mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 59758f4459
			
		
	
	
		59758f4459
		
	
	
	
	
		
			
			These module parameters should be in the read mostly area to avoid cache pollution. Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			405 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
 | |
|  *
 | |
|  * This is from the implementation of CUBIC TCP in
 | |
|  * Injong Rhee, Lisong Xu.
 | |
|  *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
 | |
|  *  in PFLDnet 2005
 | |
|  * Available from:
 | |
|  *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
 | |
|  *
 | |
|  * Unless CUBIC is enabled and congestion window is large
 | |
|  * this behaves the same as the original Reno.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <net/tcp.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
 | |
| 					 * max_cwnd = snd_cwnd * beta
 | |
| 					 */
 | |
| #define BICTCP_B		4	 /*
 | |
| 					  * In binary search,
 | |
| 					  * go to point (max+min)/N
 | |
| 					  */
 | |
| #define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
 | |
| 
 | |
| static int fast_convergence __read_mostly = 1;
 | |
| static int max_increment __read_mostly = 16;
 | |
| static int beta __read_mostly = 819;	/* = 819/1024 (BICTCP_BETA_SCALE) */
 | |
| static int initial_ssthresh __read_mostly = 100;
 | |
| static int bic_scale __read_mostly = 41;
 | |
| static int tcp_friendliness __read_mostly = 1;
 | |
| 
 | |
| static u32 cube_rtt_scale __read_mostly;
 | |
| static u32 beta_scale __read_mostly;
 | |
| static u64 cube_factor __read_mostly;
 | |
| 
 | |
| /* Note parameters that are used for precomputing scale factors are read-only */
 | |
| module_param(fast_convergence, int, 0644);
 | |
| MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
 | |
| module_param(max_increment, int, 0644);
 | |
| MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
 | |
| module_param(beta, int, 0444);
 | |
| MODULE_PARM_DESC(beta, "beta for multiplicative increase");
 | |
| module_param(initial_ssthresh, int, 0644);
 | |
| MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
 | |
| module_param(bic_scale, int, 0444);
 | |
| MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
 | |
| module_param(tcp_friendliness, int, 0644);
 | |
| MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
 | |
| 
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| /* BIC TCP Parameters */
 | |
| struct bictcp {
 | |
| 	u32	cnt;		/* increase cwnd by 1 after ACKs */
 | |
| 	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
 | |
| 	u32	loss_cwnd;	/* congestion window at last loss */
 | |
| 	u32	last_cwnd;	/* the last snd_cwnd */
 | |
| 	u32	last_time;	/* time when updated last_cwnd */
 | |
| 	u32	bic_origin_point;/* origin point of bic function */
 | |
| 	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
 | |
| 	u32	delay_min;	/* min delay */
 | |
| 	u32	epoch_start;	/* beginning of an epoch */
 | |
| 	u32	ack_cnt;	/* number of acks */
 | |
| 	u32	tcp_cwnd;	/* estimated tcp cwnd */
 | |
| #define ACK_RATIO_SHIFT	4
 | |
| 	u32	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
 | |
| };
 | |
| 
 | |
| static inline void bictcp_reset(struct bictcp *ca)
 | |
| {
 | |
| 	ca->cnt = 0;
 | |
| 	ca->last_max_cwnd = 0;
 | |
| 	ca->loss_cwnd = 0;
 | |
| 	ca->last_cwnd = 0;
 | |
| 	ca->last_time = 0;
 | |
| 	ca->bic_origin_point = 0;
 | |
| 	ca->bic_K = 0;
 | |
| 	ca->delay_min = 0;
 | |
| 	ca->epoch_start = 0;
 | |
| 	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
 | |
| 	ca->ack_cnt = 0;
 | |
| 	ca->tcp_cwnd = 0;
 | |
| }
 | |
| 
 | |
| static void bictcp_init(struct sock *sk)
 | |
| {
 | |
| 	bictcp_reset(inet_csk_ca(sk));
 | |
| 	if (initial_ssthresh)
 | |
| 		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
 | |
| }
 | |
| 
 | |
| /* 64bit divisor, dividend and result. dynamic precision */
 | |
| static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
 | |
| {
 | |
| 	u_int32_t d = divisor;
 | |
| 
 | |
| 	if (divisor > 0xffffffffULL) {
 | |
| 		unsigned int shift = fls(divisor >> 32);
 | |
| 
 | |
| 		d = divisor >> shift;
 | |
| 		dividend >>= shift;
 | |
| 	}
 | |
| 
 | |
| 	/* avoid 64 bit division if possible */
 | |
| 	if (dividend >> 32)
 | |
| 		do_div(dividend, d);
 | |
| 	else
 | |
| 		dividend = (uint32_t) dividend / d;
 | |
| 
 | |
| 	return dividend;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate the cubic root of x using Newton-Raphson
 | |
|  */
 | |
| static u32 cubic_root(u64 a)
 | |
| {
 | |
| 	u32 x, x1;
 | |
| 
 | |
| 	/* Initial estimate is based on:
 | |
| 	 * cbrt(x) = exp(log(x) / 3)
 | |
| 	 */
 | |
| 	x = 1u << (fls64(a)/3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Iteration based on:
 | |
| 	 *                         2
 | |
| 	 * x    = ( 2 * x  +  a / x  ) / 3
 | |
| 	 *  k+1          k         k
 | |
| 	 */
 | |
| 	do {
 | |
| 		x1 = x;
 | |
| 		x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
 | |
| 	} while (abs(x1 - x) > 1);
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute congestion window to use.
 | |
|  */
 | |
| static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
 | |
| {
 | |
| 	u64 offs;
 | |
| 	u32 delta, t, bic_target, min_cnt, max_cnt;
 | |
| 
 | |
| 	ca->ack_cnt++;	/* count the number of ACKs */
 | |
| 
 | |
| 	if (ca->last_cwnd == cwnd &&
 | |
| 	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
 | |
| 		return;
 | |
| 
 | |
| 	ca->last_cwnd = cwnd;
 | |
| 	ca->last_time = tcp_time_stamp;
 | |
| 
 | |
| 	if (ca->epoch_start == 0) {
 | |
| 		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
 | |
| 		ca->ack_cnt = 1;			/* start counting */
 | |
| 		ca->tcp_cwnd = cwnd;			/* syn with cubic */
 | |
| 
 | |
| 		if (ca->last_max_cwnd <= cwnd) {
 | |
| 			ca->bic_K = 0;
 | |
| 			ca->bic_origin_point = cwnd;
 | |
| 		} else {
 | |
| 			/* Compute new K based on
 | |
| 			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
 | |
| 			 */
 | |
| 			ca->bic_K = cubic_root(cube_factor
 | |
| 					       * (ca->last_max_cwnd - cwnd));
 | |
| 			ca->bic_origin_point = ca->last_max_cwnd;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* cubic function - calc*/
 | |
| 	/* calculate c * time^3 / rtt,
 | |
| 	 *  while considering overflow in calculation of time^3
 | |
| 	 * (so time^3 is done by using 64 bit)
 | |
| 	 * and without the support of division of 64bit numbers
 | |
| 	 * (so all divisions are done by using 32 bit)
 | |
| 	 *  also NOTE the unit of those veriables
 | |
| 	 *	  time  = (t - K) / 2^bictcp_HZ
 | |
| 	 *	  c = bic_scale >> 10
 | |
| 	 * rtt  = (srtt >> 3) / HZ
 | |
| 	 * !!! The following code does not have overflow problems,
 | |
| 	 * if the cwnd < 1 million packets !!!
 | |
| 	 */
 | |
| 
 | |
| 	/* change the unit from HZ to bictcp_HZ */
 | |
| 	t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
 | |
| 	     << BICTCP_HZ) / HZ;
 | |
| 
 | |
| 	if (t < ca->bic_K)		/* t - K */
 | |
| 		offs = ca->bic_K - t;
 | |
| 	else
 | |
| 		offs = t - ca->bic_K;
 | |
| 
 | |
| 	/* c/rtt * (t-K)^3 */
 | |
| 	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
 | |
| 	if (t < ca->bic_K)                                	/* below origin*/
 | |
| 		bic_target = ca->bic_origin_point - delta;
 | |
| 	else                                                	/* above origin*/
 | |
| 		bic_target = ca->bic_origin_point + delta;
 | |
| 
 | |
| 	/* cubic function - calc bictcp_cnt*/
 | |
| 	if (bic_target > cwnd) {
 | |
| 		ca->cnt = cwnd / (bic_target - cwnd);
 | |
| 	} else {
 | |
| 		ca->cnt = 100 * cwnd;              /* very small increment*/
 | |
| 	}
 | |
| 
 | |
| 	if (ca->delay_min > 0) {
 | |
| 		/* max increment = Smax * rtt / 0.1  */
 | |
| 		min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
 | |
| 		if (ca->cnt < min_cnt)
 | |
| 			ca->cnt = min_cnt;
 | |
| 	}
 | |
| 
 | |
| 	/* slow start and low utilization  */
 | |
| 	if (ca->loss_cwnd == 0)		/* could be aggressive in slow start */
 | |
| 		ca->cnt = 50;
 | |
| 
 | |
| 	/* TCP Friendly */
 | |
| 	if (tcp_friendliness) {
 | |
| 		u32 scale = beta_scale;
 | |
| 		delta = (cwnd * scale) >> 3;
 | |
| 		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
 | |
| 			ca->ack_cnt -= delta;
 | |
| 			ca->tcp_cwnd++;
 | |
| 		}
 | |
| 
 | |
| 		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
 | |
| 			delta = ca->tcp_cwnd - cwnd;
 | |
| 			max_cnt = cwnd / delta;
 | |
| 			if (ca->cnt > max_cnt)
 | |
| 				ca->cnt = max_cnt;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
 | |
| 	if (ca->cnt == 0)			/* cannot be zero */
 | |
| 		ca->cnt = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Keep track of minimum rtt */
 | |
| static inline void measure_delay(struct sock *sk)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct bictcp *ca = inet_csk_ca(sk);
 | |
| 	u32 delay;
 | |
| 
 | |
| 	/* No time stamp */
 | |
| 	if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
 | |
| 	     /* Discard delay samples right after fast recovery */
 | |
| 	    (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
 | |
| 		return;
 | |
| 
 | |
| 	delay = (tcp_time_stamp - tp->rx_opt.rcv_tsecr)<<3;
 | |
| 	if (delay == 0)
 | |
| 		delay = 1;
 | |
| 
 | |
| 	/* first time call or link delay decreases */
 | |
| 	if (ca->delay_min == 0 || ca->delay_min > delay)
 | |
| 		ca->delay_min = delay;
 | |
| }
 | |
| 
 | |
| static void bictcp_cong_avoid(struct sock *sk, u32 ack,
 | |
| 			      u32 seq_rtt, u32 in_flight, int data_acked)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct bictcp *ca = inet_csk_ca(sk);
 | |
| 
 | |
| 	if (data_acked)
 | |
| 		measure_delay(sk);
 | |
| 
 | |
| 	if (!tcp_is_cwnd_limited(sk, in_flight))
 | |
| 		return;
 | |
| 
 | |
| 	if (tp->snd_cwnd <= tp->snd_ssthresh)
 | |
| 		tcp_slow_start(tp);
 | |
| 	else {
 | |
| 		bictcp_update(ca, tp->snd_cwnd);
 | |
| 
 | |
| 		/* In dangerous area, increase slowly.
 | |
| 		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
 | |
| 		 */
 | |
| 		if (tp->snd_cwnd_cnt >= ca->cnt) {
 | |
| 			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
 | |
| 				tp->snd_cwnd++;
 | |
| 			tp->snd_cwnd_cnt = 0;
 | |
| 		} else
 | |
| 			tp->snd_cwnd_cnt++;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static u32 bictcp_recalc_ssthresh(struct sock *sk)
 | |
| {
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct bictcp *ca = inet_csk_ca(sk);
 | |
| 
 | |
| 	ca->epoch_start = 0;	/* end of epoch */
 | |
| 
 | |
| 	/* Wmax and fast convergence */
 | |
| 	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
 | |
| 		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
 | |
| 			/ (2 * BICTCP_BETA_SCALE);
 | |
| 	else
 | |
| 		ca->last_max_cwnd = tp->snd_cwnd;
 | |
| 
 | |
| 	ca->loss_cwnd = tp->snd_cwnd;
 | |
| 
 | |
| 	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
 | |
| }
 | |
| 
 | |
| static u32 bictcp_undo_cwnd(struct sock *sk)
 | |
| {
 | |
| 	struct bictcp *ca = inet_csk_ca(sk);
 | |
| 
 | |
| 	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
 | |
| }
 | |
| 
 | |
| static void bictcp_state(struct sock *sk, u8 new_state)
 | |
| {
 | |
| 	if (new_state == TCP_CA_Loss)
 | |
| 		bictcp_reset(inet_csk_ca(sk));
 | |
| }
 | |
| 
 | |
| /* Track delayed acknowledgment ratio using sliding window
 | |
|  * ratio = (15*ratio + sample) / 16
 | |
|  */
 | |
| static void bictcp_acked(struct sock *sk, u32 cnt)
 | |
| {
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 
 | |
| 	if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
 | |
| 		struct bictcp *ca = inet_csk_ca(sk);
 | |
| 		cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
 | |
| 		ca->delayed_ack += cnt;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct tcp_congestion_ops cubictcp = {
 | |
| 	.init		= bictcp_init,
 | |
| 	.ssthresh	= bictcp_recalc_ssthresh,
 | |
| 	.cong_avoid	= bictcp_cong_avoid,
 | |
| 	.set_state	= bictcp_state,
 | |
| 	.undo_cwnd	= bictcp_undo_cwnd,
 | |
| 	.pkts_acked     = bictcp_acked,
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.name		= "cubic",
 | |
| };
 | |
| 
 | |
| static int __init cubictcp_register(void)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
 | |
| 
 | |
| 	/* Precompute a bunch of the scaling factors that are used per-packet
 | |
| 	 * based on SRTT of 100ms
 | |
| 	 */
 | |
| 
 | |
| 	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
 | |
| 
 | |
| 	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
 | |
| 
 | |
| 	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
 | |
| 	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
 | |
| 	 * the unit of K is bictcp_HZ=2^10, not HZ
 | |
| 	 *
 | |
| 	 *  c = bic_scale >> 10
 | |
| 	 *  rtt = 100ms
 | |
| 	 *
 | |
| 	 * the following code has been designed and tested for
 | |
| 	 * cwnd < 1 million packets
 | |
| 	 * RTT < 100 seconds
 | |
| 	 * HZ < 1,000,00  (corresponding to 10 nano-second)
 | |
| 	 */
 | |
| 
 | |
| 	/* 1/c * 2^2*bictcp_HZ * srtt */
 | |
| 	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
 | |
| 
 | |
| 	/* divide by bic_scale and by constant Srtt (100ms) */
 | |
| 	do_div(cube_factor, bic_scale * 10);
 | |
| 
 | |
| 	return tcp_register_congestion_control(&cubictcp);
 | |
| }
 | |
| 
 | |
| static void __exit cubictcp_unregister(void)
 | |
| {
 | |
| 	tcp_unregister_congestion_control(&cubictcp);
 | |
| }
 | |
| 
 | |
| module_init(cubictcp_register);
 | |
| module_exit(cubictcp_unregister);
 | |
| 
 | |
| MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("CUBIC TCP");
 | |
| MODULE_VERSION("2.0");
 |