mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:39:23 +00:00 
			
		
		
		
	 f6e3354d02
			
		
	
	
		f6e3354d02
		
	
	
	
	
		
			
			This makes everywhere dealing with pte values use the same type. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			483 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			483 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  arch/arm/include/asm/pgtable.h
 | |
|  *
 | |
|  *  Copyright (C) 1995-2002 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #ifndef _ASMARM_PGTABLE_H
 | |
| #define _ASMARM_PGTABLE_H
 | |
| 
 | |
| #include <linux/const.h>
 | |
| #include <asm-generic/4level-fixup.h>
 | |
| #include <asm/proc-fns.h>
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| 
 | |
| #include "pgtable-nommu.h"
 | |
| 
 | |
| #else
 | |
| 
 | |
| #include <asm/memory.h>
 | |
| #include <mach/vmalloc.h>
 | |
| #include <asm/pgtable-hwdef.h>
 | |
| 
 | |
| /*
 | |
|  * Just any arbitrary offset to the start of the vmalloc VM area: the
 | |
|  * current 8MB value just means that there will be a 8MB "hole" after the
 | |
|  * physical memory until the kernel virtual memory starts.  That means that
 | |
|  * any out-of-bounds memory accesses will hopefully be caught.
 | |
|  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 | |
|  * area for the same reason. ;)
 | |
|  *
 | |
|  * Note that platforms may override VMALLOC_START, but they must provide
 | |
|  * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 | |
|  * which may not overlap IO space.
 | |
|  */
 | |
| #ifndef VMALLOC_START
 | |
| #define VMALLOC_OFFSET		(8*1024*1024)
 | |
| #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Hardware-wise, we have a two level page table structure, where the first
 | |
|  * level has 4096 entries, and the second level has 256 entries.  Each entry
 | |
|  * is one 32-bit word.  Most of the bits in the second level entry are used
 | |
|  * by hardware, and there aren't any "accessed" and "dirty" bits.
 | |
|  *
 | |
|  * Linux on the other hand has a three level page table structure, which can
 | |
|  * be wrapped to fit a two level page table structure easily - using the PGD
 | |
|  * and PTE only.  However, Linux also expects one "PTE" table per page, and
 | |
|  * at least a "dirty" bit.
 | |
|  *
 | |
|  * Therefore, we tweak the implementation slightly - we tell Linux that we
 | |
|  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
 | |
|  * hardware pointers to the second level.)  The second level contains two
 | |
|  * hardware PTE tables arranged contiguously, followed by Linux versions
 | |
|  * which contain the state information Linux needs.  We, therefore, end up
 | |
|  * with 512 entries in the "PTE" level.
 | |
|  *
 | |
|  * This leads to the page tables having the following layout:
 | |
|  *
 | |
|  *    pgd             pte
 | |
|  * |        |
 | |
|  * +--------+ +0
 | |
|  * |        |-----> +------------+ +0
 | |
|  * +- - - - + +4    |  h/w pt 0  |
 | |
|  * |        |-----> +------------+ +1024
 | |
|  * +--------+ +8    |  h/w pt 1  |
 | |
|  * |        |       +------------+ +2048
 | |
|  * +- - - - +       | Linux pt 0 |
 | |
|  * |        |       +------------+ +3072
 | |
|  * +--------+       | Linux pt 1 |
 | |
|  * |        |       +------------+ +4096
 | |
|  *
 | |
|  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
 | |
|  * PTE_xxx for definitions of bits appearing in the "h/w pt".
 | |
|  *
 | |
|  * PMD_xxx definitions refer to bits in the first level page table.
 | |
|  *
 | |
|  * The "dirty" bit is emulated by only granting hardware write permission
 | |
|  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
 | |
|  * means that a write to a clean page will cause a permission fault, and
 | |
|  * the Linux MM layer will mark the page dirty via handle_pte_fault().
 | |
|  * For the hardware to notice the permission change, the TLB entry must
 | |
|  * be flushed, and ptep_set_access_flags() does that for us.
 | |
|  *
 | |
|  * The "accessed" or "young" bit is emulated by a similar method; we only
 | |
|  * allow accesses to the page if the "young" bit is set.  Accesses to the
 | |
|  * page will cause a fault, and handle_pte_fault() will set the young bit
 | |
|  * for us as long as the page is marked present in the corresponding Linux
 | |
|  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
 | |
|  * up to date.
 | |
|  *
 | |
|  * However, when the "young" bit is cleared, we deny access to the page
 | |
|  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
 | |
|  * for us in this case, which means the TLB will retain the transation
 | |
|  * until either the TLB entry is evicted under pressure, or a context
 | |
|  * switch which changes the user space mapping occurs.
 | |
|  */
 | |
| #define PTRS_PER_PTE		512
 | |
| #define PTRS_PER_PMD		1
 | |
| #define PTRS_PER_PGD		2048
 | |
| 
 | |
| /*
 | |
|  * PMD_SHIFT determines the size of the area a second-level page table can map
 | |
|  * PGDIR_SHIFT determines what a third-level page table entry can map
 | |
|  */
 | |
| #define PMD_SHIFT		21
 | |
| #define PGDIR_SHIFT		21
 | |
| 
 | |
| #define LIBRARY_TEXT_START	0x0c000000
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| extern void __pte_error(const char *file, int line, pte_t);
 | |
| extern void __pmd_error(const char *file, int line, pmd_t);
 | |
| extern void __pgd_error(const char *file, int line, pgd_t);
 | |
| 
 | |
| #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 | |
| #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 | |
| #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #define PMD_SIZE		(1UL << PMD_SHIFT)
 | |
| #define PMD_MASK		(~(PMD_SIZE-1))
 | |
| #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK		(~(PGDIR_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * This is the lowest virtual address we can permit any user space
 | |
|  * mapping to be mapped at.  This is particularly important for
 | |
|  * non-high vector CPUs.
 | |
|  */
 | |
| #define FIRST_USER_ADDRESS	PAGE_SIZE
 | |
| 
 | |
| #define FIRST_USER_PGD_NR	1
 | |
| #define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
 | |
| 
 | |
| /*
 | |
|  * section address mask and size definitions.
 | |
|  */
 | |
| #define SECTION_SHIFT		20
 | |
| #define SECTION_SIZE		(1UL << SECTION_SHIFT)
 | |
| #define SECTION_MASK		(~(SECTION_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * ARMv6 supersection address mask and size definitions.
 | |
|  */
 | |
| #define SUPERSECTION_SHIFT	24
 | |
| #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
 | |
| #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
 | |
| 
 | |
| /*
 | |
|  * "Linux" PTE definitions.
 | |
|  *
 | |
|  * We keep two sets of PTEs - the hardware and the linux version.
 | |
|  * This allows greater flexibility in the way we map the Linux bits
 | |
|  * onto the hardware tables, and allows us to have YOUNG and DIRTY
 | |
|  * bits.
 | |
|  *
 | |
|  * The PTE table pointer refers to the hardware entries; the "Linux"
 | |
|  * entries are stored 1024 bytes below.
 | |
|  */
 | |
| #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
 | |
| #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
 | |
| #define L_PTE_FILE		(_AT(pteval_t, 1) << 2)	/* only when !PRESENT */
 | |
| #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
 | |
| #define L_PTE_WRITE		(_AT(pteval_t, 1) << 7)
 | |
| #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
 | |
| #define L_PTE_EXEC		(_AT(pteval_t, 1) << 9)
 | |
| #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
 | |
| 
 | |
| /*
 | |
|  * These are the memory types, defined to be compatible with
 | |
|  * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
 | |
|  */
 | |
| #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
 | |
| #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
 | |
| #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
 | |
| #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
 | |
| #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
 | |
| #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
 | |
| #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
 | |
| #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
 | |
| #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
 | |
| #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
 | |
| #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| /*
 | |
|  * The pgprot_* and protection_map entries will be fixed up in runtime
 | |
|  * to include the cachable and bufferable bits based on memory policy,
 | |
|  * as well as any architecture dependent bits like global/ASID and SMP
 | |
|  * shared mapping bits.
 | |
|  */
 | |
| #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 | |
| 
 | |
| extern pgprot_t		pgprot_user;
 | |
| extern pgprot_t		pgprot_kernel;
 | |
| 
 | |
| #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 | |
| 
 | |
| #define PAGE_NONE		pgprot_user
 | |
| #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
 | |
| #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
 | |
| #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER)
 | |
| #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
 | |
| #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER)
 | |
| #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
 | |
| #define PAGE_KERNEL		pgprot_kernel
 | |
| #define PAGE_KERNEL_EXEC	_MOD_PROT(pgprot_kernel, L_PTE_EXEC)
 | |
| 
 | |
| #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT)
 | |
| #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
 | |
| #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
 | |
| #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 | |
| #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
 | |
| #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 | |
| #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
 | |
| 
 | |
| #define __pgprot_modify(prot,mask,bits)		\
 | |
| 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
 | |
| 
 | |
| #define pgprot_noncached(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
 | |
| 
 | |
| #define pgprot_writecombine(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
 | |
| 
 | |
| #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 | |
| #define pgprot_dmacoherent(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_BUFFERABLE)
 | |
| #define __HAVE_PHYS_MEM_ACCESS_PROT
 | |
| struct file;
 | |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | |
| 				     unsigned long size, pgprot_t vma_prot);
 | |
| #else
 | |
| #define pgprot_dmacoherent(prot) \
 | |
| 	__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_UNCACHED)
 | |
| #endif
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * The table below defines the page protection levels that we insert into our
 | |
|  * Linux page table version.  These get translated into the best that the
 | |
|  * architecture can perform.  Note that on most ARM hardware:
 | |
|  *  1) We cannot do execute protection
 | |
|  *  2) If we could do execute protection, then read is implied
 | |
|  *  3) write implies read permissions
 | |
|  */
 | |
| #define __P000  __PAGE_NONE
 | |
| #define __P001  __PAGE_READONLY
 | |
| #define __P010  __PAGE_COPY
 | |
| #define __P011  __PAGE_COPY
 | |
| #define __P100  __PAGE_READONLY_EXEC
 | |
| #define __P101  __PAGE_READONLY_EXEC
 | |
| #define __P110  __PAGE_COPY_EXEC
 | |
| #define __P111  __PAGE_COPY_EXEC
 | |
| 
 | |
| #define __S000  __PAGE_NONE
 | |
| #define __S001  __PAGE_READONLY
 | |
| #define __S010  __PAGE_SHARED
 | |
| #define __S011  __PAGE_SHARED
 | |
| #define __S100  __PAGE_READONLY_EXEC
 | |
| #define __S101  __PAGE_READONLY_EXEC
 | |
| #define __S110  __PAGE_SHARED_EXEC
 | |
| #define __S111  __PAGE_SHARED_EXEC
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| /*
 | |
|  * ZERO_PAGE is a global shared page that is always zero: used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| extern struct page *empty_zero_page;
 | |
| #define ZERO_PAGE(vaddr)	(empty_zero_page)
 | |
| 
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 | |
| 
 | |
| /* to find an entry in a page-table-directory */
 | |
| #define pgd_index(addr)		((addr) >> PGDIR_SHIFT)
 | |
| 
 | |
| #define pgd_offset(mm, addr)	((mm)->pgd + pgd_index(addr))
 | |
| 
 | |
| /* to find an entry in a kernel page-table-directory */
 | |
| #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
 | |
| 
 | |
| /*
 | |
|  * The "pgd_xxx()" functions here are trivial for a folded two-level
 | |
|  * setup: the pgd is never bad, and a pmd always exists (as it's folded
 | |
|  * into the pgd entry)
 | |
|  */
 | |
| #define pgd_none(pgd)		(0)
 | |
| #define pgd_bad(pgd)		(0)
 | |
| #define pgd_present(pgd)	(1)
 | |
| #define pgd_clear(pgdp)		do { } while (0)
 | |
| #define set_pgd(pgd,pgdp)	do { } while (0)
 | |
| 
 | |
| 
 | |
| /* Find an entry in the second-level page table.. */
 | |
| #define pmd_offset(dir, addr)	((pmd_t *)(dir))
 | |
| 
 | |
| #define pmd_none(pmd)		(!pmd_val(pmd))
 | |
| #define pmd_present(pmd)	(pmd_val(pmd))
 | |
| #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
 | |
| 
 | |
| #define copy_pmd(pmdpd,pmdps)		\
 | |
| 	do {				\
 | |
| 		pmdpd[0] = pmdps[0];	\
 | |
| 		pmdpd[1] = pmdps[1];	\
 | |
| 		flush_pmd_entry(pmdpd);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #define pmd_clear(pmdp)			\
 | |
| 	do {				\
 | |
| 		pmdp[0] = __pmd(0);	\
 | |
| 		pmdp[1] = __pmd(0);	\
 | |
| 		clean_pmd_entry(pmdp);	\
 | |
| 	} while (0)
 | |
| 
 | |
| static inline pte_t *pmd_page_vaddr(pmd_t pmd)
 | |
| {
 | |
| 	phys_addr_t ptr;
 | |
| 
 | |
| 	ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
 | |
| 	ptr += PTRS_PER_PTE * sizeof(void *);
 | |
| 
 | |
| 	return __va(ptr);
 | |
| }
 | |
| 
 | |
| #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
 | |
| 
 | |
| /* we don't need complex calculations here as the pmd is folded into the pgd */
 | |
| #define pmd_addr_end(addr,end)	(end)
 | |
| 
 | |
| 
 | |
| #ifndef CONFIG_HIGHPTE
 | |
| #define __pte_map(pmd)		pmd_page_vaddr(*(pmd))
 | |
| #define __pte_unmap(pte)	do { } while (0)
 | |
| #else
 | |
| #define __pte_map(pmd)		((pte_t *)kmap_atomic(pmd_page(*(pmd))) + PTRS_PER_PTE)
 | |
| #define __pte_unmap(pte)	kunmap_atomic((pte - PTRS_PER_PTE))
 | |
| #endif
 | |
| 
 | |
| #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| 
 | |
| #define pte_offset_kernel(pmd,addr)	(pmd_page_vaddr(*(pmd)) + pte_index(addr))
 | |
| 
 | |
| #define pte_offset_map(pmd,addr)	(__pte_map(pmd) + pte_index(addr))
 | |
| #define pte_unmap(pte)			__pte_unmap(pte)
 | |
| 
 | |
| #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
 | |
| #define pfn_pte(pfn,prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 | |
| 
 | |
| #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
 | |
| #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
 | |
| 
 | |
| #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
 | |
| #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
 | |
| 
 | |
| #if __LINUX_ARM_ARCH__ < 6
 | |
| static inline void __sync_icache_dcache(pte_t pteval)
 | |
| {
 | |
| }
 | |
| #else
 | |
| extern void __sync_icache_dcache(pte_t pteval);
 | |
| #endif
 | |
| 
 | |
| static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	if (addr >= TASK_SIZE)
 | |
| 		set_pte_ext(ptep, pteval, 0);
 | |
| 	else {
 | |
| 		__sync_icache_dcache(pteval);
 | |
| 		set_pte_ext(ptep, pteval, PTE_EXT_NG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define pte_none(pte)		(!pte_val(pte))
 | |
| #define pte_present(pte)	(pte_val(pte) & L_PTE_PRESENT)
 | |
| #define pte_write(pte)		(pte_val(pte) & L_PTE_WRITE)
 | |
| #define pte_dirty(pte)		(pte_val(pte) & L_PTE_DIRTY)
 | |
| #define pte_young(pte)		(pte_val(pte) & L_PTE_YOUNG)
 | |
| #define pte_exec(pte)		(pte_val(pte) & L_PTE_EXEC)
 | |
| #define pte_special(pte)	(0)
 | |
| 
 | |
| #define pte_present_user(pte) \
 | |
| 	((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
 | |
| 	 (L_PTE_PRESENT | L_PTE_USER))
 | |
| 
 | |
| #define PTE_BIT_FUNC(fn,op) \
 | |
| static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
 | |
| 
 | |
| PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
 | |
| PTE_BIT_FUNC(mkwrite,   |= L_PTE_WRITE);
 | |
| PTE_BIT_FUNC(mkclean,   &= ~L_PTE_DIRTY);
 | |
| PTE_BIT_FUNC(mkdirty,   |= L_PTE_DIRTY);
 | |
| PTE_BIT_FUNC(mkold,     &= ~L_PTE_YOUNG);
 | |
| PTE_BIT_FUNC(mkyoung,   |= L_PTE_YOUNG);
 | |
| 
 | |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 | |
| 
 | |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 | |
| {
 | |
| 	const pteval_t mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
 | |
| 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a swap entry.  Swap entries are stored in the Linux
 | |
|  * page tables as follows:
 | |
|  *
 | |
|  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 | |
|  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 | |
|  *   <--------------- offset --------------------> <- type --> 0 0 0
 | |
|  *
 | |
|  * This gives us up to 63 swap files and 32GB per swap file.  Note that
 | |
|  * the offset field is always non-zero.
 | |
|  */
 | |
| #define __SWP_TYPE_SHIFT	3
 | |
| #define __SWP_TYPE_BITS		6
 | |
| #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
 | |
| #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
 | |
| 
 | |
| #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
 | |
| #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
 | |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
 | |
| 
 | |
| #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
 | |
| 
 | |
| /*
 | |
|  * It is an error for the kernel to have more swap files than we can
 | |
|  * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
 | |
|  * is increased beyond what we presently support.
 | |
|  */
 | |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
 | |
| 
 | |
| /*
 | |
|  * Encode and decode a file entry.  File entries are stored in the Linux
 | |
|  * page tables as follows:
 | |
|  *
 | |
|  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 | |
|  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 | |
|  *   <----------------------- offset ------------------------> 1 0 0
 | |
|  */
 | |
| #define pte_file(pte)		(pte_val(pte) & L_PTE_FILE)
 | |
| #define pte_to_pgoff(x)		(pte_val(x) >> 3)
 | |
| #define pgoff_to_pte(x)		__pte(((x) << 3) | L_PTE_FILE)
 | |
| 
 | |
| #define PTE_FILE_MAX_BITS	29
 | |
| 
 | |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
 | |
| /* FIXME: this is not correct */
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| 
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * We provide our own arch_get_unmapped_area to cope with VIPT caches.
 | |
|  */
 | |
| #define HAVE_ARCH_UNMAPPED_AREA
 | |
| 
 | |
| /*
 | |
|  * remap a physical page `pfn' of size `size' with page protection `prot'
 | |
|  * into virtual address `from'
 | |
|  */
 | |
| #define io_remap_pfn_range(vma,from,pfn,size,prot) \
 | |
| 		remap_pfn_range(vma, from, pfn, size, prot)
 | |
| 
 | |
| #define pgtable_cache_init() do { } while (0)
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #endif /* _ASMARM_PGTABLE_H */
 |