mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 22:26:12 +00:00 
			
		
		
		
	 5f97f7f940
			
		
	
	
		5f97f7f940
		
	
	
	
	
		
			
			This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			481 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			481 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2004-2006 Atmel Corporation
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/nodemask.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
 | |
| 
 | |
| pgd_t swapper_pg_dir[PTRS_PER_PGD];
 | |
| 
 | |
| struct page *empty_zero_page;
 | |
| 
 | |
| /*
 | |
|  * Cache of MMU context last used.
 | |
|  */
 | |
| unsigned long mmu_context_cache = NO_CONTEXT;
 | |
| 
 | |
| #define START_PFN	(NODE_DATA(0)->bdata->node_boot_start >> PAGE_SHIFT)
 | |
| #define MAX_LOW_PFN	(NODE_DATA(0)->bdata->node_low_pfn)
 | |
| 
 | |
| void show_mem(void)
 | |
| {
 | |
| 	int total = 0, reserved = 0, cached = 0;
 | |
| 	int slab = 0, free = 0, shared = 0;
 | |
| 	pg_data_t *pgdat;
 | |
| 
 | |
| 	printk("Mem-info:\n");
 | |
| 	show_free_areas();
 | |
| 
 | |
| 	for_each_online_pgdat(pgdat) {
 | |
| 		struct page *page, *end;
 | |
| 
 | |
| 		page = pgdat->node_mem_map;
 | |
| 		end = page + pgdat->node_spanned_pages;
 | |
| 
 | |
| 		do {
 | |
| 			total++;
 | |
| 			if (PageReserved(page))
 | |
| 				reserved++;
 | |
| 			else if (PageSwapCache(page))
 | |
| 				cached++;
 | |
| 			else if (PageSlab(page))
 | |
| 				slab++;
 | |
| 			else if (!page_count(page))
 | |
| 				free++;
 | |
| 			else
 | |
| 				shared += page_count(page) - 1;
 | |
| 			page++;
 | |
| 		} while (page < end);
 | |
| 	}
 | |
| 
 | |
| 	printk ("%d pages of RAM\n", total);
 | |
| 	printk ("%d free pages\n", free);
 | |
| 	printk ("%d reserved pages\n", reserved);
 | |
| 	printk ("%d slab pages\n", slab);
 | |
| 	printk ("%d pages shared\n", shared);
 | |
| 	printk ("%d pages swap cached\n", cached);
 | |
| }
 | |
| 
 | |
| static void __init print_memory_map(const char *what,
 | |
| 				    struct tag_mem_range *mem)
 | |
| {
 | |
| 	printk ("%s:\n", what);
 | |
| 	for (; mem; mem = mem->next) {
 | |
| 		printk ("  %08lx - %08lx\n",
 | |
| 			(unsigned long)mem->addr,
 | |
| 			(unsigned long)(mem->addr + mem->size));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define MAX_LOWMEM	HIGHMEM_START
 | |
| #define MAX_LOWMEM_PFN	PFN_DOWN(MAX_LOWMEM)
 | |
| 
 | |
| /*
 | |
|  * Sort a list of memory regions in-place by ascending address.
 | |
|  *
 | |
|  * We're using bubble sort because we only have singly linked lists
 | |
|  * with few elements.
 | |
|  */
 | |
| static void __init sort_mem_list(struct tag_mem_range **pmem)
 | |
| {
 | |
| 	int done;
 | |
| 	struct tag_mem_range **a, **b;
 | |
| 
 | |
| 	if (!*pmem)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		done = 1;
 | |
| 		a = pmem, b = &(*pmem)->next;
 | |
| 		while (*b) {
 | |
| 			if ((*a)->addr > (*b)->addr) {
 | |
| 				struct tag_mem_range *tmp;
 | |
| 				tmp = (*b)->next;
 | |
| 				(*b)->next = *a;
 | |
| 				*a = *b;
 | |
| 				*b = tmp;
 | |
| 				done = 0;
 | |
| 			}
 | |
| 			a = &(*a)->next;
 | |
| 			b = &(*a)->next;
 | |
| 		}
 | |
| 	} while (!done);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a free memory region large enough for storing the
 | |
|  * bootmem bitmap.
 | |
|  */
 | |
| static unsigned long __init
 | |
| find_bootmap_pfn(const struct tag_mem_range *mem)
 | |
| {
 | |
| 	unsigned long bootmap_pages, bootmap_len;
 | |
| 	unsigned long node_pages = PFN_UP(mem->size);
 | |
| 	unsigned long bootmap_addr = mem->addr;
 | |
| 	struct tag_mem_range *reserved = mem_reserved;
 | |
| 	struct tag_mem_range *ramdisk = mem_ramdisk;
 | |
| 	unsigned long kern_start = virt_to_phys(_stext);
 | |
| 	unsigned long kern_end = virt_to_phys(_end);
 | |
| 
 | |
| 	bootmap_pages = bootmem_bootmap_pages(node_pages);
 | |
| 	bootmap_len = bootmap_pages << PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a large enough region without reserved pages for
 | |
| 	 * storing the bootmem bitmap. We can take advantage of the
 | |
| 	 * fact that all lists have been sorted.
 | |
| 	 *
 | |
| 	 * We have to check explicitly reserved regions as well as the
 | |
| 	 * kernel image and any RAMDISK images...
 | |
| 	 *
 | |
| 	 * Oh, and we have to make sure we don't overwrite the taglist
 | |
| 	 * since we're going to use it until the bootmem allocator is
 | |
| 	 * fully up and running.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		if ((bootmap_addr < kern_end) &&
 | |
| 		    ((bootmap_addr + bootmap_len) > kern_start))
 | |
| 			bootmap_addr = kern_end;
 | |
| 
 | |
| 		while (reserved &&
 | |
| 		       (bootmap_addr >= (reserved->addr + reserved->size)))
 | |
| 			reserved = reserved->next;
 | |
| 
 | |
| 		if (reserved &&
 | |
| 		    ((bootmap_addr + bootmap_len) >= reserved->addr)) {
 | |
| 			bootmap_addr = reserved->addr + reserved->size;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		while (ramdisk &&
 | |
| 		       (bootmap_addr >= (ramdisk->addr + ramdisk->size)))
 | |
| 			ramdisk = ramdisk->next;
 | |
| 
 | |
| 		if (!ramdisk ||
 | |
| 		    ((bootmap_addr + bootmap_len) < ramdisk->addr))
 | |
| 			break;
 | |
| 
 | |
| 		bootmap_addr = ramdisk->addr + ramdisk->size;
 | |
| 	}
 | |
| 
 | |
| 	if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size))
 | |
| 		return ~0UL;
 | |
| 
 | |
| 	return PFN_UP(bootmap_addr);
 | |
| }
 | |
| 
 | |
| void __init setup_bootmem(void)
 | |
| {
 | |
| 	unsigned bootmap_size;
 | |
| 	unsigned long first_pfn, bootmap_pfn, pages;
 | |
| 	unsigned long max_pfn, max_low_pfn;
 | |
| 	unsigned long kern_start = virt_to_phys(_stext);
 | |
| 	unsigned long kern_end = virt_to_phys(_end);
 | |
| 	unsigned node = 0;
 | |
| 	struct tag_mem_range *bank, *res;
 | |
| 
 | |
| 	sort_mem_list(&mem_phys);
 | |
| 	sort_mem_list(&mem_reserved);
 | |
| 
 | |
| 	print_memory_map("Physical memory", mem_phys);
 | |
| 	print_memory_map("Reserved memory", mem_reserved);
 | |
| 
 | |
| 	nodes_clear(node_online_map);
 | |
| 
 | |
| 	if (mem_ramdisk) {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 		initrd_start = __va(mem_ramdisk->addr);
 | |
| 		initrd_end = initrd_start + mem_ramdisk->size;
 | |
| 
 | |
| 		print_memory_map("RAMDISK images", mem_ramdisk);
 | |
| 		if (mem_ramdisk->next)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Warning: Only the first RAMDISK image "
 | |
| 			       "will be used\n");
 | |
| 		sort_mem_list(&mem_ramdisk);
 | |
| #else
 | |
| 		printk(KERN_WARNING "RAM disk image present, but "
 | |
| 		       "no initrd support in kernel!\n");
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (mem_phys->next)
 | |
| 		printk(KERN_WARNING "Only using first memory bank\n");
 | |
| 
 | |
| 	for (bank = mem_phys; bank; bank = NULL) {
 | |
| 		first_pfn = PFN_UP(bank->addr);
 | |
| 		max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size);
 | |
| 		bootmap_pfn = find_bootmap_pfn(bank);
 | |
| 		if (bootmap_pfn > max_pfn)
 | |
| 			panic("No space for bootmem bitmap!\n");
 | |
| 
 | |
| 		if (max_low_pfn > MAX_LOWMEM_PFN) {
 | |
| 			max_low_pfn = MAX_LOWMEM_PFN;
 | |
| #ifndef CONFIG_HIGHMEM
 | |
| 			/*
 | |
| 			 * Lowmem is memory that can be addressed
 | |
| 			 * directly through P1/P2
 | |
| 			 */
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Node %u: Only %ld MiB of memory will be used.\n",
 | |
| 			       node, MAX_LOWMEM >> 20);
 | |
| 			printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
 | |
| #else
 | |
| #error HIGHMEM is not supported by AVR32 yet
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		/* Initialize the boot-time allocator with low memory only. */
 | |
| 		bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
 | |
| 						 first_pfn, max_low_pfn);
 | |
| 
 | |
| 		printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n",
 | |
| 		       node, NODE_DATA(node)->bdata,
 | |
| 		       NODE_DATA(node)->bdata->node_bootmem_map);
 | |
| 
 | |
| 		/*
 | |
| 		 * Register fully available RAM pages with the bootmem
 | |
| 		 * allocator.
 | |
| 		 */
 | |
| 		pages = max_low_pfn - first_pfn;
 | |
| 		free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
 | |
| 				   PFN_PHYS(pages));
 | |
| 
 | |
| 		/*
 | |
| 		 * Reserve space for the kernel image (if present in
 | |
| 		 * this node)...
 | |
| 		 */
 | |
| 		if ((kern_start >= PFN_PHYS(first_pfn)) &&
 | |
| 		    (kern_start < PFN_PHYS(max_pfn))) {
 | |
| 			printk("Node %u: Kernel image %08lx - %08lx\n",
 | |
| 			       node, kern_start, kern_end);
 | |
| 			reserve_bootmem_node(NODE_DATA(node), kern_start,
 | |
| 					     kern_end - kern_start);
 | |
| 		}
 | |
| 
 | |
| 		/* ...the bootmem bitmap... */
 | |
| 		reserve_bootmem_node(NODE_DATA(node),
 | |
| 				     PFN_PHYS(bootmap_pfn),
 | |
| 				     bootmap_size);
 | |
| 
 | |
| 		/* ...any RAMDISK images... */
 | |
| 		for (res = mem_ramdisk; res; res = res->next) {
 | |
| 			if (res->addr > PFN_PHYS(max_pfn))
 | |
| 				break;
 | |
| 
 | |
| 			if (res->addr >= PFN_PHYS(first_pfn)) {
 | |
| 				printk("Node %u: RAMDISK %08lx - %08lx\n",
 | |
| 				       node,
 | |
| 				       (unsigned long)res->addr,
 | |
| 				       (unsigned long)(res->addr + res->size));
 | |
| 				reserve_bootmem_node(NODE_DATA(node),
 | |
| 						     res->addr, res->size);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* ...and any other reserved regions. */
 | |
| 		for (res = mem_reserved; res; res = res->next) {
 | |
| 			if (res->addr > PFN_PHYS(max_pfn))
 | |
| 				break;
 | |
| 
 | |
| 			if (res->addr >= PFN_PHYS(first_pfn)) {
 | |
| 				printk("Node %u: Reserved %08lx - %08lx\n",
 | |
| 				       node,
 | |
| 				       (unsigned long)res->addr,
 | |
| 				       (unsigned long)(res->addr + res->size));
 | |
| 				reserve_bootmem_node(NODE_DATA(node),
 | |
| 						     res->addr, res->size);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		node_set_online(node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * paging_init() sets up the page tables
 | |
|  *
 | |
|  * This routine also unmaps the page at virtual kernel address 0, so
 | |
|  * that we can trap those pesky NULL-reference errors in the kernel.
 | |
|  */
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	extern unsigned long _evba;
 | |
| 	void *zero_page;
 | |
| 	int nid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we can handle exceptions before enabling
 | |
| 	 * paging. Not that we should ever _get_ any exceptions this
 | |
| 	 * early, but you never know...
 | |
| 	 */
 | |
| 	printk("Exception vectors start at %p\n", &_evba);
 | |
| 	sysreg_write(EVBA, (unsigned long)&_evba);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are ready to handle exceptions now, we should let
 | |
| 	 * the CPU generate them...
 | |
| 	 */
 | |
| 	__asm__ __volatile__ ("csrf %0" : : "i"(SR_EM_BIT));
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the zero page. The allocator will panic if it
 | |
| 	 * can't satisfy the request, so no need to check.
 | |
| 	 */
 | |
| 	zero_page = alloc_bootmem_low_pages_node(NODE_DATA(0),
 | |
| 						 PAGE_SIZE);
 | |
| 
 | |
| 	{
 | |
| 		pgd_t *pg_dir;
 | |
| 		int i;
 | |
| 
 | |
| 		pg_dir = swapper_pg_dir;
 | |
| 		sysreg_write(PTBR, (unsigned long)pg_dir);
 | |
| 
 | |
| 		for (i = 0; i < PTRS_PER_PGD; i++)
 | |
| 			pgd_val(pg_dir[i]) = 0;
 | |
| 
 | |
| 		enable_mmu();
 | |
| 		printk ("CPU: Paging enabled\n");
 | |
| 	}
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		unsigned long zones_size[MAX_NR_ZONES];
 | |
| 		unsigned long low, start_pfn;
 | |
| 
 | |
| 		start_pfn = pgdat->bdata->node_boot_start;
 | |
| 		start_pfn >>= PAGE_SHIFT;
 | |
| 		low = pgdat->bdata->node_low_pfn;
 | |
| 
 | |
| 		memset(zones_size, 0, sizeof(zones_size));
 | |
| 		zones_size[ZONE_NORMAL] = low - start_pfn;
 | |
| 
 | |
| 		printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n",
 | |
| 		       nid, start_pfn, low);
 | |
| 
 | |
| 		free_area_init_node(nid, pgdat, zones_size, start_pfn, NULL);
 | |
| 
 | |
| 		printk("Node %u: mem_map starts at %p\n",
 | |
| 		       pgdat->node_id, pgdat->node_mem_map);
 | |
| 	}
 | |
| 
 | |
| 	mem_map = NODE_DATA(0)->node_mem_map;
 | |
| 
 | |
| 	memset(zero_page, 0, PAGE_SIZE);
 | |
| 	empty_zero_page = virt_to_page(zero_page);
 | |
| 	flush_dcache_page(empty_zero_page);
 | |
| }
 | |
| 
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	int codesize, reservedpages, datasize, initsize;
 | |
| 	int nid, i;
 | |
| 
 | |
| 	reservedpages = 0;
 | |
| 	high_memory = NULL;
 | |
| 
 | |
| 	/* this will put all low memory onto the freelists */
 | |
| 	for_each_online_node(nid) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(nid);
 | |
| 		unsigned long node_pages = 0;
 | |
| 		void *node_high_memory;
 | |
| 
 | |
| 		num_physpages += pgdat->node_present_pages;
 | |
| 
 | |
| 		if (pgdat->node_spanned_pages != 0)
 | |
| 			node_pages = free_all_bootmem_node(pgdat);
 | |
| 
 | |
| 		totalram_pages += node_pages;
 | |
| 
 | |
| 		for (i = 0; i < node_pages; i++)
 | |
| 			if (PageReserved(pgdat->node_mem_map + i))
 | |
| 				reservedpages++;
 | |
| 
 | |
| 		node_high_memory = (void *)((pgdat->node_start_pfn
 | |
| 					     + pgdat->node_spanned_pages)
 | |
| 					    << PAGE_SHIFT);
 | |
| 		if (node_high_memory > high_memory)
 | |
| 			high_memory = node_high_memory;
 | |
| 	}
 | |
| 
 | |
| 	max_mapnr = MAP_NR(high_memory);
 | |
| 
 | |
| 	codesize = (unsigned long)_etext - (unsigned long)_text;
 | |
| 	datasize = (unsigned long)_edata - (unsigned long)_data;
 | |
| 	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 | |
| 
 | |
| 	printk ("Memory: %luk/%luk available (%dk kernel code, "
 | |
| 		"%dk reserved, %dk data, %dk init)\n",
 | |
| 		(unsigned long)nr_free_pages() << (PAGE_SHIFT - 10),
 | |
| 		totalram_pages << (PAGE_SHIFT - 10),
 | |
| 		codesize >> 10,
 | |
| 		reservedpages << (PAGE_SHIFT - 10),
 | |
| 		datasize >> 10,
 | |
| 		initsize >> 10);
 | |
| }
 | |
| 
 | |
| static inline void free_area(unsigned long addr, unsigned long end, char *s)
 | |
| {
 | |
| 	unsigned int size = (end - addr) >> 10;
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE) {
 | |
| 		struct page *page = virt_to_page(addr);
 | |
| 		ClearPageReserved(page);
 | |
| 		init_page_count(page);
 | |
| 		free_page(addr);
 | |
| 		totalram_pages++;
 | |
| 	}
 | |
| 
 | |
| 	if (size && s)
 | |
| 		printk(KERN_INFO "Freeing %s memory: %dK (%lx - %lx)\n",
 | |
| 		       s, size, end - (size << 10), end);
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| 	free_area((unsigned long)__init_begin, (unsigned long)__init_end,
 | |
| 		  "init");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 
 | |
| static int keep_initrd;
 | |
| 
 | |
| void free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (!keep_initrd)
 | |
| 		free_area(start, end, "initrd");
 | |
| }
 | |
| 
 | |
| static int __init keepinitrd_setup(char *__unused)
 | |
| {
 | |
| 	keep_initrd = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("keepinitrd", keepinitrd_setup);
 | |
| #endif
 |