mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 e905a9edab
			
		
	
	
		e905a9edab
		
	
	
	
	
		
			
			Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			737 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			737 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		Implementation of the Transmission Control Protocol(TCP).
 | |
|  *
 | |
|  * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
 | |
|  *
 | |
|  * Authors:	Ross Biro
 | |
|  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | |
|  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 | |
|  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 | |
|  *		Florian La Roche, <flla@stud.uni-sb.de>
 | |
|  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 | |
|  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 | |
|  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 | |
|  *		Matthew Dillon, <dillon@apollo.west.oic.com>
 | |
|  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | |
|  *		Jorge Cwik, <jorge@laser.satlink.net>
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/inet_common.h>
 | |
| #include <net/xfrm.h>
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| #define SYNC_INIT 0 /* let the user enable it */
 | |
| #else
 | |
| #define SYNC_INIT 1
 | |
| #endif
 | |
| 
 | |
| int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
 | |
| int sysctl_tcp_abort_on_overflow __read_mostly;
 | |
| 
 | |
| struct inet_timewait_death_row tcp_death_row = {
 | |
| 	.sysctl_max_tw_buckets = NR_FILE * 2,
 | |
| 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 | |
| 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 | |
| 	.hashinfo	= &tcp_hashinfo,
 | |
| 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 | |
| 					    (unsigned long)&tcp_death_row),
 | |
| 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 | |
| 					     inet_twdr_twkill_work),
 | |
| /* Short-time timewait calendar */
 | |
| 
 | |
| 	.twcal_hand	= -1,
 | |
| 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 | |
| 					    (unsigned long)&tcp_death_row),
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(tcp_death_row);
 | |
| 
 | |
| static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 | |
| {
 | |
| 	if (seq == s_win)
 | |
| 		return 1;
 | |
| 	if (after(end_seq, s_win) && before(seq, e_win))
 | |
| 		return 1;
 | |
| 	return (seq == e_win && seq == end_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * * Main purpose of TIME-WAIT state is to close connection gracefully,
 | |
|  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 | |
|  *   (and, probably, tail of data) and one or more our ACKs are lost.
 | |
|  * * What is TIME-WAIT timeout? It is associated with maximal packet
 | |
|  *   lifetime in the internet, which results in wrong conclusion, that
 | |
|  *   it is set to catch "old duplicate segments" wandering out of their path.
 | |
|  *   It is not quite correct. This timeout is calculated so that it exceeds
 | |
|  *   maximal retransmission timeout enough to allow to lose one (or more)
 | |
|  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 | |
|  * * When TIME-WAIT socket receives RST, it means that another end
 | |
|  *   finally closed and we are allowed to kill TIME-WAIT too.
 | |
|  * * Second purpose of TIME-WAIT is catching old duplicate segments.
 | |
|  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 | |
|  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 | |
|  * * If we invented some more clever way to catch duplicates
 | |
|  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 | |
|  *
 | |
|  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 | |
|  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 | |
|  * from the very beginning.
 | |
|  *
 | |
|  * NOTE. With recycling (and later with fin-wait-2) TW bucket
 | |
|  * is _not_ stateless. It means, that strictly speaking we must
 | |
|  * spinlock it. I do not want! Well, probability of misbehaviour
 | |
|  * is ridiculously low and, seems, we could use some mb() tricks
 | |
|  * to avoid misread sequence numbers, states etc.  --ANK
 | |
|  */
 | |
| enum tcp_tw_status
 | |
| tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 | |
| 			   const struct tcphdr *th)
 | |
| {
 | |
| 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 | |
| 	struct tcp_options_received tmp_opt;
 | |
| 	int paws_reject = 0;
 | |
| 
 | |
| 	tmp_opt.saw_tstamp = 0;
 | |
| 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 | |
| 		tcp_parse_options(skb, &tmp_opt, 0);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
 | |
| 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
 | |
| 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tw->tw_substate == TCP_FIN_WAIT2) {
 | |
| 		/* Just repeat all the checks of tcp_rcv_state_process() */
 | |
| 
 | |
| 		/* Out of window, send ACK */
 | |
| 		if (paws_reject ||
 | |
| 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
 | |
| 				   tcptw->tw_rcv_nxt,
 | |
| 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
 | |
| 			return TCP_TW_ACK;
 | |
| 
 | |
| 		if (th->rst)
 | |
| 			goto kill;
 | |
| 
 | |
| 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
 | |
| 			goto kill_with_rst;
 | |
| 
 | |
| 		/* Dup ACK? */
 | |
| 		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
 | |
| 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
 | |
| 			inet_twsk_put(tw);
 | |
| 			return TCP_TW_SUCCESS;
 | |
| 		}
 | |
| 
 | |
| 		/* New data or FIN. If new data arrive after half-duplex close,
 | |
| 		 * reset.
 | |
| 		 */
 | |
| 		if (!th->fin ||
 | |
| 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
 | |
| kill_with_rst:
 | |
| 			inet_twsk_deschedule(tw, &tcp_death_row);
 | |
| 			inet_twsk_put(tw);
 | |
| 			return TCP_TW_RST;
 | |
| 		}
 | |
| 
 | |
| 		/* FIN arrived, enter true time-wait state. */
 | |
| 		tw->tw_substate	  = TCP_TIME_WAIT;
 | |
| 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
 | |
| 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 | |
| 		}
 | |
| 
 | |
| 		/* I am shamed, but failed to make it more elegant.
 | |
| 		 * Yes, it is direct reference to IP, which is impossible
 | |
| 		 * to generalize to IPv6. Taking into account that IPv6
 | |
| 		 * do not understand recycling in any case, it not
 | |
| 		 * a big problem in practice. --ANK */
 | |
| 		if (tw->tw_family == AF_INET &&
 | |
| 		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
 | |
| 		    tcp_v4_tw_remember_stamp(tw))
 | |
| 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
 | |
| 					   TCP_TIMEWAIT_LEN);
 | |
| 		else
 | |
| 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
 | |
| 					   TCP_TIMEWAIT_LEN);
 | |
| 		return TCP_TW_ACK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *	Now real TIME-WAIT state.
 | |
| 	 *
 | |
| 	 *	RFC 1122:
 | |
| 	 *	"When a connection is [...] on TIME-WAIT state [...]
 | |
| 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
 | |
| 	 *	reopen the connection directly, if it:
 | |
| 	 *
 | |
| 	 *	(1)  assigns its initial sequence number for the new
 | |
| 	 *	connection to be larger than the largest sequence
 | |
| 	 *	number it used on the previous connection incarnation,
 | |
| 	 *	and
 | |
| 	 *
 | |
| 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
 | |
| 	 *	to be an old duplicate".
 | |
| 	 */
 | |
| 
 | |
| 	if (!paws_reject &&
 | |
| 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
 | |
| 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
 | |
| 		/* In window segment, it may be only reset or bare ack. */
 | |
| 
 | |
| 		if (th->rst) {
 | |
| 			/* This is TIME_WAIT assassination, in two flavors.
 | |
| 			 * Oh well... nobody has a sufficient solution to this
 | |
| 			 * protocol bug yet.
 | |
| 			 */
 | |
| 			if (sysctl_tcp_rfc1337 == 0) {
 | |
| kill:
 | |
| 				inet_twsk_deschedule(tw, &tcp_death_row);
 | |
| 				inet_twsk_put(tw);
 | |
| 				return TCP_TW_SUCCESS;
 | |
| 			}
 | |
| 		}
 | |
| 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
 | |
| 				   TCP_TIMEWAIT_LEN);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
 | |
| 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
 | |
| 		}
 | |
| 
 | |
| 		inet_twsk_put(tw);
 | |
| 		return TCP_TW_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	/* Out of window segment.
 | |
| 
 | |
| 	   All the segments are ACKed immediately.
 | |
| 
 | |
| 	   The only exception is new SYN. We accept it, if it is
 | |
| 	   not old duplicate and we are not in danger to be killed
 | |
| 	   by delayed old duplicates. RFC check is that it has
 | |
| 	   newer sequence number works at rates <40Mbit/sec.
 | |
| 	   However, if paws works, it is reliable AND even more,
 | |
| 	   we even may relax silly seq space cutoff.
 | |
| 
 | |
| 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
 | |
| 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
 | |
| 	   we must return socket to time-wait state. It is not good,
 | |
| 	   but not fatal yet.
 | |
| 	 */
 | |
| 
 | |
| 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
 | |
| 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
 | |
| 	     (tmp_opt.saw_tstamp &&
 | |
| 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
 | |
| 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
 | |
| 		if (isn == 0)
 | |
| 			isn++;
 | |
| 		TCP_SKB_CB(skb)->when = isn;
 | |
| 		return TCP_TW_SYN;
 | |
| 	}
 | |
| 
 | |
| 	if (paws_reject)
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | |
| 
 | |
| 	if(!th->rst) {
 | |
| 		/* In this case we must reset the TIMEWAIT timer.
 | |
| 		 *
 | |
| 		 * If it is ACKless SYN it may be both old duplicate
 | |
| 		 * and new good SYN with random sequence number <rcv_nxt.
 | |
| 		 * Do not reschedule in the last case.
 | |
| 		 */
 | |
| 		if (paws_reject || th->ack)
 | |
| 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
 | |
| 					   TCP_TIMEWAIT_LEN);
 | |
| 
 | |
| 		/* Send ACK. Note, we do not put the bucket,
 | |
| 		 * it will be released by caller.
 | |
| 		 */
 | |
| 		return TCP_TW_ACK;
 | |
| 	}
 | |
| 	inet_twsk_put(tw);
 | |
| 	return TCP_TW_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a socket to time-wait or dead fin-wait-2 state.
 | |
|  */
 | |
| void tcp_time_wait(struct sock *sk, int state, int timeo)
 | |
| {
 | |
| 	struct inet_timewait_sock *tw = NULL;
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int recycle_ok = 0;
 | |
| 
 | |
| 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
 | |
| 		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
 | |
| 
 | |
| 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
 | |
| 		tw = inet_twsk_alloc(sk, state);
 | |
| 
 | |
| 	if (tw != NULL) {
 | |
| 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 | |
| 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 | |
| 
 | |
| 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
 | |
| 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
 | |
| 		tcptw->tw_snd_nxt	= tp->snd_nxt;
 | |
| 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
 | |
| 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
 | |
| 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
 | |
| 
 | |
| #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 | |
| 		if (tw->tw_family == PF_INET6) {
 | |
| 			struct ipv6_pinfo *np = inet6_sk(sk);
 | |
| 			struct inet6_timewait_sock *tw6;
 | |
| 
 | |
| 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
 | |
| 			tw6 = inet6_twsk((struct sock *)tw);
 | |
| 			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
 | |
| 			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
 | |
| 			tw->tw_ipv6only = np->ipv6only;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 		/*
 | |
| 		 * The timewait bucket does not have the key DB from the
 | |
| 		 * sock structure. We just make a quick copy of the
 | |
| 		 * md5 key being used (if indeed we are using one)
 | |
| 		 * so the timewait ack generating code has the key.
 | |
| 		 */
 | |
| 		do {
 | |
| 			struct tcp_md5sig_key *key;
 | |
| 			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
 | |
| 			tcptw->tw_md5_keylen = 0;
 | |
| 			key = tp->af_specific->md5_lookup(sk, sk);
 | |
| 			if (key != NULL) {
 | |
| 				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
 | |
| 				tcptw->tw_md5_keylen = key->keylen;
 | |
| 				if (tcp_alloc_md5sig_pool() == NULL)
 | |
| 					BUG();
 | |
| 			}
 | |
| 		} while(0);
 | |
| #endif
 | |
| 
 | |
| 		/* Linkage updates. */
 | |
| 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
 | |
| 
 | |
| 		/* Get the TIME_WAIT timeout firing. */
 | |
| 		if (timeo < rto)
 | |
| 			timeo = rto;
 | |
| 
 | |
| 		if (recycle_ok) {
 | |
| 			tw->tw_timeout = rto;
 | |
| 		} else {
 | |
| 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
 | |
| 			if (state == TCP_TIME_WAIT)
 | |
| 				timeo = TCP_TIMEWAIT_LEN;
 | |
| 		}
 | |
| 
 | |
| 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
 | |
| 				   TCP_TIMEWAIT_LEN);
 | |
| 		inet_twsk_put(tw);
 | |
| 	} else {
 | |
| 		/* Sorry, if we're out of memory, just CLOSE this
 | |
| 		 * socket up.  We've got bigger problems than
 | |
| 		 * non-graceful socket closings.
 | |
| 		 */
 | |
| 		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
 | |
| 	}
 | |
| 
 | |
| 	tcp_update_metrics(sk);
 | |
| 	tcp_done(sk);
 | |
| }
 | |
| 
 | |
| void tcp_twsk_destructor(struct sock *sk)
 | |
| {
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 | |
| 	if (twsk->tw_md5_keylen)
 | |
| 		tcp_put_md5sig_pool();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
 | |
| 
 | |
| /* This is not only more efficient than what we used to do, it eliminates
 | |
|  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
 | |
|  *
 | |
|  * Actually, we could lots of memory writes here. tp of listening
 | |
|  * socket contains all necessary default parameters.
 | |
|  */
 | |
| struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
 | |
| 
 | |
| 	if (newsk != NULL) {
 | |
| 		const struct inet_request_sock *ireq = inet_rsk(req);
 | |
| 		struct tcp_request_sock *treq = tcp_rsk(req);
 | |
| 		struct inet_connection_sock *newicsk = inet_csk(sk);
 | |
| 		struct tcp_sock *newtp;
 | |
| 
 | |
| 		/* Now setup tcp_sock */
 | |
| 		newtp = tcp_sk(newsk);
 | |
| 		newtp->pred_flags = 0;
 | |
| 		newtp->rcv_nxt = treq->rcv_isn + 1;
 | |
| 		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
 | |
| 
 | |
| 		tcp_prequeue_init(newtp);
 | |
| 
 | |
| 		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
 | |
| 
 | |
| 		newtp->srtt = 0;
 | |
| 		newtp->mdev = TCP_TIMEOUT_INIT;
 | |
| 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
 | |
| 
 | |
| 		newtp->packets_out = 0;
 | |
| 		newtp->left_out = 0;
 | |
| 		newtp->retrans_out = 0;
 | |
| 		newtp->sacked_out = 0;
 | |
| 		newtp->fackets_out = 0;
 | |
| 		newtp->snd_ssthresh = 0x7fffffff;
 | |
| 
 | |
| 		/* So many TCP implementations out there (incorrectly) count the
 | |
| 		 * initial SYN frame in their delayed-ACK and congestion control
 | |
| 		 * algorithms that we must have the following bandaid to talk
 | |
| 		 * efficiently to them.  -DaveM
 | |
| 		 */
 | |
| 		newtp->snd_cwnd = 2;
 | |
| 		newtp->snd_cwnd_cnt = 0;
 | |
| 		newtp->bytes_acked = 0;
 | |
| 
 | |
| 		newtp->frto_counter = 0;
 | |
| 		newtp->frto_highmark = 0;
 | |
| 
 | |
| 		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
 | |
| 
 | |
| 		tcp_set_ca_state(newsk, TCP_CA_Open);
 | |
| 		tcp_init_xmit_timers(newsk);
 | |
| 		skb_queue_head_init(&newtp->out_of_order_queue);
 | |
| 		newtp->rcv_wup = treq->rcv_isn + 1;
 | |
| 		newtp->write_seq = treq->snt_isn + 1;
 | |
| 		newtp->pushed_seq = newtp->write_seq;
 | |
| 		newtp->copied_seq = treq->rcv_isn + 1;
 | |
| 
 | |
| 		newtp->rx_opt.saw_tstamp = 0;
 | |
| 
 | |
| 		newtp->rx_opt.dsack = 0;
 | |
| 		newtp->rx_opt.eff_sacks = 0;
 | |
| 
 | |
| 		newtp->rx_opt.num_sacks = 0;
 | |
| 		newtp->urg_data = 0;
 | |
| 
 | |
| 		if (sock_flag(newsk, SOCK_KEEPOPEN))
 | |
| 			inet_csk_reset_keepalive_timer(newsk,
 | |
| 						       keepalive_time_when(newtp));
 | |
| 
 | |
| 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
 | |
| 		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
 | |
| 			if (sysctl_tcp_fack)
 | |
| 				newtp->rx_opt.sack_ok |= 2;
 | |
| 		}
 | |
| 		newtp->window_clamp = req->window_clamp;
 | |
| 		newtp->rcv_ssthresh = req->rcv_wnd;
 | |
| 		newtp->rcv_wnd = req->rcv_wnd;
 | |
| 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
 | |
| 		if (newtp->rx_opt.wscale_ok) {
 | |
| 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
 | |
| 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
 | |
| 		} else {
 | |
| 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
 | |
| 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
 | |
| 		}
 | |
| 		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
 | |
| 		newtp->max_window = newtp->snd_wnd;
 | |
| 
 | |
| 		if (newtp->rx_opt.tstamp_ok) {
 | |
| 			newtp->rx_opt.ts_recent = req->ts_recent;
 | |
| 			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
 | |
| 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 | |
| 		} else {
 | |
| 			newtp->rx_opt.ts_recent_stamp = 0;
 | |
| 			newtp->tcp_header_len = sizeof(struct tcphdr);
 | |
| 		}
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 		newtp->md5sig_info = NULL;	/*XXX*/
 | |
| 		if (newtp->af_specific->md5_lookup(sk, newsk))
 | |
| 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
 | |
| #endif
 | |
| 		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
 | |
| 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
 | |
| 		newtp->rx_opt.mss_clamp = req->mss;
 | |
| 		TCP_ECN_openreq_child(newtp, req);
 | |
| 
 | |
| 		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
 | |
| 	}
 | |
| 	return newsk;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Process an incoming packet for SYN_RECV sockets represented
 | |
|  *	as a request_sock.
 | |
|  */
 | |
| 
 | |
| struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
 | |
| 			   struct request_sock *req,
 | |
| 			   struct request_sock **prev)
 | |
| {
 | |
| 	struct tcphdr *th = skb->h.th;
 | |
| 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
 | |
| 	int paws_reject = 0;
 | |
| 	struct tcp_options_received tmp_opt;
 | |
| 	struct sock *child;
 | |
| 
 | |
| 	tmp_opt.saw_tstamp = 0;
 | |
| 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
 | |
| 		tcp_parse_options(skb, &tmp_opt, 0);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			tmp_opt.ts_recent = req->ts_recent;
 | |
| 			/* We do not store true stamp, but it is not required,
 | |
| 			 * it can be estimated (approximately)
 | |
| 			 * from another data.
 | |
| 			 */
 | |
| 			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
 | |
| 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check for pure retransmitted SYN. */
 | |
| 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
 | |
| 	    flg == TCP_FLAG_SYN &&
 | |
| 	    !paws_reject) {
 | |
| 		/*
 | |
| 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
 | |
| 		 * this case on figure 6 and figure 8, but formal
 | |
| 		 * protocol description says NOTHING.
 | |
| 		 * To be more exact, it says that we should send ACK,
 | |
| 		 * because this segment (at least, if it has no data)
 | |
| 		 * is out of window.
 | |
| 		 *
 | |
| 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
 | |
| 		 *  describe SYN-RECV state. All the description
 | |
| 		 *  is wrong, we cannot believe to it and should
 | |
| 		 *  rely only on common sense and implementation
 | |
| 		 *  experience.
 | |
| 		 *
 | |
| 		 * Enforce "SYN-ACK" according to figure 8, figure 6
 | |
| 		 * of RFC793, fixed by RFC1122.
 | |
| 		 */
 | |
| 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Further reproduces section "SEGMENT ARRIVES"
 | |
| 	   for state SYN-RECEIVED of RFC793.
 | |
| 	   It is broken, however, it does not work only
 | |
| 	   when SYNs are crossed.
 | |
| 
 | |
| 	   You would think that SYN crossing is impossible here, since
 | |
| 	   we should have a SYN_SENT socket (from connect()) on our end,
 | |
| 	   but this is not true if the crossed SYNs were sent to both
 | |
| 	   ends by a malicious third party.  We must defend against this,
 | |
| 	   and to do that we first verify the ACK (as per RFC793, page
 | |
| 	   36) and reset if it is invalid.  Is this a true full defense?
 | |
| 	   To convince ourselves, let us consider a way in which the ACK
 | |
| 	   test can still pass in this 'malicious crossed SYNs' case.
 | |
| 	   Malicious sender sends identical SYNs (and thus identical sequence
 | |
| 	   numbers) to both A and B:
 | |
| 
 | |
| 		A: gets SYN, seq=7
 | |
| 		B: gets SYN, seq=7
 | |
| 
 | |
| 	   By our good fortune, both A and B select the same initial
 | |
| 	   send sequence number of seven :-)
 | |
| 
 | |
| 		A: sends SYN|ACK, seq=7, ack_seq=8
 | |
| 		B: sends SYN|ACK, seq=7, ack_seq=8
 | |
| 
 | |
| 	   So we are now A eating this SYN|ACK, ACK test passes.  So
 | |
| 	   does sequence test, SYN is truncated, and thus we consider
 | |
| 	   it a bare ACK.
 | |
| 
 | |
| 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
 | |
| 	   bare ACK.  Otherwise, we create an established connection.  Both
 | |
| 	   ends (listening sockets) accept the new incoming connection and try
 | |
| 	   to talk to each other. 8-)
 | |
| 
 | |
| 	   Note: This case is both harmless, and rare.  Possibility is about the
 | |
| 	   same as us discovering intelligent life on another plant tomorrow.
 | |
| 
 | |
| 	   But generally, we should (RFC lies!) to accept ACK
 | |
| 	   from SYNACK both here and in tcp_rcv_state_process().
 | |
| 	   tcp_rcv_state_process() does not, hence, we do not too.
 | |
| 
 | |
| 	   Note that the case is absolutely generic:
 | |
| 	   we cannot optimize anything here without
 | |
| 	   violating protocol. All the checks must be made
 | |
| 	   before attempt to create socket.
 | |
| 	 */
 | |
| 
 | |
| 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
 | |
| 	 *                  and the incoming segment acknowledges something not yet
 | |
| 	 *                  sent (the segment carries an unacceptable ACK) ...
 | |
| 	 *                  a reset is sent."
 | |
| 	 *
 | |
| 	 * Invalid ACK: reset will be sent by listening socket
 | |
| 	 */
 | |
| 	if ((flg & TCP_FLAG_ACK) &&
 | |
| 	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
 | |
| 		return sk;
 | |
| 
 | |
| 	/* Also, it would be not so bad idea to check rcv_tsecr, which
 | |
| 	 * is essentially ACK extension and too early or too late values
 | |
| 	 * should cause reset in unsynchronized states.
 | |
| 	 */
 | |
| 
 | |
| 	/* RFC793: "first check sequence number". */
 | |
| 
 | |
| 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
 | |
| 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
 | |
| 		/* Out of window: send ACK and drop. */
 | |
| 		if (!(flg & TCP_FLAG_RST))
 | |
| 			req->rsk_ops->send_ack(skb, req);
 | |
| 		if (paws_reject)
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* In sequence, PAWS is OK. */
 | |
| 
 | |
| 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
 | |
| 			req->ts_recent = tmp_opt.rcv_tsval;
 | |
| 
 | |
| 		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
 | |
| 			/* Truncate SYN, it is out of window starting
 | |
| 			   at tcp_rsk(req)->rcv_isn + 1. */
 | |
| 			flg &= ~TCP_FLAG_SYN;
 | |
| 		}
 | |
| 
 | |
| 		/* RFC793: "second check the RST bit" and
 | |
| 		 *	   "fourth, check the SYN bit"
 | |
| 		 */
 | |
| 		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
 | |
| 			TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
 | |
| 			goto embryonic_reset;
 | |
| 		}
 | |
| 
 | |
| 		/* ACK sequence verified above, just make sure ACK is
 | |
| 		 * set.  If ACK not set, just silently drop the packet.
 | |
| 		 */
 | |
| 		if (!(flg & TCP_FLAG_ACK))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
 | |
| 		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
 | |
| 		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
 | |
| 			inet_rsk(req)->acked = 1;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* OK, ACK is valid, create big socket and
 | |
| 		 * feed this segment to it. It will repeat all
 | |
| 		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
 | |
| 		 * ESTABLISHED STATE. If it will be dropped after
 | |
| 		 * socket is created, wait for troubles.
 | |
| 		 */
 | |
| 		child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb,
 | |
| 								 req, NULL);
 | |
| 		if (child == NULL)
 | |
| 			goto listen_overflow;
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 		else {
 | |
| 			/* Copy over the MD5 key from the original socket */
 | |
| 			struct tcp_md5sig_key *key;
 | |
| 			struct tcp_sock *tp = tcp_sk(sk);
 | |
| 			key = tp->af_specific->md5_lookup(sk, child);
 | |
| 			if (key != NULL) {
 | |
| 				/*
 | |
| 				 * We're using one, so create a matching key on the
 | |
| 				 * newsk structure. If we fail to get memory then we
 | |
| 				 * end up not copying the key across. Shucks.
 | |
| 				 */
 | |
| 				char *newkey = kmemdup(key->key, key->keylen,
 | |
| 						       GFP_ATOMIC);
 | |
| 				if (newkey) {
 | |
| 					if (!tcp_alloc_md5sig_pool())
 | |
| 						BUG();
 | |
| 					tp->af_specific->md5_add(child, child,
 | |
| 								 newkey,
 | |
| 								 key->keylen);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		inet_csk_reqsk_queue_unlink(sk, req, prev);
 | |
| 		inet_csk_reqsk_queue_removed(sk, req);
 | |
| 
 | |
| 		inet_csk_reqsk_queue_add(sk, req, child);
 | |
| 		return child;
 | |
| 
 | |
| 	listen_overflow:
 | |
| 		if (!sysctl_tcp_abort_on_overflow) {
 | |
| 			inet_rsk(req)->acked = 1;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 	embryonic_reset:
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
 | |
| 		if (!(flg & TCP_FLAG_RST))
 | |
| 			req->rsk_ops->send_reset(sk, skb);
 | |
| 
 | |
| 		inet_csk_reqsk_queue_drop(sk, req, prev);
 | |
| 		return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue segment on the new socket if the new socket is active,
 | |
|  * otherwise we just shortcircuit this and continue with
 | |
|  * the new socket.
 | |
|  */
 | |
| 
 | |
| int tcp_child_process(struct sock *parent, struct sock *child,
 | |
| 		      struct sk_buff *skb)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int state = child->sk_state;
 | |
| 
 | |
| 	if (!sock_owned_by_user(child)) {
 | |
| 		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
 | |
| 
 | |
| 		/* Wakeup parent, send SIGIO */
 | |
| 		if (state == TCP_SYN_RECV && child->sk_state != state)
 | |
| 			parent->sk_data_ready(parent, 0);
 | |
| 	} else {
 | |
| 		/* Alas, it is possible again, because we do lookup
 | |
| 		 * in main socket hash table and lock on listening
 | |
| 		 * socket does not protect us more.
 | |
| 		 */
 | |
| 		sk_add_backlog(child, skb);
 | |
| 	}
 | |
| 
 | |
| 	bh_unlock_sock(child);
 | |
| 	sock_put(child);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(tcp_check_req);
 | |
| EXPORT_SYMBOL(tcp_child_process);
 | |
| EXPORT_SYMBOL(tcp_create_openreq_child);
 | |
| EXPORT_SYMBOL(tcp_timewait_state_process);
 |