mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 12:39:23 +00:00 
			
		
		
		
	 642656518b
			
		
	
	
		642656518b
		
	
	
	
	
		
			
			Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			300 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Host AP crypt: host-based WEP encryption implementation for Host AP driver
 | |
|  *
 | |
|  * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation. See README and COPYING for
 | |
|  * more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/mm.h>
 | |
| #include <asm/string.h>
 | |
| 
 | |
| #include <net/ieee80211.h>
 | |
| 
 | |
| #include <linux/crypto.h>
 | |
| #include <asm/scatterlist.h>
 | |
| #include <linux/crc32.h>
 | |
| 
 | |
| MODULE_AUTHOR("Jouni Malinen");
 | |
| MODULE_DESCRIPTION("Host AP crypt: WEP");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| struct prism2_wep_data {
 | |
| 	u32 iv;
 | |
| #define WEP_KEY_LEN 13
 | |
| 	u8 key[WEP_KEY_LEN + 1];
 | |
| 	u8 key_len;
 | |
| 	u8 key_idx;
 | |
| 	struct crypto_blkcipher *tx_tfm;
 | |
| 	struct crypto_blkcipher *rx_tfm;
 | |
| };
 | |
| 
 | |
| static void *prism2_wep_init(int keyidx)
 | |
| {
 | |
| 	struct prism2_wep_data *priv;
 | |
| 
 | |
| 	priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
 | |
| 	if (priv == NULL)
 | |
| 		goto fail;
 | |
| 	priv->key_idx = keyidx;
 | |
| 
 | |
| 	priv->tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(priv->tx_tfm)) {
 | |
| 		printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
 | |
| 		       "crypto API arc4\n");
 | |
| 		priv->tx_tfm = NULL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	priv->rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
 | |
| 	if (IS_ERR(priv->rx_tfm)) {
 | |
| 		printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
 | |
| 		       "crypto API arc4\n");
 | |
| 		priv->rx_tfm = NULL;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	/* start WEP IV from a random value */
 | |
| 	get_random_bytes(&priv->iv, 4);
 | |
| 
 | |
| 	return priv;
 | |
| 
 | |
|       fail:
 | |
| 	if (priv) {
 | |
| 		if (priv->tx_tfm)
 | |
| 			crypto_free_blkcipher(priv->tx_tfm);
 | |
| 		if (priv->rx_tfm)
 | |
| 			crypto_free_blkcipher(priv->rx_tfm);
 | |
| 		kfree(priv);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void prism2_wep_deinit(void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *_priv = priv;
 | |
| 	if (_priv) {
 | |
| 		if (_priv->tx_tfm)
 | |
| 			crypto_free_blkcipher(_priv->tx_tfm);
 | |
| 		if (_priv->rx_tfm)
 | |
| 			crypto_free_blkcipher(_priv->rx_tfm);
 | |
| 	}
 | |
| 	kfree(priv);
 | |
| }
 | |
| 
 | |
| /* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */
 | |
| static int prism2_wep_build_iv(struct sk_buff *skb, int hdr_len,
 | |
| 			       u8 *key, int keylen, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 	u32 klen, len;
 | |
| 	u8 *pos;
 | |
| 
 | |
| 	if (skb_headroom(skb) < 4 || skb->len < hdr_len)
 | |
| 		return -1;
 | |
| 
 | |
| 	len = skb->len - hdr_len;
 | |
| 	pos = skb_push(skb, 4);
 | |
| 	memmove(pos, pos + 4, hdr_len);
 | |
| 	pos += hdr_len;
 | |
| 
 | |
| 	klen = 3 + wep->key_len;
 | |
| 
 | |
| 	wep->iv++;
 | |
| 
 | |
| 	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
 | |
| 	 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
 | |
| 	 * can be used to speedup attacks, so avoid using them. */
 | |
| 	if ((wep->iv & 0xff00) == 0xff00) {
 | |
| 		u8 B = (wep->iv >> 16) & 0xff;
 | |
| 		if (B >= 3 && B < klen)
 | |
| 			wep->iv += 0x0100;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepend 24-bit IV to RC4 key and TX frame */
 | |
| 	*pos++ = (wep->iv >> 16) & 0xff;
 | |
| 	*pos++ = (wep->iv >> 8) & 0xff;
 | |
| 	*pos++ = wep->iv & 0xff;
 | |
| 	*pos++ = wep->key_idx << 6;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
 | |
|  * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
 | |
|  * so the payload length increases with 8 bytes.
 | |
|  *
 | |
|  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
 | |
|  */
 | |
| static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 	struct blkcipher_desc desc = { .tfm = wep->tx_tfm };
 | |
| 	u32 crc, klen, len;
 | |
| 	u8 *pos, *icv;
 | |
| 	struct scatterlist sg;
 | |
| 	u8 key[WEP_KEY_LEN + 3];
 | |
| 
 | |
| 	/* other checks are in prism2_wep_build_iv */
 | |
| 	if (skb_tailroom(skb) < 4)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* add the IV to the frame */
 | |
| 	if (prism2_wep_build_iv(skb, hdr_len, NULL, 0, priv))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Copy the IV into the first 3 bytes of the key */
 | |
| 	memcpy(key, skb->data + hdr_len, 3);
 | |
| 
 | |
| 	/* Copy rest of the WEP key (the secret part) */
 | |
| 	memcpy(key + 3, wep->key, wep->key_len);
 | |
| 
 | |
| 	len = skb->len - hdr_len - 4;
 | |
| 	pos = skb->data + hdr_len + 4;
 | |
| 	klen = 3 + wep->key_len;
 | |
| 
 | |
| 	/* Append little-endian CRC32 over only the data and encrypt it to produce ICV */
 | |
| 	crc = ~crc32_le(~0, pos, len);
 | |
| 	icv = skb_put(skb, 4);
 | |
| 	icv[0] = crc;
 | |
| 	icv[1] = crc >> 8;
 | |
| 	icv[2] = crc >> 16;
 | |
| 	icv[3] = crc >> 24;
 | |
| 
 | |
| 	crypto_blkcipher_setkey(wep->tx_tfm, key, klen);
 | |
| 	sg.page = virt_to_page(pos);
 | |
| 	sg.offset = offset_in_page(pos);
 | |
| 	sg.length = len + 4;
 | |
| 	return crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
 | |
| }
 | |
| 
 | |
| /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
 | |
|  * the frame: IV (4 bytes), encrypted payload (including SNAP header),
 | |
|  * ICV (4 bytes). len includes both IV and ICV.
 | |
|  *
 | |
|  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
 | |
|  * failure. If frame is OK, IV and ICV will be removed.
 | |
|  */
 | |
| static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 	struct blkcipher_desc desc = { .tfm = wep->rx_tfm };
 | |
| 	u32 crc, klen, plen;
 | |
| 	u8 key[WEP_KEY_LEN + 3];
 | |
| 	u8 keyidx, *pos, icv[4];
 | |
| 	struct scatterlist sg;
 | |
| 
 | |
| 	if (skb->len < hdr_len + 8)
 | |
| 		return -1;
 | |
| 
 | |
| 	pos = skb->data + hdr_len;
 | |
| 	key[0] = *pos++;
 | |
| 	key[1] = *pos++;
 | |
| 	key[2] = *pos++;
 | |
| 	keyidx = *pos++ >> 6;
 | |
| 	if (keyidx != wep->key_idx)
 | |
| 		return -1;
 | |
| 
 | |
| 	klen = 3 + wep->key_len;
 | |
| 
 | |
| 	/* Copy rest of the WEP key (the secret part) */
 | |
| 	memcpy(key + 3, wep->key, wep->key_len);
 | |
| 
 | |
| 	/* Apply RC4 to data and compute CRC32 over decrypted data */
 | |
| 	plen = skb->len - hdr_len - 8;
 | |
| 
 | |
| 	crypto_blkcipher_setkey(wep->rx_tfm, key, klen);
 | |
| 	sg.page = virt_to_page(pos);
 | |
| 	sg.offset = offset_in_page(pos);
 | |
| 	sg.length = plen + 4;
 | |
| 	if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4))
 | |
| 		return -7;
 | |
| 
 | |
| 	crc = ~crc32_le(~0, pos, plen);
 | |
| 	icv[0] = crc;
 | |
| 	icv[1] = crc >> 8;
 | |
| 	icv[2] = crc >> 16;
 | |
| 	icv[3] = crc >> 24;
 | |
| 	if (memcmp(icv, pos + plen, 4) != 0) {
 | |
| 		/* ICV mismatch - drop frame */
 | |
| 		return -2;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove IV and ICV */
 | |
| 	memmove(skb->data + 4, skb->data, hdr_len);
 | |
| 	skb_pull(skb, 4);
 | |
| 	skb_trim(skb, skb->len - 4);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prism2_wep_set_key(void *key, int len, u8 * seq, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 
 | |
| 	if (len < 0 || len > WEP_KEY_LEN)
 | |
| 		return -1;
 | |
| 
 | |
| 	memcpy(wep->key, key, len);
 | |
| 	wep->key_len = len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int prism2_wep_get_key(void *key, int len, u8 * seq, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 
 | |
| 	if (len < wep->key_len)
 | |
| 		return -1;
 | |
| 
 | |
| 	memcpy(key, wep->key, wep->key_len);
 | |
| 
 | |
| 	return wep->key_len;
 | |
| }
 | |
| 
 | |
| static char *prism2_wep_print_stats(char *p, void *priv)
 | |
| {
 | |
| 	struct prism2_wep_data *wep = priv;
 | |
| 	p += sprintf(p, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
 | |
| 	.name = "WEP",
 | |
| 	.init = prism2_wep_init,
 | |
| 	.deinit = prism2_wep_deinit,
 | |
| 	.build_iv = prism2_wep_build_iv,
 | |
| 	.encrypt_mpdu = prism2_wep_encrypt,
 | |
| 	.decrypt_mpdu = prism2_wep_decrypt,
 | |
| 	.encrypt_msdu = NULL,
 | |
| 	.decrypt_msdu = NULL,
 | |
| 	.set_key = prism2_wep_set_key,
 | |
| 	.get_key = prism2_wep_get_key,
 | |
| 	.print_stats = prism2_wep_print_stats,
 | |
| 	.extra_mpdu_prefix_len = 4,	/* IV */
 | |
| 	.extra_mpdu_postfix_len = 4,	/* ICV */
 | |
| 	.owner = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init ieee80211_crypto_wep_init(void)
 | |
| {
 | |
| 	return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
 | |
| }
 | |
| 
 | |
| static void __exit ieee80211_crypto_wep_exit(void)
 | |
| {
 | |
| 	ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
 | |
| }
 | |
| 
 | |
| module_init(ieee80211_crypto_wep_init);
 | |
| module_exit(ieee80211_crypto_wep_exit);
 |