mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 f52720ca5f
			
		
	
	
		f52720ca5f
		
	
	
	
	
		
			
			* Removing useless casts * Removing useless wrapper * Conversion from kmalloc+memset to kzalloc Signed-off-by: Panagiotis Issaris <takis@issaris.org> Acked-by: Dave Kleikamp <shaggy@austin.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			3450 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3450 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * JFFS -- Journaling Flash File System, Linux implementation.
 | |
|  *
 | |
|  * Copyright (C) 1999, 2000  Axis Communications, Inc.
 | |
|  *
 | |
|  * Created by Finn Hakansson <finn@axis.com>.
 | |
|  *
 | |
|  * This is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * $Id: intrep.c,v 1.102 2001/09/23 23:28:36 dwmw2 Exp $
 | |
|  *
 | |
|  * Ported to Linux 2.3.x and MTD:
 | |
|  * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file contains the code for the internal structure of the
 | |
|    Journaling Flash File System, JFFS.  */
 | |
| 
 | |
| /*
 | |
|  * Todo list:
 | |
|  *
 | |
|  * memcpy_to_flash() and memcpy_from_flash() functions.
 | |
|  *
 | |
|  * Implementation of hard links.
 | |
|  *
 | |
|  * Organize the source code in a better way. Against the VFS we could
 | |
|  * have jffs_ext.c, and against the block device jffs_int.c.
 | |
|  * A better file-internal organization too.
 | |
|  *
 | |
|  * A better checksum algorithm.
 | |
|  *
 | |
|  * Consider endianness stuff. ntohl() etc.
 | |
|  *
 | |
|  * Are we handling the atime, mtime, ctime members of the inode right?
 | |
|  *
 | |
|  * Remove some duplicated code. Take a look at jffs_write_node() and
 | |
|  * jffs_rewrite_data() for instance.
 | |
|  *
 | |
|  * Implement more meaning of the nlink member in various data structures.
 | |
|  * nlink could be used in conjunction with hard links for instance.
 | |
|  *
 | |
|  * Better memory management. Allocate data structures in larger chunks
 | |
|  * if possible.
 | |
|  *
 | |
|  * If too much meta data is stored, a garbage collect should be issued.
 | |
|  * We have experienced problems with too much meta data with for instance
 | |
|  * log files.
 | |
|  *
 | |
|  * Improve the calls to jffs_ioctl(). We would like to retrieve more
 | |
|  * information to be able to debug (or to supervise) JFFS during run-time.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/jffs.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <asm/byteorder.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #include "intrep.h"
 | |
| #include "jffs_fm.h"
 | |
| 
 | |
| long no_jffs_node = 0;
 | |
| static long no_jffs_file = 0;
 | |
| #if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
 | |
| long no_jffs_control = 0;
 | |
| long no_jffs_raw_inode = 0;
 | |
| long no_jffs_node_ref = 0;
 | |
| long no_jffs_fm = 0;
 | |
| long no_jffs_fmcontrol = 0;
 | |
| long no_hash = 0;
 | |
| long no_name = 0;
 | |
| #endif
 | |
| 
 | |
| static int jffs_scan_flash(struct jffs_control *c);
 | |
| static int jffs_update_file(struct jffs_file *f, struct jffs_node *node);
 | |
| static int jffs_build_file(struct jffs_file *f);
 | |
| static int jffs_free_file(struct jffs_file *f);
 | |
| static int jffs_free_node_list(struct jffs_file *f);
 | |
| static int jffs_garbage_collect_now(struct jffs_control *c);
 | |
| static int jffs_insert_file_into_hash(struct jffs_file *f);
 | |
| static int jffs_remove_redundant_nodes(struct jffs_file *f);
 | |
| 
 | |
| /* Is there enough space on the flash?  */
 | |
| static inline int JFFS_ENOUGH_SPACE(struct jffs_control *c, __u32 space)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if ((fmc->flash_size - (fmc->used_size + fmc->dirty_size))
 | |
| 			>= fmc->min_free_size + space) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if (fmc->dirty_size < fmc->sector_size)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (jffs_garbage_collect_now(c)) {
 | |
| 		  D1(printk("JFFS_ENOUGH_SPACE: jffs_garbage_collect_now() failed.\n"));
 | |
| 		  return 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if CONFIG_JFFS_FS_VERBOSE > 0
 | |
| static __u8
 | |
| flash_read_u8(struct mtd_info *mtd, loff_t from)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	__u8 ret;
 | |
| 	int res;
 | |
| 
 | |
| 	res = MTD_READ(mtd, from, 1, &retlen, &ret);
 | |
| 	if (retlen != 1) {
 | |
| 		printk("Didn't read a byte in flash_read_u8(). Returned %d\n", res);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| jffs_hexdump(struct mtd_info *mtd, loff_t pos, int size)
 | |
| {
 | |
| 	char line[16];
 | |
| 	int j = 0;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		int i;
 | |
| 
 | |
| 		printk("%ld:", (long) pos);
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			line[j] = flash_read_u8(mtd, pos++);
 | |
| 		}
 | |
| 		for (i = 0; i < j; i++) {
 | |
| 			if (!(i & 1)) {
 | |
| 				printk(" %.2x", line[i] & 0xff);
 | |
| 			}
 | |
| 			else {
 | |
| 				printk("%.2x", line[i] & 0xff);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Print empty space */
 | |
| 		for (; i < 16; i++) {
 | |
| 			if (!(i & 1)) {
 | |
| 				printk("   ");
 | |
| 			}
 | |
| 			else {
 | |
| 				printk("  ");
 | |
| 			}
 | |
| 		}
 | |
| 		printk("  ");
 | |
| 
 | |
| 		for (i = 0; i < j; i++) {
 | |
| 			if (isgraph(line[i])) {
 | |
| 				printk("%c", line[i]);
 | |
| 			}
 | |
| 			else {
 | |
| 				printk(".");
 | |
| 			}
 | |
| 		}
 | |
| 		printk("\n");
 | |
| 		size -= 16;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Print the contents of a node.  */
 | |
| static void
 | |
| jffs_print_node(struct jffs_node *n)
 | |
| {
 | |
| 	D(printk("jffs_node: 0x%p\n", n));
 | |
| 	D(printk("{\n"));
 | |
| 	D(printk("        0x%08x, /* version  */\n", n->version));
 | |
| 	D(printk("        0x%08x, /* data_offset  */\n", n->data_offset));
 | |
| 	D(printk("        0x%08x, /* data_size  */\n", n->data_size));
 | |
| 	D(printk("        0x%08x, /* removed_size  */\n", n->removed_size));
 | |
| 	D(printk("        0x%08x, /* fm_offset  */\n", n->fm_offset));
 | |
| 	D(printk("        0x%02x,       /* name_size  */\n", n->name_size));
 | |
| 	D(printk("        0x%p, /* fm,  fm->offset: %u  */\n",
 | |
| 		 n->fm, (n->fm ? n->fm->offset : 0)));
 | |
| 	D(printk("        0x%p, /* version_prev  */\n", n->version_prev));
 | |
| 	D(printk("        0x%p, /* version_next  */\n", n->version_next));
 | |
| 	D(printk("        0x%p, /* range_prev  */\n", n->range_prev));
 | |
| 	D(printk("        0x%p, /* range_next  */\n", n->range_next));
 | |
| 	D(printk("}\n"));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Print the contents of a raw inode.  */
 | |
| static void
 | |
| jffs_print_raw_inode(struct jffs_raw_inode *raw_inode)
 | |
| {
 | |
| 	D(printk("jffs_raw_inode: inode number: %u\n", raw_inode->ino));
 | |
| 	D(printk("{\n"));
 | |
| 	D(printk("        0x%08x, /* magic  */\n", raw_inode->magic));
 | |
| 	D(printk("        0x%08x, /* ino  */\n", raw_inode->ino));
 | |
| 	D(printk("        0x%08x, /* pino  */\n", raw_inode->pino));
 | |
| 	D(printk("        0x%08x, /* version  */\n", raw_inode->version));
 | |
| 	D(printk("        0x%08x, /* mode  */\n", raw_inode->mode));
 | |
| 	D(printk("        0x%04x,     /* uid  */\n", raw_inode->uid));
 | |
| 	D(printk("        0x%04x,     /* gid  */\n", raw_inode->gid));
 | |
| 	D(printk("        0x%08x, /* atime  */\n", raw_inode->atime));
 | |
| 	D(printk("        0x%08x, /* mtime  */\n", raw_inode->mtime));
 | |
| 	D(printk("        0x%08x, /* ctime  */\n", raw_inode->ctime));
 | |
| 	D(printk("        0x%08x, /* offset  */\n", raw_inode->offset));
 | |
| 	D(printk("        0x%08x, /* dsize  */\n", raw_inode->dsize));
 | |
| 	D(printk("        0x%08x, /* rsize  */\n", raw_inode->rsize));
 | |
| 	D(printk("        0x%02x,       /* nsize  */\n", raw_inode->nsize));
 | |
| 	D(printk("        0x%02x,       /* nlink  */\n", raw_inode->nlink));
 | |
| 	D(printk("        0x%02x,       /* spare  */\n",
 | |
| 		 raw_inode->spare));
 | |
| 	D(printk("        %u,          /* rename  */\n",
 | |
| 		 raw_inode->rename));
 | |
| 	D(printk("        %u,          /* deleted  */\n",
 | |
| 		 raw_inode->deleted));
 | |
| 	D(printk("        0x%02x,       /* accurate  */\n",
 | |
| 		 raw_inode->accurate));
 | |
| 	D(printk("        0x%08x, /* dchksum  */\n", raw_inode->dchksum));
 | |
| 	D(printk("        0x%04x,     /* nchksum  */\n", raw_inode->nchksum));
 | |
| 	D(printk("        0x%04x,     /* chksum  */\n", raw_inode->chksum));
 | |
| 	D(printk("}\n"));
 | |
| }
 | |
| 
 | |
| #define flash_safe_acquire(arg)
 | |
| #define flash_safe_release(arg)
 | |
| 
 | |
| 
 | |
| static int
 | |
| flash_safe_read(struct mtd_info *mtd, loff_t from,
 | |
| 		u_char *buf, size_t count)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	int res;
 | |
| 
 | |
| 	D3(printk(KERN_NOTICE "flash_safe_read(%p, %08x, %p, %08x)\n",
 | |
| 		  mtd, (unsigned int) from, buf, count));
 | |
| 
 | |
| 	res = mtd->read(mtd, from, count, &retlen, buf);
 | |
| 	if (retlen != count) {
 | |
| 		panic("Didn't read all bytes in flash_safe_read(). Returned %d\n", res);
 | |
| 	}
 | |
| 	return res?res:retlen;
 | |
| }
 | |
| 
 | |
| 
 | |
| static __u32
 | |
| flash_read_u32(struct mtd_info *mtd, loff_t from)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	__u32 ret;
 | |
| 	int res;
 | |
| 
 | |
| 	res = mtd->read(mtd, from, 4, &retlen, (unsigned char *)&ret);
 | |
| 	if (retlen != 4) {
 | |
| 		printk("Didn't read all bytes in flash_read_u32(). Returned %d\n", res);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| flash_safe_write(struct mtd_info *mtd, loff_t to,
 | |
| 		 const u_char *buf, size_t count)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	int res;
 | |
| 
 | |
| 	D3(printk(KERN_NOTICE "flash_safe_write(%p, %08x, %p, %08x)\n",
 | |
| 		  mtd, (unsigned int) to, buf, count));
 | |
| 
 | |
| 	res = mtd->write(mtd, to, count, &retlen, buf);
 | |
| 	if (retlen != count) {
 | |
| 		printk("Didn't write all bytes in flash_safe_write(). Returned %d\n", res);
 | |
| 	}
 | |
| 	return res?res:retlen;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| flash_safe_writev(struct mtd_info *mtd, const struct kvec *vecs,
 | |
| 			unsigned long iovec_cnt, loff_t to)
 | |
| {
 | |
| 	size_t retlen, retlen_a;
 | |
| 	int i;
 | |
| 	int res;
 | |
| 
 | |
| 	D3(printk(KERN_NOTICE "flash_safe_writev(%p, %08x, %p)\n",
 | |
| 		  mtd, (unsigned int) to, vecs));
 | |
| 
 | |
| 	if (mtd->writev) {
 | |
| 		res = mtd->writev(mtd, vecs, iovec_cnt, to, &retlen);
 | |
| 		return res ? res : retlen;
 | |
| 	}
 | |
| 	/* Not implemented writev. Repeatedly use write - on the not so
 | |
| 	   unreasonable assumption that the mtd driver doesn't care how
 | |
| 	   many write cycles we use. */
 | |
| 	res=0;
 | |
| 	retlen=0;
 | |
| 
 | |
| 	for (i=0; !res && i<iovec_cnt; i++) {
 | |
| 		res = mtd->write(mtd, to, vecs[i].iov_len, &retlen_a,
 | |
| 				 vecs[i].iov_base);
 | |
| 		if (retlen_a != vecs[i].iov_len) {
 | |
| 			printk("Didn't write all bytes in flash_safe_writev(). Returned %d\n", res);
 | |
| 			if (i != iovec_cnt-1)
 | |
| 				return -EIO;
 | |
| 		}
 | |
| 		/* If res is non-zero, retlen_a is undefined, but we don't
 | |
| 		   care because in that case it's not going to be 
 | |
| 		   returned anyway.
 | |
| 		*/
 | |
| 		to += retlen_a;
 | |
| 		retlen += retlen_a;
 | |
| 	}
 | |
| 	return res?res:retlen;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| flash_memset(struct mtd_info *mtd, loff_t to,
 | |
| 	     const u_char c, size_t size)
 | |
| {
 | |
| 	static unsigned char pattern[64];
 | |
| 	int i;
 | |
| 
 | |
| 	/* fill up pattern */
 | |
| 
 | |
| 	for(i = 0; i < 64; i++)
 | |
| 		pattern[i] = c;
 | |
| 
 | |
| 	/* write as many 64-byte chunks as we can */
 | |
| 
 | |
| 	while (size >= 64) {
 | |
| 		flash_safe_write(mtd, to, pattern, 64);
 | |
| 		size -= 64;
 | |
| 		to += 64;
 | |
| 	}
 | |
| 
 | |
| 	/* and the rest */
 | |
| 
 | |
| 	if(size)
 | |
| 		flash_safe_write(mtd, to, pattern, size);
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| intrep_erase_callback(struct erase_info *done)
 | |
| {
 | |
| 	wait_queue_head_t *wait_q;
 | |
| 
 | |
| 	wait_q = (wait_queue_head_t *)done->priv;
 | |
| 
 | |
| 	wake_up(wait_q);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| flash_erase_region(struct mtd_info *mtd, loff_t start,
 | |
| 		   size_t size)
 | |
| {
 | |
| 	struct erase_info *erase;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	wait_queue_head_t wait_q;
 | |
| 
 | |
| 	erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
 | |
| 	if (!erase)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	init_waitqueue_head(&wait_q);
 | |
| 
 | |
| 	erase->mtd = mtd;
 | |
| 	erase->callback = intrep_erase_callback;
 | |
| 	erase->addr = start;
 | |
| 	erase->len = size;
 | |
| 	erase->priv = (u_long)&wait_q;
 | |
| 
 | |
| 	/* FIXME: Use TASK_INTERRUPTIBLE and deal with being interrupted */
 | |
| 	set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 	add_wait_queue(&wait_q, &wait);
 | |
| 
 | |
| 	if (mtd->erase(mtd, erase) < 0) {
 | |
| 		set_current_state(TASK_RUNNING);
 | |
| 		remove_wait_queue(&wait_q, &wait);
 | |
| 		kfree(erase);
 | |
| 
 | |
| 		printk(KERN_WARNING "flash: erase of region [0x%lx, 0x%lx] "
 | |
| 		       "totally failed\n", (long)start, (long)start + size);
 | |
| 
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	schedule(); /* Wait for flash to finish. */
 | |
| 	remove_wait_queue(&wait_q, &wait);
 | |
| 
 | |
| 	kfree(erase);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This routine calculates checksums in JFFS.  */
 | |
| static __u32
 | |
| jffs_checksum(const void *data, int size)
 | |
| {
 | |
| 	__u32 sum = 0;
 | |
| 	__u8 *ptr = (__u8 *)data;
 | |
| 	while (size-- > 0) {
 | |
| 		sum += *ptr++;
 | |
| 	}
 | |
| 	D3(printk(", result: 0x%08x\n", sum));
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| jffs_checksum_flash(struct mtd_info *mtd, loff_t start, int size, __u32 *result)
 | |
| {
 | |
| 	__u32 sum = 0;
 | |
| 	loff_t ptr = start;
 | |
| 	__u8 *read_buf;
 | |
| 	int i, length;
 | |
| 
 | |
| 	/* Allocate read buffer */
 | |
| 	read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
 | |
| 	if (!read_buf) {
 | |
| 		printk(KERN_NOTICE "kmalloc failed in jffs_checksum_flash()\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	/* Loop until checksum done */
 | |
| 	while (size) {
 | |
| 		/* Get amount of data to read */
 | |
| 		if (size < 4096)
 | |
| 			length = size;
 | |
| 		else
 | |
| 			length = 4096;
 | |
| 
 | |
| 		/* Perform flash read */
 | |
| 		D3(printk(KERN_NOTICE "jffs_checksum_flash\n"));
 | |
| 		flash_safe_read(mtd, ptr, &read_buf[0], length);
 | |
| 
 | |
| 		/* Compute checksum */
 | |
| 		for (i=0; i < length ; i++)
 | |
| 			sum += read_buf[i];
 | |
| 
 | |
| 		/* Update pointer and size */
 | |
| 		size -= length;
 | |
| 		ptr += length;
 | |
| 	}
 | |
| 
 | |
| 	/* Free read buffer */
 | |
| 	kfree(read_buf);
 | |
| 
 | |
| 	/* Return result */
 | |
| 	D3(printk("checksum result: 0x%08x\n", sum));
 | |
| 	*result = sum;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __inline__ void jffs_fm_write_lock(struct jffs_fmcontrol *fmc)
 | |
| {
 | |
|   //	down(&fmc->wlock);
 | |
| }
 | |
| 
 | |
| static __inline__ void jffs_fm_write_unlock(struct jffs_fmcontrol *fmc)
 | |
| {
 | |
|   //	up(&fmc->wlock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Create and initialize a new struct jffs_file.  */
 | |
| static struct jffs_file *
 | |
| jffs_create_file(struct jffs_control *c,
 | |
| 		 const struct jffs_raw_inode *raw_inode)
 | |
| {
 | |
| 	struct jffs_file *f;
 | |
| 
 | |
| 	if (!(f = kzalloc(sizeof(*f), GFP_KERNEL))) {
 | |
| 		D(printk("jffs_create_file(): Failed!\n"));
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	no_jffs_file++;
 | |
| 	f->ino = raw_inode->ino;
 | |
| 	f->pino = raw_inode->pino;
 | |
| 	f->nlink = raw_inode->nlink;
 | |
| 	f->deleted = raw_inode->deleted;
 | |
| 	f->c = c;
 | |
| 
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Build a control block for the file system.  */
 | |
| static struct jffs_control *
 | |
| jffs_create_control(struct super_block *sb)
 | |
| {
 | |
| 	struct jffs_control *c;
 | |
| 	register int s = sizeof(struct jffs_control);
 | |
| 	int i;
 | |
| 	D(char *t = 0);
 | |
| 
 | |
| 	D2(printk("jffs_create_control()\n"));
 | |
| 
 | |
| 	if (!(c = kmalloc(s, GFP_KERNEL))) {
 | |
| 		goto fail_control;
 | |
| 	}
 | |
| 	DJM(no_jffs_control++);
 | |
| 	c->root = NULL;
 | |
| 	c->gc_task = NULL;
 | |
| 	c->hash_len = JFFS_HASH_SIZE;
 | |
| 	s = sizeof(struct list_head) * c->hash_len;
 | |
| 	if (!(c->hash = kmalloc(s, GFP_KERNEL))) {
 | |
| 		goto fail_hash;
 | |
| 	}
 | |
| 	DJM(no_hash++);
 | |
| 	for (i = 0; i < c->hash_len; i++)
 | |
| 		INIT_LIST_HEAD(&c->hash[i]);
 | |
| 	if (!(c->fmc = jffs_build_begin(c, MINOR(sb->s_dev)))) {
 | |
| 		goto fail_fminit;
 | |
| 	}
 | |
| 	c->next_ino = JFFS_MIN_INO + 1;
 | |
| 	c->delete_list = (struct jffs_delete_list *) 0;
 | |
| 	return c;
 | |
| 
 | |
| fail_fminit:
 | |
| 	D(t = "c->fmc");
 | |
| fail_hash:
 | |
| 	kfree(c);
 | |
| 	DJM(no_jffs_control--);
 | |
| 	D(t = t ? t : "c->hash");
 | |
| fail_control:
 | |
| 	D(t = t ? t : "control");
 | |
| 	D(printk("jffs_create_control(): Allocation failed: (%s)\n", t));
 | |
| 	return (struct jffs_control *)0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Clean up all data structures associated with the file system.  */
 | |
| void
 | |
| jffs_cleanup_control(struct jffs_control *c)
 | |
| {
 | |
| 	D2(printk("jffs_cleanup_control()\n"));
 | |
| 
 | |
| 	if (!c) {
 | |
| 		D(printk("jffs_cleanup_control(): c == NULL !!!\n"));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (c->delete_list) {
 | |
| 		struct jffs_delete_list *delete_list_element;
 | |
| 		delete_list_element = c->delete_list;
 | |
| 		c->delete_list = c->delete_list->next;
 | |
| 		kfree(delete_list_element);
 | |
| 	}
 | |
| 
 | |
| 	/* Free all files and nodes.  */
 | |
| 	if (c->hash) {
 | |
| 		jffs_foreach_file(c, jffs_free_node_list);
 | |
| 		jffs_foreach_file(c, jffs_free_file);
 | |
| 		kfree(c->hash);
 | |
| 		DJM(no_hash--);
 | |
| 	}
 | |
| 	jffs_cleanup_fmcontrol(c->fmc);
 | |
| 	kfree(c);
 | |
| 	DJM(no_jffs_control--);
 | |
| 	D3(printk("jffs_cleanup_control(): Leaving...\n"));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function adds a virtual root node to the in-RAM representation.
 | |
|    Called by jffs_build_fs().  */
 | |
| static int
 | |
| jffs_add_virtual_root(struct jffs_control *c)
 | |
| {
 | |
| 	struct jffs_file *root;
 | |
| 	struct jffs_node *node;
 | |
| 
 | |
| 	D2(printk("jffs_add_virtual_root(): "
 | |
| 		  "Creating a virtual root directory.\n"));
 | |
| 
 | |
| 	if (!(root = kmalloc(sizeof(struct jffs_file), GFP_KERNEL))) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	no_jffs_file++;
 | |
| 	if (!(node = jffs_alloc_node())) {
 | |
| 		kfree(root);
 | |
| 		no_jffs_file--;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	DJM(no_jffs_node++);
 | |
| 	memset(node, 0, sizeof(struct jffs_node));
 | |
| 	node->ino = JFFS_MIN_INO;
 | |
| 	memset(root, 0, sizeof(struct jffs_file));
 | |
| 	root->ino = JFFS_MIN_INO;
 | |
| 	root->mode = S_IFDIR | S_IRWXU | S_IRGRP
 | |
| 		     | S_IXGRP | S_IROTH | S_IXOTH;
 | |
| 	root->atime = root->mtime = root->ctime = get_seconds();
 | |
| 	root->nlink = 1;
 | |
| 	root->c = c;
 | |
| 	root->version_head = root->version_tail = node;
 | |
| 	jffs_insert_file_into_hash(root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This is where the file system is built and initialized.  */
 | |
| int
 | |
| jffs_build_fs(struct super_block *sb)
 | |
| {
 | |
| 	struct jffs_control *c;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	D2(printk("jffs_build_fs()\n"));
 | |
| 
 | |
| 	if (!(c = jffs_create_control(sb))) {
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	c->building_fs = 1;
 | |
| 	c->sb = sb;
 | |
| 	if ((err = jffs_scan_flash(c)) < 0) {
 | |
| 		if(err == -EAGAIN){
 | |
| 			/* scan_flash() wants us to try once more. A flipping 
 | |
| 			   bits sector was detect in the middle of the scan flash.
 | |
| 			   Clean up old allocated memory before going in.
 | |
| 			*/
 | |
| 			D1(printk("jffs_build_fs: Cleaning up all control structures,"
 | |
| 				  " reallocating them and trying mount again.\n"));
 | |
| 			jffs_cleanup_control(c);
 | |
| 			if (!(c = jffs_create_control(sb))) {
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			c->building_fs = 1;
 | |
| 			c->sb = sb;
 | |
| 
 | |
| 			if ((err = jffs_scan_flash(c)) < 0) {
 | |
| 				goto jffs_build_fs_fail;
 | |
| 			}			
 | |
| 		}else{
 | |
| 			goto jffs_build_fs_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Add a virtual root node if no one exists.  */
 | |
| 	if (!jffs_find_file(c, JFFS_MIN_INO)) {
 | |
| 		if ((err = jffs_add_virtual_root(c)) < 0) {
 | |
| 			goto jffs_build_fs_fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	while (c->delete_list) {
 | |
| 		struct jffs_file *f;
 | |
| 		struct jffs_delete_list *delete_list_element;
 | |
| 
 | |
| 		if ((f = jffs_find_file(c, c->delete_list->ino))) {
 | |
| 			f->deleted = 1;
 | |
| 		}
 | |
| 		delete_list_element = c->delete_list;
 | |
| 		c->delete_list = c->delete_list->next;
 | |
| 		kfree(delete_list_element);
 | |
| 	}
 | |
| 
 | |
| 	/* Remove deleted nodes.  */
 | |
| 	if ((err = jffs_foreach_file(c, jffs_possibly_delete_file)) < 0) {
 | |
| 		printk(KERN_ERR "JFFS: Failed to remove deleted nodes.\n");
 | |
| 		goto jffs_build_fs_fail;
 | |
| 	}
 | |
| 	/* Remove redundant nodes.  (We are not interested in the
 | |
| 	   return value in this case.)  */
 | |
| 	jffs_foreach_file(c, jffs_remove_redundant_nodes);
 | |
| 	/* Try to build a tree from all the nodes.  */
 | |
| 	if ((err = jffs_foreach_file(c, jffs_insert_file_into_tree)) < 0) {
 | |
| 		printk("JFFS: Failed to build tree.\n");
 | |
| 		goto jffs_build_fs_fail;
 | |
| 	}
 | |
| 	/* Compute the sizes of all files in the filesystem.  Adjust if
 | |
| 	   necessary.  */
 | |
| 	if ((err = jffs_foreach_file(c, jffs_build_file)) < 0) {
 | |
| 		printk("JFFS: Failed to build file system.\n");
 | |
| 		goto jffs_build_fs_fail;
 | |
| 	}
 | |
| 	sb->s_fs_info = (void *)c;
 | |
| 	c->building_fs = 0;
 | |
| 
 | |
| 	D1(jffs_print_hash_table(c));
 | |
| 	D1(jffs_print_tree(c->root, 0));
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| jffs_build_fs_fail:
 | |
| 	jffs_cleanup_control(c);
 | |
| 	return err;
 | |
| } /* jffs_build_fs()  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|   This checks for sectors that were being erased in their previous 
 | |
|   lifetimes and for some reason or the other (power fail etc.), 
 | |
|   the erase cycles never completed.
 | |
|   As the flash array would have reverted back to read status, 
 | |
|   these sectors are detected by the symptom of the "flipping bits",
 | |
|   i.e. bits being read back differently from the same location in
 | |
|   flash if read multiple times.
 | |
|   The only solution to this is to re-erase the entire
 | |
|   sector.
 | |
|   Unfortunately detecting "flipping bits" is not a simple exercise
 | |
|   as a bit may be read back at 1 or 0 depending on the alignment 
 | |
|   of the stars in the universe.
 | |
|   The level of confidence is in direct proportion to the number of 
 | |
|   scans done. By power fail testing I (Vipin) have been able to 
 | |
|   proove that reading twice is not enough.
 | |
|   Maybe 4 times? Change NUM_REREADS to a higher number if you want
 | |
|   a (even) higher degree of confidence in your mount process. 
 | |
|   A higher number would of course slow down your mount.
 | |
| */
 | |
| static int check_partly_erased_sectors(struct jffs_fmcontrol *fmc){
 | |
| 
 | |
| #define NUM_REREADS             4 /* see note above */
 | |
| #define READ_AHEAD_BYTES        4096 /* must be a multiple of 4, 
 | |
| 					usually set to kernel page size */
 | |
| 
 | |
| 	__u8 *read_buf1;
 | |
| 	__u8 *read_buf2;
 | |
| 
 | |
| 	int err = 0;
 | |
| 	int retlen;
 | |
| 	int i;
 | |
| 	int cnt;
 | |
| 	__u32 offset;
 | |
| 	loff_t pos = 0;
 | |
| 	loff_t end = fmc->flash_size;
 | |
| 
 | |
| 
 | |
| 	/* Allocate read buffers */
 | |
| 	read_buf1 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
 | |
| 	if (!read_buf1)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	read_buf2 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
 | |
| 	if (!read_buf2) {
 | |
| 		kfree(read_buf1);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
|  CHECK_NEXT:
 | |
| 	while(pos < end){
 | |
| 		
 | |
| 		D1(printk("check_partly_erased_sector():checking sector which contains"
 | |
| 			  " offset 0x%x for flipping bits..\n", (__u32)pos));
 | |
| 		
 | |
| 		retlen = flash_safe_read(fmc->mtd, pos,
 | |
| 					 &read_buf1[0], READ_AHEAD_BYTES);
 | |
| 		retlen &= ~3;
 | |
| 		
 | |
| 		for(cnt = 0; cnt < NUM_REREADS; cnt++){
 | |
| 			(void)flash_safe_read(fmc->mtd, pos,
 | |
| 					      &read_buf2[0], READ_AHEAD_BYTES);
 | |
| 			
 | |
| 			for (i=0 ; i < retlen ; i+=4) {
 | |
| 				/* buffers MUST match, double word for word! */
 | |
| 				if(*((__u32 *) &read_buf1[i]) !=
 | |
| 				   *((__u32 *) &read_buf2[i])
 | |
| 				   ){
 | |
| 				        /* flipping bits detected, time to erase sector */
 | |
| 					/* This will help us log some statistics etc. */
 | |
| 					D1(printk("Flipping bits detected in re-read round:%i of %i\n",
 | |
| 					       cnt, NUM_REREADS));
 | |
| 					D1(printk("check_partly_erased_sectors:flipping bits detected"
 | |
| 						  " @offset:0x%x(0x%x!=0x%x)\n",
 | |
| 						  (__u32)pos+i, *((__u32 *) &read_buf1[i]), 
 | |
| 						  *((__u32 *) &read_buf2[i])));
 | |
| 					
 | |
| 				        /* calculate start of present sector */
 | |
| 					offset = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
 | |
| 					
 | |
| 					D1(printk("check_partly_erased_sector():erasing sector starting 0x%x.\n",
 | |
| 						  offset));
 | |
| 					
 | |
| 					if (flash_erase_region(fmc->mtd,
 | |
| 							       offset, fmc->sector_size) < 0) {
 | |
| 						printk(KERN_ERR "JFFS: Erase of flash failed. "
 | |
| 						       "offset = %u, erase_size = %d\n",
 | |
| 						       offset , fmc->sector_size);
 | |
| 						
 | |
| 						err = -EIO;
 | |
| 						goto returnBack;
 | |
| 
 | |
| 					}else{
 | |
| 						D1(printk("JFFS: Erase of flash sector @0x%x successful.\n",
 | |
| 						       offset));
 | |
| 						/* skip ahead to the next sector */
 | |
| 						pos = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
 | |
| 						pos += fmc->sector_size;
 | |
| 						goto CHECK_NEXT;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		pos += READ_AHEAD_BYTES;
 | |
| 	}
 | |
| 
 | |
|  returnBack:
 | |
| 	kfree(read_buf1);
 | |
| 	kfree(read_buf2);
 | |
| 
 | |
| 	D2(printk("check_partly_erased_sector():Done checking all sectors till offset 0x%x for flipping bits.\n",
 | |
| 		  (__u32)pos));
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| }/* end check_partly_erased_sectors() */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Scan the whole flash memory in order to find all nodes in the
 | |
|    file systems.  */
 | |
| static int
 | |
| jffs_scan_flash(struct jffs_control *c)
 | |
| {
 | |
| 	char name[JFFS_MAX_NAME_LEN + 2];
 | |
| 	struct jffs_raw_inode raw_inode;
 | |
| 	struct jffs_node *node = NULL;
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	__u32 checksum;
 | |
| 	__u8 tmp_accurate;
 | |
| 	__u16 tmp_chksum;
 | |
| 	__u32 deleted_file;
 | |
| 	loff_t pos = 0;
 | |
| 	loff_t start;
 | |
| 	loff_t test_start;
 | |
| 	loff_t end = fmc->flash_size;
 | |
| 	__u8 *read_buf;
 | |
| 	int i, len, retlen;
 | |
| 	__u32 offset;
 | |
| 
 | |
| 	__u32 free_chunk_size1;
 | |
| 	__u32 free_chunk_size2;
 | |
| 
 | |
| 	
 | |
| #define NUMFREEALLOWED     2        /* 2 chunks of at least erase size space allowed */
 | |
| 	int num_free_space = 0;       /* Flag err if more than TWO
 | |
| 				       free blocks found. This is NOT allowed
 | |
| 				       by the current jffs design.
 | |
| 				    */
 | |
| 	int num_free_spc_not_accp = 0; /* For debugging purposed keep count 
 | |
| 					of how much free space was rejected and
 | |
| 					marked dirty
 | |
| 				     */
 | |
| 
 | |
| 	D1(printk("jffs_scan_flash(): start pos = 0x%lx, end = 0x%lx\n",
 | |
| 		  (long)pos, (long)end));
 | |
| 
 | |
| 	flash_safe_acquire(fmc->mtd);
 | |
| 
 | |
| 	/*
 | |
| 	  check and make sure that any sector does not suffer
 | |
| 	  from the "partly erased, bit flipping syndrome" (TM Vipin :)
 | |
| 	  If so, offending sectors will be erased.
 | |
| 	*/
 | |
| 	if(check_partly_erased_sectors(fmc) < 0){
 | |
| 
 | |
| 		flash_safe_release(fmc->mtd);
 | |
| 		return -EIO; /* bad, bad, bad error. Cannot continue.*/
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate read buffer */
 | |
| 	read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
 | |
| 	if (!read_buf) {
 | |
| 		flash_safe_release(fmc->mtd);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 			      
 | |
| 	/* Start the scan.  */
 | |
| 	while (pos < end) {
 | |
| 		deleted_file = 0;
 | |
| 
 | |
| 		/* Remember the position from where we started this scan.  */
 | |
| 		start = pos;
 | |
| 
 | |
| 		switch (flash_read_u32(fmc->mtd, pos)) {
 | |
| 		case JFFS_EMPTY_BITMASK:
 | |
| 			/* We have found 0xffffffff at this position.  We have to
 | |
| 			   scan the rest of the flash till the end or till
 | |
| 			   something else than 0xffffffff is found.
 | |
| 		           Keep going till we do not find JFFS_EMPTY_BITMASK 
 | |
| 			   anymore */
 | |
| 
 | |
| 			D1(printk("jffs_scan_flash(): 0xffffffff at pos 0x%lx.\n",
 | |
| 				  (long)pos));
 | |
| 
 | |
| 		        while(pos < end){
 | |
| 
 | |
| 			      len = end - pos < 4096 ? end - pos : 4096;
 | |
| 			      
 | |
| 			      retlen = flash_safe_read(fmc->mtd, pos,
 | |
| 						 &read_buf[0], len);
 | |
| 
 | |
| 			      retlen &= ~3;
 | |
| 			      
 | |
| 			      for (i=0 ; i < retlen ; i+=4, pos += 4) {
 | |
| 				      if(*((__u32 *) &read_buf[i]) !=
 | |
| 					 JFFS_EMPTY_BITMASK)
 | |
| 					break;
 | |
| 			      }
 | |
| 			      if (i == retlen)
 | |
| 				    continue;
 | |
| 			      else
 | |
| 				    break;
 | |
| 			}
 | |
| 
 | |
| 			D1(printk("jffs_scan_flash():0xffffffff ended at pos 0x%lx.\n",
 | |
| 				  (long)pos));
 | |
| 			
 | |
| 			/* If some free space ends in the middle of a sector,
 | |
| 			   treat it as dirty rather than clean.
 | |
| 			   This is to handle the case where one thread 
 | |
| 			   allocated space for a node, but didn't get to
 | |
| 			   actually _write_ it before power was lost, leaving
 | |
| 			   a gap in the log. Shifting all node writes into
 | |
| 			   a single kernel thread will fix the original problem.
 | |
| 			*/
 | |
| 			if ((__u32) pos % fmc->sector_size) {
 | |
| 				/* If there was free space in previous 
 | |
| 				   sectors, don't mark that dirty too - 
 | |
| 				   only from the beginning of this sector
 | |
| 				   (or from start) 
 | |
| 				*/
 | |
| 
 | |
| 			        test_start = pos & ~(fmc->sector_size-1); /* end of last sector */
 | |
| 
 | |
| 				if (start < test_start) {
 | |
| 
 | |
| 				        /* free space started in the previous sector! */
 | |
| 
 | |
| 					if((num_free_space < NUMFREEALLOWED) && 
 | |
| 					   ((unsigned int)(test_start - start) >= fmc->sector_size)){
 | |
| 
 | |
| 				                /*
 | |
| 						  Count it in if we are still under NUMFREEALLOWED *and* it is 
 | |
| 						  at least 1 erase sector in length. This will keep us from 
 | |
| 						  picking any little ole' space as "free".
 | |
| 						*/
 | |
| 					  
 | |
| 					        D1(printk("Reducing end of free space to 0x%x from 0x%x\n",
 | |
| 							  (unsigned int)test_start, (unsigned int)pos));
 | |
| 
 | |
| 						D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
 | |
| 							  (unsigned int) start,
 | |
| 							  (unsigned int)(test_start - start)));
 | |
| 
 | |
| 						/* below, space from "start" to "pos" will be marked dirty. */
 | |
| 						start = test_start; 
 | |
| 						
 | |
| 						/* Being in here means that we have found at least an entire 
 | |
| 						   erase sector size of free space ending on a sector boundary.
 | |
| 						   Keep track of free spaces accepted.
 | |
| 						*/
 | |
| 						num_free_space++;
 | |
| 					}else{
 | |
| 					        num_free_spc_not_accp++;
 | |
| 					        D1(printk("Free space (#%i) found but *Not* accepted: Starting"
 | |
| 							  " 0x%x for 0x%x bytes\n",
 | |
| 							  num_free_spc_not_accp, (unsigned int)start, 
 | |
| 							  (unsigned int)((unsigned int)(pos & ~(fmc->sector_size-1)) - (unsigned int)start)));
 | |
| 					        
 | |
| 					}
 | |
| 					
 | |
| 				}
 | |
| 				if((((__u32)(pos - start)) != 0)){
 | |
| 
 | |
| 				        D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
 | |
| 						  (unsigned int) start, (unsigned int) (pos - start)));
 | |
| 					jffs_fmalloced(fmc, (__u32) start,
 | |
| 						       (__u32) (pos - start), NULL);
 | |
| 				}else{
 | |
| 					/* "Flipping bits" detected. This means that our scan for them
 | |
| 					   did not catch this offset. See check_partly_erased_sectors() for
 | |
| 					   more info.
 | |
| 					*/
 | |
| 				        
 | |
| 					D1(printk("jffs_scan_flash():wants to allocate dirty flash "
 | |
| 						  "space for 0 bytes.\n"));
 | |
| 					D1(printk("jffs_scan_flash(): Flipping bits! We will free "
 | |
| 						  "all allocated memory, erase this sector and remount\n"));
 | |
| 
 | |
| 					/* calculate start of present sector */
 | |
| 					offset = (((__u32)pos)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
 | |
| 					
 | |
| 					D1(printk("jffs_scan_flash():erasing sector starting 0x%x.\n",
 | |
| 						  offset));
 | |
| 					
 | |
| 					if (flash_erase_region(fmc->mtd,
 | |
| 							       offset, fmc->sector_size) < 0) {
 | |
| 						printk(KERN_ERR "JFFS: Erase of flash failed. "
 | |
| 						       "offset = %u, erase_size = %d\n",
 | |
| 						       offset , fmc->sector_size);
 | |
| 
 | |
| 						flash_safe_release(fmc->mtd);
 | |
| 						kfree(read_buf);
 | |
| 						return -1; /* bad, bad, bad! */
 | |
| 
 | |
| 					}
 | |
| 					flash_safe_release(fmc->mtd);
 | |
| 					kfree(read_buf);
 | |
| 
 | |
| 					return -EAGAIN; /* erased offending sector. Try mount one more time please. */
 | |
| 				}
 | |
| 			}else{
 | |
| 			        /* Being in here means that we have found free space that ends on an erase sector
 | |
| 				   boundary.
 | |
| 				   Count it in if we are still under NUMFREEALLOWED *and* it is at least 1 erase 
 | |
| 				   sector in length. This will keep us from picking any little ole' space as "free".
 | |
| 				 */
 | |
| 			         if((num_free_space < NUMFREEALLOWED) && 
 | |
| 				    ((unsigned int)(pos - start) >= fmc->sector_size)){
 | |
| 				           /* We really don't do anything to mark space as free, except *not* 
 | |
| 					      mark it dirty and just advance the "pos" location pointer. 
 | |
| 					      It will automatically be picked up as free space.
 | |
| 					    */ 
 | |
| 				           num_free_space++;
 | |
| 				           D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
 | |
| 						     (unsigned int) start, (unsigned int) (pos - start)));
 | |
| 				 }else{
 | |
| 				         num_free_spc_not_accp++;
 | |
| 					 D1(printk("Free space (#%i) found but *Not* accepted: Starting "
 | |
| 						   "0x%x for 0x%x bytes\n", num_free_spc_not_accp, 
 | |
| 						   (unsigned int) start, 
 | |
| 						   (unsigned int) (pos - start)));
 | |
| 					 
 | |
| 					 /* Mark this space as dirty. We already have our free space. */
 | |
| 					 D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
 | |
| 						   (unsigned int) start, (unsigned int) (pos - start)));
 | |
| 					 jffs_fmalloced(fmc, (__u32) start,
 | |
| 							(__u32) (pos - start), NULL);				           
 | |
| 				 }
 | |
| 				 
 | |
| 			}
 | |
| 			if(num_free_space > NUMFREEALLOWED){
 | |
| 			         printk(KERN_WARNING "jffs_scan_flash(): Found free space "
 | |
| 					"number %i. Only %i free space is allowed.\n",
 | |
| 					num_free_space, NUMFREEALLOWED);			      
 | |
| 			}
 | |
| 			continue;
 | |
| 
 | |
| 		case JFFS_DIRTY_BITMASK:
 | |
| 			/* We have found 0x00000000 at this position.  Scan as far
 | |
| 			   as possible to find out how much is dirty.  */
 | |
| 			D1(printk("jffs_scan_flash(): 0x00000000 at pos 0x%lx.\n",
 | |
| 				  (long)pos));
 | |
| 			for (; pos < end
 | |
| 			       && JFFS_DIRTY_BITMASK == flash_read_u32(fmc->mtd, pos);
 | |
| 			     pos += 4);
 | |
| 			D1(printk("jffs_scan_flash(): 0x00 ended at "
 | |
| 				  "pos 0x%lx.\n", (long)pos));
 | |
| 			jffs_fmalloced(fmc, (__u32) start,
 | |
| 				       (__u32) (pos - start), NULL);
 | |
| 			continue;
 | |
| 
 | |
| 		case JFFS_MAGIC_BITMASK:
 | |
| 			/* We have probably found a new raw inode.  */
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 		bad_inode:
 | |
| 			/* We're f*cked.  This is not solved yet.  We have
 | |
| 			   to scan for the magic pattern.  */
 | |
| 			D1(printk("*************** Dirty flash memory or "
 | |
| 				  "bad inode: "
 | |
| 				  "hexdump(pos = 0x%lx, len = 128):\n",
 | |
| 				  (long)pos));
 | |
| 			D1(jffs_hexdump(fmc->mtd, pos, 128));
 | |
| 
 | |
| 			for (pos += 4; pos < end; pos += 4) {
 | |
| 				switch (flash_read_u32(fmc->mtd, pos)) {
 | |
| 				case JFFS_MAGIC_BITMASK:
 | |
| 				case JFFS_EMPTY_BITMASK:
 | |
| 					/* handle these in the main switch() loop */
 | |
| 					goto cont_scan;
 | |
| 
 | |
| 				default:
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			cont_scan:
 | |
| 			/* First, mark as dirty the region
 | |
| 			   which really does contain crap. */
 | |
| 			jffs_fmalloced(fmc, (__u32) start,
 | |
| 				       (__u32) (pos - start),
 | |
| 				       NULL);
 | |
| 			
 | |
| 			continue;
 | |
| 		}/* switch */
 | |
| 
 | |
| 		/* We have found the beginning of an inode.  Create a
 | |
| 		   node for it unless there already is one available.  */
 | |
| 		if (!node) {
 | |
| 			if (!(node = jffs_alloc_node())) {
 | |
| 				/* Free read buffer */
 | |
| 				kfree(read_buf);
 | |
| 
 | |
| 				/* Release the flash device */
 | |
| 				flash_safe_release(fmc->mtd);
 | |
| 	
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			DJM(no_jffs_node++);
 | |
| 		}
 | |
| 
 | |
| 		/* Read the next raw inode.  */
 | |
| 
 | |
| 		flash_safe_read(fmc->mtd, pos, (u_char *) &raw_inode,
 | |
| 				sizeof(struct jffs_raw_inode));
 | |
| 
 | |
| 		/* When we compute the checksum for the inode, we never
 | |
| 		   count the 'accurate' or the 'checksum' fields.  */
 | |
| 		tmp_accurate = raw_inode.accurate;
 | |
| 		tmp_chksum = raw_inode.chksum;
 | |
| 		raw_inode.accurate = 0;
 | |
| 		raw_inode.chksum = 0;
 | |
| 		checksum = jffs_checksum(&raw_inode,
 | |
| 					 sizeof(struct jffs_raw_inode));
 | |
| 		raw_inode.accurate = tmp_accurate;
 | |
| 		raw_inode.chksum = tmp_chksum;
 | |
| 
 | |
| 		D3(printk("*** We have found this raw inode at pos 0x%lx "
 | |
| 			  "on the flash:\n", (long)pos));
 | |
| 		D3(jffs_print_raw_inode(&raw_inode));
 | |
| 
 | |
| 		if (checksum != raw_inode.chksum) {
 | |
| 			D1(printk("jffs_scan_flash(): Bad checksum: "
 | |
| 				  "checksum = %u, "
 | |
| 				  "raw_inode.chksum = %u\n",
 | |
| 				  checksum, raw_inode.chksum));
 | |
| 			pos += sizeof(struct jffs_raw_inode);
 | |
| 			jffs_fmalloced(fmc, (__u32) start,
 | |
| 				       (__u32) (pos - start), NULL);
 | |
| 			/* Reuse this unused struct jffs_node.  */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Check the raw inode read so far.  Start with the
 | |
| 		   maximum length of the filename.  */
 | |
| 		if (raw_inode.nsize > JFFS_MAX_NAME_LEN) {
 | |
| 			printk(KERN_WARNING "jffs_scan_flash: Found a "
 | |
| 			       "JFFS node with name too large\n");
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 
 | |
| 		if (raw_inode.rename && raw_inode.dsize != sizeof(__u32)) {
 | |
| 			printk(KERN_WARNING "jffs_scan_flash: Found a "
 | |
| 			       "rename node with dsize %u.\n",
 | |
| 			       raw_inode.dsize);
 | |
| 			jffs_print_raw_inode(&raw_inode);
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 
 | |
| 		/* The node's data segment should not exceed a
 | |
| 		   certain length.  */
 | |
| 		if (raw_inode.dsize > fmc->max_chunk_size) {
 | |
| 			printk(KERN_WARNING "jffs_scan_flash: Found a "
 | |
| 			       "JFFS node with dsize (0x%x) > max_chunk_size (0x%x)\n",
 | |
| 			       raw_inode.dsize, fmc->max_chunk_size);
 | |
| 			goto bad_inode;
 | |
| 		}
 | |
| 
 | |
| 		pos += sizeof(struct jffs_raw_inode);
 | |
| 
 | |
| 		/* This shouldn't be necessary because a node that
 | |
| 		   violates the flash boundaries shouldn't be written
 | |
| 		   in the first place. */
 | |
| 		if (pos >= end) {
 | |
| 			goto check_node;
 | |
| 		}
 | |
| 
 | |
| 		/* Read the name.  */
 | |
| 		*name = 0;
 | |
| 		if (raw_inode.nsize) {
 | |
| 		        flash_safe_read(fmc->mtd, pos, name, raw_inode.nsize);
 | |
| 			name[raw_inode.nsize] = '\0';
 | |
| 			pos += raw_inode.nsize
 | |
| 			       + JFFS_GET_PAD_BYTES(raw_inode.nsize);
 | |
| 			D3(printk("name == \"%s\"\n", name));
 | |
| 			checksum = jffs_checksum(name, raw_inode.nsize);
 | |
| 			if (checksum != raw_inode.nchksum) {
 | |
| 				D1(printk("jffs_scan_flash(): Bad checksum: "
 | |
| 					  "checksum = %u, "
 | |
| 					  "raw_inode.nchksum = %u\n",
 | |
| 					  checksum, raw_inode.nchksum));
 | |
| 				jffs_fmalloced(fmc, (__u32) start,
 | |
| 					       (__u32) (pos - start), NULL);
 | |
| 				/* Reuse this unused struct jffs_node.  */
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (pos >= end) {
 | |
| 				goto check_node;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Read the data, if it exists, in order to be sure it
 | |
| 		   matches the checksum.  */
 | |
| 		if (raw_inode.dsize) {
 | |
| 			if (raw_inode.rename) {
 | |
| 				deleted_file = flash_read_u32(fmc->mtd, pos);
 | |
| 			}
 | |
| 			if (jffs_checksum_flash(fmc->mtd, pos, raw_inode.dsize, &checksum)) {
 | |
| 				printk("jffs_checksum_flash() failed to calculate a checksum\n");
 | |
| 				jffs_fmalloced(fmc, (__u32) start,
 | |
| 					       (__u32) (pos - start), NULL);
 | |
| 				/* Reuse this unused struct jffs_node.  */
 | |
| 				continue;
 | |
| 			}				
 | |
| 			pos += raw_inode.dsize
 | |
| 			       + JFFS_GET_PAD_BYTES(raw_inode.dsize);
 | |
| 
 | |
| 			if (checksum != raw_inode.dchksum) {
 | |
| 				D1(printk("jffs_scan_flash(): Bad checksum: "
 | |
| 					  "checksum = %u, "
 | |
| 					  "raw_inode.dchksum = %u\n",
 | |
| 					  checksum, raw_inode.dchksum));
 | |
| 				jffs_fmalloced(fmc, (__u32) start,
 | |
| 					       (__u32) (pos - start), NULL);
 | |
| 				/* Reuse this unused struct jffs_node.  */
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		check_node:
 | |
| 
 | |
| 		/* Remember the highest inode number in the whole file
 | |
| 		   system.  This information will be used when assigning
 | |
| 		   new files new inode numbers.  */
 | |
| 		if (c->next_ino <= raw_inode.ino) {
 | |
| 			c->next_ino = raw_inode.ino + 1;
 | |
| 		}
 | |
| 
 | |
| 		if (raw_inode.accurate) {
 | |
| 			int err;
 | |
| 			node->data_offset = raw_inode.offset;
 | |
| 			node->data_size = raw_inode.dsize;
 | |
| 			node->removed_size = raw_inode.rsize;
 | |
| 			/* Compute the offset to the actual data in the
 | |
| 			   on-flash node.  */
 | |
| 			node->fm_offset
 | |
| 			= sizeof(struct jffs_raw_inode)
 | |
| 			  + raw_inode.nsize
 | |
| 			  + JFFS_GET_PAD_BYTES(raw_inode.nsize);
 | |
| 			node->fm = jffs_fmalloced(fmc, (__u32) start,
 | |
| 						  (__u32) (pos - start),
 | |
| 						  node);
 | |
| 			if (!node->fm) {
 | |
| 				D(printk("jffs_scan_flash(): !node->fm\n"));
 | |
| 				jffs_free_node(node);
 | |
| 				DJM(no_jffs_node--);
 | |
| 
 | |
| 				/* Free read buffer */
 | |
| 				kfree(read_buf);
 | |
| 
 | |
| 				/* Release the flash device */
 | |
| 				flash_safe_release(fmc->mtd);
 | |
| 
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			if ((err = jffs_insert_node(c, NULL, &raw_inode,
 | |
| 						    name, node)) < 0) {
 | |
| 				printk("JFFS: Failed to handle raw inode. "
 | |
| 				       "(err = %d)\n", err);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (raw_inode.rename) {
 | |
| 				struct jffs_delete_list *dl
 | |
| 				= (struct jffs_delete_list *)
 | |
| 				  kmalloc(sizeof(struct jffs_delete_list),
 | |
| 					  GFP_KERNEL);
 | |
| 				if (!dl) {
 | |
| 					D(printk("jffs_scan_flash: !dl\n"));
 | |
| 					jffs_free_node(node);
 | |
| 					DJM(no_jffs_node--);
 | |
| 
 | |
| 					/* Release the flash device */
 | |
| 					flash_safe_release(fmc->flash_part);
 | |
| 
 | |
| 					/* Free read buffer */
 | |
| 					kfree(read_buf);
 | |
| 
 | |
| 					return -ENOMEM;
 | |
| 				}
 | |
| 				dl->ino = deleted_file;
 | |
| 				dl->next = c->delete_list;
 | |
| 				c->delete_list = dl;
 | |
| 				node->data_size = 0;
 | |
| 			}
 | |
| 			D3(jffs_print_node(node));
 | |
| 			node = NULL; /* Don't free the node!  */
 | |
| 		}
 | |
| 		else {
 | |
| 			jffs_fmalloced(fmc, (__u32) start,
 | |
| 				       (__u32) (pos - start), NULL);
 | |
| 			D3(printk("jffs_scan_flash(): Just found an obsolete "
 | |
| 				  "raw_inode. Continuing the scan...\n"));
 | |
| 			/* Reuse this unused struct jffs_node.  */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (node) {
 | |
| 		jffs_free_node(node);
 | |
| 		DJM(no_jffs_node--);
 | |
| 	}
 | |
| 	jffs_build_end(fmc);
 | |
| 
 | |
| 	/* Free read buffer */
 | |
| 	kfree(read_buf);
 | |
| 
 | |
| 	if(!num_free_space){
 | |
| 	        printk(KERN_WARNING "jffs_scan_flash(): Did not find even a single "
 | |
| 		       "chunk of free space. This is BAD!\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Return happy */
 | |
| 	D3(printk("jffs_scan_flash(): Leaving...\n"));
 | |
| 	flash_safe_release(fmc->mtd);
 | |
| 
 | |
| 	/* This is to trap the "free size accounting screwed error. */
 | |
| 	free_chunk_size1 = jffs_free_size1(fmc);
 | |
| 	free_chunk_size2 = jffs_free_size2(fmc);
 | |
| 
 | |
| 	if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
 | |
| 
 | |
| 		printk(KERN_WARNING "jffs_scan_falsh():Free size accounting screwed\n");
 | |
| 		printk(KERN_WARNING "jfffs_scan_flash():free_chunk_size1 == 0x%x, "
 | |
| 		       "free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", 
 | |
| 		       free_chunk_size1, free_chunk_size2, fmc->free_size);
 | |
| 
 | |
| 		return -1; /* Do NOT mount f/s so that we can inspect what happened.
 | |
| 			      Mounting this  screwed up f/s will screw us up anyway.
 | |
| 			    */
 | |
| 	}	
 | |
| 
 | |
| 	return 0; /* as far as we are concerned, we are happy! */
 | |
| } /* jffs_scan_flash()  */
 | |
| 
 | |
| 
 | |
| /* Insert any kind of node into the file system.  Take care of data
 | |
|    insertions and deletions.  Also remove redundant information. The
 | |
|    memory allocated for the `name' is regarded as "given away" in the
 | |
|    caller's perspective.  */
 | |
| int
 | |
| jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
 | |
| 		 const struct jffs_raw_inode *raw_inode,
 | |
| 		 const char *name, struct jffs_node *node)
 | |
| {
 | |
| 	int update_name = 0;
 | |
| 	int insert_into_tree = 0;
 | |
| 
 | |
| 	D2(printk("jffs_insert_node(): ino = %u, version = %u, "
 | |
| 		  "name = \"%s\", deleted = %d\n",
 | |
| 		  raw_inode->ino, raw_inode->version,
 | |
| 		  ((name && *name) ? name : ""), raw_inode->deleted));
 | |
| 
 | |
| 	/* If there doesn't exist an associated jffs_file, then
 | |
| 	   create, initialize and insert one into the file system.  */
 | |
| 	if (!f && !(f = jffs_find_file(c, raw_inode->ino))) {
 | |
| 		if (!(f = jffs_create_file(c, raw_inode))) {
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		jffs_insert_file_into_hash(f);
 | |
| 		insert_into_tree = 1;
 | |
| 	}
 | |
| 	node->ino = raw_inode->ino;
 | |
| 	node->version = raw_inode->version;
 | |
| 	node->data_size = raw_inode->dsize;
 | |
| 	node->fm_offset = sizeof(struct jffs_raw_inode) + raw_inode->nsize
 | |
| 			  + JFFS_GET_PAD_BYTES(raw_inode->nsize);
 | |
| 	node->name_size = raw_inode->nsize;
 | |
| 
 | |
| 	/* Now insert the node at the correct position into the file's
 | |
| 	   version list.  */
 | |
| 	if (!f->version_head) {
 | |
| 		/* This is the first node.  */
 | |
| 		f->version_head = node;
 | |
| 		f->version_tail = node;
 | |
| 		node->version_prev = NULL;
 | |
| 		node->version_next = NULL;
 | |
| 		f->highest_version = node->version;
 | |
| 		update_name = 1;
 | |
| 		f->mode = raw_inode->mode;
 | |
| 		f->uid = raw_inode->uid;
 | |
| 		f->gid = raw_inode->gid;
 | |
| 		f->atime = raw_inode->atime;
 | |
| 		f->mtime = raw_inode->mtime;
 | |
| 		f->ctime = raw_inode->ctime;
 | |
| 	}
 | |
| 	else if ((f->highest_version < node->version)
 | |
| 		 || (node->version == 0)) {
 | |
| 		/* Insert at the end of the list.  I.e. this node is the
 | |
| 		   newest one so far.  */
 | |
| 		node->version_prev = f->version_tail;
 | |
| 		node->version_next = NULL;
 | |
| 		f->version_tail->version_next = node;
 | |
| 		f->version_tail = node;
 | |
| 		f->highest_version = node->version;
 | |
| 		update_name = 1;
 | |
| 		f->pino = raw_inode->pino;
 | |
| 		f->mode = raw_inode->mode;
 | |
| 		f->uid = raw_inode->uid;
 | |
| 		f->gid = raw_inode->gid;
 | |
| 		f->atime = raw_inode->atime;
 | |
| 		f->mtime = raw_inode->mtime;
 | |
| 		f->ctime = raw_inode->ctime;
 | |
| 	}
 | |
| 	else if (f->version_head->version > node->version) {
 | |
| 		/* Insert at the bottom of the list.  */
 | |
| 		node->version_prev = NULL;
 | |
| 		node->version_next = f->version_head;
 | |
| 		f->version_head->version_prev = node;
 | |
| 		f->version_head = node;
 | |
| 		if (!f->name) {
 | |
| 			update_name = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		struct jffs_node *n;
 | |
| 		int newer_name = 0;
 | |
| 		/* Search for the insertion position starting from
 | |
| 		   the tail (newest node).  */
 | |
| 		for (n = f->version_tail; n; n = n->version_prev) {
 | |
| 			if (n->version < node->version) {
 | |
| 				node->version_prev = n;
 | |
| 				node->version_next = n->version_next;
 | |
| 				node->version_next->version_prev = node;
 | |
| 				n->version_next = node;
 | |
| 				if (!newer_name) {
 | |
| 					update_name = 1;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			if (n->name_size) {
 | |
| 				newer_name = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Deletion is irreversible. If any 'deleted' node is ever
 | |
| 	   written, the file is deleted */
 | |
| 	if (raw_inode->deleted)
 | |
| 		f->deleted = raw_inode->deleted;
 | |
| 
 | |
| 	/* Perhaps update the name.  */
 | |
| 	if (raw_inode->nsize && update_name && name && *name && (name != f->name)) {
 | |
| 		if (f->name) {
 | |
| 			kfree(f->name);
 | |
| 			DJM(no_name--);
 | |
| 		}
 | |
| 		if (!(f->name = (char *) kmalloc(raw_inode->nsize + 1,
 | |
| 						 GFP_KERNEL))) {
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		DJM(no_name++);
 | |
| 		memcpy(f->name, name, raw_inode->nsize);
 | |
| 		f->name[raw_inode->nsize] = '\0';
 | |
| 		f->nsize = raw_inode->nsize;
 | |
| 		D3(printk("jffs_insert_node(): Updated the name of "
 | |
| 			  "the file to \"%s\".\n", name));
 | |
| 	}
 | |
| 
 | |
| 	if (!c->building_fs) {
 | |
| 		D3(printk("jffs_insert_node(): ---------------------------"
 | |
| 			  "------------------------------------------- 1\n"));
 | |
| 		if (insert_into_tree) {
 | |
| 			jffs_insert_file_into_tree(f);
 | |
| 		}
 | |
| 		/* Once upon a time, we would call jffs_possibly_delete_file()
 | |
| 		   here. That causes an oops if someone's still got the file
 | |
| 		   open, so now we only do it in jffs_delete_inode()
 | |
| 		   -- dwmw2
 | |
| 		*/
 | |
| 		if (node->data_size || node->removed_size) {
 | |
| 			jffs_update_file(f, node);
 | |
| 		}
 | |
| 		jffs_remove_redundant_nodes(f);
 | |
| 
 | |
| 		jffs_garbage_collect_trigger(c);
 | |
| 
 | |
| 		D3(printk("jffs_insert_node(): ---------------------------"
 | |
| 			  "------------------------------------------- 2\n"));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| } /* jffs_insert_node()  */
 | |
| 
 | |
| 
 | |
| /* Unlink a jffs_node from the version list it is in.  */
 | |
| static inline void
 | |
| jffs_unlink_node_from_version_list(struct jffs_file *f,
 | |
| 				   struct jffs_node *node)
 | |
| {
 | |
| 	if (node->version_prev) {
 | |
| 		node->version_prev->version_next = node->version_next;
 | |
| 	} else {
 | |
| 		f->version_head = node->version_next;
 | |
| 	}
 | |
| 	if (node->version_next) {
 | |
| 		node->version_next->version_prev = node->version_prev;
 | |
| 	} else {
 | |
| 		f->version_tail = node->version_prev;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Unlink a jffs_node from the range list it is in.  */
 | |
| static inline void
 | |
| jffs_unlink_node_from_range_list(struct jffs_file *f, struct jffs_node *node)
 | |
| {
 | |
| 	if (node->range_prev) {
 | |
| 		node->range_prev->range_next = node->range_next;
 | |
| 	}
 | |
| 	else {
 | |
| 		f->range_head = node->range_next;
 | |
| 	}
 | |
| 	if (node->range_next) {
 | |
| 		node->range_next->range_prev = node->range_prev;
 | |
| 	}
 | |
| 	else {
 | |
| 		f->range_tail = node->range_prev;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Function used by jffs_remove_redundant_nodes() below.  This function
 | |
|    classifies what kind of information a node adds to a file.  */
 | |
| static inline __u8
 | |
| jffs_classify_node(struct jffs_node *node)
 | |
| {
 | |
| 	__u8 mod_type = JFFS_MODIFY_INODE;
 | |
| 
 | |
| 	if (node->name_size) {
 | |
| 		mod_type |= JFFS_MODIFY_NAME;
 | |
| 	}
 | |
| 	if (node->data_size || node->removed_size) {
 | |
| 		mod_type |= JFFS_MODIFY_DATA;
 | |
| 	}
 | |
| 	return mod_type;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Remove redundant nodes from a file.  Mark the on-flash memory
 | |
|    as dirty.  */
 | |
| static int
 | |
| jffs_remove_redundant_nodes(struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_node *newest_node;
 | |
| 	struct jffs_node *cur;
 | |
| 	struct jffs_node *prev;
 | |
| 	__u8 newest_type;
 | |
| 	__u8 mod_type;
 | |
| 	__u8 node_with_name_later = 0;
 | |
| 
 | |
| 	if (!(newest_node = f->version_tail)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* What does the `newest_node' modify?  */
 | |
| 	newest_type = jffs_classify_node(newest_node);
 | |
| 	node_with_name_later = newest_type & JFFS_MODIFY_NAME;
 | |
| 
 | |
| 	D3(printk("jffs_remove_redundant_nodes(): ino: %u, name: \"%s\", "
 | |
| 		  "newest_type: %u\n", f->ino, (f->name ? f->name : ""),
 | |
| 		  newest_type));
 | |
| 
 | |
| 	/* Traverse the file's nodes and determine which of them that are
 | |
| 	   superfluous.  Yeah, this might look very complex at first
 | |
| 	   glance but it is actually very simple.  */
 | |
| 	for (cur = newest_node->version_prev; cur; cur = prev) {
 | |
| 		prev = cur->version_prev;
 | |
| 		mod_type = jffs_classify_node(cur);
 | |
| 		if ((mod_type <= JFFS_MODIFY_INODE)
 | |
| 		    || ((newest_type & JFFS_MODIFY_NAME)
 | |
| 			&& (mod_type
 | |
| 			    <= (JFFS_MODIFY_INODE + JFFS_MODIFY_NAME)))
 | |
| 		    || (cur->data_size == 0 && cur->removed_size
 | |
| 			&& !cur->version_prev && node_with_name_later)) {
 | |
| 			/* Yes, this node is redundant. Remove it.  */
 | |
| 			D2(printk("jffs_remove_redundant_nodes(): "
 | |
| 				  "Removing node: ino: %u, version: %u, "
 | |
| 				  "mod_type: %u\n", cur->ino, cur->version,
 | |
| 				  mod_type));
 | |
| 			jffs_unlink_node_from_version_list(f, cur);
 | |
| 			jffs_fmfree(f->c->fmc, cur->fm, cur);
 | |
| 			jffs_free_node(cur);
 | |
| 			DJM(no_jffs_node--);
 | |
| 		}
 | |
| 		else {
 | |
| 			node_with_name_later |= (mod_type & JFFS_MODIFY_NAME);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Insert a file into the hash table.  */
 | |
| static int
 | |
| jffs_insert_file_into_hash(struct jffs_file *f)
 | |
| {
 | |
| 	int i = f->ino % f->c->hash_len;
 | |
| 
 | |
| 	D3(printk("jffs_insert_file_into_hash(): f->ino: %u\n", f->ino));
 | |
| 
 | |
| 	list_add(&f->hash, &f->c->hash[i]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Insert a file into the file system tree.  */
 | |
| int
 | |
| jffs_insert_file_into_tree(struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_file *parent;
 | |
| 
 | |
| 	D3(printk("jffs_insert_file_into_tree(): name: \"%s\"\n",
 | |
| 		  (f->name ? f->name : "")));
 | |
| 
 | |
| 	if (!(parent = jffs_find_file(f->c, f->pino))) {
 | |
| 		if (f->pino == 0) {
 | |
| 			f->c->root = f;
 | |
| 			f->parent = NULL;
 | |
| 			f->sibling_prev = NULL;
 | |
| 			f->sibling_next = NULL;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			D1(printk("jffs_insert_file_into_tree(): Found "
 | |
| 				  "inode with no parent and pino == %u\n",
 | |
| 				  f->pino));
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	f->parent = parent;
 | |
| 	f->sibling_next = parent->children;
 | |
| 	if (f->sibling_next) {
 | |
| 		f->sibling_next->sibling_prev = f;
 | |
| 	}
 | |
| 	f->sibling_prev = NULL;
 | |
| 	parent->children = f;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Remove a file from the hash table.  */
 | |
| static int
 | |
| jffs_unlink_file_from_hash(struct jffs_file *f)
 | |
| {
 | |
| 	D3(printk("jffs_unlink_file_from_hash(): f: 0x%p, "
 | |
| 		  "ino %u\n", f, f->ino));
 | |
| 
 | |
| 	list_del(&f->hash);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Just remove the file from the parent's children.  Don't free
 | |
|    any memory.  */
 | |
| int
 | |
| jffs_unlink_file_from_tree(struct jffs_file *f)
 | |
| {
 | |
| 	D3(printk("jffs_unlink_file_from_tree(): ino: %d, pino: %d, name: "
 | |
| 		  "\"%s\"\n", f->ino, f->pino, (f->name ? f->name : "")));
 | |
| 
 | |
| 	if (f->sibling_prev) {
 | |
| 		f->sibling_prev->sibling_next = f->sibling_next;
 | |
| 	}
 | |
| 	else if (f->parent) {
 | |
| 	        D3(printk("f->parent=%p\n", f->parent));
 | |
| 		f->parent->children = f->sibling_next;
 | |
| 	}
 | |
| 	if (f->sibling_next) {
 | |
| 		f->sibling_next->sibling_prev = f->sibling_prev;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Find a file with its inode number.  */
 | |
| struct jffs_file *
 | |
| jffs_find_file(struct jffs_control *c, __u32 ino)
 | |
| {
 | |
| 	struct jffs_file *f;
 | |
| 	int i = ino % c->hash_len;
 | |
| 
 | |
| 	D3(printk("jffs_find_file(): ino: %u\n", ino));
 | |
| 
 | |
| 	list_for_each_entry(f, &c->hash[i], hash) {
 | |
| 		if (ino != f->ino)
 | |
| 			continue;
 | |
| 		D3(printk("jffs_find_file(): Found file with ino "
 | |
| 			       "%u. (name: \"%s\")\n",
 | |
| 			       ino, (f->name ? f->name : ""));
 | |
| 		);
 | |
| 		return f;
 | |
| 	}
 | |
| 	D3(printk("jffs_find_file(): Didn't find file "
 | |
| 			 "with ino %u.\n", ino);
 | |
| 	);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Find a file in a directory.  We are comparing the names.  */
 | |
| struct jffs_file *
 | |
| jffs_find_child(struct jffs_file *dir, const char *name, int len)
 | |
| {
 | |
| 	struct jffs_file *f;
 | |
| 
 | |
| 	D3(printk("jffs_find_child()\n"));
 | |
| 
 | |
| 	for (f = dir->children; f; f = f->sibling_next) {
 | |
| 		if (!f->deleted && f->name
 | |
| 		    && !strncmp(f->name, name, len)
 | |
| 		    && f->name[len] == '\0') {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	D3(if (f) {
 | |
| 		printk("jffs_find_child(): Found \"%s\".\n", f->name);
 | |
| 	}
 | |
| 	else {
 | |
| 		char *copy = (char *) kmalloc(len + 1, GFP_KERNEL);
 | |
| 		if (copy) {
 | |
| 			memcpy(copy, name, len);
 | |
| 			copy[len] = '\0';
 | |
| 		}
 | |
| 		printk("jffs_find_child(): Didn't find the file \"%s\".\n",
 | |
| 		       (copy ? copy : ""));
 | |
| 		kfree(copy);
 | |
| 	});
 | |
| 
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a raw inode that takes up a certain amount of space in the flash
 | |
|    memory.  At the end of the flash device, there is often space that is
 | |
|    impossible to use.  At these times we want to mark this space as not
 | |
|    used.  In the cases when the amount of space is greater or equal than
 | |
|    a struct jffs_raw_inode, we write a "dummy node" that takes up this
 | |
|    space.  The space after the raw inode, if it exists, is left as it is.
 | |
|    Since this space after the raw inode contains JFFS_EMPTY_BITMASK bytes,
 | |
|    we can compute the checksum of it; we don't have to manipulate it any
 | |
|    further.
 | |
| 
 | |
|    If the space left on the device is less than the size of a struct
 | |
|    jffs_raw_inode, this space is filled with JFFS_DIRTY_BITMASK bytes.
 | |
|    No raw inode is written this time.  */
 | |
| static int
 | |
| jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	int err;
 | |
| 
 | |
| 	D1(printk("jffs_write_dummy_node(): dirty_fm->offset = 0x%08x, "
 | |
| 		  "dirty_fm->size = %u\n",
 | |
| 		  dirty_fm->offset, dirty_fm->size));
 | |
| 
 | |
| 	if (dirty_fm->size >= sizeof(struct jffs_raw_inode)) {
 | |
| 		struct jffs_raw_inode raw_inode;
 | |
| 		memset(&raw_inode, 0, sizeof(struct jffs_raw_inode));
 | |
| 		raw_inode.magic = JFFS_MAGIC_BITMASK;
 | |
| 		raw_inode.dsize = dirty_fm->size
 | |
| 				  - sizeof(struct jffs_raw_inode);
 | |
| 		raw_inode.dchksum = raw_inode.dsize * 0xff;
 | |
| 		raw_inode.chksum
 | |
| 		= jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode));
 | |
| 
 | |
| 		if ((err = flash_safe_write(fmc->mtd,
 | |
| 					    dirty_fm->offset,
 | |
| 					    (u_char *)&raw_inode,
 | |
| 					    sizeof(struct jffs_raw_inode)))
 | |
| 		    < 0) {
 | |
| 			printk(KERN_ERR "JFFS: jffs_write_dummy_node: "
 | |
| 			       "flash_safe_write failed!\n");
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		flash_safe_acquire(fmc->mtd);
 | |
| 		flash_memset(fmc->mtd, dirty_fm->offset, 0, dirty_fm->size);
 | |
| 		flash_safe_release(fmc->mtd);
 | |
| 	}
 | |
| 
 | |
| 	D3(printk("jffs_write_dummy_node(): Leaving...\n"));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Write a raw inode, possibly its name and possibly some data.  */
 | |
| int
 | |
| jffs_write_node(struct jffs_control *c, struct jffs_node *node,
 | |
| 		struct jffs_raw_inode *raw_inode,
 | |
| 		const char *name, const unsigned char *data,
 | |
| 		int recoverable,
 | |
| 		struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	struct jffs_fm *fm;
 | |
| 	struct kvec node_iovec[4];
 | |
| 	unsigned long iovec_cnt;
 | |
| 
 | |
| 	__u32 pos;
 | |
| 	int err;
 | |
| 	__u32 slack = 0;
 | |
| 
 | |
| 	__u32 total_name_size = raw_inode->nsize
 | |
| 				+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
 | |
| 	__u32 total_data_size = raw_inode->dsize
 | |
| 				+ JFFS_GET_PAD_BYTES(raw_inode->dsize);
 | |
| 	__u32 total_size = sizeof(struct jffs_raw_inode)
 | |
| 			   + total_name_size + total_data_size;
 | |
| 	
 | |
| 	/* If this node isn't something that will eventually let
 | |
| 	   GC free even more space, then don't allow it unless
 | |
| 	   there's at least max_chunk_size space still available
 | |
| 	*/
 | |
| 	if (!recoverable)
 | |
| 		slack = fmc->max_chunk_size;
 | |
| 		
 | |
| 
 | |
| 	/* Fire the retrorockets and shoot the fruiton torpedoes, sir!  */
 | |
| 
 | |
| 	ASSERT(if (!node) {
 | |
| 		printk("jffs_write_node(): node == NULL\n");
 | |
| 		return -EINVAL;
 | |
| 	});
 | |
| 	ASSERT(if (raw_inode && raw_inode->nsize && !name) {
 | |
| 		printk("*** jffs_write_node(): nsize = %u but name == NULL\n",
 | |
| 		       raw_inode->nsize);
 | |
| 		return -EINVAL;
 | |
| 	});
 | |
| 
 | |
| 	D1(printk("jffs_write_node(): filename = \"%s\", ino = %u, "
 | |
| 		  "total_size = %u\n",
 | |
| 		  (name ? name : ""), raw_inode->ino,
 | |
| 		  total_size));
 | |
| 
 | |
| 	jffs_fm_write_lock(fmc);
 | |
| 
 | |
| retry:
 | |
| 	fm = NULL;
 | |
| 	err = 0;
 | |
| 	while (!fm) {
 | |
| 
 | |
| 		/* Deadlocks suck. */
 | |
| 		while(fmc->free_size < fmc->min_free_size + total_size + slack) {
 | |
| 			jffs_fm_write_unlock(fmc);
 | |
| 			if (!JFFS_ENOUGH_SPACE(c, total_size + slack))
 | |
| 				return -ENOSPC;
 | |
| 			jffs_fm_write_lock(fmc);
 | |
| 		}
 | |
| 
 | |
| 		/* First try to allocate some flash memory.  */
 | |
| 		err = jffs_fmalloc(fmc, total_size, node, &fm);
 | |
| 		
 | |
| 		if (err == -ENOSPC) {
 | |
| 			/* Just out of space. GC and try again */
 | |
| 			if (fmc->dirty_size < fmc->sector_size) {
 | |
| 				D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
 | |
| 					 "failed, no dirty space to GC\n", fmc,
 | |
| 					 total_size));
 | |
| 				return err;
 | |
| 			}
 | |
| 			
 | |
| 			D1(printk(KERN_INFO "jffs_write_node(): Calling jffs_garbage_collect_now()\n"));
 | |
| 			jffs_fm_write_unlock(fmc);
 | |
| 			if ((err = jffs_garbage_collect_now(c))) {
 | |
| 				D(printk("jffs_write_node(): jffs_garbage_collect_now() failed\n"));
 | |
| 				return err;
 | |
| 			}
 | |
| 			jffs_fm_write_lock(fmc);
 | |
| 			continue;
 | |
| 		} 
 | |
| 
 | |
| 		if (err < 0) {
 | |
| 			jffs_fm_write_unlock(fmc);
 | |
| 
 | |
| 			D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
 | |
| 				 "failed!\n", fmc, total_size));
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		if (!fm->nodes) {
 | |
| 			/* The jffs_fm struct that we got is not good enough.
 | |
| 			   Make that space dirty and try again  */
 | |
| 			if ((err = jffs_write_dummy_node(c, fm)) < 0) {
 | |
| 				kfree(fm);
 | |
| 				DJM(no_jffs_fm--);
 | |
| 				jffs_fm_write_unlock(fmc);
 | |
| 				D(printk("jffs_write_node(): "
 | |
| 					 "jffs_write_dummy_node(): Failed!\n"));
 | |
| 				return err;
 | |
| 			}
 | |
| 			fm = NULL;
 | |
| 		}
 | |
| 	} /* while(!fm) */
 | |
| 	node->fm = fm;
 | |
| 
 | |
| 	ASSERT(if (fm->nodes == 0) {
 | |
| 		printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n");
 | |
| 	});
 | |
| 
 | |
| 	pos = node->fm->offset;
 | |
| 
 | |
| 	/* Increment the version number here. We can't let the caller
 | |
| 	   set it beforehand, because we might have had to do GC on a node
 | |
| 	   of this file - and we'd end up reusing version numbers.
 | |
| 	*/
 | |
| 	if (f) {
 | |
| 		raw_inode->version = f->highest_version + 1;
 | |
| 		D1(printk (KERN_NOTICE "jffs_write_node(): setting version of %s to %d\n", f->name, raw_inode->version));
 | |
| 
 | |
| 		/* if the file was deleted, set the deleted bit in the raw inode */
 | |
| 		if (f->deleted)
 | |
| 			raw_inode->deleted = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute the checksum for the data and name chunks.  */
 | |
| 	raw_inode->dchksum = jffs_checksum(data, raw_inode->dsize);
 | |
| 	raw_inode->nchksum = jffs_checksum(name, raw_inode->nsize);
 | |
| 
 | |
| 	/* The checksum is calculated without the chksum and accurate
 | |
| 	   fields so set them to zero first.  */
 | |
| 	raw_inode->accurate = 0;
 | |
| 	raw_inode->chksum = 0;
 | |
| 	raw_inode->chksum = jffs_checksum(raw_inode,
 | |
| 					  sizeof(struct jffs_raw_inode));
 | |
| 	raw_inode->accurate = 0xff;
 | |
| 
 | |
| 	D3(printk("jffs_write_node(): About to write this raw inode to the "
 | |
| 		  "flash at pos 0x%lx:\n", (long)pos));
 | |
| 	D3(jffs_print_raw_inode(raw_inode));
 | |
| 
 | |
| 	/* The actual raw JFFS node */
 | |
| 	node_iovec[0].iov_base = (void *) raw_inode;
 | |
| 	node_iovec[0].iov_len = (size_t) sizeof(struct jffs_raw_inode);
 | |
| 	iovec_cnt = 1;
 | |
| 
 | |
| 	/* Get name and size if there is one */
 | |
| 	if (raw_inode->nsize) {
 | |
| 		node_iovec[iovec_cnt].iov_base = (void *) name;
 | |
| 		node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->nsize;
 | |
| 		iovec_cnt++;
 | |
| 
 | |
| 		if (JFFS_GET_PAD_BYTES(raw_inode->nsize)) {
 | |
| 			static unsigned char allff[3]={255,255,255};
 | |
| 			/* Add some extra padding if necessary */
 | |
| 			node_iovec[iovec_cnt].iov_base = allff;
 | |
| 			node_iovec[iovec_cnt].iov_len =
 | |
| 				JFFS_GET_PAD_BYTES(raw_inode->nsize);
 | |
| 			iovec_cnt++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Get data and size if there is any */
 | |
| 	if (raw_inode->dsize) {
 | |
| 		node_iovec[iovec_cnt].iov_base = (void *) data;
 | |
| 		node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->dsize;
 | |
| 		iovec_cnt++;
 | |
| 		/* No need to pad this because we're not actually putting
 | |
| 		   anything after it.
 | |
| 		*/
 | |
| 	}
 | |
| 
 | |
| 	if ((err = flash_safe_writev(fmc->mtd, node_iovec, iovec_cnt,
 | |
| 				    pos)) < 0) {
 | |
| 		jffs_fmfree_partly(fmc, fm, 0);
 | |
| 		jffs_fm_write_unlock(fmc);
 | |
| 		printk(KERN_ERR "JFFS: jffs_write_node: Failed to write, "
 | |
| 		       "requested %i, wrote %i\n", total_size, err);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (raw_inode->deleted)
 | |
| 		f->deleted = 1;
 | |
| 
 | |
| 	jffs_fm_write_unlock(fmc);
 | |
| 	D3(printk("jffs_write_node(): Leaving...\n"));
 | |
| 	return raw_inode->dsize;
 | |
| } /* jffs_write_node()  */
 | |
| 
 | |
| 
 | |
| /* Read data from the node and write it to the buffer.  'node_offset'
 | |
|    is how much we have read from this particular node before and which
 | |
|    shouldn't be read again.  'max_size' is how much space there is in
 | |
|    the buffer.  */
 | |
| static int
 | |
| jffs_get_node_data(struct jffs_file *f, struct jffs_node *node, 
 | |
| 		   unsigned char *buf,__u32 node_offset, __u32 max_size)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = f->c->fmc;
 | |
| 	__u32 pos = node->fm->offset + node->fm_offset + node_offset;
 | |
| 	__u32 avail = node->data_size - node_offset;
 | |
| 	__u32 r;
 | |
| 
 | |
| 	D2(printk("  jffs_get_node_data(): file: \"%s\", ino: %u, "
 | |
| 		  "version: %u, node_offset: %u\n",
 | |
| 		  f->name, node->ino, node->version, node_offset));
 | |
| 
 | |
| 	r = min(avail, max_size);
 | |
| 	D3(printk(KERN_NOTICE "jffs_get_node_data\n"));
 | |
| 	flash_safe_read(fmc->mtd, pos, buf, r);
 | |
| 
 | |
| 	D3(printk("  jffs_get_node_data(): Read %u byte%s.\n",
 | |
| 		  r, (r == 1 ? "" : "s")));
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Read data from the file's nodes.  Write the data to the buffer
 | |
|    'buf'.  'read_offset' tells how much data we should skip.  */
 | |
| int
 | |
| jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset,
 | |
| 	       __u32 size)
 | |
| {
 | |
| 	struct jffs_node *node;
 | |
| 	__u32 read_data = 0; /* Total amount of read data.  */
 | |
| 	__u32 node_offset = 0;
 | |
| 	__u32 pos = 0; /* Number of bytes traversed.  */
 | |
| 
 | |
| 	D2(printk("jffs_read_data(): file = \"%s\", read_offset = %d, "
 | |
| 		  "size = %u\n",
 | |
| 		  (f->name ? f->name : ""), read_offset, size));
 | |
| 
 | |
| 	if (read_offset >= f->size) {
 | |
| 		D(printk("  f->size: %d\n", f->size));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* First find the node to read data from.  */
 | |
| 	node = f->range_head;
 | |
| 	while (pos <= read_offset) {
 | |
| 		node_offset = read_offset - pos;
 | |
| 		if (node_offset >= node->data_size) {
 | |
| 			pos += node->data_size;
 | |
| 			node = node->range_next;
 | |
| 		}
 | |
| 		else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* "Cats are living proof that not everything in nature
 | |
| 	   has to be useful."
 | |
| 	   - Garrison Keilor ('97)  */
 | |
| 
 | |
| 	/* Fill the buffer.  */
 | |
| 	while (node && (read_data < size)) {
 | |
| 		int r;
 | |
| 		if (!node->fm) {
 | |
| 			/* This node does not refer to real data.  */
 | |
| 			r = min(size - read_data,
 | |
| 				     node->data_size - node_offset);
 | |
| 			memset(&buf[read_data], 0, r);
 | |
| 		}
 | |
| 		else if ((r = jffs_get_node_data(f, node, &buf[read_data],
 | |
| 						 node_offset,
 | |
| 						 size - read_data)) < 0) {
 | |
| 			return r;
 | |
| 		}
 | |
| 		read_data += r;
 | |
| 		node_offset = 0;
 | |
| 		node = node->range_next;
 | |
| 	}
 | |
| 	D3(printk("  jffs_read_data(): Read %u bytes.\n", read_data));
 | |
| 	return read_data;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Used for traversing all nodes in the hash table.  */
 | |
| int
 | |
| jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *))
 | |
| {
 | |
| 	int pos;
 | |
| 	int r;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	for (pos = 0; pos < c->hash_len; pos++) {
 | |
| 		struct jffs_file *f, *next;
 | |
| 
 | |
| 		/* We must do _safe, because 'func' might remove the
 | |
| 		   current file 'f' from the list.  */
 | |
| 		list_for_each_entry_safe(f, next, &c->hash[pos], hash) {
 | |
| 			r = func(f);
 | |
| 			if (r < 0)
 | |
| 				return r;
 | |
| 			result += r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free all nodes associated with a file.  */
 | |
| static int
 | |
| jffs_free_node_list(struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_node *node;
 | |
| 	struct jffs_node *p;
 | |
| 
 | |
| 	D3(printk("jffs_free_node_list(): f #%u, \"%s\"\n",
 | |
| 		  f->ino, (f->name ? f->name : "")));
 | |
| 	node = f->version_head;
 | |
| 	while (node) {
 | |
| 		p = node;
 | |
| 		node = node->version_next;
 | |
| 		jffs_free_node(p);
 | |
| 		DJM(no_jffs_node--);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free a file and its name.  */
 | |
| static int
 | |
| jffs_free_file(struct jffs_file *f)
 | |
| {
 | |
| 	D3(printk("jffs_free_file: f #%u, \"%s\"\n",
 | |
| 		  f->ino, (f->name ? f->name : "")));
 | |
| 
 | |
| 	if (f->name) {
 | |
| 		kfree(f->name);
 | |
| 		DJM(no_name--);
 | |
| 	}
 | |
| 	kfree(f);
 | |
| 	no_jffs_file--;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long
 | |
| jffs_get_file_count(void)
 | |
| {
 | |
| 	return no_jffs_file;
 | |
| }
 | |
| 
 | |
| /* See if a file is deleted. If so, mark that file's nodes as obsolete.  */
 | |
| int
 | |
| jffs_possibly_delete_file(struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_node *n;
 | |
| 
 | |
| 	D3(printk("jffs_possibly_delete_file(): ino: %u\n",
 | |
| 		  f->ino));
 | |
| 
 | |
| 	ASSERT(if (!f) {
 | |
| 		printk(KERN_ERR "jffs_possibly_delete_file(): f == NULL\n");
 | |
| 		return -1;
 | |
| 	});
 | |
| 
 | |
| 	if (f->deleted) {
 | |
| 		/* First try to remove all older versions.  Commence with
 | |
| 		   the oldest node.  */
 | |
| 		for (n = f->version_head; n; n = n->version_next) {
 | |
| 			if (!n->fm) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (jffs_fmfree(f->c->fmc, n->fm, n) < 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Unlink the file from the filesystem.  */
 | |
| 		if (!f->c->building_fs) {
 | |
| 			jffs_unlink_file_from_tree(f);
 | |
| 		}
 | |
| 		jffs_unlink_file_from_hash(f);
 | |
| 		jffs_free_node_list(f);
 | |
| 		jffs_free_file(f);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Used in conjunction with jffs_foreach_file() to count the number
 | |
|    of files in the file system.  */
 | |
| int
 | |
| jffs_file_count(struct jffs_file *f)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Build up a file's range list from scratch by going through the
 | |
|    version list.  */
 | |
| static int
 | |
| jffs_build_file(struct jffs_file *f)
 | |
| {
 | |
| 	struct jffs_node *n;
 | |
| 
 | |
| 	D3(printk("jffs_build_file(): ino: %u, name: \"%s\"\n",
 | |
| 		  f->ino, (f->name ? f->name : "")));
 | |
| 
 | |
| 	for (n = f->version_head; n; n = n->version_next) {
 | |
| 		jffs_update_file(f, n);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Remove an amount of data from a file. If this amount of data is
 | |
|    zero, that could mean that a node should be split in two parts.
 | |
|    We remove or change the appropriate nodes in the lists.
 | |
| 
 | |
|    Starting offset of area to be removed is node->data_offset,
 | |
|    and the length of the area is in node->removed_size.   */
 | |
| static int
 | |
| jffs_delete_data(struct jffs_file *f, struct jffs_node *node)
 | |
| {
 | |
| 	struct jffs_node *n;
 | |
| 	__u32 offset = node->data_offset;
 | |
| 	__u32 remove_size = node->removed_size;
 | |
| 
 | |
| 	D3(printk("jffs_delete_data(): offset = %u, remove_size = %u\n",
 | |
| 		  offset, remove_size));
 | |
| 
 | |
| 	if (remove_size == 0
 | |
| 	    && f->range_tail
 | |
| 	    && f->range_tail->data_offset + f->range_tail->data_size
 | |
| 	       == offset) {
 | |
| 		/* A simple append; nothing to remove or no node to split.  */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the node where we should begin the removal.  */
 | |
| 	for (n = f->range_head; n; n = n->range_next) {
 | |
| 		if (n->data_offset + n->data_size > offset) {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!n) {
 | |
| 		/* If there's no data in the file there's no data to
 | |
| 		   remove either.  */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (n->data_offset > offset) {
 | |
| 		/* XXX: Not implemented yet.  */
 | |
| 		printk(KERN_WARNING "JFFS: An unexpected situation "
 | |
| 		       "occurred in jffs_delete_data.\n");
 | |
| 	}
 | |
| 	else if (n->data_offset < offset) {
 | |
| 		/* See if the node has to be split into two parts.  */
 | |
| 		if (n->data_offset + n->data_size > offset + remove_size) {
 | |
| 			/* Do the split.  */
 | |
| 			struct jffs_node *new_node;
 | |
| 			D3(printk("jffs_delete_data(): Split node with "
 | |
| 				  "version number %u.\n", n->version));
 | |
| 
 | |
| 			if (!(new_node = jffs_alloc_node())) {
 | |
| 				D(printk("jffs_delete_data(): -ENOMEM\n"));
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			DJM(no_jffs_node++);
 | |
| 
 | |
| 			new_node->ino = n->ino;
 | |
| 			new_node->version = n->version;
 | |
| 			new_node->data_offset = offset;
 | |
| 			new_node->data_size = n->data_size - (remove_size + (offset - n->data_offset));
 | |
| 			new_node->fm_offset = n->fm_offset + (remove_size + (offset - n->data_offset));
 | |
| 			new_node->name_size = n->name_size;
 | |
| 			new_node->fm = n->fm;
 | |
| 			new_node->version_prev = n;
 | |
| 			new_node->version_next = n->version_next;
 | |
| 			if (new_node->version_next) {
 | |
| 				new_node->version_next->version_prev
 | |
| 				= new_node;
 | |
| 			}
 | |
| 			else {
 | |
| 				f->version_tail = new_node;
 | |
| 			}
 | |
| 			n->version_next = new_node;
 | |
| 			new_node->range_prev = n;
 | |
| 			new_node->range_next = n->range_next;
 | |
| 			if (new_node->range_next) {
 | |
| 				new_node->range_next->range_prev = new_node;
 | |
| 			}
 | |
| 			else {
 | |
| 				f->range_tail = new_node;
 | |
| 			}
 | |
| 			/* A very interesting can of worms.  */
 | |
| 			n->range_next = new_node;
 | |
| 			n->data_size = offset - n->data_offset;
 | |
| 			if (new_node->fm)
 | |
| 				jffs_add_node(new_node);
 | |
| 			else {
 | |
| 				D1(printk(KERN_WARNING "jffs_delete_data(): Splitting an empty node (file hold).\n!"));
 | |
| 				D1(printk(KERN_WARNING "FIXME: Did dwmw2 do the right thing here?\n"));
 | |
| 			}
 | |
| 			n = new_node->range_next;
 | |
| 			remove_size = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* No.  No need to split the node.  Just remove
 | |
| 			   the end of the node.  */
 | |
| 			int r = min(n->data_offset + n->data_size
 | |
| 					 - offset, remove_size);
 | |
| 			n->data_size -= r;
 | |
| 			remove_size -= r;
 | |
| 			n = n->range_next;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Remove as many nodes as necessary.  */
 | |
| 	while (n && remove_size) {
 | |
| 		if (n->data_size <= remove_size) {
 | |
| 			struct jffs_node *p = n;
 | |
| 			remove_size -= n->data_size;
 | |
| 			n = n->range_next;
 | |
| 			D3(printk("jffs_delete_data(): Removing node: "
 | |
| 				  "ino: %u, version: %u%s\n",
 | |
| 				  p->ino, p->version,
 | |
| 				  (p->fm ? "" : " (virtual)")));
 | |
| 			if (p->fm) {
 | |
| 				jffs_fmfree(f->c->fmc, p->fm, p);
 | |
| 			}
 | |
| 			jffs_unlink_node_from_range_list(f, p);
 | |
| 			jffs_unlink_node_from_version_list(f, p);
 | |
| 			jffs_free_node(p);
 | |
| 			DJM(no_jffs_node--);
 | |
| 		}
 | |
| 		else {
 | |
| 			n->data_size -= remove_size;
 | |
| 			n->fm_offset += remove_size;
 | |
| 			n->data_offset -= (node->removed_size - remove_size);
 | |
| 			n = n->range_next;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Adjust the following nodes' information about offsets etc.  */
 | |
| 	while (n && node->removed_size) {
 | |
| 		n->data_offset -= node->removed_size;
 | |
| 		n = n->range_next;
 | |
| 	}
 | |
| 
 | |
| 	if (node->removed_size > (f->size - node->data_offset)) {
 | |
| 		/* It's possible that the removed_size is in fact
 | |
| 		 * greater than the amount of data we actually thought
 | |
| 		 * were present in the first place - some of the nodes 
 | |
| 		 * which this node originally obsoleted may already have
 | |
| 		 * been deleted from the flash by subsequent garbage 
 | |
| 		 * collection.
 | |
| 		 *
 | |
| 		 * If this is the case, don't let f->size go negative.
 | |
| 		 * Bad things would happen :)
 | |
| 		 */
 | |
| 		f->size = node->data_offset;
 | |
| 	} else {
 | |
| 		f->size -= node->removed_size;
 | |
| 	}
 | |
| 	D3(printk("jffs_delete_data(): f->size = %d\n", f->size));
 | |
| 	return 0;
 | |
| } /* jffs_delete_data()  */
 | |
| 
 | |
| 
 | |
| /* Insert some data into a file.  Prior to the call to this function,
 | |
|    jffs_delete_data should be called.  */
 | |
| static int
 | |
| jffs_insert_data(struct jffs_file *f, struct jffs_node *node)
 | |
| {
 | |
| 	D3(printk("jffs_insert_data(): node->data_offset = %u, "
 | |
| 		  "node->data_size = %u, f->size = %u\n",
 | |
| 		  node->data_offset, node->data_size, f->size));
 | |
| 
 | |
| 	/* Find the position where we should insert data.  */
 | |
| 	retry:
 | |
| 	if (node->data_offset == f->size) {
 | |
| 		/* A simple append.  This is the most common operation.  */
 | |
| 		node->range_next = NULL;
 | |
| 		node->range_prev = f->range_tail;
 | |
| 		if (node->range_prev) {
 | |
| 			node->range_prev->range_next = node;
 | |
| 		}
 | |
| 		f->range_tail = node;
 | |
| 		f->size += node->data_size;
 | |
| 		if (!f->range_head) {
 | |
| 			f->range_head = node;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (node->data_offset < f->size) {
 | |
| 		/* Trying to insert data into the middle of the file.  This
 | |
| 		   means no problem because jffs_delete_data() has already
 | |
| 		   prepared the range list for us.  */
 | |
| 		struct jffs_node *n;
 | |
| 
 | |
| 		/* Find the correct place for the insertion and then insert
 | |
| 		   the node.  */
 | |
| 		for (n = f->range_head; n; n = n->range_next) {
 | |
| 			D2(printk("Cool stuff's happening!\n"));
 | |
| 
 | |
| 			if (n->data_offset == node->data_offset) {
 | |
| 				node->range_prev = n->range_prev;
 | |
| 				if (node->range_prev) {
 | |
| 					node->range_prev->range_next = node;
 | |
| 				}
 | |
| 				else {
 | |
| 					f->range_head = node;
 | |
| 				}
 | |
| 				node->range_next = n;
 | |
| 				n->range_prev = node;
 | |
| 				break;
 | |
| 			}
 | |
| 			ASSERT(else if (n->data_offset + n->data_size >
 | |
| 					node->data_offset) {
 | |
| 				printk(KERN_ERR "jffs_insert_data(): "
 | |
| 				       "Couldn't find a place to insert "
 | |
| 				       "the data!\n");
 | |
| 				return -1;
 | |
| 			});
 | |
| 		}
 | |
| 
 | |
| 		/* Adjust later nodes' offsets etc.  */
 | |
| 		n = node->range_next;
 | |
| 		while (n) {
 | |
| 			n->data_offset += node->data_size;
 | |
| 			n = n->range_next;
 | |
| 		}
 | |
| 		f->size += node->data_size;
 | |
| 	}
 | |
| 	else if (node->data_offset > f->size) {
 | |
| 		/* Okay.  This is tricky.  This means that we want to insert
 | |
| 		   data at a place that is beyond the limits of the file as
 | |
| 		   it is constructed right now.  This is actually a common
 | |
| 		   event that for instance could occur during the mounting
 | |
| 		   of the file system if a large file have been truncated,
 | |
| 		   rewritten and then only partially garbage collected.  */
 | |
| 
 | |
| 		struct jffs_node *n;
 | |
| 
 | |
| 		/* We need a place holder for the data that is missing in
 | |
| 		   front of this insertion.  This "virtual node" will not
 | |
| 		   be associated with any space on the flash device.  */
 | |
| 		struct jffs_node *virtual_node;
 | |
| 		if (!(virtual_node = jffs_alloc_node())) {
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		D(printk("jffs_insert_data: Inserting a virtual node.\n"));
 | |
| 		D(printk("  node->data_offset = %u\n", node->data_offset));
 | |
| 		D(printk("  f->size = %u\n", f->size));
 | |
| 
 | |
| 		virtual_node->ino = node->ino;
 | |
| 		virtual_node->version = node->version;
 | |
| 		virtual_node->removed_size = 0;
 | |
| 		virtual_node->fm_offset = 0;
 | |
| 		virtual_node->name_size = 0;
 | |
| 		virtual_node->fm = NULL; /* This is a virtual data holder.  */
 | |
| 		virtual_node->version_prev = NULL;
 | |
| 		virtual_node->version_next = NULL;
 | |
| 		virtual_node->range_next = NULL;
 | |
| 
 | |
| 		/* Are there any data at all in the file yet?  */
 | |
| 		if (f->range_head) {
 | |
| 			virtual_node->data_offset
 | |
| 			= f->range_tail->data_offset
 | |
| 			  + f->range_tail->data_size;
 | |
| 			virtual_node->data_size
 | |
| 			= node->data_offset - virtual_node->data_offset;
 | |
| 			virtual_node->range_prev = f->range_tail;
 | |
| 			f->range_tail->range_next = virtual_node;
 | |
| 		}
 | |
| 		else {
 | |
| 			virtual_node->data_offset = 0;
 | |
| 			virtual_node->data_size = node->data_offset;
 | |
| 			virtual_node->range_prev = NULL;
 | |
| 			f->range_head = virtual_node;
 | |
| 		}
 | |
| 
 | |
| 		f->range_tail = virtual_node;
 | |
| 		f->size += virtual_node->data_size;
 | |
| 
 | |
| 		/* Insert this virtual node in the version list as well.  */
 | |
| 		for (n = f->version_head; n ; n = n->version_next) {
 | |
| 			if (n->version == virtual_node->version) {
 | |
| 				virtual_node->version_prev = n->version_prev;
 | |
| 				n->version_prev = virtual_node;
 | |
| 				if (virtual_node->version_prev) {
 | |
| 					virtual_node->version_prev
 | |
| 					->version_next = virtual_node;
 | |
| 				}
 | |
| 				else {
 | |
| 					f->version_head = virtual_node;
 | |
| 				}
 | |
| 				virtual_node->version_next = n;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		D(jffs_print_node(virtual_node));
 | |
| 
 | |
| 		/* Make a new try to insert the node.  */
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	D3(printk("jffs_insert_data(): f->size = %d\n", f->size));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* A new node (with data) has been added to the file and now the range
 | |
|    list has to be modified.  */
 | |
| static int
 | |
| jffs_update_file(struct jffs_file *f, struct jffs_node *node)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	D3(printk("jffs_update_file(): ino: %u, version: %u\n",
 | |
| 		  f->ino, node->version));
 | |
| 
 | |
| 	if (node->data_size == 0) {
 | |
| 		if (node->removed_size == 0) {
 | |
| 			/* data_offset == X  */
 | |
| 			/* data_size == 0  */
 | |
| 			/* remove_size == 0  */
 | |
| 		}
 | |
| 		else {
 | |
| 			/* data_offset == X  */
 | |
| 			/* data_size == 0  */
 | |
| 			/* remove_size != 0  */
 | |
| 			if ((err = jffs_delete_data(f, node)) < 0) {
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* data_offset == X  */
 | |
| 		/* data_size != 0  */
 | |
| 		/* remove_size == Y  */
 | |
| 		if ((err = jffs_delete_data(f, node)) < 0) {
 | |
| 			return err;
 | |
| 		}
 | |
| 		if ((err = jffs_insert_data(f, node)) < 0) {
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Print the contents of a file.  */
 | |
| #if 0
 | |
| int
 | |
| jffs_print_file(struct jffs_file *f)
 | |
| {
 | |
| 	D(int i);
 | |
| 	D(printk("jffs_file: 0x%p\n", f));
 | |
| 	D(printk("{\n"));
 | |
| 	D(printk("        0x%08x, /* ino  */\n", f->ino));
 | |
| 	D(printk("        0x%08x, /* pino  */\n", f->pino));
 | |
| 	D(printk("        0x%08x, /* mode  */\n", f->mode));
 | |
| 	D(printk("        0x%04x,     /* uid  */\n", f->uid));
 | |
| 	D(printk("        0x%04x,     /* gid  */\n", f->gid));
 | |
| 	D(printk("        0x%08x, /* atime  */\n", f->atime));
 | |
| 	D(printk("        0x%08x, /* mtime  */\n", f->mtime));
 | |
| 	D(printk("        0x%08x, /* ctime  */\n", f->ctime));
 | |
| 	D(printk("        0x%02x,       /* nsize  */\n", f->nsize));
 | |
| 	D(printk("        0x%02x,       /* nlink  */\n", f->nlink));
 | |
| 	D(printk("        0x%02x,       /* deleted  */\n", f->deleted));
 | |
| 	D(printk("        \"%s\", ", (f->name ? f->name : "")));
 | |
| 	D(for (i = strlen(f->name ? f->name : ""); i < 8; ++i) {
 | |
| 		printk(" ");
 | |
| 	});
 | |
| 	D(printk("/* name  */\n"));
 | |
| 	D(printk("        0x%08x, /* size  */\n", f->size));
 | |
| 	D(printk("        0x%08x, /* highest_version  */\n",
 | |
| 		 f->highest_version));
 | |
| 	D(printk("        0x%p, /* c  */\n", f->c));
 | |
| 	D(printk("        0x%p, /* parent  */\n", f->parent));
 | |
| 	D(printk("        0x%p, /* children  */\n", f->children));
 | |
| 	D(printk("        0x%p, /* sibling_prev  */\n", f->sibling_prev));
 | |
| 	D(printk("        0x%p, /* sibling_next  */\n", f->sibling_next));
 | |
| 	D(printk("        0x%p, /* hash_prev  */\n", f->hash.prev));
 | |
| 	D(printk("        0x%p, /* hash_next  */\n", f->hash.next));
 | |
| 	D(printk("        0x%p, /* range_head  */\n", f->range_head));
 | |
| 	D(printk("        0x%p, /* range_tail  */\n", f->range_tail));
 | |
| 	D(printk("        0x%p, /* version_head  */\n", f->version_head));
 | |
| 	D(printk("        0x%p, /* version_tail  */\n", f->version_tail));
 | |
| 	D(printk("}\n"));
 | |
| 	return 0;
 | |
| }
 | |
| #endif  /*  0  */
 | |
| 
 | |
| void
 | |
| jffs_print_hash_table(struct jffs_control *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	printk("JFFS: Dumping the file system's hash table...\n");
 | |
| 	for (i = 0; i < c->hash_len; i++) {
 | |
| 		struct jffs_file *f;
 | |
| 		list_for_each_entry(f, &c->hash[i], hash) {
 | |
| 			printk("*** c->hash[%u]: \"%s\" "
 | |
| 			       "(ino: %u, pino: %u)\n",
 | |
| 			       i, (f->name ? f->name : ""),
 | |
| 			       f->ino, f->pino);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| jffs_print_tree(struct jffs_file *first_file, int indent)
 | |
| {
 | |
| 	struct jffs_file *f;
 | |
| 	char *space;
 | |
| 	int dir;
 | |
| 
 | |
| 	if (!first_file) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(space = (char *) kmalloc(indent + 1, GFP_KERNEL))) {
 | |
| 		printk("jffs_print_tree(): Out of memory!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memset(space, ' ', indent);
 | |
| 	space[indent] = '\0';
 | |
| 
 | |
| 	for (f = first_file; f; f = f->sibling_next) {
 | |
| 		dir = S_ISDIR(f->mode);
 | |
| 		printk("%s%s%s (ino: %u, highest_version: %u, size: %u)\n",
 | |
| 		       space, (f->name ? f->name : ""), (dir ? "/" : ""),
 | |
| 		       f->ino, f->highest_version, f->size);
 | |
| 		if (dir) {
 | |
| 			jffs_print_tree(f->children, indent + 2);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(space);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
 | |
| void
 | |
| jffs_print_memory_allocation_statistics(void)
 | |
| {
 | |
| 	static long printout;
 | |
| 	printk("________ Memory printout #%ld ________\n", ++printout);
 | |
| 	printk("no_jffs_file = %ld\n", no_jffs_file);
 | |
| 	printk("no_jffs_node = %ld\n", no_jffs_node);
 | |
| 	printk("no_jffs_control = %ld\n", no_jffs_control);
 | |
| 	printk("no_jffs_raw_inode = %ld\n", no_jffs_raw_inode);
 | |
| 	printk("no_jffs_node_ref = %ld\n", no_jffs_node_ref);
 | |
| 	printk("no_jffs_fm = %ld\n", no_jffs_fm);
 | |
| 	printk("no_jffs_fmcontrol = %ld\n", no_jffs_fmcontrol);
 | |
| 	printk("no_hash = %ld\n", no_hash);
 | |
| 	printk("no_name = %ld\n", no_name);
 | |
| 	printk("\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Rewrite `size' bytes, and begin at `node'.  */
 | |
| static int
 | |
| jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, __u32 size)
 | |
| {
 | |
| 	struct jffs_control *c = f->c;
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	struct jffs_raw_inode raw_inode;
 | |
| 	struct jffs_node *new_node;
 | |
| 	struct jffs_fm *fm;
 | |
| 	__u32 pos;
 | |
| 	__u32 pos_dchksum;
 | |
| 	__u32 total_name_size;
 | |
| 	__u32 total_data_size;
 | |
| 	__u32 total_size;
 | |
| 	int err;
 | |
| 
 | |
| 	D1(printk("***jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n",
 | |
| 		  f->ino, (f->name ? f->name : "(null)"), size));
 | |
| 
 | |
| 	/* Create and initialize the new node.  */
 | |
| 	if (!(new_node = jffs_alloc_node())) {
 | |
| 		D(printk("jffs_rewrite_data(): "
 | |
| 			 "Failed to allocate node.\n"));
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	DJM(no_jffs_node++);
 | |
| 	new_node->data_offset = node->data_offset;
 | |
| 	new_node->removed_size = size;
 | |
| 	total_name_size = JFFS_PAD(f->nsize);
 | |
| 	total_data_size = JFFS_PAD(size);
 | |
| 	total_size = sizeof(struct jffs_raw_inode)
 | |
| 		     + total_name_size + total_data_size;
 | |
| 	new_node->fm_offset = sizeof(struct jffs_raw_inode)
 | |
| 			      + total_name_size;
 | |
| 
 | |
| retry:
 | |
| 	jffs_fm_write_lock(fmc);
 | |
| 	err = 0;
 | |
| 
 | |
| 	if ((err = jffs_fmalloc(fmc, total_size, new_node, &fm)) < 0) {
 | |
| 		DJM(no_jffs_node--);
 | |
| 		jffs_fm_write_unlock(fmc);
 | |
| 		D(printk("jffs_rewrite_data(): Failed to allocate fm.\n"));
 | |
| 		jffs_free_node(new_node);
 | |
| 		return err;
 | |
| 	}
 | |
| 	else if (!fm->nodes) {
 | |
| 		/* The jffs_fm struct that we got is not big enough.  */
 | |
| 		/* This should never happen, because we deal with this case
 | |
| 		   in jffs_garbage_collect_next().*/
 | |
| 		printk(KERN_WARNING "jffs_rewrite_data(): Allocated node is too small (%d bytes of %d)\n", fm->size, total_size);
 | |
| 		if ((err = jffs_write_dummy_node(c, fm)) < 0) {
 | |
| 			D(printk("jffs_rewrite_data(): "
 | |
| 				 "jffs_write_dummy_node() Failed!\n"));
 | |
| 		} else {
 | |
| 			err = -ENOSPC;
 | |
| 		}
 | |
| 		DJM(no_jffs_fm--);
 | |
| 		jffs_fm_write_unlock(fmc);
 | |
| 		kfree(fm);
 | |
| 		
 | |
| 		return err;
 | |
| 	}
 | |
| 	new_node->fm = fm;
 | |
| 
 | |
| 	/* Initialize the raw inode.  */
 | |
| 	raw_inode.magic = JFFS_MAGIC_BITMASK;
 | |
| 	raw_inode.ino = f->ino;
 | |
| 	raw_inode.pino = f->pino;
 | |
| 	raw_inode.version = f->highest_version + 1;
 | |
| 	raw_inode.mode = f->mode;
 | |
| 	raw_inode.uid = f->uid;
 | |
| 	raw_inode.gid = f->gid;
 | |
| 	raw_inode.atime = f->atime;
 | |
| 	raw_inode.mtime = f->mtime;
 | |
| 	raw_inode.ctime = f->ctime;
 | |
| 	raw_inode.offset = node->data_offset;
 | |
| 	raw_inode.dsize = size;
 | |
| 	raw_inode.rsize = size;
 | |
| 	raw_inode.nsize = f->nsize;
 | |
| 	raw_inode.nlink = f->nlink;
 | |
| 	raw_inode.spare = 0;
 | |
| 	raw_inode.rename = 0;
 | |
| 	raw_inode.deleted = f->deleted;
 | |
| 	raw_inode.accurate = 0xff;
 | |
| 	raw_inode.dchksum = 0;
 | |
| 	raw_inode.nchksum = 0;
 | |
| 
 | |
| 	pos = new_node->fm->offset;
 | |
| 	pos_dchksum = pos +JFFS_RAW_INODE_DCHKSUM_OFFSET;
 | |
| 
 | |
| 	D3(printk("jffs_rewrite_data(): Writing this raw inode "
 | |
| 		  "to pos 0x%ul.\n", pos));
 | |
| 	D3(jffs_print_raw_inode(&raw_inode));
 | |
| 
 | |
| 	if ((err = flash_safe_write(fmc->mtd, pos,
 | |
| 				    (u_char *) &raw_inode,
 | |
| 				    sizeof(struct jffs_raw_inode)
 | |
| 				    - sizeof(__u32)
 | |
| 				    - sizeof(__u16) - sizeof(__u16))) < 0) {
 | |
| 		jffs_fmfree_partly(fmc, fm,
 | |
| 				   total_name_size + total_data_size);
 | |
| 		jffs_fm_write_unlock(fmc);
 | |
| 		printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
 | |
| 			"rewrite. (raw inode)\n");
 | |
| 		printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
 | |
| 			"rewrite. (raw inode)\n");
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	pos += sizeof(struct jffs_raw_inode);
 | |
| 
 | |
| 	/* Write the name to the flash memory.  */
 | |
| 	if (f->nsize) {
 | |
| 		D3(printk("jffs_rewrite_data(): Writing name \"%s\" to "
 | |
| 			  "pos 0x%ul.\n", f->name, (unsigned int) pos));
 | |
| 		if ((err = flash_safe_write(fmc->mtd, pos,
 | |
| 					    (u_char *)f->name,
 | |
| 					    f->nsize)) < 0) {
 | |
| 			jffs_fmfree_partly(fmc, fm, total_data_size);
 | |
| 			jffs_fm_write_unlock(fmc);
 | |
| 			printk(KERN_ERR "JFFS: jffs_rewrite_data: Write "
 | |
| 				"error during rewrite. (name)\n");
 | |
| 			printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
 | |
| 				"rewrite. (name)\n");
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		pos += total_name_size;
 | |
| 		raw_inode.nchksum = jffs_checksum(f->name, f->nsize);
 | |
| 	}
 | |
| 
 | |
| 	/* Write the data.  */
 | |
| 	if (size) {
 | |
| 		int r;
 | |
| 		unsigned char *page;
 | |
| 		__u32 offset = node->data_offset;
 | |
| 
 | |
| 		if (!(page = (unsigned char *)__get_free_page(GFP_KERNEL))) {
 | |
| 			jffs_fmfree_partly(fmc, fm, 0);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		while (size) {
 | |
| 			__u32 s = min(size, (__u32)PAGE_SIZE);
 | |
| 			if ((r = jffs_read_data(f, (char *)page,
 | |
| 						offset, s)) < s) {
 | |
| 				free_page((unsigned long)page);
 | |
| 				jffs_fmfree_partly(fmc, fm, 0);
 | |
| 				jffs_fm_write_unlock(fmc);
 | |
| 				printk(KERN_ERR "JFFS: jffs_rewrite_data: "
 | |
| 					 "jffs_read_data() "
 | |
| 					 "failed! (r = %d)\n", r);
 | |
| 				return -1;
 | |
| 			}
 | |
| 			if ((err = flash_safe_write(fmc->mtd,
 | |
| 						    pos, page, r)) < 0) {
 | |
| 				free_page((unsigned long)page);
 | |
| 				jffs_fmfree_partly(fmc, fm, 0);
 | |
| 				jffs_fm_write_unlock(fmc);
 | |
| 				printk(KERN_ERR "JFFS: jffs_rewrite_data: "
 | |
| 				       "Write error during rewrite. "
 | |
| 				       "(data)\n");
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			pos += r;
 | |
| 			size -= r;
 | |
| 			offset += r;
 | |
| 			raw_inode.dchksum += jffs_checksum(page, r);
 | |
| 		}
 | |
| 
 | |
| 	        free_page((unsigned long)page);
 | |
| 	}
 | |
| 
 | |
| 	raw_inode.accurate = 0;
 | |
| 	raw_inode.chksum = jffs_checksum(&raw_inode,
 | |
| 					 sizeof(struct jffs_raw_inode)
 | |
| 					 - sizeof(__u16));
 | |
| 
 | |
| 	/* Add the checksum.  */
 | |
| 	if ((err
 | |
| 	     = flash_safe_write(fmc->mtd, pos_dchksum,
 | |
| 				&((u_char *)
 | |
| 				&raw_inode)[JFFS_RAW_INODE_DCHKSUM_OFFSET],
 | |
| 				sizeof(__u32) + sizeof(__u16)
 | |
| 				+ sizeof(__u16))) < 0) {
 | |
| 		jffs_fmfree_partly(fmc, fm, 0);
 | |
| 		jffs_fm_write_unlock(fmc);
 | |
| 		printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
 | |
| 		       "rewrite. (checksum)\n");
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* Now make the file system aware of the newly written node.  */
 | |
| 	jffs_insert_node(c, f, &raw_inode, f->name, new_node);
 | |
| 	jffs_fm_write_unlock(fmc);
 | |
| 
 | |
| 	D3(printk("jffs_rewrite_data(): Leaving...\n"));
 | |
| 	return 0;
 | |
| } /* jffs_rewrite_data()  */
 | |
| 
 | |
| 
 | |
| /* jffs_garbage_collect_next implements one step in the garbage collect
 | |
|    process and is often called multiple times at each occasion of a
 | |
|    garbage collect.  */
 | |
| 
 | |
| static int
 | |
| jffs_garbage_collect_next(struct jffs_control *c)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	struct jffs_node *node;
 | |
| 	struct jffs_file *f;
 | |
| 	int err = 0;
 | |
| 	__u32 size;
 | |
| 	__u32 data_size;
 | |
| 	__u32 total_name_size;
 | |
| 	__u32 extra_available;
 | |
| 	__u32 space_needed;
 | |
| 	__u32 free_chunk_size1 = jffs_free_size1(fmc);
 | |
| 	D2(__u32 free_chunk_size2 = jffs_free_size2(fmc));
 | |
| 
 | |
| 	/* Get the oldest node in the flash.  */
 | |
| 	node = jffs_get_oldest_node(fmc);
 | |
| 	ASSERT(if (!node) {
 | |
| 		printk(KERN_ERR "JFFS: jffs_garbage_collect_next: "
 | |
| 		       "No oldest node found!\n");
 | |
|                 err = -1;
 | |
|                 goto jffs_garbage_collect_next_end;
 | |
| 		
 | |
| 
 | |
| 	});
 | |
| 
 | |
| 	/* Find its corresponding file too.  */
 | |
| 	f = jffs_find_file(c, node->ino);
 | |
| 
 | |
| 	if (!f) {
 | |
| 	  printk (KERN_ERR "JFFS: jffs_garbage_collect_next: "
 | |
|                   "No file to garbage collect! "
 | |
| 		  "(ino = 0x%08x)\n", node->ino);
 | |
|           /* FIXME: Free the offending node and recover. */
 | |
|           err = -1;
 | |
|           goto jffs_garbage_collect_next_end;
 | |
| 	}
 | |
| 
 | |
| 	/* We always write out the name. Theoretically, we don't need
 | |
| 	   to, but for now it's easier - because otherwise we'd have
 | |
| 	   to keep track of how many times the current name exists on
 | |
| 	   the flash and make sure it never reaches zero.
 | |
| 
 | |
| 	   The current approach means that would be possible to cause
 | |
| 	   the GC to end up eating its tail by writing lots of nodes
 | |
| 	   with no name for it to garbage-collect. Hence the change in
 | |
| 	   inode.c to write names with _every_ node.
 | |
| 
 | |
| 	   It sucks, but it _should_ work.
 | |
| 	*/
 | |
| 	total_name_size = JFFS_PAD(f->nsize);
 | |
| 
 | |
| 	D1(printk("jffs_garbage_collect_next(): \"%s\", "
 | |
| 		  "ino: %u, version: %u, location 0x%x, dsize %u\n",
 | |
| 		  (f->name ? f->name : ""), node->ino, node->version, 
 | |
| 		  node->fm->offset, node->data_size));
 | |
| 
 | |
| 	/* Compute how many data it's possible to rewrite at the moment.  */
 | |
| 	data_size = f->size - node->data_offset;
 | |
| 
 | |
| 	/* And from that, the total size of the chunk we want to write */
 | |
| 	size = sizeof(struct jffs_raw_inode) + total_name_size
 | |
| 	       + data_size + JFFS_GET_PAD_BYTES(data_size);
 | |
| 
 | |
| 	/* If that's more than max_chunk_size, reduce it accordingly */
 | |
| 	if (size > fmc->max_chunk_size) {
 | |
| 		size = fmc->max_chunk_size;
 | |
| 		data_size = size - sizeof(struct jffs_raw_inode)
 | |
| 			    - total_name_size;
 | |
| 	}
 | |
| 
 | |
| 	/* If we're asking to take up more space than free_chunk_size1
 | |
| 	   but we _could_ fit in it, shrink accordingly.
 | |
| 	*/
 | |
| 	if (size > free_chunk_size1) {
 | |
| 
 | |
| 		if (free_chunk_size1 <
 | |
| 		    (sizeof(struct jffs_raw_inode) + total_name_size + BLOCK_SIZE)){
 | |
| 			/* The space left is too small to be of any
 | |
| 			   use really.  */
 | |
| 			struct jffs_fm *dirty_fm
 | |
| 			= jffs_fmalloced(fmc,
 | |
| 					 fmc->tail->offset + fmc->tail->size,
 | |
| 					 free_chunk_size1, NULL);
 | |
| 			if (!dirty_fm) {
 | |
| 				printk(KERN_ERR "JFFS: "
 | |
| 				       "jffs_garbage_collect_next: "
 | |
| 				       "Failed to allocate `dirty' "
 | |
| 				       "flash memory!\n");
 | |
| 				err = -1;
 | |
|                                 goto jffs_garbage_collect_next_end;
 | |
| 			}
 | |
| 			D1(printk("Dirtying end of flash - too small\n"));
 | |
| 			jffs_write_dummy_node(c, dirty_fm);
 | |
|                         err = 0;
 | |
| 			goto jffs_garbage_collect_next_end;
 | |
| 		}
 | |
| 		D1(printk("Reducing size of new node from %d to %d to avoid "
 | |
| 			  " exceeding free_chunk_size1\n",
 | |
| 			  size, free_chunk_size1));
 | |
| 
 | |
| 		size = free_chunk_size1;
 | |
| 		data_size = size - sizeof(struct jffs_raw_inode)
 | |
| 			    - total_name_size;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Calculate the amount of space needed to hold the nodes
 | |
| 	   which are remaining in the tail */
 | |
| 	space_needed = fmc->min_free_size - (node->fm->offset % fmc->sector_size);
 | |
| 
 | |
| 	/* From that, calculate how much 'extra' space we can use to
 | |
| 	   increase the size of the node we're writing from the size
 | |
| 	   of the node we're obsoleting
 | |
| 	*/
 | |
| 	if (space_needed > fmc->free_size) {
 | |
| 		/* If we've gone below min_free_size for some reason,
 | |
| 		   don't fuck up. This is why we have 
 | |
| 		   min_free_size > sector_size. Whinge about it though,
 | |
| 		   just so I can convince myself my maths is right.
 | |
| 		*/
 | |
| 		D1(printk(KERN_WARNING "jffs_garbage_collect_next(): "
 | |
| 			  "space_needed %d exceeded free_size %d\n",
 | |
| 			  space_needed, fmc->free_size));
 | |
| 		extra_available = 0;
 | |
| 	} else {
 | |
| 		extra_available = fmc->free_size - space_needed;
 | |
| 	}
 | |
| 
 | |
| 	/* Check that we don't use up any more 'extra' space than
 | |
| 	   what's available */
 | |
| 	if (size > JFFS_PAD(node->data_size) + total_name_size + 
 | |
| 	    sizeof(struct jffs_raw_inode) + extra_available) {
 | |
| 		D1(printk("Reducing size of new node from %d to %ld to avoid "
 | |
| 		       "catching our tail\n", size, 
 | |
| 			  (long) (JFFS_PAD(node->data_size) + JFFS_PAD(node->name_size) + 
 | |
| 			  sizeof(struct jffs_raw_inode) + extra_available)));
 | |
| 		D1(printk("space_needed = %d, extra_available = %d\n", 
 | |
| 			  space_needed, extra_available));
 | |
| 
 | |
| 		size = JFFS_PAD(node->data_size) + total_name_size + 
 | |
| 		  sizeof(struct jffs_raw_inode) + extra_available;
 | |
| 		data_size = size - sizeof(struct jffs_raw_inode)
 | |
| 			- total_name_size;
 | |
| 	};
 | |
| 
 | |
| 	D2(printk("  total_name_size: %u\n", total_name_size));
 | |
| 	D2(printk("  data_size: %u\n", data_size));
 | |
| 	D2(printk("  size: %u\n", size));
 | |
| 	D2(printk("  f->nsize: %u\n", f->nsize));
 | |
| 	D2(printk("  f->size: %u\n", f->size));
 | |
| 	D2(printk("  node->data_offset: %u\n", node->data_offset));
 | |
| 	D2(printk("  free_chunk_size1: %u\n", free_chunk_size1));
 | |
| 	D2(printk("  free_chunk_size2: %u\n", free_chunk_size2));
 | |
| 	D2(printk("  node->fm->offset: 0x%08x\n", node->fm->offset));
 | |
| 
 | |
| 	if ((err = jffs_rewrite_data(f, node, data_size))) {
 | |
| 		printk(KERN_WARNING "jffs_rewrite_data() failed: %d\n", err);
 | |
| 		return err;
 | |
| 	}
 | |
| 	  
 | |
| jffs_garbage_collect_next_end:
 | |
| 	D3(printk("jffs_garbage_collect_next: Leaving...\n"));
 | |
| 	return err;
 | |
| } /* jffs_garbage_collect_next */
 | |
| 
 | |
| 
 | |
| /* If an obsolete node is partly going to be erased due to garbage
 | |
|    collection, the part that isn't going to be erased must be filled
 | |
|    with zeroes so that the scan of the flash will work smoothly next
 | |
|    time.  (The data in the file could for instance be a JFFS image
 | |
|    which could cause enormous confusion during a scan of the flash
 | |
|    device if we didn't do this.)
 | |
|      There are two phases in this procedure: First, the clearing of
 | |
|    the name and data parts of the node. Second, possibly also clearing
 | |
|    a part of the raw inode as well.  If the box is power cycled during
 | |
|    the first phase, only the checksum of this node-to-be-cleared-at-
 | |
|    the-end will be wrong.  If the box is power cycled during, or after,
 | |
|    the clearing of the raw inode, the information like the length of
 | |
|    the name and data parts are zeroed.  The next time the box is
 | |
|    powered up, the scanning algorithm manages this faulty data too
 | |
|    because:
 | |
| 
 | |
|    - The checksum is invalid and thus the raw inode must be discarded
 | |
|      in any case.
 | |
|    - If the lengths of the data part or the name part are zeroed, the
 | |
|      scanning just continues after the raw inode.  But after the inode
 | |
|      the scanning procedure just finds zeroes which is the same as
 | |
|      dirt.
 | |
| 
 | |
|    So, in the end, this could never fail. :-)  Even if it does fail,
 | |
|    the scanning algorithm should manage that too.  */
 | |
| 
 | |
| static int
 | |
| jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size)
 | |
| {
 | |
| 	struct jffs_fm *fm;
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	__u32 zero_offset;
 | |
| 	__u32 zero_size;
 | |
| 	__u32 zero_offset_data;
 | |
| 	__u32 zero_size_data;
 | |
| 	__u32 cutting_raw_inode = 0;
 | |
| 
 | |
| 	if (!(fm = jffs_cut_node(fmc, erase_size))) {
 | |
| 		D3(printk("jffs_clear_end_of_node(): fm == NULL\n"));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Where and how much shall we clear?  */
 | |
| 	zero_offset = fmc->head->offset + erase_size;
 | |
| 	zero_size = fm->offset + fm->size - zero_offset;
 | |
| 
 | |
| 	/* Do we have to clear the raw_inode explicitly?  */
 | |
| 	if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) {
 | |
| 		cutting_raw_inode = sizeof(struct jffs_raw_inode)
 | |
| 				    - (fm->size - zero_size);
 | |
| 	}
 | |
| 
 | |
| 	/* First, clear the name and data fields.  */
 | |
| 	zero_offset_data = zero_offset + cutting_raw_inode;
 | |
| 	zero_size_data = zero_size - cutting_raw_inode;
 | |
| 	flash_safe_acquire(fmc->mtd);
 | |
| 	flash_memset(fmc->mtd, zero_offset_data, 0, zero_size_data);
 | |
| 	flash_safe_release(fmc->mtd);
 | |
| 
 | |
| 	/* Should we clear a part of the raw inode?  */
 | |
| 	if (cutting_raw_inode) {
 | |
| 		/* I guess it is ok to clear the raw inode in this order.  */
 | |
| 		flash_safe_acquire(fmc->mtd);
 | |
| 		flash_memset(fmc->mtd, zero_offset, 0,
 | |
| 			     cutting_raw_inode);
 | |
| 		flash_safe_release(fmc->mtd);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| } /* jffs_clear_end_of_node()  */
 | |
| 
 | |
| /* Try to erase as much as possible of the dirt in the flash memory.  */
 | |
| static long
 | |
| jffs_try_to_erase(struct jffs_control *c)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	long erase_size;
 | |
| 	int err;
 | |
| 	__u32 offset;
 | |
| 
 | |
| 	D3(printk("jffs_try_to_erase()\n"));
 | |
| 
 | |
| 	erase_size = jffs_erasable_size(fmc);
 | |
| 
 | |
| 	D2(printk("jffs_try_to_erase(): erase_size = %ld\n", erase_size));
 | |
| 
 | |
| 	if (erase_size == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else if (erase_size < 0) {
 | |
| 		printk(KERN_ERR "JFFS: jffs_try_to_erase: "
 | |
| 		       "jffs_erasable_size returned %ld.\n", erase_size);
 | |
| 		return erase_size;
 | |
| 	}
 | |
| 
 | |
| 	if ((err = jffs_clear_end_of_node(c, erase_size)) < 0) {
 | |
| 		printk(KERN_ERR "JFFS: jffs_try_to_erase: "
 | |
| 		       "Clearing of node failed.\n");
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	offset = fmc->head->offset;
 | |
| 
 | |
| 	/* Now, let's try to do the erase.  */
 | |
| 	if ((err = flash_erase_region(fmc->mtd,
 | |
| 				      offset, erase_size)) < 0) {
 | |
| 		printk(KERN_ERR "JFFS: Erase of flash failed. "
 | |
| 		       "offset = %u, erase_size = %ld\n",
 | |
| 		       offset, erase_size);
 | |
| 		/* XXX: Here we should allocate this area as dirty
 | |
| 		   with jffs_fmalloced or something similar.  Now
 | |
| 		   we just report the error.  */
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| #if 0
 | |
| 	/* Check if the erased sectors really got erased.  */
 | |
| 	{
 | |
| 		__u32 pos;
 | |
| 		__u32 end;
 | |
| 
 | |
| 		pos = (__u32)flash_get_direct_pointer(to_kdev_t(c->sb->s_dev), offset);
 | |
| 		end = pos + erase_size;
 | |
| 
 | |
| 		D2(printk("JFFS: Checking erased sector(s)...\n"));
 | |
| 
 | |
| 		flash_safe_acquire(fmc->mtd);
 | |
| 
 | |
| 		for (; pos < end; pos += 4) {
 | |
| 			if (*(__u32 *)pos != JFFS_EMPTY_BITMASK) {
 | |
| 				printk("JFFS: Erase failed! pos = 0x%lx\n",
 | |
| 				       (long)pos);
 | |
| 				jffs_hexdump(fmc->mtd, pos,
 | |
| 					     jffs_min(256, end - pos));
 | |
| 				err = -1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		flash_safe_release(fmc->mtd);
 | |
| 
 | |
| 		if (!err) {
 | |
| 			D2(printk("JFFS: Erase succeeded.\n"));
 | |
| 		}
 | |
| 		else {
 | |
| 			/* XXX: Here we should allocate the memory
 | |
| 			   with jffs_fmalloced() in order to prevent
 | |
| 			   JFFS from using this area accidentally.  */
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Update the flash memory data structures.  */
 | |
| 	jffs_sync_erase(fmc, erase_size);
 | |
| 
 | |
| 	return erase_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* There are different criteria that should trigger a garbage collect:
 | |
| 
 | |
|    1. There is too much dirt in the memory.
 | |
|    2. The free space is becoming small.
 | |
|    3. There are many versions of a node.
 | |
| 
 | |
|    The garbage collect should always be done in a manner that guarantees
 | |
|    that future garbage collects cannot be locked.  E.g. Rewritten chunks
 | |
|    should not be too large (span more than one sector in the flash memory
 | |
|    for exemple).  Of course there is a limit on how intelligent this garbage
 | |
|    collection can be.  */
 | |
| 
 | |
| 
 | |
| static int
 | |
| jffs_garbage_collect_now(struct jffs_control *c)
 | |
| {
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	long erased = 0;
 | |
| 	int result = 0;
 | |
| 	D1(int i = 1);
 | |
| 	D2(printk("***jffs_garbage_collect_now(): fmc->dirty_size = %u, fmc->free_size = 0x%x\n, fcs1=0x%x, fcs2=0x%x",
 | |
| 		  fmc->dirty_size, fmc->free_size, jffs_free_size1(fmc), jffs_free_size2(fmc)));
 | |
| 	D2(jffs_print_fmcontrol(fmc));
 | |
| 
 | |
| 	//	down(&fmc->gclock);
 | |
| 
 | |
| 	/* If it is possible to garbage collect, do so.  */
 | |
| 	
 | |
| 	while (erased == 0) {
 | |
| 		D1(printk("***jffs_garbage_collect_now(): round #%u, "
 | |
| 			  "fmc->dirty_size = %u\n", i++, fmc->dirty_size));
 | |
| 		D2(jffs_print_fmcontrol(fmc));
 | |
| 
 | |
| 		if ((erased = jffs_try_to_erase(c)) < 0) {
 | |
| 			printk(KERN_WARNING "JFFS: Error in "
 | |
| 			       "garbage collector.\n");
 | |
| 			result = erased;
 | |
| 			goto gc_end;
 | |
| 		}
 | |
| 		if (erased)
 | |
| 			break;
 | |
| 		
 | |
| 		if (fmc->free_size == 0) {
 | |
| 			/* Argh */
 | |
| 			printk(KERN_ERR "jffs_garbage_collect_now(): free_size == 0. This is BAD.\n");
 | |
| 			result = -ENOSPC;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (fmc->dirty_size < fmc->sector_size) {
 | |
| 			/* Actually, we _may_ have been able to free some, 
 | |
| 			 * if there are many overlapping nodes which aren't
 | |
| 			 * actually marked dirty because they still have
 | |
| 			 * some valid data in each.
 | |
| 			 */
 | |
| 			result = -ENOSPC;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Let's dare to make a garbage collect.  */
 | |
| 		if ((result = jffs_garbage_collect_next(c)) < 0) {
 | |
| 			printk(KERN_ERR "JFFS: Something "
 | |
| 			       "has gone seriously wrong "
 | |
| 			       "with a garbage collect.\n");
 | |
| 			goto gc_end;
 | |
| 		}
 | |
| 
 | |
| 		D1(printk("   jffs_garbage_collect_now(): erased: %ld\n", erased));
 | |
| 		DJM(jffs_print_memory_allocation_statistics());
 | |
| 	}
 | |
| 	
 | |
| gc_end:
 | |
| 	//	up(&fmc->gclock);
 | |
| 
 | |
| 	D3(printk("   jffs_garbage_collect_now(): Leaving...\n"));
 | |
| 	D1(if (erased) {
 | |
| 		printk("jffs_g_c_now(): erased = %ld\n", erased);
 | |
| 		jffs_print_fmcontrol(fmc);
 | |
| 	});
 | |
| 
 | |
| 	if (!erased && !result)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return result;
 | |
| } /* jffs_garbage_collect_now() */
 | |
| 
 | |
| 
 | |
| /* Determine if it is reasonable to start garbage collection.
 | |
|    We start a gc pass if either:
 | |
|    - The number of free bytes < MIN_FREE_BYTES && at least one
 | |
|      block is dirty, OR
 | |
|    - The number of dirty bytes > MAX_DIRTY_BYTES
 | |
| */
 | |
| static inline int thread_should_wake (struct jffs_control *c)
 | |
| {
 | |
| 	D1(printk (KERN_NOTICE "thread_should_wake(): free=%d, dirty=%d, blocksize=%d.\n",
 | |
| 		   c->fmc->free_size, c->fmc->dirty_size, c->fmc->sector_size));
 | |
| 
 | |
| 	/* If there's not enough dirty space to free a block, there's no point. */
 | |
| 	if (c->fmc->dirty_size < c->fmc->sector_size) {
 | |
| 		D2(printk(KERN_NOTICE "thread_should_wake(): Not waking. Insufficient dirty space\n"));
 | |
| 		return 0;
 | |
| 	}
 | |
| #if 1
 | |
| 	/* If there is too much RAM used by the various structures, GC */
 | |
| 	if (jffs_get_node_inuse() > (c->fmc->used_size/c->fmc->max_chunk_size * 5 + jffs_get_file_count() * 2 + 50)) {
 | |
| 		/* FIXME: Provide proof that this test can be satisfied. We
 | |
| 		   don't want a filesystem doing endless GC just because this
 | |
| 		   condition cannot ever be false.
 | |
| 		*/
 | |
| 		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to number of nodes\n"));
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	/* If there are fewer free bytes than the threshold, GC */
 | |
| 	if (c->fmc->free_size < c->gc_minfree_threshold) {
 | |
| 		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to insufficent free space\n"));
 | |
| 		return 1;
 | |
| 	}
 | |
| 	/* If there are more dirty bytes than the threshold, GC */
 | |
| 	if (c->fmc->dirty_size > c->gc_maxdirty_threshold) {
 | |
| 		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to excessive dirty space\n"));
 | |
| 		return 1;
 | |
| 	}	
 | |
| 	/* FIXME: What about the "There are many versions of a node" condition? */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void jffs_garbage_collect_trigger(struct jffs_control *c)
 | |
| {
 | |
| 	/* NOTE: We rely on the fact that we have the BKL here.
 | |
| 	 * Otherwise, the gc_task could go away between the check
 | |
| 	 * and the wake_up_process()
 | |
| 	 */
 | |
| 	if (c->gc_task && thread_should_wake(c))
 | |
| 		send_sig(SIGHUP, c->gc_task, 1);
 | |
| }
 | |
|   
 | |
| 
 | |
| /* Kernel threads  take (void *) as arguments.   Thus we pass
 | |
|    the jffs_control data as a (void *) and then cast it. */
 | |
| int
 | |
| jffs_garbage_collect_thread(void *ptr)
 | |
| {
 | |
|         struct jffs_control *c = (struct jffs_control *) ptr;
 | |
| 	struct jffs_fmcontrol *fmc = c->fmc;
 | |
| 	long erased;
 | |
| 	int result = 0;
 | |
| 	D1(int i = 1);
 | |
| 
 | |
| 	daemonize("jffs_gcd");
 | |
| 
 | |
| 	c->gc_task = current;
 | |
| 
 | |
| 	lock_kernel();
 | |
| 	init_completion(&c->gc_thread_comp); /* barrier */ 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	siginitsetinv (¤t->blocked, sigmask(SIGHUP) | sigmask(SIGKILL) | sigmask(SIGSTOP) | sigmask(SIGCONT));
 | |
| 	recalc_sigpending();
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): Starting infinite loop.\n"));
 | |
| 
 | |
| 	for (;;) {
 | |
| 
 | |
| 		/* See if we need to start gc.  If we don't, go to sleep.
 | |
| 		   
 | |
| 		   Current implementation is a BAD THING(tm).  If we try 
 | |
| 		   to unmount the FS, the unmount operation will sleep waiting
 | |
| 		   for this thread to exit.  We need to arrange to send it a
 | |
| 		   sig before the umount process sleeps.
 | |
| 		*/
 | |
| 
 | |
| 		if (!thread_should_wake(c))
 | |
| 			set_current_state (TASK_INTERRUPTIBLE);
 | |
| 		
 | |
| 		schedule(); /* Yes, we do this even if we want to go
 | |
| 				       on immediately - we're a low priority 
 | |
| 				       background task. */
 | |
| 
 | |
| 		/* Put_super will send a SIGKILL and then wait on the sem. 
 | |
| 		 */
 | |
| 		while (signal_pending(current)) {
 | |
| 			siginfo_t info;
 | |
| 			unsigned long signr = 0;
 | |
| 
 | |
| 			if (try_to_freeze())
 | |
| 				continue;
 | |
| 
 | |
| 			spin_lock_irq(¤t->sighand->siglock);
 | |
| 			signr = dequeue_signal(current, ¤t->blocked, &info);
 | |
| 			spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 			switch(signr) {
 | |
| 			case SIGSTOP:
 | |
| 				D1(printk("jffs_garbage_collect_thread(): SIGSTOP received.\n"));
 | |
| 				set_current_state(TASK_STOPPED);
 | |
| 				schedule();
 | |
| 				break;
 | |
| 
 | |
| 			case SIGKILL:
 | |
| 				D1(printk("jffs_garbage_collect_thread(): SIGKILL received.\n"));
 | |
| 				c->gc_task = NULL;
 | |
| 				complete_and_exit(&c->gc_thread_comp, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): collecting.\n"));
 | |
| 
 | |
| 		D3(printk (KERN_NOTICE "g_c_thread(): down biglock\n"));
 | |
| 		mutex_lock(&fmc->biglock);
 | |
| 		
 | |
| 		D1(printk("***jffs_garbage_collect_thread(): round #%u, "
 | |
| 			  "fmc->dirty_size = %u\n", i++, fmc->dirty_size));
 | |
| 		D2(jffs_print_fmcontrol(fmc));
 | |
| 
 | |
| 		if ((erased = jffs_try_to_erase(c)) < 0) {
 | |
| 			printk(KERN_WARNING "JFFS: Error in "
 | |
| 			       "garbage collector: %ld.\n", erased);
 | |
| 		}
 | |
| 
 | |
| 		if (erased)
 | |
| 			goto gc_end;
 | |
| 
 | |
| 		if (fmc->free_size == 0) {
 | |
| 			/* Argh. Might as well commit suicide. */
 | |
| 			printk(KERN_ERR "jffs_garbage_collect_thread(): free_size == 0. This is BAD.\n");
 | |
| 			send_sig(SIGQUIT, c->gc_task, 1);
 | |
| 			// panic()
 | |
| 			goto gc_end;
 | |
| 		}
 | |
| 		
 | |
| 		/* Let's dare to make a garbage collect.  */
 | |
| 		if ((result = jffs_garbage_collect_next(c)) < 0) {
 | |
| 			printk(KERN_ERR "JFFS: Something "
 | |
| 			       "has gone seriously wrong "
 | |
| 			       "with a garbage collect: %d\n", result);
 | |
| 		}
 | |
| 		
 | |
| 	gc_end:
 | |
| 		D3(printk (KERN_NOTICE "g_c_thread(): up biglock\n"));
 | |
| 		mutex_unlock(&fmc->biglock);
 | |
| 	} /* for (;;) */
 | |
| } /* jffs_garbage_collect_thread() */
 |