mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 08:26:29 +00:00 
			
		
		
		
	 6e9a4738c9
			
		
	
	
		6e9a4738c9
		
	
	
	
	
		
			
			All on stack DECLARE_COMPLETIONs should be replaced by: DECLARE_COMPLETION_ONSTACK Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2180 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2180 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  CFQ, or complete fairness queueing, disk scheduler.
 | |
|  *
 | |
|  *  Based on ideas from a previously unfinished io
 | |
|  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 | |
|  *
 | |
|  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/elevator.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/ioprio.h>
 | |
| 
 | |
| /*
 | |
|  * tunables
 | |
|  */
 | |
| static const int cfq_quantum = 4;		/* max queue in one round of service */
 | |
| static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
 | |
| static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
 | |
| static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
 | |
| 
 | |
| static const int cfq_slice_sync = HZ / 10;
 | |
| static int cfq_slice_async = HZ / 25;
 | |
| static const int cfq_slice_async_rq = 2;
 | |
| static int cfq_slice_idle = HZ / 125;
 | |
| 
 | |
| #define CFQ_IDLE_GRACE		(HZ / 10)
 | |
| #define CFQ_SLICE_SCALE		(5)
 | |
| 
 | |
| #define CFQ_KEY_ASYNC		(0)
 | |
| 
 | |
| /*
 | |
|  * for the hash of cfqq inside the cfqd
 | |
|  */
 | |
| #define CFQ_QHASH_SHIFT		6
 | |
| #define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
 | |
| #define list_entry_qhash(entry)	hlist_entry((entry), struct cfq_queue, cfq_hash)
 | |
| 
 | |
| #define list_entry_cfqq(ptr)	list_entry((ptr), struct cfq_queue, cfq_list)
 | |
| 
 | |
| #define RQ_CIC(rq)		((struct cfq_io_context*)(rq)->elevator_private)
 | |
| #define RQ_CFQQ(rq)		((rq)->elevator_private2)
 | |
| 
 | |
| static kmem_cache_t *cfq_pool;
 | |
| static kmem_cache_t *cfq_ioc_pool;
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, ioc_count);
 | |
| static struct completion *ioc_gone;
 | |
| 
 | |
| #define CFQ_PRIO_LISTS		IOPRIO_BE_NR
 | |
| #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
 | |
| #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
 | |
| 
 | |
| #define ASYNC			(0)
 | |
| #define SYNC			(1)
 | |
| 
 | |
| #define cfq_cfqq_dispatched(cfqq)	\
 | |
| 	((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
 | |
| 
 | |
| #define cfq_cfqq_class_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
 | |
| 
 | |
| #define cfq_cfqq_sync(cfqq)		\
 | |
| 	(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
 | |
| 
 | |
| #define sample_valid(samples)	((samples) > 80)
 | |
| 
 | |
| /*
 | |
|  * Per block device queue structure
 | |
|  */
 | |
| struct cfq_data {
 | |
| 	request_queue_t *queue;
 | |
| 
 | |
| 	/*
 | |
| 	 * rr list of queues with requests and the count of them
 | |
| 	 */
 | |
| 	struct list_head rr_list[CFQ_PRIO_LISTS];
 | |
| 	struct list_head busy_rr;
 | |
| 	struct list_head cur_rr;
 | |
| 	struct list_head idle_rr;
 | |
| 	unsigned int busy_queues;
 | |
| 
 | |
| 	/*
 | |
| 	 * cfqq lookup hash
 | |
| 	 */
 | |
| 	struct hlist_head *cfq_hash;
 | |
| 
 | |
| 	int rq_in_driver;
 | |
| 	int hw_tag;
 | |
| 
 | |
| 	/*
 | |
| 	 * idle window management
 | |
| 	 */
 | |
| 	struct timer_list idle_slice_timer;
 | |
| 	struct work_struct unplug_work;
 | |
| 
 | |
| 	struct cfq_queue *active_queue;
 | |
| 	struct cfq_io_context *active_cic;
 | |
| 	int cur_prio, cur_end_prio;
 | |
| 	unsigned int dispatch_slice;
 | |
| 
 | |
| 	struct timer_list idle_class_timer;
 | |
| 
 | |
| 	sector_t last_sector;
 | |
| 	unsigned long last_end_request;
 | |
| 
 | |
| 	/*
 | |
| 	 * tunables, see top of file
 | |
| 	 */
 | |
| 	unsigned int cfq_quantum;
 | |
| 	unsigned int cfq_fifo_expire[2];
 | |
| 	unsigned int cfq_back_penalty;
 | |
| 	unsigned int cfq_back_max;
 | |
| 	unsigned int cfq_slice[2];
 | |
| 	unsigned int cfq_slice_async_rq;
 | |
| 	unsigned int cfq_slice_idle;
 | |
| 
 | |
| 	struct list_head cic_list;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Per process-grouping structure
 | |
|  */
 | |
| struct cfq_queue {
 | |
| 	/* reference count */
 | |
| 	atomic_t ref;
 | |
| 	/* parent cfq_data */
 | |
| 	struct cfq_data *cfqd;
 | |
| 	/* cfqq lookup hash */
 | |
| 	struct hlist_node cfq_hash;
 | |
| 	/* hash key */
 | |
| 	unsigned int key;
 | |
| 	/* member of the rr/busy/cur/idle cfqd list */
 | |
| 	struct list_head cfq_list;
 | |
| 	/* sorted list of pending requests */
 | |
| 	struct rb_root sort_list;
 | |
| 	/* if fifo isn't expired, next request to serve */
 | |
| 	struct request *next_rq;
 | |
| 	/* requests queued in sort_list */
 | |
| 	int queued[2];
 | |
| 	/* currently allocated requests */
 | |
| 	int allocated[2];
 | |
| 	/* pending metadata requests */
 | |
| 	int meta_pending;
 | |
| 	/* fifo list of requests in sort_list */
 | |
| 	struct list_head fifo;
 | |
| 
 | |
| 	unsigned long slice_start;
 | |
| 	unsigned long slice_end;
 | |
| 	unsigned long slice_left;
 | |
| 
 | |
| 	/* number of requests that are on the dispatch list */
 | |
| 	int on_dispatch[2];
 | |
| 
 | |
| 	/* io prio of this group */
 | |
| 	unsigned short ioprio, org_ioprio;
 | |
| 	unsigned short ioprio_class, org_ioprio_class;
 | |
| 
 | |
| 	/* various state flags, see below */
 | |
| 	unsigned int flags;
 | |
| };
 | |
| 
 | |
| enum cfqq_state_flags {
 | |
| 	CFQ_CFQQ_FLAG_on_rr = 0,
 | |
| 	CFQ_CFQQ_FLAG_wait_request,
 | |
| 	CFQ_CFQQ_FLAG_must_alloc,
 | |
| 	CFQ_CFQQ_FLAG_must_alloc_slice,
 | |
| 	CFQ_CFQQ_FLAG_must_dispatch,
 | |
| 	CFQ_CFQQ_FLAG_fifo_expire,
 | |
| 	CFQ_CFQQ_FLAG_idle_window,
 | |
| 	CFQ_CFQQ_FLAG_prio_changed,
 | |
| 	CFQ_CFQQ_FLAG_queue_new,
 | |
| };
 | |
| 
 | |
| #define CFQ_CFQQ_FNS(name)						\
 | |
| static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
 | |
| {									\
 | |
| 	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
 | |
| }									\
 | |
| static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
 | |
| {									\
 | |
| 	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
 | |
| }									\
 | |
| static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
 | |
| {									\
 | |
| 	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
 | |
| }
 | |
| 
 | |
| CFQ_CFQQ_FNS(on_rr);
 | |
| CFQ_CFQQ_FNS(wait_request);
 | |
| CFQ_CFQQ_FNS(must_alloc);
 | |
| CFQ_CFQQ_FNS(must_alloc_slice);
 | |
| CFQ_CFQQ_FNS(must_dispatch);
 | |
| CFQ_CFQQ_FNS(fifo_expire);
 | |
| CFQ_CFQQ_FNS(idle_window);
 | |
| CFQ_CFQQ_FNS(prio_changed);
 | |
| CFQ_CFQQ_FNS(queue_new);
 | |
| #undef CFQ_CFQQ_FNS
 | |
| 
 | |
| static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
 | |
| static void cfq_dispatch_insert(request_queue_t *, struct request *);
 | |
| static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
 | |
| 
 | |
| /*
 | |
|  * scheduler run of queue, if there are requests pending and no one in the
 | |
|  * driver that will restart queueing
 | |
|  */
 | |
| static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
 | |
| {
 | |
| 	if (cfqd->busy_queues)
 | |
| 		kblockd_schedule_work(&cfqd->unplug_work);
 | |
| }
 | |
| 
 | |
| static int cfq_queue_empty(request_queue_t *q)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 
 | |
| 	return !cfqd->busy_queues;
 | |
| }
 | |
| 
 | |
| static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
 | |
| {
 | |
| 	if (rw == READ || rw == WRITE_SYNC)
 | |
| 		return task->pid;
 | |
| 
 | |
| 	return CFQ_KEY_ASYNC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
 | |
|  * We choose the request that is closest to the head right now. Distance
 | |
|  * behind the head is penalized and only allowed to a certain extent.
 | |
|  */
 | |
| static struct request *
 | |
| cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
 | |
| {
 | |
| 	sector_t last, s1, s2, d1 = 0, d2 = 0;
 | |
| 	unsigned long back_max;
 | |
| #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
 | |
| #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
 | |
| 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
 | |
| 
 | |
| 	if (rq1 == NULL || rq1 == rq2)
 | |
| 		return rq2;
 | |
| 	if (rq2 == NULL)
 | |
| 		return rq1;
 | |
| 
 | |
| 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
 | |
| 		return rq1;
 | |
| 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
 | |
| 		return rq2;
 | |
| 	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
 | |
| 		return rq1;
 | |
| 	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
 | |
| 		return rq2;
 | |
| 
 | |
| 	s1 = rq1->sector;
 | |
| 	s2 = rq2->sector;
 | |
| 
 | |
| 	last = cfqd->last_sector;
 | |
| 
 | |
| 	/*
 | |
| 	 * by definition, 1KiB is 2 sectors
 | |
| 	 */
 | |
| 	back_max = cfqd->cfq_back_max * 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Strict one way elevator _except_ in the case where we allow
 | |
| 	 * short backward seeks which are biased as twice the cost of a
 | |
| 	 * similar forward seek.
 | |
| 	 */
 | |
| 	if (s1 >= last)
 | |
| 		d1 = s1 - last;
 | |
| 	else if (s1 + back_max >= last)
 | |
| 		d1 = (last - s1) * cfqd->cfq_back_penalty;
 | |
| 	else
 | |
| 		wrap |= CFQ_RQ1_WRAP;
 | |
| 
 | |
| 	if (s2 >= last)
 | |
| 		d2 = s2 - last;
 | |
| 	else if (s2 + back_max >= last)
 | |
| 		d2 = (last - s2) * cfqd->cfq_back_penalty;
 | |
| 	else
 | |
| 		wrap |= CFQ_RQ2_WRAP;
 | |
| 
 | |
| 	/* Found required data */
 | |
| 
 | |
| 	/*
 | |
| 	 * By doing switch() on the bit mask "wrap" we avoid having to
 | |
| 	 * check two variables for all permutations: --> faster!
 | |
| 	 */
 | |
| 	switch (wrap) {
 | |
| 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
 | |
| 		if (d1 < d2)
 | |
| 			return rq1;
 | |
| 		else if (d2 < d1)
 | |
| 			return rq2;
 | |
| 		else {
 | |
| 			if (s1 >= s2)
 | |
| 				return rq1;
 | |
| 			else
 | |
| 				return rq2;
 | |
| 		}
 | |
| 
 | |
| 	case CFQ_RQ2_WRAP:
 | |
| 		return rq1;
 | |
| 	case CFQ_RQ1_WRAP:
 | |
| 		return rq2;
 | |
| 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * Since both rqs are wrapped,
 | |
| 		 * start with the one that's further behind head
 | |
| 		 * (--> only *one* back seek required),
 | |
| 		 * since back seek takes more time than forward.
 | |
| 		 */
 | |
| 		if (s1 <= s2)
 | |
| 			return rq1;
 | |
| 		else
 | |
| 			return rq2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * would be nice to take fifo expire time into account as well
 | |
|  */
 | |
| static struct request *
 | |
| cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 | |
| 		  struct request *last)
 | |
| {
 | |
| 	struct rb_node *rbnext = rb_next(&last->rb_node);
 | |
| 	struct rb_node *rbprev = rb_prev(&last->rb_node);
 | |
| 	struct request *next = NULL, *prev = NULL;
 | |
| 
 | |
| 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
 | |
| 
 | |
| 	if (rbprev)
 | |
| 		prev = rb_entry_rq(rbprev);
 | |
| 
 | |
| 	if (rbnext)
 | |
| 		next = rb_entry_rq(rbnext);
 | |
| 	else {
 | |
| 		rbnext = rb_first(&cfqq->sort_list);
 | |
| 		if (rbnext && rbnext != &last->rb_node)
 | |
| 			next = rb_entry_rq(rbnext);
 | |
| 	}
 | |
| 
 | |
| 	return cfq_choose_req(cfqd, next, prev);
 | |
| }
 | |
| 
 | |
| static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
 | |
| {
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
 | |
| 
 | |
| 	list_del(&cfqq->cfq_list);
 | |
| 
 | |
| 	if (cfq_class_rt(cfqq))
 | |
| 		list = &cfqd->cur_rr;
 | |
| 	else if (cfq_class_idle(cfqq))
 | |
| 		list = &cfqd->idle_rr;
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * if cfqq has requests in flight, don't allow it to be
 | |
| 		 * found in cfq_set_active_queue before it has finished them.
 | |
| 		 * this is done to increase fairness between a process that
 | |
| 		 * has lots of io pending vs one that only generates one
 | |
| 		 * sporadically or synchronously
 | |
| 		 */
 | |
| 		if (cfq_cfqq_dispatched(cfqq))
 | |
| 			list = &cfqd->busy_rr;
 | |
| 		else
 | |
| 			list = &cfqd->rr_list[cfqq->ioprio];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this queue was preempted or is new (never been serviced), let
 | |
| 	 * it be added first for fairness but beind other new queues.
 | |
| 	 * Otherwise, just add to the back  of the list.
 | |
| 	 */
 | |
| 	if (preempted || cfq_cfqq_queue_new(cfqq)) {
 | |
| 		struct list_head *n = list;
 | |
| 		struct cfq_queue *__cfqq;
 | |
| 
 | |
| 		while (n->next != list) {
 | |
| 			__cfqq = list_entry_cfqq(n->next);
 | |
| 			if (!cfq_cfqq_queue_new(__cfqq))
 | |
| 				break;
 | |
| 
 | |
| 			n = n->next;
 | |
| 		}
 | |
| 
 | |
| 		list = n;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&cfqq->cfq_list, list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add to busy list of queues for service, trying to be fair in ordering
 | |
|  * the pending list according to last request service
 | |
|  */
 | |
| static inline void
 | |
| cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	BUG_ON(cfq_cfqq_on_rr(cfqq));
 | |
| 	cfq_mark_cfqq_on_rr(cfqq);
 | |
| 	cfqd->busy_queues++;
 | |
| 
 | |
| 	cfq_resort_rr_list(cfqq, 0);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
 | |
| 	cfq_clear_cfqq_on_rr(cfqq);
 | |
| 	list_del_init(&cfqq->cfq_list);
 | |
| 
 | |
| 	BUG_ON(!cfqd->busy_queues);
 | |
| 	cfqd->busy_queues--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rb tree support functions
 | |
|  */
 | |
| static inline void cfq_del_rq_rb(struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 	const int sync = rq_is_sync(rq);
 | |
| 
 | |
| 	BUG_ON(!cfqq->queued[sync]);
 | |
| 	cfqq->queued[sync]--;
 | |
| 
 | |
| 	elv_rb_del(&cfqq->sort_list, rq);
 | |
| 
 | |
| 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
 | |
| 		cfq_del_cfqq_rr(cfqd, cfqq);
 | |
| }
 | |
| 
 | |
| static void cfq_add_rq_rb(struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 	struct request *__alias;
 | |
| 
 | |
| 	cfqq->queued[rq_is_sync(rq)]++;
 | |
| 
 | |
| 	/*
 | |
| 	 * looks a little odd, but the first insert might return an alias.
 | |
| 	 * if that happens, put the alias on the dispatch list
 | |
| 	 */
 | |
| 	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
 | |
| 		cfq_dispatch_insert(cfqd->queue, __alias);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
 | |
| {
 | |
| 	elv_rb_del(&cfqq->sort_list, rq);
 | |
| 	cfqq->queued[rq_is_sync(rq)]--;
 | |
| 	cfq_add_rq_rb(rq);
 | |
| }
 | |
| 
 | |
| static struct request *
 | |
| cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
 | |
| 	struct cfq_queue *cfqq;
 | |
| 
 | |
| 	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
 | |
| 	if (cfqq) {
 | |
| 		sector_t sector = bio->bi_sector + bio_sectors(bio);
 | |
| 
 | |
| 		return elv_rb_find(&cfqq->sort_list, sector);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cfq_activate_request(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 
 | |
| 	cfqd->rq_in_driver++;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the depth is larger 1, it really could be queueing. But lets
 | |
| 	 * make the mark a little higher - idling could still be good for
 | |
| 	 * low queueing, and a low queueing number could also just indicate
 | |
| 	 * a SCSI mid layer like behaviour where limit+1 is often seen.
 | |
| 	 */
 | |
| 	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
 | |
| 		cfqd->hw_tag = 1;
 | |
| }
 | |
| 
 | |
| static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 
 | |
| 	WARN_ON(!cfqd->rq_in_driver);
 | |
| 	cfqd->rq_in_driver--;
 | |
| }
 | |
| 
 | |
| static void cfq_remove_request(struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 
 | |
| 	if (cfqq->next_rq == rq)
 | |
| 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
 | |
| 
 | |
| 	list_del_init(&rq->queuelist);
 | |
| 	cfq_del_rq_rb(rq);
 | |
| 
 | |
| 	if (rq_is_meta(rq)) {
 | |
| 		WARN_ON(!cfqq->meta_pending);
 | |
| 		cfqq->meta_pending--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct request *__rq;
 | |
| 
 | |
| 	__rq = cfq_find_rq_fmerge(cfqd, bio);
 | |
| 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
 | |
| 		*req = __rq;
 | |
| 		return ELEVATOR_FRONT_MERGE;
 | |
| 	}
 | |
| 
 | |
| 	return ELEVATOR_NO_MERGE;
 | |
| }
 | |
| 
 | |
| static void cfq_merged_request(request_queue_t *q, struct request *req,
 | |
| 			       int type)
 | |
| {
 | |
| 	if (type == ELEVATOR_FRONT_MERGE) {
 | |
| 		struct cfq_queue *cfqq = RQ_CFQQ(req);
 | |
| 
 | |
| 		cfq_reposition_rq_rb(cfqq, req);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| cfq_merged_requests(request_queue_t *q, struct request *rq,
 | |
| 		    struct request *next)
 | |
| {
 | |
| 	/*
 | |
| 	 * reposition in fifo if next is older than rq
 | |
| 	 */
 | |
| 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
 | |
| 	    time_before(next->start_time, rq->start_time))
 | |
| 		list_move(&rq->queuelist, &next->queuelist);
 | |
| 
 | |
| 	cfq_remove_request(next);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	if (cfqq) {
 | |
| 		/*
 | |
| 		 * stop potential idle class queues waiting service
 | |
| 		 */
 | |
| 		del_timer(&cfqd->idle_class_timer);
 | |
| 
 | |
| 		cfqq->slice_start = jiffies;
 | |
| 		cfqq->slice_end = 0;
 | |
| 		cfqq->slice_left = 0;
 | |
| 		cfq_clear_cfqq_must_alloc_slice(cfqq);
 | |
| 		cfq_clear_cfqq_fifo_expire(cfqq);
 | |
| 	}
 | |
| 
 | |
| 	cfqd->active_queue = cfqq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * current cfqq expired its slice (or was too idle), select new one
 | |
|  */
 | |
| static void
 | |
| __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 | |
| 		    int preempted)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 
 | |
| 	if (cfq_cfqq_wait_request(cfqq))
 | |
| 		del_timer(&cfqd->idle_slice_timer);
 | |
| 
 | |
| 	if (!preempted && !cfq_cfqq_dispatched(cfqq))
 | |
| 		cfq_schedule_dispatch(cfqd);
 | |
| 
 | |
| 	cfq_clear_cfqq_must_dispatch(cfqq);
 | |
| 	cfq_clear_cfqq_wait_request(cfqq);
 | |
| 	cfq_clear_cfqq_queue_new(cfqq);
 | |
| 
 | |
| 	/*
 | |
| 	 * store what was left of this slice, if the queue idled out
 | |
| 	 * or was preempted
 | |
| 	 */
 | |
| 	if (time_after(cfqq->slice_end, now))
 | |
| 		cfqq->slice_left = cfqq->slice_end - now;
 | |
| 	else
 | |
| 		cfqq->slice_left = 0;
 | |
| 
 | |
| 	if (cfq_cfqq_on_rr(cfqq))
 | |
| 		cfq_resort_rr_list(cfqq, preempted);
 | |
| 
 | |
| 	if (cfqq == cfqd->active_queue)
 | |
| 		cfqd->active_queue = NULL;
 | |
| 
 | |
| 	if (cfqd->active_cic) {
 | |
| 		put_io_context(cfqd->active_cic->ioc);
 | |
| 		cfqd->active_cic = NULL;
 | |
| 	}
 | |
| 
 | |
| 	cfqd->dispatch_slice = 0;
 | |
| }
 | |
| 
 | |
| static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = cfqd->active_queue;
 | |
| 
 | |
| 	if (cfqq)
 | |
| 		__cfq_slice_expired(cfqd, cfqq, preempted);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 0
 | |
|  * 0,1
 | |
|  * 0,1,2
 | |
|  * 0,1,2,3
 | |
|  * 0,1,2,3,4
 | |
|  * 0,1,2,3,4,5
 | |
|  * 0,1,2,3,4,5,6
 | |
|  * 0,1,2,3,4,5,6,7
 | |
|  */
 | |
| static int cfq_get_next_prio_level(struct cfq_data *cfqd)
 | |
| {
 | |
| 	int prio, wrap;
 | |
| 
 | |
| 	prio = -1;
 | |
| 	wrap = 0;
 | |
| 	do {
 | |
| 		int p;
 | |
| 
 | |
| 		for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
 | |
| 			if (!list_empty(&cfqd->rr_list[p])) {
 | |
| 				prio = p;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (prio != -1)
 | |
| 			break;
 | |
| 		cfqd->cur_prio = 0;
 | |
| 		if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
 | |
| 			cfqd->cur_end_prio = 0;
 | |
| 			if (wrap)
 | |
| 				break;
 | |
| 			wrap = 1;
 | |
| 		}
 | |
| 	} while (1);
 | |
| 
 | |
| 	if (unlikely(prio == -1))
 | |
| 		return -1;
 | |
| 
 | |
| 	BUG_ON(prio >= CFQ_PRIO_LISTS);
 | |
| 
 | |
| 	list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
 | |
| 
 | |
| 	cfqd->cur_prio = prio + 1;
 | |
| 	if (cfqd->cur_prio > cfqd->cur_end_prio) {
 | |
| 		cfqd->cur_end_prio = cfqd->cur_prio;
 | |
| 		cfqd->cur_prio = 0;
 | |
| 	}
 | |
| 	if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
 | |
| 		cfqd->cur_prio = 0;
 | |
| 		cfqd->cur_end_prio = 0;
 | |
| 	}
 | |
| 
 | |
| 	return prio;
 | |
| }
 | |
| 
 | |
| static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = NULL;
 | |
| 
 | |
| 	if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
 | |
| 		/*
 | |
| 		 * if current list is non-empty, grab first entry. if it is
 | |
| 		 * empty, get next prio level and grab first entry then if any
 | |
| 		 * are spliced
 | |
| 		 */
 | |
| 		cfqq = list_entry_cfqq(cfqd->cur_rr.next);
 | |
| 	} else if (!list_empty(&cfqd->busy_rr)) {
 | |
| 		/*
 | |
| 		 * If no new queues are available, check if the busy list has
 | |
| 		 * some before falling back to idle io.
 | |
| 		 */
 | |
| 		cfqq = list_entry_cfqq(cfqd->busy_rr.next);
 | |
| 	} else if (!list_empty(&cfqd->idle_rr)) {
 | |
| 		/*
 | |
| 		 * if we have idle queues and no rt or be queues had pending
 | |
| 		 * requests, either allow immediate service if the grace period
 | |
| 		 * has passed or arm the idle grace timer
 | |
| 		 */
 | |
| 		unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
 | |
| 
 | |
| 		if (time_after_eq(jiffies, end))
 | |
| 			cfqq = list_entry_cfqq(cfqd->idle_rr.next);
 | |
| 		else
 | |
| 			mod_timer(&cfqd->idle_class_timer, end);
 | |
| 	}
 | |
| 
 | |
| 	__cfq_set_active_queue(cfqd, cfqq);
 | |
| 	return cfqq;
 | |
| }
 | |
| 
 | |
| #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
 | |
| 
 | |
| static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| 
 | |
| {
 | |
| 	struct cfq_io_context *cic;
 | |
| 	unsigned long sl;
 | |
| 
 | |
| 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
 | |
| 	WARN_ON(cfqq != cfqd->active_queue);
 | |
| 
 | |
| 	/*
 | |
| 	 * idle is disabled, either manually or by past process history
 | |
| 	 */
 | |
| 	if (!cfqd->cfq_slice_idle)
 | |
| 		return 0;
 | |
| 	if (!cfq_cfqq_idle_window(cfqq))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * task has exited, don't wait
 | |
| 	 */
 | |
| 	cic = cfqd->active_cic;
 | |
| 	if (!cic || !cic->ioc->task)
 | |
| 		return 0;
 | |
| 
 | |
| 	cfq_mark_cfqq_must_dispatch(cfqq);
 | |
| 	cfq_mark_cfqq_wait_request(cfqq);
 | |
| 
 | |
| 	sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
 | |
| 
 | |
| 	/*
 | |
| 	 * we don't want to idle for seeks, but we do want to allow
 | |
| 	 * fair distribution of slice time for a process doing back-to-back
 | |
| 	 * seeks. so allow a little bit of time for him to submit a new rq
 | |
| 	 */
 | |
| 	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
 | |
| 		sl = min(sl, msecs_to_jiffies(2));
 | |
| 
 | |
| 	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 
 | |
| 	cfq_remove_request(rq);
 | |
| 	cfqq->on_dispatch[rq_is_sync(rq)]++;
 | |
| 	elv_dispatch_sort(q, rq);
 | |
| 
 | |
| 	rq = list_entry(q->queue_head.prev, struct request, queuelist);
 | |
| 	cfqd->last_sector = rq->sector + rq->nr_sectors;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return expired entry, or NULL to just start from scratch in rbtree
 | |
|  */
 | |
| static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 	struct request *rq;
 | |
| 	int fifo;
 | |
| 
 | |
| 	if (cfq_cfqq_fifo_expire(cfqq))
 | |
| 		return NULL;
 | |
| 	if (list_empty(&cfqq->fifo))
 | |
| 		return NULL;
 | |
| 
 | |
| 	fifo = cfq_cfqq_class_sync(cfqq);
 | |
| 	rq = rq_entry_fifo(cfqq->fifo.next);
 | |
| 
 | |
| 	if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
 | |
| 		cfq_mark_cfqq_fifo_expire(cfqq);
 | |
| 		return rq;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scale schedule slice based on io priority. Use the sync time slice only
 | |
|  * if a queue is marked sync and has sync io queued. A sync queue with async
 | |
|  * io only, should not get full sync slice length.
 | |
|  */
 | |
| static inline int
 | |
| cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
 | |
| 
 | |
| 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
 | |
| 
 | |
| 	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	const int base_rq = cfqd->cfq_slice_async_rq;
 | |
| 
 | |
| 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
 | |
| 
 | |
| 	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get next queue for service
 | |
|  */
 | |
| static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	struct cfq_queue *cfqq;
 | |
| 
 | |
| 	cfqq = cfqd->active_queue;
 | |
| 	if (!cfqq)
 | |
| 		goto new_queue;
 | |
| 
 | |
| 	/*
 | |
| 	 * slice has expired
 | |
| 	 */
 | |
| 	if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
 | |
| 		goto expire;
 | |
| 
 | |
| 	/*
 | |
| 	 * if queue has requests, dispatch one. if not, check if
 | |
| 	 * enough slice is left to wait for one
 | |
| 	 */
 | |
| 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
 | |
| 		goto keep_queue;
 | |
| 	else if (cfq_cfqq_dispatched(cfqq)) {
 | |
| 		cfqq = NULL;
 | |
| 		goto keep_queue;
 | |
| 	} else if (cfq_cfqq_class_sync(cfqq)) {
 | |
| 		if (cfq_arm_slice_timer(cfqd, cfqq))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| expire:
 | |
| 	cfq_slice_expired(cfqd, 0);
 | |
| new_queue:
 | |
| 	cfqq = cfq_set_active_queue(cfqd);
 | |
| keep_queue:
 | |
| 	return cfqq;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 | |
| 			int max_dispatch)
 | |
| {
 | |
| 	int dispatched = 0;
 | |
| 
 | |
| 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
 | |
| 
 | |
| 	do {
 | |
| 		struct request *rq;
 | |
| 
 | |
| 		/*
 | |
| 		 * follow expired path, else get first next available
 | |
| 		 */
 | |
| 		if ((rq = cfq_check_fifo(cfqq)) == NULL)
 | |
| 			rq = cfqq->next_rq;
 | |
| 
 | |
| 		/*
 | |
| 		 * finally, insert request into driver dispatch list
 | |
| 		 */
 | |
| 		cfq_dispatch_insert(cfqd->queue, rq);
 | |
| 
 | |
| 		cfqd->dispatch_slice++;
 | |
| 		dispatched++;
 | |
| 
 | |
| 		if (!cfqd->active_cic) {
 | |
| 			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
 | |
| 			cfqd->active_cic = RQ_CIC(rq);
 | |
| 		}
 | |
| 
 | |
| 		if (RB_EMPTY_ROOT(&cfqq->sort_list))
 | |
| 			break;
 | |
| 
 | |
| 	} while (dispatched < max_dispatch);
 | |
| 
 | |
| 	/*
 | |
| 	 * if slice end isn't set yet, set it.
 | |
| 	 */
 | |
| 	if (!cfqq->slice_end)
 | |
| 		cfq_set_prio_slice(cfqd, cfqq);
 | |
| 
 | |
| 	/*
 | |
| 	 * expire an async queue immediately if it has used up its slice. idle
 | |
| 	 * queue always expire after 1 dispatch round.
 | |
| 	 */
 | |
| 	if ((!cfq_cfqq_sync(cfqq) &&
 | |
| 	    cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
 | |
| 	    cfq_class_idle(cfqq) ||
 | |
| 	    !cfq_cfqq_idle_window(cfqq))
 | |
| 		cfq_slice_expired(cfqd, 0);
 | |
| 
 | |
| 	return dispatched;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cfq_forced_dispatch_cfqqs(struct list_head *list)
 | |
| {
 | |
| 	struct cfq_queue *cfqq, *next;
 | |
| 	int dispatched;
 | |
| 
 | |
| 	dispatched = 0;
 | |
| 	list_for_each_entry_safe(cfqq, next, list, cfq_list) {
 | |
| 		while (cfqq->next_rq) {
 | |
| 			cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
 | |
| 			dispatched++;
 | |
| 		}
 | |
| 		BUG_ON(!list_empty(&cfqq->fifo));
 | |
| 	}
 | |
| 
 | |
| 	return dispatched;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cfq_forced_dispatch(struct cfq_data *cfqd)
 | |
| {
 | |
| 	int i, dispatched = 0;
 | |
| 
 | |
| 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
 | |
| 		dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
 | |
| 
 | |
| 	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
 | |
| 	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
 | |
| 	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
 | |
| 
 | |
| 	cfq_slice_expired(cfqd, 0);
 | |
| 
 | |
| 	BUG_ON(cfqd->busy_queues);
 | |
| 
 | |
| 	return dispatched;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cfq_dispatch_requests(request_queue_t *q, int force)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct cfq_queue *cfqq, *prev_cfqq;
 | |
| 	int dispatched;
 | |
| 
 | |
| 	if (!cfqd->busy_queues)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(force))
 | |
| 		return cfq_forced_dispatch(cfqd);
 | |
| 
 | |
| 	dispatched = 0;
 | |
| 	prev_cfqq = NULL;
 | |
| 	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
 | |
| 		int max_dispatch;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't repeat dispatch from the previous queue.
 | |
| 		 */
 | |
| 		if (prev_cfqq == cfqq)
 | |
| 			break;
 | |
| 
 | |
| 		cfq_clear_cfqq_must_dispatch(cfqq);
 | |
| 		cfq_clear_cfqq_wait_request(cfqq);
 | |
| 		del_timer(&cfqd->idle_slice_timer);
 | |
| 
 | |
| 		max_dispatch = cfqd->cfq_quantum;
 | |
| 		if (cfq_class_idle(cfqq))
 | |
| 			max_dispatch = 1;
 | |
| 
 | |
| 		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the dispatch cfqq has idling enabled and is still
 | |
| 		 * the active queue, break out.
 | |
| 		 */
 | |
| 		if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
 | |
| 			break;
 | |
| 
 | |
| 		prev_cfqq = cfqq;
 | |
| 	}
 | |
| 
 | |
| 	return dispatched;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task holds one reference to the queue, dropped when task exits. each rq
 | |
|  * in-flight on this queue also holds a reference, dropped when rq is freed.
 | |
|  *
 | |
|  * queue lock must be held here.
 | |
|  */
 | |
| static void cfq_put_queue(struct cfq_queue *cfqq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 
 | |
| 	BUG_ON(atomic_read(&cfqq->ref) <= 0);
 | |
| 
 | |
| 	if (!atomic_dec_and_test(&cfqq->ref))
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(rb_first(&cfqq->sort_list));
 | |
| 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
 | |
| 	BUG_ON(cfq_cfqq_on_rr(cfqq));
 | |
| 
 | |
| 	if (unlikely(cfqd->active_queue == cfqq))
 | |
| 		__cfq_slice_expired(cfqd, cfqq, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * it's on the empty list and still hashed
 | |
| 	 */
 | |
| 	list_del(&cfqq->cfq_list);
 | |
| 	hlist_del(&cfqq->cfq_hash);
 | |
| 	kmem_cache_free(cfq_pool, cfqq);
 | |
| }
 | |
| 
 | |
| static struct cfq_queue *
 | |
| __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
 | |
| 		    const int hashval)
 | |
| {
 | |
| 	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
 | |
| 	struct hlist_node *entry;
 | |
| 	struct cfq_queue *__cfqq;
 | |
| 
 | |
| 	hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
 | |
| 		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
 | |
| 
 | |
| 		if (__cfqq->key == key && (__p == prio || !prio))
 | |
| 			return __cfqq;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct cfq_queue *
 | |
| cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
 | |
| {
 | |
| 	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
 | |
| }
 | |
| 
 | |
| static void cfq_free_io_context(struct io_context *ioc)
 | |
| {
 | |
| 	struct cfq_io_context *__cic;
 | |
| 	struct rb_node *n;
 | |
| 	int freed = 0;
 | |
| 
 | |
| 	while ((n = rb_first(&ioc->cic_root)) != NULL) {
 | |
| 		__cic = rb_entry(n, struct cfq_io_context, rb_node);
 | |
| 		rb_erase(&__cic->rb_node, &ioc->cic_root);
 | |
| 		kmem_cache_free(cfq_ioc_pool, __cic);
 | |
| 		freed++;
 | |
| 	}
 | |
| 
 | |
| 	elv_ioc_count_mod(ioc_count, -freed);
 | |
| 
 | |
| 	if (ioc_gone && !elv_ioc_count_read(ioc_count))
 | |
| 		complete(ioc_gone);
 | |
| }
 | |
| 
 | |
| static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	if (unlikely(cfqq == cfqd->active_queue))
 | |
| 		__cfq_slice_expired(cfqd, cfqq, 0);
 | |
| 
 | |
| 	cfq_put_queue(cfqq);
 | |
| }
 | |
| 
 | |
| static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
 | |
| 					 struct cfq_io_context *cic)
 | |
| {
 | |
| 	list_del_init(&cic->queue_list);
 | |
| 	smp_wmb();
 | |
| 	cic->key = NULL;
 | |
| 
 | |
| 	if (cic->cfqq[ASYNC]) {
 | |
| 		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
 | |
| 		cic->cfqq[ASYNC] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (cic->cfqq[SYNC]) {
 | |
| 		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
 | |
| 		cic->cfqq[SYNC] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Called with interrupts disabled
 | |
|  */
 | |
| static void cfq_exit_single_io_context(struct cfq_io_context *cic)
 | |
| {
 | |
| 	struct cfq_data *cfqd = cic->key;
 | |
| 
 | |
| 	if (cfqd) {
 | |
| 		request_queue_t *q = cfqd->queue;
 | |
| 
 | |
| 		spin_lock_irq(q->queue_lock);
 | |
| 		__cfq_exit_single_io_context(cfqd, cic);
 | |
| 		spin_unlock_irq(q->queue_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cfq_exit_io_context(struct io_context *ioc)
 | |
| {
 | |
| 	struct cfq_io_context *__cic;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	/*
 | |
| 	 * put the reference this task is holding to the various queues
 | |
| 	 */
 | |
| 
 | |
| 	n = rb_first(&ioc->cic_root);
 | |
| 	while (n != NULL) {
 | |
| 		__cic = rb_entry(n, struct cfq_io_context, rb_node);
 | |
| 
 | |
| 		cfq_exit_single_io_context(__cic);
 | |
| 		n = rb_next(n);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct cfq_io_context *
 | |
| cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct cfq_io_context *cic;
 | |
| 
 | |
| 	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
 | |
| 	if (cic) {
 | |
| 		memset(cic, 0, sizeof(*cic));
 | |
| 		cic->last_end_request = jiffies;
 | |
| 		INIT_LIST_HEAD(&cic->queue_list);
 | |
| 		cic->dtor = cfq_free_io_context;
 | |
| 		cic->exit = cfq_exit_io_context;
 | |
| 		elv_ioc_count_inc(ioc_count);
 | |
| 	}
 | |
| 
 | |
| 	return cic;
 | |
| }
 | |
| 
 | |
| static void cfq_init_prio_data(struct cfq_queue *cfqq)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	int ioprio_class;
 | |
| 
 | |
| 	if (!cfq_cfqq_prio_changed(cfqq))
 | |
| 		return;
 | |
| 
 | |
| 	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
 | |
| 	switch (ioprio_class) {
 | |
| 		default:
 | |
| 			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
 | |
| 		case IOPRIO_CLASS_NONE:
 | |
| 			/*
 | |
| 			 * no prio set, place us in the middle of the BE classes
 | |
| 			 */
 | |
| 			cfqq->ioprio = task_nice_ioprio(tsk);
 | |
| 			cfqq->ioprio_class = IOPRIO_CLASS_BE;
 | |
| 			break;
 | |
| 		case IOPRIO_CLASS_RT:
 | |
| 			cfqq->ioprio = task_ioprio(tsk);
 | |
| 			cfqq->ioprio_class = IOPRIO_CLASS_RT;
 | |
| 			break;
 | |
| 		case IOPRIO_CLASS_BE:
 | |
| 			cfqq->ioprio = task_ioprio(tsk);
 | |
| 			cfqq->ioprio_class = IOPRIO_CLASS_BE;
 | |
| 			break;
 | |
| 		case IOPRIO_CLASS_IDLE:
 | |
| 			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
 | |
| 			cfqq->ioprio = 7;
 | |
| 			cfq_clear_cfqq_idle_window(cfqq);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * keep track of original prio settings in case we have to temporarily
 | |
| 	 * elevate the priority of this queue
 | |
| 	 */
 | |
| 	cfqq->org_ioprio = cfqq->ioprio;
 | |
| 	cfqq->org_ioprio_class = cfqq->ioprio_class;
 | |
| 
 | |
| 	if (cfq_cfqq_on_rr(cfqq))
 | |
| 		cfq_resort_rr_list(cfqq, 0);
 | |
| 
 | |
| 	cfq_clear_cfqq_prio_changed(cfqq);
 | |
| }
 | |
| 
 | |
| static inline void changed_ioprio(struct cfq_io_context *cic)
 | |
| {
 | |
| 	struct cfq_data *cfqd = cic->key;
 | |
| 	struct cfq_queue *cfqq;
 | |
| 
 | |
| 	if (unlikely(!cfqd))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(cfqd->queue->queue_lock);
 | |
| 
 | |
| 	cfqq = cic->cfqq[ASYNC];
 | |
| 	if (cfqq) {
 | |
| 		struct cfq_queue *new_cfqq;
 | |
| 		new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
 | |
| 					 GFP_ATOMIC);
 | |
| 		if (new_cfqq) {
 | |
| 			cic->cfqq[ASYNC] = new_cfqq;
 | |
| 			cfq_put_queue(cfqq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cfqq = cic->cfqq[SYNC];
 | |
| 	if (cfqq)
 | |
| 		cfq_mark_cfqq_prio_changed(cfqq);
 | |
| 
 | |
| 	spin_unlock(cfqd->queue->queue_lock);
 | |
| }
 | |
| 
 | |
| static void cfq_ioc_set_ioprio(struct io_context *ioc)
 | |
| {
 | |
| 	struct cfq_io_context *cic;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	ioc->ioprio_changed = 0;
 | |
| 
 | |
| 	n = rb_first(&ioc->cic_root);
 | |
| 	while (n != NULL) {
 | |
| 		cic = rb_entry(n, struct cfq_io_context, rb_node);
 | |
| 
 | |
| 		changed_ioprio(cic);
 | |
| 		n = rb_next(n);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct cfq_queue *
 | |
| cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
 | |
| 	      gfp_t gfp_mask)
 | |
| {
 | |
| 	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
 | |
| 	struct cfq_queue *cfqq, *new_cfqq = NULL;
 | |
| 	unsigned short ioprio;
 | |
| 
 | |
| retry:
 | |
| 	ioprio = tsk->ioprio;
 | |
| 	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
 | |
| 
 | |
| 	if (!cfqq) {
 | |
| 		if (new_cfqq) {
 | |
| 			cfqq = new_cfqq;
 | |
| 			new_cfqq = NULL;
 | |
| 		} else if (gfp_mask & __GFP_WAIT) {
 | |
| 			/*
 | |
| 			 * Inform the allocator of the fact that we will
 | |
| 			 * just repeat this allocation if it fails, to allow
 | |
| 			 * the allocator to do whatever it needs to attempt to
 | |
| 			 * free memory.
 | |
| 			 */
 | |
| 			spin_unlock_irq(cfqd->queue->queue_lock);
 | |
| 			new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
 | |
| 			spin_lock_irq(cfqd->queue->queue_lock);
 | |
| 			goto retry;
 | |
| 		} else {
 | |
| 			cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
 | |
| 			if (!cfqq)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		memset(cfqq, 0, sizeof(*cfqq));
 | |
| 
 | |
| 		INIT_HLIST_NODE(&cfqq->cfq_hash);
 | |
| 		INIT_LIST_HEAD(&cfqq->cfq_list);
 | |
| 		INIT_LIST_HEAD(&cfqq->fifo);
 | |
| 
 | |
| 		cfqq->key = key;
 | |
| 		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
 | |
| 		atomic_set(&cfqq->ref, 0);
 | |
| 		cfqq->cfqd = cfqd;
 | |
| 		/*
 | |
| 		 * set ->slice_left to allow preemption for a new process
 | |
| 		 */
 | |
| 		cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
 | |
| 		cfq_mark_cfqq_idle_window(cfqq);
 | |
| 		cfq_mark_cfqq_prio_changed(cfqq);
 | |
| 		cfq_mark_cfqq_queue_new(cfqq);
 | |
| 		cfq_init_prio_data(cfqq);
 | |
| 	}
 | |
| 
 | |
| 	if (new_cfqq)
 | |
| 		kmem_cache_free(cfq_pool, new_cfqq);
 | |
| 
 | |
| 	atomic_inc(&cfqq->ref);
 | |
| out:
 | |
| 	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
 | |
| 	return cfqq;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
 | |
| {
 | |
| 	WARN_ON(!list_empty(&cic->queue_list));
 | |
| 	rb_erase(&cic->rb_node, &ioc->cic_root);
 | |
| 	kmem_cache_free(cfq_ioc_pool, cic);
 | |
| 	elv_ioc_count_dec(ioc_count);
 | |
| }
 | |
| 
 | |
| static struct cfq_io_context *
 | |
| cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
 | |
| {
 | |
| 	struct rb_node *n;
 | |
| 	struct cfq_io_context *cic;
 | |
| 	void *k, *key = cfqd;
 | |
| 
 | |
| restart:
 | |
| 	n = ioc->cic_root.rb_node;
 | |
| 	while (n) {
 | |
| 		cic = rb_entry(n, struct cfq_io_context, rb_node);
 | |
| 		/* ->key must be copied to avoid race with cfq_exit_queue() */
 | |
| 		k = cic->key;
 | |
| 		if (unlikely(!k)) {
 | |
| 			cfq_drop_dead_cic(ioc, cic);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 
 | |
| 		if (key < k)
 | |
| 			n = n->rb_left;
 | |
| 		else if (key > k)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return cic;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
 | |
| 	     struct cfq_io_context *cic)
 | |
| {
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent;
 | |
| 	struct cfq_io_context *__cic;
 | |
| 	void *k;
 | |
| 
 | |
| 	cic->ioc = ioc;
 | |
| 	cic->key = cfqd;
 | |
| 
 | |
| restart:
 | |
| 	parent = NULL;
 | |
| 	p = &ioc->cic_root.rb_node;
 | |
| 	while (*p) {
 | |
| 		parent = *p;
 | |
| 		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
 | |
| 		/* ->key must be copied to avoid race with cfq_exit_queue() */
 | |
| 		k = __cic->key;
 | |
| 		if (unlikely(!k)) {
 | |
| 			cfq_drop_dead_cic(ioc, __cic);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 
 | |
| 		if (cic->key < k)
 | |
| 			p = &(*p)->rb_left;
 | |
| 		else if (cic->key > k)
 | |
| 			p = &(*p)->rb_right;
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&cic->rb_node, parent, p);
 | |
| 	rb_insert_color(&cic->rb_node, &ioc->cic_root);
 | |
| 
 | |
| 	spin_lock_irq(cfqd->queue->queue_lock);
 | |
| 	list_add(&cic->queue_list, &cfqd->cic_list);
 | |
| 	spin_unlock_irq(cfqd->queue->queue_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup general io context and cfq io context. There can be several cfq
 | |
|  * io contexts per general io context, if this process is doing io to more
 | |
|  * than one device managed by cfq.
 | |
|  */
 | |
| static struct cfq_io_context *
 | |
| cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct io_context *ioc = NULL;
 | |
| 	struct cfq_io_context *cic;
 | |
| 
 | |
| 	might_sleep_if(gfp_mask & __GFP_WAIT);
 | |
| 
 | |
| 	ioc = get_io_context(gfp_mask, cfqd->queue->node);
 | |
| 	if (!ioc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cic = cfq_cic_rb_lookup(cfqd, ioc);
 | |
| 	if (cic)
 | |
| 		goto out;
 | |
| 
 | |
| 	cic = cfq_alloc_io_context(cfqd, gfp_mask);
 | |
| 	if (cic == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	cfq_cic_link(cfqd, ioc, cic);
 | |
| out:
 | |
| 	smp_read_barrier_depends();
 | |
| 	if (unlikely(ioc->ioprio_changed))
 | |
| 		cfq_ioc_set_ioprio(ioc);
 | |
| 
 | |
| 	return cic;
 | |
| err:
 | |
| 	put_io_context(ioc);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
 | |
| {
 | |
| 	unsigned long elapsed, ttime;
 | |
| 
 | |
| 	/*
 | |
| 	 * if this context already has stuff queued, thinktime is from
 | |
| 	 * last queue not last end
 | |
| 	 */
 | |
| #if 0
 | |
| 	if (time_after(cic->last_end_request, cic->last_queue))
 | |
| 		elapsed = jiffies - cic->last_end_request;
 | |
| 	else
 | |
| 		elapsed = jiffies - cic->last_queue;
 | |
| #else
 | |
| 		elapsed = jiffies - cic->last_end_request;
 | |
| #endif
 | |
| 
 | |
| 	ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
 | |
| 
 | |
| 	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
 | |
| 	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
 | |
| 	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
 | |
| 		       struct request *rq)
 | |
| {
 | |
| 	sector_t sdist;
 | |
| 	u64 total;
 | |
| 
 | |
| 	if (cic->last_request_pos < rq->sector)
 | |
| 		sdist = rq->sector - cic->last_request_pos;
 | |
| 	else
 | |
| 		sdist = cic->last_request_pos - rq->sector;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow the seek distance to get too large from the
 | |
| 	 * odd fragment, pagein, etc
 | |
| 	 */
 | |
| 	if (cic->seek_samples <= 60) /* second&third seek */
 | |
| 		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
 | |
| 	else
 | |
| 		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
 | |
| 
 | |
| 	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
 | |
| 	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
 | |
| 	total = cic->seek_total + (cic->seek_samples/2);
 | |
| 	do_div(total, cic->seek_samples);
 | |
| 	cic->seek_mean = (sector_t)total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable idle window if the process thinks too long or seeks so much that
 | |
|  * it doesn't matter
 | |
|  */
 | |
| static void
 | |
| cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 | |
| 		       struct cfq_io_context *cic)
 | |
| {
 | |
| 	int enable_idle = cfq_cfqq_idle_window(cfqq);
 | |
| 
 | |
| 	if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
 | |
| 	    (cfqd->hw_tag && CIC_SEEKY(cic)))
 | |
| 		enable_idle = 0;
 | |
| 	else if (sample_valid(cic->ttime_samples)) {
 | |
| 		if (cic->ttime_mean > cfqd->cfq_slice_idle)
 | |
| 			enable_idle = 0;
 | |
| 		else
 | |
| 			enable_idle = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (enable_idle)
 | |
| 		cfq_mark_cfqq_idle_window(cfqq);
 | |
| 	else
 | |
| 		cfq_clear_cfqq_idle_window(cfqq);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Check if new_cfqq should preempt the currently active queue. Return 0 for
 | |
|  * no or if we aren't sure, a 1 will cause a preempt.
 | |
|  */
 | |
| static int
 | |
| cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
 | |
| 		   struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = cfqd->active_queue;
 | |
| 
 | |
| 	if (cfq_class_idle(new_cfqq))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!cfqq)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cfq_class_idle(cfqq))
 | |
| 		return 1;
 | |
| 	if (!cfq_cfqq_wait_request(new_cfqq))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * if it doesn't have slice left, forget it
 | |
| 	 */
 | |
| 	if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * if the new request is sync, but the currently running queue is
 | |
| 	 * not, let the sync request have priority.
 | |
| 	 */
 | |
| 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * So both queues are sync. Let the new request get disk time if
 | |
| 	 * it's a metadata request and the current queue is doing regular IO.
 | |
| 	 */
 | |
| 	if (rq_is_meta(rq) && !cfqq->meta_pending)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cfqq preempts the active queue. if we allowed preempt with no slice left,
 | |
|  * let it have half of its nominal slice.
 | |
|  */
 | |
| static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
 | |
| {
 | |
| 	cfq_slice_expired(cfqd, 1);
 | |
| 
 | |
| 	if (!cfqq->slice_left)
 | |
| 		cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Put the new queue at the front of the of the current list,
 | |
| 	 * so we know that it will be selected next.
 | |
| 	 */
 | |
| 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
 | |
| 	list_move(&cfqq->cfq_list, &cfqd->cur_rr);
 | |
| 
 | |
| 	cfqq->slice_end = cfqq->slice_left + jiffies;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when a new fs request (rq) is added (to cfqq). Check if there's
 | |
|  * something we should do about it
 | |
|  */
 | |
| static void
 | |
| cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
 | |
| 		struct request *rq)
 | |
| {
 | |
| 	struct cfq_io_context *cic = RQ_CIC(rq);
 | |
| 
 | |
| 	if (rq_is_meta(rq))
 | |
| 		cfqq->meta_pending++;
 | |
| 
 | |
| 	/*
 | |
| 	 * check if this request is a better next-serve candidate)) {
 | |
| 	 */
 | |
| 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
 | |
| 	BUG_ON(!cfqq->next_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * we never wait for an async request and we don't allow preemption
 | |
| 	 * of an async request. so just return early
 | |
| 	 */
 | |
| 	if (!rq_is_sync(rq)) {
 | |
| 		/*
 | |
| 		 * sync process issued an async request, if it's waiting
 | |
| 		 * then expire it and kick rq handling.
 | |
| 		 */
 | |
| 		if (cic == cfqd->active_cic &&
 | |
| 		    del_timer(&cfqd->idle_slice_timer)) {
 | |
| 			cfq_slice_expired(cfqd, 0);
 | |
| 			blk_start_queueing(cfqd->queue);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cfq_update_io_thinktime(cfqd, cic);
 | |
| 	cfq_update_io_seektime(cfqd, cic, rq);
 | |
| 	cfq_update_idle_window(cfqd, cfqq, cic);
 | |
| 
 | |
| 	cic->last_queue = jiffies;
 | |
| 	cic->last_request_pos = rq->sector + rq->nr_sectors;
 | |
| 
 | |
| 	if (cfqq == cfqd->active_queue) {
 | |
| 		/*
 | |
| 		 * if we are waiting for a request for this queue, let it rip
 | |
| 		 * immediately and flag that we must not expire this queue
 | |
| 		 * just now
 | |
| 		 */
 | |
| 		if (cfq_cfqq_wait_request(cfqq)) {
 | |
| 			cfq_mark_cfqq_must_dispatch(cfqq);
 | |
| 			del_timer(&cfqd->idle_slice_timer);
 | |
| 			blk_start_queueing(cfqd->queue);
 | |
| 		}
 | |
| 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
 | |
| 		/*
 | |
| 		 * not the active queue - expire current slice if it is
 | |
| 		 * idle and has expired it's mean thinktime or this new queue
 | |
| 		 * has some old slice time left and is of higher priority
 | |
| 		 */
 | |
| 		cfq_preempt_queue(cfqd, cfqq);
 | |
| 		cfq_mark_cfqq_must_dispatch(cfqq);
 | |
| 		blk_start_queueing(cfqd->queue);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cfq_insert_request(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 
 | |
| 	cfq_init_prio_data(cfqq);
 | |
| 
 | |
| 	cfq_add_rq_rb(rq);
 | |
| 
 | |
| 	if (!cfq_cfqq_on_rr(cfqq))
 | |
| 		cfq_add_cfqq_rr(cfqd, cfqq);
 | |
| 
 | |
| 	list_add_tail(&rq->queuelist, &cfqq->fifo);
 | |
| 
 | |
| 	cfq_rq_enqueued(cfqd, cfqq, rq);
 | |
| }
 | |
| 
 | |
| static void cfq_completed_request(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 	struct cfq_data *cfqd = cfqq->cfqd;
 | |
| 	const int sync = rq_is_sync(rq);
 | |
| 	unsigned long now;
 | |
| 
 | |
| 	now = jiffies;
 | |
| 
 | |
| 	WARN_ON(!cfqd->rq_in_driver);
 | |
| 	WARN_ON(!cfqq->on_dispatch[sync]);
 | |
| 	cfqd->rq_in_driver--;
 | |
| 	cfqq->on_dispatch[sync]--;
 | |
| 
 | |
| 	if (!cfq_class_idle(cfqq))
 | |
| 		cfqd->last_end_request = now;
 | |
| 
 | |
| 	if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
 | |
| 		cfq_resort_rr_list(cfqq, 0);
 | |
| 
 | |
| 	if (sync)
 | |
| 		RQ_CIC(rq)->last_end_request = now;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is the active queue, check if it needs to be expired,
 | |
| 	 * or if we want to idle in case it has no pending requests.
 | |
| 	 */
 | |
| 	if (cfqd->active_queue == cfqq) {
 | |
| 		if (time_after(now, cfqq->slice_end))
 | |
| 			cfq_slice_expired(cfqd, 0);
 | |
| 		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
 | |
| 			if (!cfq_arm_slice_timer(cfqd, cfqq))
 | |
| 				cfq_schedule_dispatch(cfqd);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we temporarily boost lower priority queues if they are holding fs exclusive
 | |
|  * resources. they are boosted to normal prio (CLASS_BE/4)
 | |
|  */
 | |
| static void cfq_prio_boost(struct cfq_queue *cfqq)
 | |
| {
 | |
| 	const int ioprio_class = cfqq->ioprio_class;
 | |
| 	const int ioprio = cfqq->ioprio;
 | |
| 
 | |
| 	if (has_fs_excl()) {
 | |
| 		/*
 | |
| 		 * boost idle prio on transactions that would lock out other
 | |
| 		 * users of the filesystem
 | |
| 		 */
 | |
| 		if (cfq_class_idle(cfqq))
 | |
| 			cfqq->ioprio_class = IOPRIO_CLASS_BE;
 | |
| 		if (cfqq->ioprio > IOPRIO_NORM)
 | |
| 			cfqq->ioprio = IOPRIO_NORM;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * check if we need to unboost the queue
 | |
| 		 */
 | |
| 		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
 | |
| 			cfqq->ioprio_class = cfqq->org_ioprio_class;
 | |
| 		if (cfqq->ioprio != cfqq->org_ioprio)
 | |
| 			cfqq->ioprio = cfqq->org_ioprio;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * refile between round-robin lists if we moved the priority class
 | |
| 	 */
 | |
| 	if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
 | |
| 	    cfq_cfqq_on_rr(cfqq))
 | |
| 		cfq_resort_rr_list(cfqq, 0);
 | |
| }
 | |
| 
 | |
| static inline int __cfq_may_queue(struct cfq_queue *cfqq)
 | |
| {
 | |
| 	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
 | |
| 	    !cfq_cfqq_must_alloc_slice(cfqq)) {
 | |
| 		cfq_mark_cfqq_must_alloc_slice(cfqq);
 | |
| 		return ELV_MQUEUE_MUST;
 | |
| 	}
 | |
| 
 | |
| 	return ELV_MQUEUE_MAY;
 | |
| }
 | |
| 
 | |
| static int cfq_may_queue(request_queue_t *q, int rw)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct cfq_queue *cfqq;
 | |
| 
 | |
| 	/*
 | |
| 	 * don't force setup of a queue from here, as a call to may_queue
 | |
| 	 * does not necessarily imply that a request actually will be queued.
 | |
| 	 * so just lookup a possibly existing queue, or return 'may queue'
 | |
| 	 * if that fails
 | |
| 	 */
 | |
| 	cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
 | |
| 	if (cfqq) {
 | |
| 		cfq_init_prio_data(cfqq);
 | |
| 		cfq_prio_boost(cfqq);
 | |
| 
 | |
| 		return __cfq_may_queue(cfqq);
 | |
| 	}
 | |
| 
 | |
| 	return ELV_MQUEUE_MAY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * queue lock held here
 | |
|  */
 | |
| static void cfq_put_request(request_queue_t *q, struct request *rq)
 | |
| {
 | |
| 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
 | |
| 
 | |
| 	if (cfqq) {
 | |
| 		const int rw = rq_data_dir(rq);
 | |
| 
 | |
| 		BUG_ON(!cfqq->allocated[rw]);
 | |
| 		cfqq->allocated[rw]--;
 | |
| 
 | |
| 		put_io_context(RQ_CIC(rq)->ioc);
 | |
| 
 | |
| 		rq->elevator_private = NULL;
 | |
| 		rq->elevator_private2 = NULL;
 | |
| 
 | |
| 		cfq_put_queue(cfqq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate cfq data structures associated with this request.
 | |
|  */
 | |
| static int
 | |
| cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct cfq_data *cfqd = q->elevator->elevator_data;
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct cfq_io_context *cic;
 | |
| 	const int rw = rq_data_dir(rq);
 | |
| 	pid_t key = cfq_queue_pid(tsk, rw);
 | |
| 	struct cfq_queue *cfqq;
 | |
| 	unsigned long flags;
 | |
| 	int is_sync = key != CFQ_KEY_ASYNC;
 | |
| 
 | |
| 	might_sleep_if(gfp_mask & __GFP_WAIT);
 | |
| 
 | |
| 	cic = cfq_get_io_context(cfqd, gfp_mask);
 | |
| 
 | |
| 	spin_lock_irqsave(q->queue_lock, flags);
 | |
| 
 | |
| 	if (!cic)
 | |
| 		goto queue_fail;
 | |
| 
 | |
| 	if (!cic->cfqq[is_sync]) {
 | |
| 		cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
 | |
| 		if (!cfqq)
 | |
| 			goto queue_fail;
 | |
| 
 | |
| 		cic->cfqq[is_sync] = cfqq;
 | |
| 	} else
 | |
| 		cfqq = cic->cfqq[is_sync];
 | |
| 
 | |
| 	cfqq->allocated[rw]++;
 | |
| 	cfq_clear_cfqq_must_alloc(cfqq);
 | |
| 	atomic_inc(&cfqq->ref);
 | |
| 
 | |
| 	spin_unlock_irqrestore(q->queue_lock, flags);
 | |
| 
 | |
| 	rq->elevator_private = cic;
 | |
| 	rq->elevator_private2 = cfqq;
 | |
| 	return 0;
 | |
| 
 | |
| queue_fail:
 | |
| 	if (cic)
 | |
| 		put_io_context(cic->ioc);
 | |
| 
 | |
| 	cfq_schedule_dispatch(cfqd);
 | |
| 	spin_unlock_irqrestore(q->queue_lock, flags);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void cfq_kick_queue(void *data)
 | |
| {
 | |
| 	request_queue_t *q = data;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(q->queue_lock, flags);
 | |
| 	blk_start_queueing(q);
 | |
| 	spin_unlock_irqrestore(q->queue_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Timer running if the active_queue is currently idling inside its time slice
 | |
|  */
 | |
| static void cfq_idle_slice_timer(unsigned long data)
 | |
| {
 | |
| 	struct cfq_data *cfqd = (struct cfq_data *) data;
 | |
| 	struct cfq_queue *cfqq;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
 | |
| 
 | |
| 	if ((cfqq = cfqd->active_queue) != NULL) {
 | |
| 		unsigned long now = jiffies;
 | |
| 
 | |
| 		/*
 | |
| 		 * expired
 | |
| 		 */
 | |
| 		if (time_after(now, cfqq->slice_end))
 | |
| 			goto expire;
 | |
| 
 | |
| 		/*
 | |
| 		 * only expire and reinvoke request handler, if there are
 | |
| 		 * other queues with pending requests
 | |
| 		 */
 | |
| 		if (!cfqd->busy_queues)
 | |
| 			goto out_cont;
 | |
| 
 | |
| 		/*
 | |
| 		 * not expired and it has a request pending, let it dispatch
 | |
| 		 */
 | |
| 		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
 | |
| 			cfq_mark_cfqq_must_dispatch(cfqq);
 | |
| 			goto out_kick;
 | |
| 		}
 | |
| 	}
 | |
| expire:
 | |
| 	cfq_slice_expired(cfqd, 0);
 | |
| out_kick:
 | |
| 	cfq_schedule_dispatch(cfqd);
 | |
| out_cont:
 | |
| 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Timer running if an idle class queue is waiting for service
 | |
|  */
 | |
| static void cfq_idle_class_timer(unsigned long data)
 | |
| {
 | |
| 	struct cfq_data *cfqd = (struct cfq_data *) data;
 | |
| 	unsigned long flags, end;
 | |
| 
 | |
| 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * race with a non-idle queue, reset timer
 | |
| 	 */
 | |
| 	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
 | |
| 	if (!time_after_eq(jiffies, end))
 | |
| 		mod_timer(&cfqd->idle_class_timer, end);
 | |
| 	else
 | |
| 		cfq_schedule_dispatch(cfqd);
 | |
| 
 | |
| 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
 | |
| }
 | |
| 
 | |
| static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
 | |
| {
 | |
| 	del_timer_sync(&cfqd->idle_slice_timer);
 | |
| 	del_timer_sync(&cfqd->idle_class_timer);
 | |
| 	blk_sync_queue(cfqd->queue);
 | |
| }
 | |
| 
 | |
| static void cfq_exit_queue(elevator_t *e)
 | |
| {
 | |
| 	struct cfq_data *cfqd = e->elevator_data;
 | |
| 	request_queue_t *q = cfqd->queue;
 | |
| 
 | |
| 	cfq_shutdown_timer_wq(cfqd);
 | |
| 
 | |
| 	spin_lock_irq(q->queue_lock);
 | |
| 
 | |
| 	if (cfqd->active_queue)
 | |
| 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
 | |
| 
 | |
| 	while (!list_empty(&cfqd->cic_list)) {
 | |
| 		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
 | |
| 							struct cfq_io_context,
 | |
| 							queue_list);
 | |
| 
 | |
| 		__cfq_exit_single_io_context(cfqd, cic);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(q->queue_lock);
 | |
| 
 | |
| 	cfq_shutdown_timer_wq(cfqd);
 | |
| 
 | |
| 	kfree(cfqd->cfq_hash);
 | |
| 	kfree(cfqd);
 | |
| }
 | |
| 
 | |
| static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
 | |
| {
 | |
| 	struct cfq_data *cfqd;
 | |
| 	int i;
 | |
| 
 | |
| 	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
 | |
| 	if (!cfqd)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memset(cfqd, 0, sizeof(*cfqd));
 | |
| 
 | |
| 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
 | |
| 		INIT_LIST_HEAD(&cfqd->rr_list[i]);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cfqd->busy_rr);
 | |
| 	INIT_LIST_HEAD(&cfqd->cur_rr);
 | |
| 	INIT_LIST_HEAD(&cfqd->idle_rr);
 | |
| 	INIT_LIST_HEAD(&cfqd->cic_list);
 | |
| 
 | |
| 	cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
 | |
| 	if (!cfqd->cfq_hash)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
 | |
| 		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
 | |
| 
 | |
| 	cfqd->queue = q;
 | |
| 
 | |
| 	init_timer(&cfqd->idle_slice_timer);
 | |
| 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
 | |
| 	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
 | |
| 
 | |
| 	init_timer(&cfqd->idle_class_timer);
 | |
| 	cfqd->idle_class_timer.function = cfq_idle_class_timer;
 | |
| 	cfqd->idle_class_timer.data = (unsigned long) cfqd;
 | |
| 
 | |
| 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
 | |
| 
 | |
| 	cfqd->cfq_quantum = cfq_quantum;
 | |
| 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
 | |
| 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
 | |
| 	cfqd->cfq_back_max = cfq_back_max;
 | |
| 	cfqd->cfq_back_penalty = cfq_back_penalty;
 | |
| 	cfqd->cfq_slice[0] = cfq_slice_async;
 | |
| 	cfqd->cfq_slice[1] = cfq_slice_sync;
 | |
| 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
 | |
| 	cfqd->cfq_slice_idle = cfq_slice_idle;
 | |
| 
 | |
| 	return cfqd;
 | |
| out_free:
 | |
| 	kfree(cfqd);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cfq_slab_kill(void)
 | |
| {
 | |
| 	if (cfq_pool)
 | |
| 		kmem_cache_destroy(cfq_pool);
 | |
| 	if (cfq_ioc_pool)
 | |
| 		kmem_cache_destroy(cfq_ioc_pool);
 | |
| }
 | |
| 
 | |
| static int __init cfq_slab_setup(void)
 | |
| {
 | |
| 	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
 | |
| 					NULL, NULL);
 | |
| 	if (!cfq_pool)
 | |
| 		goto fail;
 | |
| 
 | |
| 	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
 | |
| 			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
 | |
| 	if (!cfq_ioc_pool)
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	cfq_slab_kill();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sysfs parts below -->
 | |
|  */
 | |
| 
 | |
| static ssize_t
 | |
| cfq_var_show(unsigned int var, char *page)
 | |
| {
 | |
| 	return sprintf(page, "%d\n", var);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| cfq_var_store(unsigned int *var, const char *page, size_t count)
 | |
| {
 | |
| 	char *p = (char *) page;
 | |
| 
 | |
| 	*var = simple_strtoul(p, &p, 10);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
 | |
| static ssize_t __FUNC(elevator_t *e, char *page)			\
 | |
| {									\
 | |
| 	struct cfq_data *cfqd = e->elevator_data;			\
 | |
| 	unsigned int __data = __VAR;					\
 | |
| 	if (__CONV)							\
 | |
| 		__data = jiffies_to_msecs(__data);			\
 | |
| 	return cfq_var_show(__data, (page));				\
 | |
| }
 | |
| SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
 | |
| SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
 | |
| SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
 | |
| SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
 | |
| SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
 | |
| SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
 | |
| SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
 | |
| SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
 | |
| SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
 | |
| #undef SHOW_FUNCTION
 | |
| 
 | |
| #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
 | |
| static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
 | |
| {									\
 | |
| 	struct cfq_data *cfqd = e->elevator_data;			\
 | |
| 	unsigned int __data;						\
 | |
| 	int ret = cfq_var_store(&__data, (page), count);		\
 | |
| 	if (__data < (MIN))						\
 | |
| 		__data = (MIN);						\
 | |
| 	else if (__data > (MAX))					\
 | |
| 		__data = (MAX);						\
 | |
| 	if (__CONV)							\
 | |
| 		*(__PTR) = msecs_to_jiffies(__data);			\
 | |
| 	else								\
 | |
| 		*(__PTR) = __data;					\
 | |
| 	return ret;							\
 | |
| }
 | |
| STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
 | |
| STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
 | |
| STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
 | |
| STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
 | |
| STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
 | |
| STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
 | |
| STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
 | |
| STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
 | |
| STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
 | |
| #undef STORE_FUNCTION
 | |
| 
 | |
| #define CFQ_ATTR(name) \
 | |
| 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
 | |
| 
 | |
| static struct elv_fs_entry cfq_attrs[] = {
 | |
| 	CFQ_ATTR(quantum),
 | |
| 	CFQ_ATTR(fifo_expire_sync),
 | |
| 	CFQ_ATTR(fifo_expire_async),
 | |
| 	CFQ_ATTR(back_seek_max),
 | |
| 	CFQ_ATTR(back_seek_penalty),
 | |
| 	CFQ_ATTR(slice_sync),
 | |
| 	CFQ_ATTR(slice_async),
 | |
| 	CFQ_ATTR(slice_async_rq),
 | |
| 	CFQ_ATTR(slice_idle),
 | |
| 	__ATTR_NULL
 | |
| };
 | |
| 
 | |
| static struct elevator_type iosched_cfq = {
 | |
| 	.ops = {
 | |
| 		.elevator_merge_fn = 		cfq_merge,
 | |
| 		.elevator_merged_fn =		cfq_merged_request,
 | |
| 		.elevator_merge_req_fn =	cfq_merged_requests,
 | |
| 		.elevator_dispatch_fn =		cfq_dispatch_requests,
 | |
| 		.elevator_add_req_fn =		cfq_insert_request,
 | |
| 		.elevator_activate_req_fn =	cfq_activate_request,
 | |
| 		.elevator_deactivate_req_fn =	cfq_deactivate_request,
 | |
| 		.elevator_queue_empty_fn =	cfq_queue_empty,
 | |
| 		.elevator_completed_req_fn =	cfq_completed_request,
 | |
| 		.elevator_former_req_fn =	elv_rb_former_request,
 | |
| 		.elevator_latter_req_fn =	elv_rb_latter_request,
 | |
| 		.elevator_set_req_fn =		cfq_set_request,
 | |
| 		.elevator_put_req_fn =		cfq_put_request,
 | |
| 		.elevator_may_queue_fn =	cfq_may_queue,
 | |
| 		.elevator_init_fn =		cfq_init_queue,
 | |
| 		.elevator_exit_fn =		cfq_exit_queue,
 | |
| 		.trim =				cfq_free_io_context,
 | |
| 	},
 | |
| 	.elevator_attrs =	cfq_attrs,
 | |
| 	.elevator_name =	"cfq",
 | |
| 	.elevator_owner =	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init cfq_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * could be 0 on HZ < 1000 setups
 | |
| 	 */
 | |
| 	if (!cfq_slice_async)
 | |
| 		cfq_slice_async = 1;
 | |
| 	if (!cfq_slice_idle)
 | |
| 		cfq_slice_idle = 1;
 | |
| 
 | |
| 	if (cfq_slab_setup())
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = elv_register(&iosched_cfq);
 | |
| 	if (ret)
 | |
| 		cfq_slab_kill();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit cfq_exit(void)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(all_gone);
 | |
| 	elv_unregister(&iosched_cfq);
 | |
| 	ioc_gone = &all_gone;
 | |
| 	/* ioc_gone's update must be visible before reading ioc_count */
 | |
| 	smp_wmb();
 | |
| 	if (elv_ioc_count_read(ioc_count))
 | |
| 		wait_for_completion(ioc_gone);
 | |
| 	synchronize_rcu();
 | |
| 	cfq_slab_kill();
 | |
| }
 | |
| 
 | |
| module_init(cfq_init);
 | |
| module_exit(cfq_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Jens Axboe");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
 |