mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 1a657f78dc
			
		
	
	
		1a657f78dc
		
	
	
	
	
		
			
			proc_pid_make_inode: ei->pid = get_pid(task_pid(task)); I think this is not safe. get_pid() can be preempted after checking "pid != NULL". Then the task exits, does detach_pid(), and RCU frees the pid. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			394 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			394 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic pidhash and scalable, time-bounded PID allocator
 | |
|  *
 | |
|  * (C) 2002-2003 William Irwin, IBM
 | |
|  * (C) 2004 William Irwin, Oracle
 | |
|  * (C) 2002-2004 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * pid-structures are backing objects for tasks sharing a given ID to chain
 | |
|  * against. There is very little to them aside from hashing them and
 | |
|  * parking tasks using given ID's on a list.
 | |
|  *
 | |
|  * The hash is always changed with the tasklist_lock write-acquired,
 | |
|  * and the hash is only accessed with the tasklist_lock at least
 | |
|  * read-acquired, so there's no additional SMP locking needed here.
 | |
|  *
 | |
|  * We have a list of bitmap pages, which bitmaps represent the PID space.
 | |
|  * Allocating and freeing PIDs is completely lockless. The worst-case
 | |
|  * allocation scenario when all but one out of 1 million PIDs possible are
 | |
|  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | |
|  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/pspace.h>
 | |
| 
 | |
| #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
 | |
| static struct hlist_head *pid_hash;
 | |
| static int pidhash_shift;
 | |
| static kmem_cache_t *pid_cachep;
 | |
| 
 | |
| int pid_max = PID_MAX_DEFAULT;
 | |
| 
 | |
| #define RESERVED_PIDS		300
 | |
| 
 | |
| int pid_max_min = RESERVED_PIDS + 1;
 | |
| int pid_max_max = PID_MAX_LIMIT;
 | |
| 
 | |
| #define BITS_PER_PAGE		(PAGE_SIZE*8)
 | |
| #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 | |
| 
 | |
| static inline int mk_pid(struct pspace *pspace, struct pidmap *map, int off)
 | |
| {
 | |
| 	return (map - pspace->pidmap)*BITS_PER_PAGE + off;
 | |
| }
 | |
| 
 | |
| #define find_next_offset(map, off)					\
 | |
| 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 | |
| 
 | |
| /*
 | |
|  * PID-map pages start out as NULL, they get allocated upon
 | |
|  * first use and are never deallocated. This way a low pid_max
 | |
|  * value does not cause lots of bitmaps to be allocated, but
 | |
|  * the scheme scales to up to 4 million PIDs, runtime.
 | |
|  */
 | |
| struct pspace init_pspace = {
 | |
| 	.pidmap = {
 | |
| 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 | |
| 	},
 | |
| 	.last_pid = 0
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Note: disable interrupts while the pidmap_lock is held as an
 | |
|  * interrupt might come in and do read_lock(&tasklist_lock).
 | |
|  *
 | |
|  * If we don't disable interrupts there is a nasty deadlock between
 | |
|  * detach_pid()->free_pid() and another cpu that does
 | |
|  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 | |
|  * read_lock(&tasklist_lock);
 | |
|  *
 | |
|  * After we clean up the tasklist_lock and know there are no
 | |
|  * irq handlers that take it we can leave the interrupts enabled.
 | |
|  * For now it is easier to be safe than to prove it can't happen.
 | |
|  */
 | |
| 
 | |
| static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | |
| 
 | |
| static fastcall void free_pidmap(struct pspace *pspace, int pid)
 | |
| {
 | |
| 	struct pidmap *map = pspace->pidmap + pid / BITS_PER_PAGE;
 | |
| 	int offset = pid & BITS_PER_PAGE_MASK;
 | |
| 
 | |
| 	clear_bit(offset, map->page);
 | |
| 	atomic_inc(&map->nr_free);
 | |
| }
 | |
| 
 | |
| static int alloc_pidmap(struct pspace *pspace)
 | |
| {
 | |
| 	int i, offset, max_scan, pid, last = pspace->last_pid;
 | |
| 	struct pidmap *map;
 | |
| 
 | |
| 	pid = last + 1;
 | |
| 	if (pid >= pid_max)
 | |
| 		pid = RESERVED_PIDS;
 | |
| 	offset = pid & BITS_PER_PAGE_MASK;
 | |
| 	map = &pspace->pidmap[pid/BITS_PER_PAGE];
 | |
| 	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
 | |
| 	for (i = 0; i <= max_scan; ++i) {
 | |
| 		if (unlikely(!map->page)) {
 | |
| 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 			/*
 | |
| 			 * Free the page if someone raced with us
 | |
| 			 * installing it:
 | |
| 			 */
 | |
| 			spin_lock_irq(&pidmap_lock);
 | |
| 			if (map->page)
 | |
| 				kfree(page);
 | |
| 			else
 | |
| 				map->page = page;
 | |
| 			spin_unlock_irq(&pidmap_lock);
 | |
| 			if (unlikely(!map->page))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (likely(atomic_read(&map->nr_free))) {
 | |
| 			do {
 | |
| 				if (!test_and_set_bit(offset, map->page)) {
 | |
| 					atomic_dec(&map->nr_free);
 | |
| 					pspace->last_pid = pid;
 | |
| 					return pid;
 | |
| 				}
 | |
| 				offset = find_next_offset(map, offset);
 | |
| 				pid = mk_pid(pspace, map, offset);
 | |
| 			/*
 | |
| 			 * find_next_offset() found a bit, the pid from it
 | |
| 			 * is in-bounds, and if we fell back to the last
 | |
| 			 * bitmap block and the final block was the same
 | |
| 			 * as the starting point, pid is before last_pid.
 | |
| 			 */
 | |
| 			} while (offset < BITS_PER_PAGE && pid < pid_max &&
 | |
| 					(i != max_scan || pid < last ||
 | |
| 					    !((last+1) & BITS_PER_PAGE_MASK)));
 | |
| 		}
 | |
| 		if (map < &pspace->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
 | |
| 			++map;
 | |
| 			offset = 0;
 | |
| 		} else {
 | |
| 			map = &pspace->pidmap[0];
 | |
| 			offset = RESERVED_PIDS;
 | |
| 			if (unlikely(last == offset))
 | |
| 				break;
 | |
| 		}
 | |
| 		pid = mk_pid(pspace, map, offset);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int next_pidmap(struct pspace *pspace, int last)
 | |
| {
 | |
| 	int offset;
 | |
| 	struct pidmap *map, *end;
 | |
| 
 | |
| 	offset = (last + 1) & BITS_PER_PAGE_MASK;
 | |
| 	map = &pspace->pidmap[(last + 1)/BITS_PER_PAGE];
 | |
| 	end = &pspace->pidmap[PIDMAP_ENTRIES];
 | |
| 	for (; map < end; map++, offset = 0) {
 | |
| 		if (unlikely(!map->page))
 | |
| 			continue;
 | |
| 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
 | |
| 		if (offset < BITS_PER_PAGE)
 | |
| 			return mk_pid(pspace, map, offset);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| fastcall void put_pid(struct pid *pid)
 | |
| {
 | |
| 	if (!pid)
 | |
| 		return;
 | |
| 	if ((atomic_read(&pid->count) == 1) ||
 | |
| 	     atomic_dec_and_test(&pid->count))
 | |
| 		kmem_cache_free(pid_cachep, pid);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_pid);
 | |
| 
 | |
| static void delayed_put_pid(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct pid *pid = container_of(rhp, struct pid, rcu);
 | |
| 	put_pid(pid);
 | |
| }
 | |
| 
 | |
| fastcall void free_pid(struct pid *pid)
 | |
| {
 | |
| 	/* We can be called with write_lock_irq(&tasklist_lock) held */
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pidmap_lock, flags);
 | |
| 	hlist_del_rcu(&pid->pid_chain);
 | |
| 	spin_unlock_irqrestore(&pidmap_lock, flags);
 | |
| 
 | |
| 	free_pidmap(&init_pspace, pid->nr);
 | |
| 	call_rcu(&pid->rcu, delayed_put_pid);
 | |
| }
 | |
| 
 | |
| struct pid *alloc_pid(void)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	enum pid_type type;
 | |
| 	int nr = -1;
 | |
| 
 | |
| 	pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
 | |
| 	if (!pid)
 | |
| 		goto out;
 | |
| 
 | |
| 	nr = alloc_pidmap(&init_pspace);
 | |
| 	if (nr < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	atomic_set(&pid->count, 1);
 | |
| 	pid->nr = nr;
 | |
| 	for (type = 0; type < PIDTYPE_MAX; ++type)
 | |
| 		INIT_HLIST_HEAD(&pid->tasks[type]);
 | |
| 
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 
 | |
| out:
 | |
| 	return pid;
 | |
| 
 | |
| out_free:
 | |
| 	kmem_cache_free(pid_cachep, pid);
 | |
| 	pid = NULL;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| struct pid * fastcall find_pid(int nr)
 | |
| {
 | |
| 	struct hlist_node *elem;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(pid, elem,
 | |
| 			&pid_hash[pid_hashfn(nr)], pid_chain) {
 | |
| 		if (pid->nr == nr)
 | |
| 			return pid;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_pid);
 | |
| 
 | |
| int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
 | |
| {
 | |
| 	struct pid_link *link;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	link = &task->pids[type];
 | |
| 	link->pid = pid = find_pid(nr);
 | |
| 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void fastcall detach_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid_link *link;
 | |
| 	struct pid *pid;
 | |
| 	int tmp;
 | |
| 
 | |
| 	link = &task->pids[type];
 | |
| 	pid = link->pid;
 | |
| 
 | |
| 	hlist_del_rcu(&link->node);
 | |
| 	link->pid = NULL;
 | |
| 
 | |
| 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | |
| 		if (!hlist_empty(&pid->tasks[tmp]))
 | |
| 			return;
 | |
| 
 | |
| 	free_pid(pid);
 | |
| }
 | |
| 
 | |
| /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 | |
| void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
 | |
| 			   enum pid_type type)
 | |
| {
 | |
| 	new->pids[type].pid = old->pids[type].pid;
 | |
| 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 | |
| 	old->pids[type].pid = NULL;
 | |
| }
 | |
| 
 | |
| struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result = NULL;
 | |
| 	if (pid) {
 | |
| 		struct hlist_node *first;
 | |
| 		first = rcu_dereference(pid->tasks[type].first);
 | |
| 		if (first)
 | |
| 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
 | |
|  */
 | |
| struct task_struct *find_task_by_pid_type(int type, int nr)
 | |
| {
 | |
| 	return pid_task(find_pid(nr), type);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_task_by_pid_type);
 | |
| 
 | |
| struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(task->pids[type].pid);
 | |
| 	rcu_read_unlock();
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result;
 | |
| 	rcu_read_lock();
 | |
| 	result = pid_task(pid, type);
 | |
| 	if (result)
 | |
| 		get_task_struct(result);
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| struct pid *find_get_pid(pid_t nr)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(find_pid(nr));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by proc to find the first pid that is greater then or equal to nr.
 | |
|  *
 | |
|  * If there is a pid at nr this function is exactly the same as find_pid.
 | |
|  */
 | |
| struct pid *find_ge_pid(int nr)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	do {
 | |
| 		pid = find_pid(nr);
 | |
| 		if (pid)
 | |
| 			break;
 | |
| 		nr = next_pidmap(&init_pspace, nr);
 | |
| 	} while (nr > 0);
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_get_pid);
 | |
| 
 | |
| /*
 | |
|  * The pid hash table is scaled according to the amount of memory in the
 | |
|  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 | |
|  * more.
 | |
|  */
 | |
| void __init pidhash_init(void)
 | |
| {
 | |
| 	int i, pidhash_size;
 | |
| 	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
 | |
| 
 | |
| 	pidhash_shift = max(4, fls(megabytes * 4));
 | |
| 	pidhash_shift = min(12, pidhash_shift);
 | |
| 	pidhash_size = 1 << pidhash_shift;
 | |
| 
 | |
| 	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
 | |
| 		pidhash_size, pidhash_shift,
 | |
| 		pidhash_size * sizeof(struct hlist_head));
 | |
| 
 | |
| 	pid_hash = alloc_bootmem(pidhash_size *	sizeof(*(pid_hash)));
 | |
| 	if (!pid_hash)
 | |
| 		panic("Could not alloc pidhash!\n");
 | |
| 	for (i = 0; i < pidhash_size; i++)
 | |
| 		INIT_HLIST_HEAD(&pid_hash[i]);
 | |
| }
 | |
| 
 | |
| void __init pidmap_init(void)
 | |
| {
 | |
| 	init_pspace.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	/* Reserve PID 0. We never call free_pidmap(0) */
 | |
| 	set_bit(0, init_pspace.pidmap[0].page);
 | |
| 	atomic_dec(&init_pspace.pidmap[0].nr_free);
 | |
| 
 | |
| 	pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
 | |
| 					__alignof__(struct pid),
 | |
| 					SLAB_PANIC, NULL, NULL);
 | |
| }
 |