mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 f30c226954
			
		
	
	
		f30c226954
		
	
	
	
	
		
			
			Many files include the filename at the beginning, serveral used a wrong one. Signed-off-by: Uwe Zeisberger <Uwe_Zeisberger@digi.com> Signed-off-by: Adrian Bunk <bunk@stusta.de>
		
			
				
	
	
		
			997 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			997 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/kernel/posix-timers.c
 | |
|  *
 | |
|  *
 | |
|  * 2002-10-15  Posix Clocks & timers
 | |
|  *                           by George Anzinger george@mvista.com
 | |
|  *
 | |
|  *			     Copyright (C) 2002 2003 by MontaVista Software.
 | |
|  *
 | |
|  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 | |
|  *			     Copyright (C) 2004 Boris Hu
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or (at
 | |
|  * your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | |
|  * General Public License for more details.
 | |
| 
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  *
 | |
|  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 | |
|  */
 | |
| 
 | |
| /* These are all the functions necessary to implement
 | |
|  * POSIX clocks & timers
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/semaphore.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| /*
 | |
|  * Management arrays for POSIX timers.	 Timers are kept in slab memory
 | |
|  * Timer ids are allocated by an external routine that keeps track of the
 | |
|  * id and the timer.  The external interface is:
 | |
|  *
 | |
|  * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
 | |
|  * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
 | |
|  *                                                    related it to <ptr>
 | |
|  * void idr_remove(struct idr *idp, int id);          to release <id>
 | |
|  * void idr_init(struct idr *idp);                    to initialize <idp>
 | |
|  *                                                    which we supply.
 | |
|  * The idr_get_new *may* call slab for more memory so it must not be
 | |
|  * called under a spin lock.  Likewise idr_remore may release memory
 | |
|  * (but it may be ok to do this under a lock...).
 | |
|  * idr_find is just a memory look up and is quite fast.  A -1 return
 | |
|  * indicates that the requested id does not exist.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lets keep our timers in a slab cache :-)
 | |
|  */
 | |
| static kmem_cache_t *posix_timers_cache;
 | |
| static struct idr posix_timers_id;
 | |
| static DEFINE_SPINLOCK(idr_lock);
 | |
| 
 | |
| /*
 | |
|  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 | |
|  * SIGEV values.  Here we put out an error if this assumption fails.
 | |
|  */
 | |
| #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
 | |
|                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
 | |
| #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The timer ID is turned into a timer address by idr_find().
 | |
|  * Verifying a valid ID consists of:
 | |
|  *
 | |
|  * a) checking that idr_find() returns other than -1.
 | |
|  * b) checking that the timer id matches the one in the timer itself.
 | |
|  * c) that the timer owner is in the callers thread group.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 | |
|  *	    to implement others.  This structure defines the various
 | |
|  *	    clocks and allows the possibility of adding others.	 We
 | |
|  *	    provide an interface to add clocks to the table and expect
 | |
|  *	    the "arch" code to add at least one clock that is high
 | |
|  *	    resolution.	 Here we define the standard CLOCK_REALTIME as a
 | |
|  *	    1/HZ resolution clock.
 | |
|  *
 | |
|  * RESOLUTION: Clock resolution is used to round up timer and interval
 | |
|  *	    times, NOT to report clock times, which are reported with as
 | |
|  *	    much resolution as the system can muster.  In some cases this
 | |
|  *	    resolution may depend on the underlying clock hardware and
 | |
|  *	    may not be quantifiable until run time, and only then is the
 | |
|  *	    necessary code is written.	The standard says we should say
 | |
|  *	    something about this issue in the documentation...
 | |
|  *
 | |
|  * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 | |
|  *	    various clock functions.  For clocks that use the standard
 | |
|  *	    system timer code these entries should be NULL.  This will
 | |
|  *	    allow dispatch without the overhead of indirect function
 | |
|  *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 | |
|  *	    must supply functions here, even if the function just returns
 | |
|  *	    ENOSYS.  The standard POSIX timer management code assumes the
 | |
|  *	    following: 1.) The k_itimer struct (sched.h) is used for the
 | |
|  *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process
 | |
|  *	    fields are not modified by timer code.
 | |
|  *
 | |
|  *          At this time all functions EXCEPT clock_nanosleep can be
 | |
|  *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 | |
|  *          there, but the code ignores it.
 | |
|  *
 | |
|  * Permissions: It is assumed that the clock_settime() function defined
 | |
|  *	    for each clock will take care of permission checks.	 Some
 | |
|  *	    clocks may be set able by any user (i.e. local process
 | |
|  *	    clocks) others not.	 Currently the only set able clock we
 | |
|  *	    have is CLOCK_REALTIME and its high res counter part, both of
 | |
|  *	    which we beg off on and pass to do_sys_settimeofday().
 | |
|  */
 | |
| 
 | |
| static struct k_clock posix_clocks[MAX_CLOCKS];
 | |
| 
 | |
| /*
 | |
|  * These ones are defined below.
 | |
|  */
 | |
| static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 | |
| 			 struct timespec __user *rmtp);
 | |
| static void common_timer_get(struct k_itimer *, struct itimerspec *);
 | |
| static int common_timer_set(struct k_itimer *, int,
 | |
| 			    struct itimerspec *, struct itimerspec *);
 | |
| static int common_timer_del(struct k_itimer *timer);
 | |
| 
 | |
| static int posix_timer_fn(struct hrtimer *data);
 | |
| 
 | |
| static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
 | |
| 
 | |
| static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&timr->it_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call the k_clock hook function if non-null, or the default function.
 | |
|  */
 | |
| #define CLOCK_DISPATCH(clock, call, arglist) \
 | |
|  	((clock) < 0 ? posix_cpu_##call arglist : \
 | |
|  	 (posix_clocks[clock].call != NULL \
 | |
|  	  ? (*posix_clocks[clock].call) arglist : common_##call arglist))
 | |
| 
 | |
| /*
 | |
|  * Default clock hook functions when the struct k_clock passed
 | |
|  * to register_posix_clock leaves a function pointer null.
 | |
|  *
 | |
|  * The function common_CALL is the default implementation for
 | |
|  * the function pointer CALL in struct k_clock.
 | |
|  */
 | |
| 
 | |
| static inline int common_clock_getres(const clockid_t which_clock,
 | |
| 				      struct timespec *tp)
 | |
| {
 | |
| 	tp->tv_sec = 0;
 | |
| 	tp->tv_nsec = posix_clocks[which_clock].res;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get real time for posix timers
 | |
|  */
 | |
| static int common_clock_get(clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	ktime_get_real_ts(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int common_clock_set(const clockid_t which_clock,
 | |
| 				   struct timespec *tp)
 | |
| {
 | |
| 	return do_sys_settimeofday(tp, NULL);
 | |
| }
 | |
| 
 | |
| static int common_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return nonzero if we know a priori this clockid_t value is bogus.
 | |
|  */
 | |
| static inline int invalid_clockid(const clockid_t which_clock)
 | |
| {
 | |
| 	if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */
 | |
| 		return 0;
 | |
| 	if ((unsigned) which_clock >= MAX_CLOCKS)
 | |
| 		return 1;
 | |
| 	if (posix_clocks[which_clock].clock_getres != NULL)
 | |
| 		return 0;
 | |
| 	if (posix_clocks[which_clock].res != 0)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get monotonic time for posix timers
 | |
|  */
 | |
| static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	ktime_get_ts(tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize everything, well, just everything in Posix clocks/timers ;)
 | |
|  */
 | |
| static __init int init_posix_timers(void)
 | |
| {
 | |
| 	struct k_clock clock_realtime = {
 | |
| 		.clock_getres = hrtimer_get_res,
 | |
| 	};
 | |
| 	struct k_clock clock_monotonic = {
 | |
| 		.clock_getres = hrtimer_get_res,
 | |
| 		.clock_get = posix_ktime_get_ts,
 | |
| 		.clock_set = do_posix_clock_nosettime,
 | |
| 	};
 | |
| 
 | |
| 	register_posix_clock(CLOCK_REALTIME, &clock_realtime);
 | |
| 	register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
 | |
| 
 | |
| 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
 | |
| 					sizeof (struct k_itimer), 0, 0, NULL, NULL);
 | |
| 	idr_init(&posix_timers_id);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(init_posix_timers);
 | |
| 
 | |
| static void schedule_next_timer(struct k_itimer *timr)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 
 | |
| 	if (timr->it.real.interval.tv64 == 0)
 | |
| 		return;
 | |
| 
 | |
| 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 | |
| 					    timr->it.real.interval);
 | |
| 
 | |
| 	timr->it_overrun_last = timr->it_overrun;
 | |
| 	timr->it_overrun = -1;
 | |
| 	++timr->it_requeue_pending;
 | |
| 	hrtimer_restart(timer);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is exported for use by the signal deliver code.  It is
 | |
|  * called just prior to the info block being released and passes that
 | |
|  * block to us.  It's function is to update the overrun entry AND to
 | |
|  * restart the timer.  It should only be called if the timer is to be
 | |
|  * restarted (i.e. we have flagged this in the sys_private entry of the
 | |
|  * info block).
 | |
|  *
 | |
|  * To protect aginst the timer going away while the interrupt is queued,
 | |
|  * we require that the it_requeue_pending flag be set.
 | |
|  */
 | |
| void do_schedule_next_timer(struct siginfo *info)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	timr = lock_timer(info->si_tid, &flags);
 | |
| 
 | |
| 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
 | |
| 		if (timr->it_clock < 0)
 | |
| 			posix_cpu_timer_schedule(timr);
 | |
| 		else
 | |
| 			schedule_next_timer(timr);
 | |
| 
 | |
| 		info->si_overrun = timr->it_overrun_last;
 | |
| 	}
 | |
| 
 | |
| 	if (timr)
 | |
| 		unlock_timer(timr, flags);
 | |
| }
 | |
| 
 | |
| int posix_timer_event(struct k_itimer *timr,int si_private)
 | |
| {
 | |
| 	memset(&timr->sigq->info, 0, sizeof(siginfo_t));
 | |
| 	timr->sigq->info.si_sys_private = si_private;
 | |
| 	/* Send signal to the process that owns this timer.*/
 | |
| 
 | |
| 	timr->sigq->info.si_signo = timr->it_sigev_signo;
 | |
| 	timr->sigq->info.si_errno = 0;
 | |
| 	timr->sigq->info.si_code = SI_TIMER;
 | |
| 	timr->sigq->info.si_tid = timr->it_id;
 | |
| 	timr->sigq->info.si_value = timr->it_sigev_value;
 | |
| 
 | |
| 	if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
 | |
| 		struct task_struct *leader;
 | |
| 		int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
 | |
| 					timr->it_process);
 | |
| 
 | |
| 		if (likely(ret >= 0))
 | |
| 			return ret;
 | |
| 
 | |
| 		timr->it_sigev_notify = SIGEV_SIGNAL;
 | |
| 		leader = timr->it_process->group_leader;
 | |
| 		put_task_struct(timr->it_process);
 | |
| 		timr->it_process = leader;
 | |
| 	}
 | |
| 
 | |
| 	return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
 | |
| 				   timr->it_process);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(posix_timer_event);
 | |
| 
 | |
| /*
 | |
|  * This function gets called when a POSIX.1b interval timer expires.  It
 | |
|  * is used as a callback from the kernel internal timer.  The
 | |
|  * run_timer_list code ALWAYS calls with interrupts on.
 | |
| 
 | |
|  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 | |
|  */
 | |
| static int posix_timer_fn(struct hrtimer *timer)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	unsigned long flags;
 | |
| 	int si_private = 0;
 | |
| 	int ret = HRTIMER_NORESTART;
 | |
| 
 | |
| 	timr = container_of(timer, struct k_itimer, it.real.timer);
 | |
| 	spin_lock_irqsave(&timr->it_lock, flags);
 | |
| 
 | |
| 	if (timr->it.real.interval.tv64 != 0)
 | |
| 		si_private = ++timr->it_requeue_pending;
 | |
| 
 | |
| 	if (posix_timer_event(timr, si_private)) {
 | |
| 		/*
 | |
| 		 * signal was not sent because of sig_ignor
 | |
| 		 * we will not get a call back to restart it AND
 | |
| 		 * it should be restarted.
 | |
| 		 */
 | |
| 		if (timr->it.real.interval.tv64 != 0) {
 | |
| 			timr->it_overrun +=
 | |
| 				hrtimer_forward(timer,
 | |
| 						timer->base->softirq_time,
 | |
| 						timr->it.real.interval);
 | |
| 			ret = HRTIMER_RESTART;
 | |
| 			++timr->it_requeue_pending;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	unlock_timer(timr, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct task_struct * good_sigevent(sigevent_t * event)
 | |
| {
 | |
| 	struct task_struct *rtn = current->group_leader;
 | |
| 
 | |
| 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 | |
| 		(!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
 | |
| 		 rtn->tgid != current->tgid ||
 | |
| 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 | |
| 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rtn;
 | |
| }
 | |
| 
 | |
| void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
 | |
| {
 | |
| 	if ((unsigned) clock_id >= MAX_CLOCKS) {
 | |
| 		printk("POSIX clock register failed for clock_id %d\n",
 | |
| 		       clock_id);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	posix_clocks[clock_id] = *new_clock;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_posix_clock);
 | |
| 
 | |
| static struct k_itimer * alloc_posix_timer(void)
 | |
| {
 | |
| 	struct k_itimer *tmr;
 | |
| 	tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
 | |
| 	if (!tmr)
 | |
| 		return tmr;
 | |
| 	memset(tmr, 0, sizeof (struct k_itimer));
 | |
| 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 | |
| 		kmem_cache_free(posix_timers_cache, tmr);
 | |
| 		tmr = NULL;
 | |
| 	}
 | |
| 	return tmr;
 | |
| }
 | |
| 
 | |
| #define IT_ID_SET	1
 | |
| #define IT_ID_NOT_SET	0
 | |
| static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 | |
| {
 | |
| 	if (it_id_set) {
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&idr_lock, flags);
 | |
| 		idr_remove(&posix_timers_id, tmr->it_id);
 | |
| 		spin_unlock_irqrestore(&idr_lock, flags);
 | |
| 	}
 | |
| 	sigqueue_free(tmr->sigq);
 | |
| 	if (unlikely(tmr->it_process) &&
 | |
| 	    tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | |
| 		put_task_struct(tmr->it_process);
 | |
| 	kmem_cache_free(posix_timers_cache, tmr);
 | |
| }
 | |
| 
 | |
| /* Create a POSIX.1b interval timer. */
 | |
| 
 | |
| asmlinkage long
 | |
| sys_timer_create(const clockid_t which_clock,
 | |
| 		 struct sigevent __user *timer_event_spec,
 | |
| 		 timer_t __user * created_timer_id)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	struct k_itimer *new_timer = NULL;
 | |
| 	int new_timer_id;
 | |
| 	struct task_struct *process = NULL;
 | |
| 	unsigned long flags;
 | |
| 	sigevent_t event;
 | |
| 	int it_id_set = IT_ID_NOT_SET;
 | |
| 
 | |
| 	if (invalid_clockid(which_clock))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new_timer = alloc_posix_timer();
 | |
| 	if (unlikely(!new_timer))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	spin_lock_init(&new_timer->it_lock);
 | |
|  retry:
 | |
| 	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
 | |
| 		error = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_lock_irq(&idr_lock);
 | |
| 	error = idr_get_new(&posix_timers_id, (void *) new_timer,
 | |
| 			    &new_timer_id);
 | |
| 	spin_unlock_irq(&idr_lock);
 | |
| 	if (error == -EAGAIN)
 | |
| 		goto retry;
 | |
| 	else if (error) {
 | |
| 		/*
 | |
| 		 * Wierd looking, but we return EAGAIN if the IDR is
 | |
| 		 * full (proper POSIX return value for this)
 | |
| 		 */
 | |
| 		error = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	it_id_set = IT_ID_SET;
 | |
| 	new_timer->it_id = (timer_t) new_timer_id;
 | |
| 	new_timer->it_clock = which_clock;
 | |
| 	new_timer->it_overrun = -1;
 | |
| 	error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * return the timer_id now.  The next step is hard to
 | |
| 	 * back out if there is an error.
 | |
| 	 */
 | |
| 	if (copy_to_user(created_timer_id,
 | |
| 			 &new_timer_id, sizeof (new_timer_id))) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (timer_event_spec) {
 | |
| 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		new_timer->it_sigev_notify = event.sigev_notify;
 | |
| 		new_timer->it_sigev_signo = event.sigev_signo;
 | |
| 		new_timer->it_sigev_value = event.sigev_value;
 | |
| 
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if ((process = good_sigevent(&event))) {
 | |
| 			/*
 | |
| 			 * We may be setting up this process for another
 | |
| 			 * thread.  It may be exiting.  To catch this
 | |
| 			 * case the we check the PF_EXITING flag.  If
 | |
| 			 * the flag is not set, the siglock will catch
 | |
| 			 * him before it is too late (in exit_itimers).
 | |
| 			 *
 | |
| 			 * The exec case is a bit more invloved but easy
 | |
| 			 * to code.  If the process is in our thread
 | |
| 			 * group (and it must be or we would not allow
 | |
| 			 * it here) and is doing an exec, it will cause
 | |
| 			 * us to be killed.  In this case it will wait
 | |
| 			 * for us to die which means we can finish this
 | |
| 			 * linkage with our last gasp. I.e. no code :)
 | |
| 			 */
 | |
| 			spin_lock_irqsave(&process->sighand->siglock, flags);
 | |
| 			if (!(process->flags & PF_EXITING)) {
 | |
| 				new_timer->it_process = process;
 | |
| 				list_add(&new_timer->list,
 | |
| 					 &process->signal->posix_timers);
 | |
| 				spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | |
| 				if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | |
| 					get_task_struct(process);
 | |
| 			} else {
 | |
| 				spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | |
| 				process = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		if (!process) {
 | |
| 			error = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	} else {
 | |
| 		new_timer->it_sigev_notify = SIGEV_SIGNAL;
 | |
| 		new_timer->it_sigev_signo = SIGALRM;
 | |
| 		new_timer->it_sigev_value.sival_int = new_timer->it_id;
 | |
| 		process = current->group_leader;
 | |
| 		spin_lock_irqsave(&process->sighand->siglock, flags);
 | |
| 		new_timer->it_process = process;
 | |
| 		list_add(&new_timer->list, &process->signal->posix_timers);
 | |
| 		spin_unlock_irqrestore(&process->sighand->siglock, flags);
 | |
| 	}
 | |
| 
 | |
|  	/*
 | |
| 	 * In the case of the timer belonging to another task, after
 | |
| 	 * the task is unlocked, the timer is owned by the other task
 | |
| 	 * and may cease to exist at any time.  Don't use or modify
 | |
| 	 * new_timer after the unlock call.
 | |
| 	 */
 | |
| 
 | |
| out:
 | |
| 	if (error)
 | |
| 		release_posix_timer(new_timer, it_id_set);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locking issues: We need to protect the result of the id look up until
 | |
|  * we get the timer locked down so it is not deleted under us.  The
 | |
|  * removal is done under the idr spinlock so we use that here to bridge
 | |
|  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 | |
|  * be release with out holding the timer lock.
 | |
|  */
 | |
| static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	/*
 | |
| 	 * Watch out here.  We do a irqsave on the idr_lock and pass the
 | |
| 	 * flags part over to the timer lock.  Must not let interrupts in
 | |
| 	 * while we are moving the lock.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irqsave(&idr_lock, *flags);
 | |
| 	timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
 | |
| 	if (timr) {
 | |
| 		spin_lock(&timr->it_lock);
 | |
| 		spin_unlock(&idr_lock);
 | |
| 
 | |
| 		if ((timr->it_id != timer_id) || !(timr->it_process) ||
 | |
| 				timr->it_process->tgid != current->tgid) {
 | |
| 			unlock_timer(timr, *flags);
 | |
| 			timr = NULL;
 | |
| 		}
 | |
| 	} else
 | |
| 		spin_unlock_irqrestore(&idr_lock, *flags);
 | |
| 
 | |
| 	return timr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the time remaining on a POSIX.1b interval timer.  This function
 | |
|  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 | |
|  * mess with irq.
 | |
|  *
 | |
|  * We have a couple of messes to clean up here.  First there is the case
 | |
|  * of a timer that has a requeue pending.  These timers should appear to
 | |
|  * be in the timer list with an expiry as if we were to requeue them
 | |
|  * now.
 | |
|  *
 | |
|  * The second issue is the SIGEV_NONE timer which may be active but is
 | |
|  * not really ever put in the timer list (to save system resources).
 | |
|  * This timer may be expired, and if so, we will do it here.  Otherwise
 | |
|  * it is the same as a requeue pending timer WRT to what we should
 | |
|  * report.
 | |
|  */
 | |
| static void
 | |
| common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 | |
| {
 | |
| 	ktime_t now, remaining, iv;
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 
 | |
| 	memset(cur_setting, 0, sizeof(struct itimerspec));
 | |
| 
 | |
| 	iv = timr->it.real.interval;
 | |
| 
 | |
| 	/* interval timer ? */
 | |
| 	if (iv.tv64)
 | |
| 		cur_setting->it_interval = ktime_to_timespec(iv);
 | |
| 	else if (!hrtimer_active(timer) &&
 | |
| 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	now = timer->base->get_time();
 | |
| 
 | |
| 	/*
 | |
| 	 * When a requeue is pending or this is a SIGEV_NONE
 | |
| 	 * timer move the expiry time forward by intervals, so
 | |
| 	 * expiry is > now.
 | |
| 	 */
 | |
| 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 | |
| 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 | |
| 		timr->it_overrun += hrtimer_forward(timer, now, iv);
 | |
| 
 | |
| 	remaining = ktime_sub(timer->expires, now);
 | |
| 	/* Return 0 only, when the timer is expired and not pending */
 | |
| 	if (remaining.tv64 <= 0) {
 | |
| 		/*
 | |
| 		 * A single shot SIGEV_NONE timer must return 0, when
 | |
| 		 * it is expired !
 | |
| 		 */
 | |
| 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 | |
| 			cur_setting->it_value.tv_nsec = 1;
 | |
| 	} else
 | |
| 		cur_setting->it_value = ktime_to_timespec(remaining);
 | |
| }
 | |
| 
 | |
| /* Get the time remaining on a POSIX.1b interval timer. */
 | |
| asmlinkage long
 | |
| sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	struct itimerspec cur_setting;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	timr = lock_timer(timer_id, &flags);
 | |
| 	if (!timr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
 | |
| 
 | |
| 	unlock_timer(timr, flags);
 | |
| 
 | |
| 	if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the number of overruns of a POSIX.1b interval timer.  This is to
 | |
|  * be the overrun of the timer last delivered.  At the same time we are
 | |
|  * accumulating overruns on the next timer.  The overrun is frozen when
 | |
|  * the signal is delivered, either at the notify time (if the info block
 | |
|  * is not queued) or at the actual delivery time (as we are informed by
 | |
|  * the call back to do_schedule_next_timer().  So all we need to do is
 | |
|  * to pick up the frozen overrun.
 | |
|  */
 | |
| asmlinkage long
 | |
| sys_timer_getoverrun(timer_t timer_id)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	int overrun;
 | |
| 	long flags;
 | |
| 
 | |
| 	timr = lock_timer(timer_id, &flags);
 | |
| 	if (!timr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	overrun = timr->it_overrun_last;
 | |
| 	unlock_timer(timr, flags);
 | |
| 
 | |
| 	return overrun;
 | |
| }
 | |
| 
 | |
| /* Set a POSIX.1b interval timer. */
 | |
| /* timr->it_lock is taken. */
 | |
| static int
 | |
| common_timer_set(struct k_itimer *timr, int flags,
 | |
| 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
 | |
| {
 | |
| 	struct hrtimer *timer = &timr->it.real.timer;
 | |
| 	enum hrtimer_mode mode;
 | |
| 
 | |
| 	if (old_setting)
 | |
| 		common_timer_get(timr, old_setting);
 | |
| 
 | |
| 	/* disable the timer */
 | |
| 	timr->it.real.interval.tv64 = 0;
 | |
| 	/*
 | |
| 	 * careful here.  If smp we could be in the "fire" routine which will
 | |
| 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 | |
| 	 */
 | |
| 	if (hrtimer_try_to_cancel(timer) < 0)
 | |
| 		return TIMER_RETRY;
 | |
| 
 | |
| 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 | |
| 		~REQUEUE_PENDING;
 | |
| 	timr->it_overrun_last = 0;
 | |
| 
 | |
| 	/* switch off the timer when it_value is zero */
 | |
| 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 | |
| 		return 0;
 | |
| 
 | |
| 	mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
 | |
| 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 | |
| 	timr->it.real.timer.function = posix_timer_fn;
 | |
| 
 | |
| 	timer->expires = timespec_to_ktime(new_setting->it_value);
 | |
| 
 | |
| 	/* Convert interval */
 | |
| 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 | |
| 
 | |
| 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
 | |
| 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 | |
| 		/* Setup correct expiry time for relative timers */
 | |
| 		if (mode == HRTIMER_REL)
 | |
| 			timer->expires = ktime_add(timer->expires,
 | |
| 						   timer->base->get_time());
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	hrtimer_start(timer, timer->expires, mode);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set a POSIX.1b interval timer */
 | |
| asmlinkage long
 | |
| sys_timer_settime(timer_t timer_id, int flags,
 | |
| 		  const struct itimerspec __user *new_setting,
 | |
| 		  struct itimerspec __user *old_setting)
 | |
| {
 | |
| 	struct k_itimer *timr;
 | |
| 	struct itimerspec new_spec, old_spec;
 | |
| 	int error = 0;
 | |
| 	long flag;
 | |
| 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 | |
| 
 | |
| 	if (!new_setting)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec_valid(&new_spec.it_interval) ||
 | |
| 	    !timespec_valid(&new_spec.it_value))
 | |
| 		return -EINVAL;
 | |
| retry:
 | |
| 	timr = lock_timer(timer_id, &flag);
 | |
| 	if (!timr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = CLOCK_DISPATCH(timr->it_clock, timer_set,
 | |
| 			       (timr, flags, &new_spec, rtn));
 | |
| 
 | |
| 	unlock_timer(timr, flag);
 | |
| 	if (error == TIMER_RETRY) {
 | |
| 		rtn = NULL;	// We already got the old time...
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (old_setting && !error &&
 | |
| 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 | |
| 		error = -EFAULT;
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline int common_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it.real.interval.tv64 = 0;
 | |
| 
 | |
| 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 | |
| 		return TIMER_RETRY;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int timer_delete_hook(struct k_itimer *timer)
 | |
| {
 | |
| 	return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
 | |
| }
 | |
| 
 | |
| /* Delete a POSIX.1b interval timer. */
 | |
| asmlinkage long
 | |
| sys_timer_delete(timer_t timer_id)
 | |
| {
 | |
| 	struct k_itimer *timer;
 | |
| 	long flags;
 | |
| 
 | |
| retry_delete:
 | |
| 	timer = lock_timer(timer_id, &flags);
 | |
| 	if (!timer)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | |
| 		unlock_timer(timer, flags);
 | |
| 		goto retry_delete;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(¤t->sighand->siglock);
 | |
| 	list_del(&timer->list);
 | |
| 	spin_unlock(¤t->sighand->siglock);
 | |
| 	/*
 | |
| 	 * This keeps any tasks waiting on the spin lock from thinking
 | |
| 	 * they got something (see the lock code above).
 | |
| 	 */
 | |
| 	if (timer->it_process) {
 | |
| 		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | |
| 			put_task_struct(timer->it_process);
 | |
| 		timer->it_process = NULL;
 | |
| 	}
 | |
| 	unlock_timer(timer, flags);
 | |
| 	release_posix_timer(timer, IT_ID_SET);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return timer owned by the process, used by exit_itimers
 | |
|  */
 | |
| static void itimer_delete(struct k_itimer *timer)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| retry_delete:
 | |
| 	spin_lock_irqsave(&timer->it_lock, flags);
 | |
| 
 | |
| 	if (timer_delete_hook(timer) == TIMER_RETRY) {
 | |
| 		unlock_timer(timer, flags);
 | |
| 		goto retry_delete;
 | |
| 	}
 | |
| 	list_del(&timer->list);
 | |
| 	/*
 | |
| 	 * This keeps any tasks waiting on the spin lock from thinking
 | |
| 	 * they got something (see the lock code above).
 | |
| 	 */
 | |
| 	if (timer->it_process) {
 | |
| 		if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 | |
| 			put_task_struct(timer->it_process);
 | |
| 		timer->it_process = NULL;
 | |
| 	}
 | |
| 	unlock_timer(timer, flags);
 | |
| 	release_posix_timer(timer, IT_ID_SET);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called by do_exit or de_thread, only when there are no more
 | |
|  * references to the shared signal_struct.
 | |
|  */
 | |
| void exit_itimers(struct signal_struct *sig)
 | |
| {
 | |
| 	struct k_itimer *tmr;
 | |
| 
 | |
| 	while (!list_empty(&sig->posix_timers)) {
 | |
| 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 | |
| 		itimer_delete(tmr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Not available / possible... functions */
 | |
| int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
 | |
| 
 | |
| int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
 | |
| 			       struct timespec *t, struct timespec __user *r)
 | |
| {
 | |
| #ifndef ENOTSUP
 | |
| 	return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */
 | |
| #else  /*  parisc does define it separately.  */
 | |
| 	return -ENOTSUP;
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
 | |
| 
 | |
| asmlinkage long sys_clock_settime(const clockid_t which_clock,
 | |
| 				  const struct timespec __user *tp)
 | |
| {
 | |
| 	struct timespec new_tp;
 | |
| 
 | |
| 	if (invalid_clockid(which_clock))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
 | |
| {
 | |
| 	struct timespec kernel_tp;
 | |
| 	int error;
 | |
| 
 | |
| 	if (invalid_clockid(which_clock))
 | |
| 		return -EINVAL;
 | |
| 	error = CLOCK_DISPATCH(which_clock, clock_get,
 | |
| 			       (which_clock, &kernel_tp));
 | |
| 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
 | |
| 		error = -EFAULT;
 | |
| 
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
 | |
| {
 | |
| 	struct timespec rtn_tp;
 | |
| 	int error;
 | |
| 
 | |
| 	if (invalid_clockid(which_clock))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = CLOCK_DISPATCH(which_clock, clock_getres,
 | |
| 			       (which_clock, &rtn_tp));
 | |
| 
 | |
| 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
 | |
| 		error = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nanosleep for monotonic and realtime clocks
 | |
|  */
 | |
| static int common_nsleep(const clockid_t which_clock, int flags,
 | |
| 			 struct timespec *tsave, struct timespec __user *rmtp)
 | |
| {
 | |
| 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
 | |
| 				 HRTIMER_ABS : HRTIMER_REL, which_clock);
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_clock_nanosleep(const clockid_t which_clock, int flags,
 | |
| 		    const struct timespec __user *rqtp,
 | |
| 		    struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct timespec t;
 | |
| 
 | |
| 	if (invalid_clockid(which_clock))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec_valid(&t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return CLOCK_DISPATCH(which_clock, nsleep,
 | |
| 			      (which_clock, flags, &t, rmtp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nanosleep_restart for monotonic and realtime clocks
 | |
|  */
 | |
| static int common_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return hrtimer_nanosleep_restart(restart_block);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This will restart clock_nanosleep. This is required only by
 | |
|  * compat_clock_nanosleep_restart for now.
 | |
|  */
 | |
| long
 | |
| clock_nanosleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	clockid_t which_clock = restart_block->arg0;
 | |
| 
 | |
| 	return CLOCK_DISPATCH(which_clock, nsleep_restart,
 | |
| 			      (restart_block));
 | |
| }
 |