mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 09:36:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This code implements the MD5 message-digest algorithm.
 | |
|  * The algorithm is due to Ron Rivest.  This code was
 | |
|  * written by Colin Plumb in 1993, no copyright is claimed.
 | |
|  * This code is in the public domain; do with it what you wish.
 | |
|  *
 | |
|  * Equivalent code is available from RSA Data Security, Inc.
 | |
|  * This code has been tested against that, and is equivalent,
 | |
|  * except that you don't need to include two pages of legalese
 | |
|  * with every copy.
 | |
|  *
 | |
|  * To compute the message digest of a chunk of bytes, declare an
 | |
|  * MD5Context structure, pass it to MD5Init, call MD5Update as
 | |
|  * needed on buffers full of bytes, and then call MD5Final, which
 | |
|  * will fill a supplied 16-byte array with the digest.
 | |
|  */
 | |
| 
 | |
| /* This code slightly modified to fit into Samba by 
 | |
|    abartlet@samba.org Jun 2001 
 | |
|    and to fit the cifs vfs by 
 | |
|    Steve French sfrench@us.ibm.com */
 | |
| 
 | |
| #include <linux/string.h>
 | |
| #include "md5.h"
 | |
| 
 | |
| static void MD5Transform(__u32 buf[4], __u32 const in[16]);
 | |
| 
 | |
| /*
 | |
|  * Note: this code is harmless on little-endian machines.
 | |
|  */
 | |
| static void
 | |
| byteReverse(unsigned char *buf, unsigned longs)
 | |
| {
 | |
| 	__u32 t;
 | |
| 	do {
 | |
| 		t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
 | |
| 		    ((unsigned) buf[1] << 8 | buf[0]);
 | |
| 		*(__u32 *) buf = t;
 | |
| 		buf += 4;
 | |
| 	} while (--longs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 | |
|  * initialization constants.
 | |
|  */
 | |
| void
 | |
| MD5Init(struct MD5Context *ctx)
 | |
| {
 | |
| 	ctx->buf[0] = 0x67452301;
 | |
| 	ctx->buf[1] = 0xefcdab89;
 | |
| 	ctx->buf[2] = 0x98badcfe;
 | |
| 	ctx->buf[3] = 0x10325476;
 | |
| 
 | |
| 	ctx->bits[0] = 0;
 | |
| 	ctx->bits[1] = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update context to reflect the concatenation of another buffer full
 | |
|  * of bytes.
 | |
|  */
 | |
| void
 | |
| MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
 | |
| {
 | |
| 	register __u32 t;
 | |
| 
 | |
| 	/* Update bitcount */
 | |
| 
 | |
| 	t = ctx->bits[0];
 | |
| 	if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
 | |
| 		ctx->bits[1]++;	/* Carry from low to high */
 | |
| 	ctx->bits[1] += len >> 29;
 | |
| 
 | |
| 	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
 | |
| 
 | |
| 	/* Handle any leading odd-sized chunks */
 | |
| 
 | |
| 	if (t) {
 | |
| 		unsigned char *p = (unsigned char *) ctx->in + t;
 | |
| 
 | |
| 		t = 64 - t;
 | |
| 		if (len < t) {
 | |
| 			memmove(p, buf, len);
 | |
| 			return;
 | |
| 		}
 | |
| 		memmove(p, buf, t);
 | |
| 		byteReverse(ctx->in, 16);
 | |
| 		MD5Transform(ctx->buf, (__u32 *) ctx->in);
 | |
| 		buf += t;
 | |
| 		len -= t;
 | |
| 	}
 | |
| 	/* Process data in 64-byte chunks */
 | |
| 
 | |
| 	while (len >= 64) {
 | |
| 		memmove(ctx->in, buf, 64);
 | |
| 		byteReverse(ctx->in, 16);
 | |
| 		MD5Transform(ctx->buf, (__u32 *) ctx->in);
 | |
| 		buf += 64;
 | |
| 		len -= 64;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle any remaining bytes of data. */
 | |
| 
 | |
| 	memmove(ctx->in, buf, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Final wrapup - pad to 64-byte boundary with the bit pattern 
 | |
|  * 1 0* (64-bit count of bits processed, MSB-first)
 | |
|  */
 | |
| void
 | |
| MD5Final(unsigned char digest[16], struct MD5Context *ctx)
 | |
| {
 | |
| 	unsigned int count;
 | |
| 	unsigned char *p;
 | |
| 
 | |
| 	/* Compute number of bytes mod 64 */
 | |
| 	count = (ctx->bits[0] >> 3) & 0x3F;
 | |
| 
 | |
| 	/* Set the first char of padding to 0x80.  This is safe since there is
 | |
| 	   always at least one byte free */
 | |
| 	p = ctx->in + count;
 | |
| 	*p++ = 0x80;
 | |
| 
 | |
| 	/* Bytes of padding needed to make 64 bytes */
 | |
| 	count = 64 - 1 - count;
 | |
| 
 | |
| 	/* Pad out to 56 mod 64 */
 | |
| 	if (count < 8) {
 | |
| 		/* Two lots of padding:  Pad the first block to 64 bytes */
 | |
| 		memset(p, 0, count);
 | |
| 		byteReverse(ctx->in, 16);
 | |
| 		MD5Transform(ctx->buf, (__u32 *) ctx->in);
 | |
| 
 | |
| 		/* Now fill the next block with 56 bytes */
 | |
| 		memset(ctx->in, 0, 56);
 | |
| 	} else {
 | |
| 		/* Pad block to 56 bytes */
 | |
| 		memset(p, 0, count - 8);
 | |
| 	}
 | |
| 	byteReverse(ctx->in, 14);
 | |
| 
 | |
| 	/* Append length in bits and transform */
 | |
| 	((__u32 *) ctx->in)[14] = ctx->bits[0];
 | |
| 	((__u32 *) ctx->in)[15] = ctx->bits[1];
 | |
| 
 | |
| 	MD5Transform(ctx->buf, (__u32 *) ctx->in);
 | |
| 	byteReverse((unsigned char *) ctx->buf, 4);
 | |
| 	memmove(digest, ctx->buf, 16);
 | |
| 	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
 | |
| }
 | |
| 
 | |
| /* The four core functions - F1 is optimized somewhat */
 | |
| 
 | |
| /* #define F1(x, y, z) (x & y | ~x & z) */
 | |
| #define F1(x, y, z) (z ^ (x & (y ^ z)))
 | |
| #define F2(x, y, z) F1(z, x, y)
 | |
| #define F3(x, y, z) (x ^ y ^ z)
 | |
| #define F4(x, y, z) (y ^ (x | ~z))
 | |
| 
 | |
| /* This is the central step in the MD5 algorithm. */
 | |
| #define MD5STEP(f, w, x, y, z, data, s) \
 | |
| 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
 | |
| 
 | |
| /*
 | |
|  * The core of the MD5 algorithm, this alters an existing MD5 hash to
 | |
|  * reflect the addition of 16 longwords of new data.  MD5Update blocks
 | |
|  * the data and converts bytes into longwords for this routine.
 | |
|  */
 | |
| static void
 | |
| MD5Transform(__u32 buf[4], __u32 const in[16])
 | |
| {
 | |
| 	register __u32 a, b, c, d;
 | |
| 
 | |
| 	a = buf[0];
 | |
| 	b = buf[1];
 | |
| 	c = buf[2];
 | |
| 	d = buf[3];
 | |
| 
 | |
| 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
 | |
| 
 | |
| 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
 | |
| 
 | |
| 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
 | |
| 
 | |
| 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
 | |
| 
 | |
| 	buf[0] += a;
 | |
| 	buf[1] += b;
 | |
| 	buf[2] += c;
 | |
| 	buf[3] += d;
 | |
| }
 | |
| 
 | |
| #if 0   /* currently unused */
 | |
| /***********************************************************************
 | |
|  the rfc 2104 version of hmac_md5 initialisation.
 | |
| ***********************************************************************/
 | |
| static void
 | |
| hmac_md5_init_rfc2104(unsigned char *key, int key_len,
 | |
| 		      struct HMACMD5Context *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* if key is longer than 64 bytes reset it to key=MD5(key) */
 | |
| 	if (key_len > 64) {
 | |
| 		unsigned char tk[16];
 | |
| 		struct MD5Context tctx;
 | |
| 
 | |
| 		MD5Init(&tctx);
 | |
| 		MD5Update(&tctx, key, key_len);
 | |
| 		MD5Final(tk, &tctx);
 | |
| 
 | |
| 		key = tk;
 | |
| 		key_len = 16;
 | |
| 	}
 | |
| 
 | |
| 	/* start out by storing key in pads */
 | |
| 	memset(ctx->k_ipad, 0, sizeof (ctx->k_ipad));
 | |
| 	memset(ctx->k_opad, 0, sizeof (ctx->k_opad));
 | |
| 	memcpy(ctx->k_ipad, key, key_len);
 | |
| 	memcpy(ctx->k_opad, key, key_len);
 | |
| 
 | |
| 	/* XOR key with ipad and opad values */
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		ctx->k_ipad[i] ^= 0x36;
 | |
| 		ctx->k_opad[i] ^= 0x5c;
 | |
| 	}
 | |
| 
 | |
| 	MD5Init(&ctx->ctx);
 | |
| 	MD5Update(&ctx->ctx, ctx->k_ipad, 64);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /***********************************************************************
 | |
|  the microsoft version of hmac_md5 initialisation.
 | |
| ***********************************************************************/
 | |
| void
 | |
| hmac_md5_init_limK_to_64(const unsigned char *key, int key_len,
 | |
| 			 struct HMACMD5Context *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* if key is longer than 64 bytes truncate it */
 | |
| 	if (key_len > 64) {
 | |
| 		key_len = 64;
 | |
| 	}
 | |
| 
 | |
| 	/* start out by storing key in pads */
 | |
| 	memset(ctx->k_ipad, 0, sizeof (ctx->k_ipad));
 | |
| 	memset(ctx->k_opad, 0, sizeof (ctx->k_opad));
 | |
| 	memcpy(ctx->k_ipad, key, key_len);
 | |
| 	memcpy(ctx->k_opad, key, key_len);
 | |
| 
 | |
| 	/* XOR key with ipad and opad values */
 | |
| 	for (i = 0; i < 64; i++) {
 | |
| 		ctx->k_ipad[i] ^= 0x36;
 | |
| 		ctx->k_opad[i] ^= 0x5c;
 | |
| 	}
 | |
| 
 | |
| 	MD5Init(&ctx->ctx);
 | |
| 	MD5Update(&ctx->ctx, ctx->k_ipad, 64);
 | |
| }
 | |
| 
 | |
| /***********************************************************************
 | |
|  update hmac_md5 "inner" buffer
 | |
| ***********************************************************************/
 | |
| void
 | |
| hmac_md5_update(const unsigned char *text, int text_len,
 | |
| 		struct HMACMD5Context *ctx)
 | |
| {
 | |
| 	MD5Update(&ctx->ctx, text, text_len);	/* then text of datagram */
 | |
| }
 | |
| 
 | |
| /***********************************************************************
 | |
|  finish off hmac_md5 "inner" buffer and generate outer one.
 | |
| ***********************************************************************/
 | |
| void
 | |
| hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx)
 | |
| {
 | |
| 	struct MD5Context ctx_o;
 | |
| 
 | |
| 	MD5Final(digest, &ctx->ctx);
 | |
| 
 | |
| 	MD5Init(&ctx_o);
 | |
| 	MD5Update(&ctx_o, ctx->k_opad, 64);
 | |
| 	MD5Update(&ctx_o, digest, 16);
 | |
| 	MD5Final(digest, &ctx_o);
 | |
| }
 | |
| 
 | |
| /***********************************************************
 | |
|  single function to calculate an HMAC MD5 digest from data.
 | |
|  use the microsoft hmacmd5 init method because the key is 16 bytes.
 | |
| ************************************************************/
 | |
| #if 0 /* currently unused */
 | |
| static void
 | |
| hmac_md5(unsigned char key[16], unsigned char *data, int data_len,
 | |
| 	 unsigned char *digest)
 | |
| {
 | |
| 	struct HMACMD5Context ctx;
 | |
| 	hmac_md5_init_limK_to_64(key, 16, &ctx);
 | |
| 	if (data_len != 0) {
 | |
| 		hmac_md5_update(data, data_len, &ctx);
 | |
| 	}
 | |
| 	hmac_md5_final(digest, &ctx);
 | |
| }
 | |
| #endif
 | 
