;
 | |
| 		cpus_or(covered, covered, nodemask);
 | |
| 		prev = sg;
 | |
| 
 | |
| 		for (j = 0; j < MAX_NUMNODES; j++) {
 | |
| 			cpumask_t tmp, notcovered;
 | |
| 			int n = (i + j) % MAX_NUMNODES;
 | |
| 
 | |
| 			cpus_complement(notcovered, covered);
 | |
| 			cpus_and(tmp, notcovered, *cpu_map);
 | |
| 			cpus_and(tmp, tmp, domainspan);
 | |
| 			if (cpus_empty(tmp))
 | |
| 				break;
 | |
| 
 | |
| 			nodemask = node_to_cpumask(n);
 | |
| 			cpus_and(tmp, tmp, nodemask);
 | |
| 			if (cpus_empty(tmp))
 | |
| 				continue;
 | |
| 
 | |
| 			sg = kmalloc_node(sizeof(struct sched_group),
 | |
| 					  GFP_KERNEL, i);
 | |
| 			if (!sg) {
 | |
| 				printk(KERN_WARNING
 | |
| 				"Can not alloc domain group for node %d\n", j);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			sg->cpu_power = 0;
 | |
| 			sg->cpumask = tmp;
 | |
| 			sg->next = prev->next;
 | |
| 			cpus_or(covered, covered, tmp);
 | |
| 			prev->next = sg;
 | |
| 			prev = sg;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Calculate CPU power for physical packages and nodes */
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		sd = &per_cpu(cpu_domains, i);
 | |
| 		init_sched_groups_power(i, sd);
 | |
| 	}
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		sd = &per_cpu(core_domains, i);
 | |
| 		init_sched_groups_power(i, sd);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		sd = &per_cpu(phys_domains, i);
 | |
| 		init_sched_groups_power(i, sd);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++)
 | |
| 		init_numa_sched_groups_power(sched_group_nodes[i]);
 | |
| 
 | |
| 	if (sched_group_allnodes) {
 | |
| 		int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
 | |
| 		struct sched_group *sg = &sched_group_allnodes[group];
 | |
| 
 | |
| 		init_numa_sched_groups_power(sg);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Attach the domains */
 | |
| 	for_each_cpu_mask(i, *cpu_map) {
 | |
| 		struct sched_domain *sd;
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 		sd = &per_cpu(cpu_domains, i);
 | |
| #elif defined(CONFIG_SCHED_MC)
 | |
| 		sd = &per_cpu(core_domains, i);
 | |
| #else
 | |
| 		sd = &per_cpu(phys_domains, i);
 | |
| #endif
 | |
| 		cpu_attach_domain(sd, i);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Tune cache-hot values:
 | |
| 	 */
 | |
| 	calibrate_migration_costs(cpu_map);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| error:
 | |
| 	free_sched_groups(cpu_map);
 | |
| 	return -ENOMEM;
 | |
| #endif
 | |
| }
 | |
| /*
 | |
|  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 | |
|  */
 | |
| static int arch_init_sched_domains(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	cpumask_t cpu_default_map;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup mask for cpus without special case scheduling requirements.
 | |
| 	 * For now this just excludes isolated cpus, but could be used to
 | |
| 	 * exclude other special cases in the future.
 | |
| 	 */
 | |
| 	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
 | |
| 
 | |
| 	err = build_sched_domains(&cpu_default_map);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	free_sched_groups(cpu_map);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Detach sched domains from a group of cpus specified in cpu_map
 | |
|  * These cpus will now be attached to the NULL domain
 | |
|  */
 | |
| static void detach_destroy_domains(const cpumask_t *cpu_map)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu_mask(i, *cpu_map)
 | |
| 		cpu_attach_domain(NULL, i);
 | |
| 	synchronize_sched();
 | |
| 	arch_destroy_sched_domains(cpu_map);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Partition sched domains as specified by the cpumasks below.
 | |
|  * This attaches all cpus from the cpumasks to the NULL domain,
 | |
|  * waits for a RCU quiescent period, recalculates sched
 | |
|  * domain information and then attaches them back to the
 | |
|  * correct sched domains
 | |
|  * Call with hotplug lock held
 | |
|  */
 | |
| int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
 | |
| {
 | |
| 	cpumask_t change_map;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	cpus_and(*partition1, *partition1, cpu_online_map);
 | |
| 	cpus_and(*partition2, *partition2, cpu_online_map);
 | |
| 	cpus_or(change_map, *partition1, *partition2);
 | |
| 
 | |
| 	/* Detach sched domains from all of the affected cpus */
 | |
| 	detach_destroy_domains(&change_map);
 | |
| 	if (!cpus_empty(*partition1))
 | |
| 		err = build_sched_domains(partition1);
 | |
| 	if (!err && !cpus_empty(*partition2))
 | |
| 		err = build_sched_domains(partition2);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| int arch_reinit_sched_domains(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	lock_cpu_hotplug();
 | |
| 	detach_destroy_domains(&cpu_online_map);
 | |
| 	err = arch_init_sched_domains(&cpu_online_map);
 | |
| 	unlock_cpu_hotplug();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (buf[0] != '0' && buf[0] != '1')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (smt)
 | |
| 		sched_smt_power_savings = (buf[0] == '1');
 | |
| 	else
 | |
| 		sched_mc_power_savings = (buf[0] == '1');
 | |
| 
 | |
| 	ret = arch_reinit_sched_domains();
 | |
| 
 | |
| 	return ret ? ret : count;
 | |
| }
 | |
| 
 | |
| int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| 	if (smt_capable())
 | |
| 		err = sysfs_create_file(&cls->kset.kobj,
 | |
| 					&attr_sched_smt_power_savings.attr);
 | |
| #endif
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| 	if (!err && mc_capable())
 | |
| 		err = sysfs_create_file(&cls->kset.kobj,
 | |
| 					&attr_sched_mc_power_savings.attr);
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MC
 | |
| static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
 | |
| {
 | |
| 	return sprintf(page, "%u\n", sched_mc_power_savings);
 | |
| }
 | |
| static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
 | |
| 					    const char *buf, size_t count)
 | |
| {
 | |
| 	return sched_power_savings_store(buf, count, 0);
 | |
| }
 | |
| SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
 | |
| 	    sched_mc_power_savings_store);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_SMT
 | |
| static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
 | |
| {
 | |
| 	return sprintf(page, "%u\n", sched_smt_power_savings);
 | |
| }
 | |
| static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
 | |
| 					     const char *buf, size_t count)
 | |
| {
 | |
| 	return sched_power_savings_store(buf, count, 1);
 | |
| }
 | |
| SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
 | |
| 	    sched_smt_power_savings_store);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /*
 | |
|  * Force a reinitialization of the sched domains hierarchy.  The domains
 | |
|  * and groups cannot be updated in place without racing with the balancing
 | |
|  * code, so we temporarily attach all running cpus to the NULL domain
 | |
|  * which will prevent rebalancing while the sched domains are recalculated.
 | |
|  */
 | |
| static int update_sched_domains(struct notifier_block *nfb,
 | |
| 				unsigned long action, void *hcpu)
 | |
| {
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		detach_destroy_domains(&cpu_online_map);
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 	case CPU_ONLINE:
 | |
| 	case CPU_DEAD:
 | |
| 		/*
 | |
| 		 * Fall through and re-initialise the domains.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	/* The hotplug lock is already held by cpu_up/cpu_down */
 | |
| 	arch_init_sched_domains(&cpu_online_map);
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init sched_init_smp(void)
 | |
| {
 | |
| 	cpumask_t non_isolated_cpus;
 | |
| 
 | |
| 	lock_cpu_hotplug();
 | |
| 	arch_init_sched_domains(&cpu_online_map);
 | |
| 	cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
 | |
| 	if (cpus_empty(non_isolated_cpus))
 | |
| 		cpu_set(smp_processor_id(), non_isolated_cpus);
 | |
| 	unlock_cpu_hotplug();
 | |
| 	/* XXX: Theoretical race here - CPU may be hotplugged now */
 | |
| 	hotcpu_notifier(update_sched_domains, 0);
 | |
| 
 | |
| 	/* Move init over to a non-isolated CPU */
 | |
| 	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
 | |
| 		BUG();
 | |
| }
 | |
| #else
 | |
| void __init sched_init_smp(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| int in_sched_functions(unsigned long addr)
 | |
| {
 | |
| 	/* Linker adds these: start and end of __sched functions */
 | |
| 	extern char __sched_text_start[], __sched_text_end[];
 | |
| 
 | |
| 	return in_lock_functions(addr) ||
 | |
| 		(addr >= (unsigned long)__sched_text_start
 | |
| 		&& addr < (unsigned long)__sched_text_end);
 | |
| }
 | |
| 
 | |
| void __init sched_init(void)
 | |
| {
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct prio_array *array;
 | |
| 		struct rq *rq;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 		spin_lock_init(&rq->lock);
 | |
| 		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
 | |
| 		rq->nr_running = 0;
 | |
| 		rq->active = rq->arrays;
 | |
| 		rq->expired = rq->arrays + 1;
 | |
| 		rq->best_expired_prio = MAX_PRIO;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		rq->sd = NULL;
 | |
| 		for (j = 1; j < 3; j++)
 | |
| 			rq->cpu_load[j] = 0;
 | |
| 		rq->active_balance = 0;
 | |
| 		rq->push_cpu = 0;
 | |
| 		rq->cpu = i;
 | |
| 		rq->migration_thread = NULL;
 | |
| 		INIT_LIST_HEAD(&rq->migration_queue);
 | |
| #endif
 | |
| 		atomic_set(&rq->nr_iowait, 0);
 | |
| 
 | |
| 		for (j = 0; j < 2; j++) {
 | |
| 			array = rq->arrays + j;
 | |
| 			for (k = 0; k < MAX_PRIO; k++) {
 | |
| 				INIT_LIST_HEAD(array->queue + k);
 | |
| 				__clear_bit(k, array->bitmap);
 | |
| 			}
 | |
| 			// delimiter for bitsearch
 | |
| 			__set_bit(MAX_PRIO, array->bitmap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	set_load_weight(&init_task);
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The boot idle thread does lazy MMU switching as well:
 | |
| 	 */
 | |
| 	atomic_inc(&init_mm.mm_count);
 | |
| 	enter_lazy_tlb(&init_mm, current);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make us the idle thread. Technically, schedule() should not be
 | |
| 	 * called from this thread, however somewhere below it might be,
 | |
| 	 * but because we are the idle thread, we just pick up running again
 | |
| 	 * when this runqueue becomes "idle".
 | |
| 	 */
 | |
| 	init_idle(current, smp_processor_id());
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
 | |
| void __might_sleep(char *file, int line)
 | |
| {
 | |
| #ifdef in_atomic
 | |
| 	static unsigned long prev_jiffy;	/* ratelimiting */
 | |
| 
 | |
| 	if ((in_atomic() || irqs_disabled()) &&
 | |
| 	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
 | |
| 		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
 | |
| 			return;
 | |
| 		prev_jiffy = jiffies;
 | |
| 		printk(KERN_ERR "BUG: sleeping function called from invalid"
 | |
| 				" context at %s:%d\n", file, line);
 | |
| 		printk("in_atomic():%d, irqs_disabled():%d\n",
 | |
| 			in_atomic(), irqs_disabled());
 | |
| 		dump_stack();
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(__might_sleep);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MAGIC_SYSRQ
 | |
| void normalize_rt_tasks(void)
 | |
| {
 | |
| 	struct prio_array *array;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned long flags;
 | |
| 	struct rq *rq;
 | |
| 
 | |
| 	read_lock_irq(&tasklist_lock);
 | |
| 	for_each_process(p) {
 | |
| 		if (!rt_task(p))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&p->pi_lock, flags);
 | |
| 		rq = __task_rq_lock(p);
 | |
| 
 | |
| 		array = p->array;
 | |
| 		if (array)
 | |
| 			deactivate_task(p, task_rq(p));
 | |
| 		__setscheduler(p, SCHED_NORMAL, 0);
 | |
| 		if (array) {
 | |
| 			__activate_task(p, task_rq(p));
 | |
| 			resched_task(rq->curr);
 | |
| 		}
 | |
| 
 | |
| 		__task_rq_unlock(rq);
 | |
| 		spin_unlock_irqrestore(&p->pi_lock, flags);
 | |
| 	}
 | |
| 	read_unlock_irq(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MAGIC_SYSRQ */
 | |
| 
 | |
| #ifdef CONFIG_IA64
 | |
| /*
 | |
|  * These functions are only useful for the IA64 MCA handling.
 | |
|  *
 | |
|  * They can only be called when the whole system has been
 | |
|  * stopped - every CPU needs to be quiescent, and no scheduling
 | |
|  * activity can take place. Using them for anything else would
 | |
|  * be a serious bug, and as a result, they aren't even visible
 | |
|  * under any other configuration.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * curr_task - return the current task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  *
 | |
|  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 | |
|  */
 | |
| struct task_struct *curr_task(int cpu)
 | |
| {
 | |
| 	return cpu_curr(cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * set_curr_task - set the current task for a given cpu.
 | |
|  * @cpu: the processor in question.
 | |
|  * @p: the task pointer to set.
 | |
|  *
 | |
|  * Description: This function must only be used when non-maskable interrupts
 | |
|  * are serviced on a separate stack.  It allows the architecture to switch the
 | |
|  * notion of the current task on a cpu in a non-blocking manner.  This function
 | |
|  * must be called with all CPU's synchronized, and interrupts disabled, the
 | |
|  * and caller must save the original value of the current task (see
 | |
|  * curr_task() above) and restore that value before reenabling interrupts and
 | |
|  * re-starting the system.
 | |
|  *
 | |
|  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 | |
|  */
 | |
| void set_curr_task(int cpu, struct task_struct *p)
 | |
| {
 | |
| 	cpu_curr(cpu) = p;
 | |
| }
 | |
| 
 | |
| #endif
 |