mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 07:02:06 +00:00 
			
		
		
		
	 41487c65bf
			
		
	
	
		41487c65bf
		
	
	
	
	
		
			
			There isn't any real advantage to this change except that it allows the old functions to be removed. Which is easier on maintenance and puts the code in a more uniform style. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2211 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2211 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | ||
|  *  linux/kernel/sys.c
 | ||
|  *
 | ||
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | ||
|  */
 | ||
| 
 | ||
| #include <linux/module.h>
 | ||
| #include <linux/mm.h>
 | ||
| #include <linux/utsname.h>
 | ||
| #include <linux/mman.h>
 | ||
| #include <linux/smp_lock.h>
 | ||
| #include <linux/notifier.h>
 | ||
| #include <linux/reboot.h>
 | ||
| #include <linux/prctl.h>
 | ||
| #include <linux/highuid.h>
 | ||
| #include <linux/fs.h>
 | ||
| #include <linux/kernel.h>
 | ||
| #include <linux/kexec.h>
 | ||
| #include <linux/workqueue.h>
 | ||
| #include <linux/capability.h>
 | ||
| #include <linux/device.h>
 | ||
| #include <linux/key.h>
 | ||
| #include <linux/times.h>
 | ||
| #include <linux/posix-timers.h>
 | ||
| #include <linux/security.h>
 | ||
| #include <linux/dcookies.h>
 | ||
| #include <linux/suspend.h>
 | ||
| #include <linux/tty.h>
 | ||
| #include <linux/signal.h>
 | ||
| #include <linux/cn_proc.h>
 | ||
| #include <linux/getcpu.h>
 | ||
| 
 | ||
| #include <linux/compat.h>
 | ||
| #include <linux/syscalls.h>
 | ||
| #include <linux/kprobes.h>
 | ||
| 
 | ||
| #include <asm/uaccess.h>
 | ||
| #include <asm/io.h>
 | ||
| #include <asm/unistd.h>
 | ||
| 
 | ||
| #ifndef SET_UNALIGN_CTL
 | ||
| # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef GET_UNALIGN_CTL
 | ||
| # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef SET_FPEMU_CTL
 | ||
| # define SET_FPEMU_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef GET_FPEMU_CTL
 | ||
| # define GET_FPEMU_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef SET_FPEXC_CTL
 | ||
| # define SET_FPEXC_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef GET_FPEXC_CTL
 | ||
| # define GET_FPEXC_CTL(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef GET_ENDIAN
 | ||
| # define GET_ENDIAN(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| #ifndef SET_ENDIAN
 | ||
| # define SET_ENDIAN(a,b)	(-EINVAL)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * this is where the system-wide overflow UID and GID are defined, for
 | ||
|  * architectures that now have 32-bit UID/GID but didn't in the past
 | ||
|  */
 | ||
| 
 | ||
| int overflowuid = DEFAULT_OVERFLOWUID;
 | ||
| int overflowgid = DEFAULT_OVERFLOWGID;
 | ||
| 
 | ||
| #ifdef CONFIG_UID16
 | ||
| EXPORT_SYMBOL(overflowuid);
 | ||
| EXPORT_SYMBOL(overflowgid);
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * the same as above, but for filesystems which can only store a 16-bit
 | ||
|  * UID and GID. as such, this is needed on all architectures
 | ||
|  */
 | ||
| 
 | ||
| int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 | ||
| int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 | ||
| 
 | ||
| EXPORT_SYMBOL(fs_overflowuid);
 | ||
| EXPORT_SYMBOL(fs_overflowgid);
 | ||
| 
 | ||
| /*
 | ||
|  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 | ||
|  */
 | ||
| 
 | ||
| int C_A_D = 1;
 | ||
| struct pid *cad_pid;
 | ||
| EXPORT_SYMBOL(cad_pid);
 | ||
| 
 | ||
| /*
 | ||
|  *	Notifier list for kernel code which wants to be called
 | ||
|  *	at shutdown. This is used to stop any idling DMA operations
 | ||
|  *	and the like. 
 | ||
|  */
 | ||
| 
 | ||
| static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
 | ||
| 
 | ||
| /*
 | ||
|  *	Notifier chain core routines.  The exported routines below
 | ||
|  *	are layered on top of these, with appropriate locking added.
 | ||
|  */
 | ||
| 
 | ||
| static int notifier_chain_register(struct notifier_block **nl,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	while ((*nl) != NULL) {
 | ||
| 		if (n->priority > (*nl)->priority)
 | ||
| 			break;
 | ||
| 		nl = &((*nl)->next);
 | ||
| 	}
 | ||
| 	n->next = *nl;
 | ||
| 	rcu_assign_pointer(*nl, n);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static int notifier_chain_unregister(struct notifier_block **nl,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	while ((*nl) != NULL) {
 | ||
| 		if ((*nl) == n) {
 | ||
| 			rcu_assign_pointer(*nl, n->next);
 | ||
| 			return 0;
 | ||
| 		}
 | ||
| 		nl = &((*nl)->next);
 | ||
| 	}
 | ||
| 	return -ENOENT;
 | ||
| }
 | ||
| 
 | ||
| static int __kprobes notifier_call_chain(struct notifier_block **nl,
 | ||
| 		unsigned long val, void *v)
 | ||
| {
 | ||
| 	int ret = NOTIFY_DONE;
 | ||
| 	struct notifier_block *nb, *next_nb;
 | ||
| 
 | ||
| 	nb = rcu_dereference(*nl);
 | ||
| 	while (nb) {
 | ||
| 		next_nb = rcu_dereference(nb->next);
 | ||
| 		ret = nb->notifier_call(nb, val, v);
 | ||
| 		if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
 | ||
| 			break;
 | ||
| 		nb = next_nb;
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  *	Atomic notifier chain routines.  Registration and unregistration
 | ||
|  *	use a spinlock, and call_chain is synchronized by RCU (no locks).
 | ||
|  */
 | ||
| 
 | ||
| /**
 | ||
|  *	atomic_notifier_chain_register - Add notifier to an atomic notifier chain
 | ||
|  *	@nh: Pointer to head of the atomic notifier chain
 | ||
|  *	@n: New entry in notifier chain
 | ||
|  *
 | ||
|  *	Adds a notifier to an atomic notifier chain.
 | ||
|  *
 | ||
|  *	Currently always returns zero.
 | ||
|  */
 | ||
| 
 | ||
| int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	spin_lock_irqsave(&nh->lock, flags);
 | ||
| 	ret = notifier_chain_register(&nh->head, n);
 | ||
| 	spin_unlock_irqrestore(&nh->lock, flags);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
 | ||
| 
 | ||
| /**
 | ||
|  *	atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
 | ||
|  *	@nh: Pointer to head of the atomic notifier chain
 | ||
|  *	@n: Entry to remove from notifier chain
 | ||
|  *
 | ||
|  *	Removes a notifier from an atomic notifier chain.
 | ||
|  *
 | ||
|  *	Returns zero on success or %-ENOENT on failure.
 | ||
|  */
 | ||
| int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	unsigned long flags;
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	spin_lock_irqsave(&nh->lock, flags);
 | ||
| 	ret = notifier_chain_unregister(&nh->head, n);
 | ||
| 	spin_unlock_irqrestore(&nh->lock, flags);
 | ||
| 	synchronize_rcu();
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
 | ||
| 
 | ||
| /**
 | ||
|  *	atomic_notifier_call_chain - Call functions in an atomic notifier chain
 | ||
|  *	@nh: Pointer to head of the atomic notifier chain
 | ||
|  *	@val: Value passed unmodified to notifier function
 | ||
|  *	@v: Pointer passed unmodified to notifier function
 | ||
|  *
 | ||
|  *	Calls each function in a notifier chain in turn.  The functions
 | ||
|  *	run in an atomic context, so they must not block.
 | ||
|  *	This routine uses RCU to synchronize with changes to the chain.
 | ||
|  *
 | ||
|  *	If the return value of the notifier can be and'ed
 | ||
|  *	with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
 | ||
|  *	will return immediately, with the return value of
 | ||
|  *	the notifier function which halted execution.
 | ||
|  *	Otherwise the return value is the return value
 | ||
|  *	of the last notifier function called.
 | ||
|  */
 | ||
|  
 | ||
| int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
 | ||
| 		unsigned long val, void *v)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 	ret = notifier_call_chain(&nh->head, val, v);
 | ||
| 	rcu_read_unlock();
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
 | ||
| 
 | ||
| /*
 | ||
|  *	Blocking notifier chain routines.  All access to the chain is
 | ||
|  *	synchronized by an rwsem.
 | ||
|  */
 | ||
| 
 | ||
| /**
 | ||
|  *	blocking_notifier_chain_register - Add notifier to a blocking notifier chain
 | ||
|  *	@nh: Pointer to head of the blocking notifier chain
 | ||
|  *	@n: New entry in notifier chain
 | ||
|  *
 | ||
|  *	Adds a notifier to a blocking notifier chain.
 | ||
|  *	Must be called in process context.
 | ||
|  *
 | ||
|  *	Currently always returns zero.
 | ||
|  */
 | ||
|  
 | ||
| int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This code gets used during boot-up, when task switching is
 | ||
| 	 * not yet working and interrupts must remain disabled.  At
 | ||
| 	 * such times we must not call down_write().
 | ||
| 	 */
 | ||
| 	if (unlikely(system_state == SYSTEM_BOOTING))
 | ||
| 		return notifier_chain_register(&nh->head, n);
 | ||
| 
 | ||
| 	down_write(&nh->rwsem);
 | ||
| 	ret = notifier_chain_register(&nh->head, n);
 | ||
| 	up_write(&nh->rwsem);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
 | ||
| 
 | ||
| /**
 | ||
|  *	blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
 | ||
|  *	@nh: Pointer to head of the blocking notifier chain
 | ||
|  *	@n: Entry to remove from notifier chain
 | ||
|  *
 | ||
|  *	Removes a notifier from a blocking notifier chain.
 | ||
|  *	Must be called from process context.
 | ||
|  *
 | ||
|  *	Returns zero on success or %-ENOENT on failure.
 | ||
|  */
 | ||
| int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This code gets used during boot-up, when task switching is
 | ||
| 	 * not yet working and interrupts must remain disabled.  At
 | ||
| 	 * such times we must not call down_write().
 | ||
| 	 */
 | ||
| 	if (unlikely(system_state == SYSTEM_BOOTING))
 | ||
| 		return notifier_chain_unregister(&nh->head, n);
 | ||
| 
 | ||
| 	down_write(&nh->rwsem);
 | ||
| 	ret = notifier_chain_unregister(&nh->head, n);
 | ||
| 	up_write(&nh->rwsem);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
 | ||
| 
 | ||
| /**
 | ||
|  *	blocking_notifier_call_chain - Call functions in a blocking notifier chain
 | ||
|  *	@nh: Pointer to head of the blocking notifier chain
 | ||
|  *	@val: Value passed unmodified to notifier function
 | ||
|  *	@v: Pointer passed unmodified to notifier function
 | ||
|  *
 | ||
|  *	Calls each function in a notifier chain in turn.  The functions
 | ||
|  *	run in a process context, so they are allowed to block.
 | ||
|  *
 | ||
|  *	If the return value of the notifier can be and'ed
 | ||
|  *	with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
 | ||
|  *	will return immediately, with the return value of
 | ||
|  *	the notifier function which halted execution.
 | ||
|  *	Otherwise the return value is the return value
 | ||
|  *	of the last notifier function called.
 | ||
|  */
 | ||
|  
 | ||
| int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
 | ||
| 		unsigned long val, void *v)
 | ||
| {
 | ||
| 	int ret = NOTIFY_DONE;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We check the head outside the lock, but if this access is
 | ||
| 	 * racy then it does not matter what the result of the test
 | ||
| 	 * is, we re-check the list after having taken the lock anyway:
 | ||
| 	 */
 | ||
| 	if (rcu_dereference(nh->head)) {
 | ||
| 		down_read(&nh->rwsem);
 | ||
| 		ret = notifier_call_chain(&nh->head, val, v);
 | ||
| 		up_read(&nh->rwsem);
 | ||
| 	}
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
 | ||
| 
 | ||
| /*
 | ||
|  *	Raw notifier chain routines.  There is no protection;
 | ||
|  *	the caller must provide it.  Use at your own risk!
 | ||
|  */
 | ||
| 
 | ||
| /**
 | ||
|  *	raw_notifier_chain_register - Add notifier to a raw notifier chain
 | ||
|  *	@nh: Pointer to head of the raw notifier chain
 | ||
|  *	@n: New entry in notifier chain
 | ||
|  *
 | ||
|  *	Adds a notifier to a raw notifier chain.
 | ||
|  *	All locking must be provided by the caller.
 | ||
|  *
 | ||
|  *	Currently always returns zero.
 | ||
|  */
 | ||
| 
 | ||
| int raw_notifier_chain_register(struct raw_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	return notifier_chain_register(&nh->head, n);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
 | ||
| 
 | ||
| /**
 | ||
|  *	raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
 | ||
|  *	@nh: Pointer to head of the raw notifier chain
 | ||
|  *	@n: Entry to remove from notifier chain
 | ||
|  *
 | ||
|  *	Removes a notifier from a raw notifier chain.
 | ||
|  *	All locking must be provided by the caller.
 | ||
|  *
 | ||
|  *	Returns zero on success or %-ENOENT on failure.
 | ||
|  */
 | ||
| int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	return notifier_chain_unregister(&nh->head, n);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
 | ||
| 
 | ||
| /**
 | ||
|  *	raw_notifier_call_chain - Call functions in a raw notifier chain
 | ||
|  *	@nh: Pointer to head of the raw notifier chain
 | ||
|  *	@val: Value passed unmodified to notifier function
 | ||
|  *	@v: Pointer passed unmodified to notifier function
 | ||
|  *
 | ||
|  *	Calls each function in a notifier chain in turn.  The functions
 | ||
|  *	run in an undefined context.
 | ||
|  *	All locking must be provided by the caller.
 | ||
|  *
 | ||
|  *	If the return value of the notifier can be and'ed
 | ||
|  *	with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
 | ||
|  *	will return immediately, with the return value of
 | ||
|  *	the notifier function which halted execution.
 | ||
|  *	Otherwise the return value is the return value
 | ||
|  *	of the last notifier function called.
 | ||
|  */
 | ||
| 
 | ||
| int raw_notifier_call_chain(struct raw_notifier_head *nh,
 | ||
| 		unsigned long val, void *v)
 | ||
| {
 | ||
| 	return notifier_call_chain(&nh->head, val, v);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
 | ||
| 
 | ||
| /*
 | ||
|  *	SRCU notifier chain routines.    Registration and unregistration
 | ||
|  *	use a mutex, and call_chain is synchronized by SRCU (no locks).
 | ||
|  */
 | ||
| 
 | ||
| /**
 | ||
|  *	srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
 | ||
|  *	@nh: Pointer to head of the SRCU notifier chain
 | ||
|  *	@n: New entry in notifier chain
 | ||
|  *
 | ||
|  *	Adds a notifier to an SRCU notifier chain.
 | ||
|  *	Must be called in process context.
 | ||
|  *
 | ||
|  *	Currently always returns zero.
 | ||
|  */
 | ||
| 
 | ||
| int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This code gets used during boot-up, when task switching is
 | ||
| 	 * not yet working and interrupts must remain disabled.  At
 | ||
| 	 * such times we must not call mutex_lock().
 | ||
| 	 */
 | ||
| 	if (unlikely(system_state == SYSTEM_BOOTING))
 | ||
| 		return notifier_chain_register(&nh->head, n);
 | ||
| 
 | ||
| 	mutex_lock(&nh->mutex);
 | ||
| 	ret = notifier_chain_register(&nh->head, n);
 | ||
| 	mutex_unlock(&nh->mutex);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
 | ||
| 
 | ||
| /**
 | ||
|  *	srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
 | ||
|  *	@nh: Pointer to head of the SRCU notifier chain
 | ||
|  *	@n: Entry to remove from notifier chain
 | ||
|  *
 | ||
|  *	Removes a notifier from an SRCU notifier chain.
 | ||
|  *	Must be called from process context.
 | ||
|  *
 | ||
|  *	Returns zero on success or %-ENOENT on failure.
 | ||
|  */
 | ||
| int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
 | ||
| 		struct notifier_block *n)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * This code gets used during boot-up, when task switching is
 | ||
| 	 * not yet working and interrupts must remain disabled.  At
 | ||
| 	 * such times we must not call mutex_lock().
 | ||
| 	 */
 | ||
| 	if (unlikely(system_state == SYSTEM_BOOTING))
 | ||
| 		return notifier_chain_unregister(&nh->head, n);
 | ||
| 
 | ||
| 	mutex_lock(&nh->mutex);
 | ||
| 	ret = notifier_chain_unregister(&nh->head, n);
 | ||
| 	mutex_unlock(&nh->mutex);
 | ||
| 	synchronize_srcu(&nh->srcu);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
 | ||
| 
 | ||
| /**
 | ||
|  *	srcu_notifier_call_chain - Call functions in an SRCU notifier chain
 | ||
|  *	@nh: Pointer to head of the SRCU notifier chain
 | ||
|  *	@val: Value passed unmodified to notifier function
 | ||
|  *	@v: Pointer passed unmodified to notifier function
 | ||
|  *
 | ||
|  *	Calls each function in a notifier chain in turn.  The functions
 | ||
|  *	run in a process context, so they are allowed to block.
 | ||
|  *
 | ||
|  *	If the return value of the notifier can be and'ed
 | ||
|  *	with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
 | ||
|  *	will return immediately, with the return value of
 | ||
|  *	the notifier function which halted execution.
 | ||
|  *	Otherwise the return value is the return value
 | ||
|  *	of the last notifier function called.
 | ||
|  */
 | ||
| 
 | ||
| int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
 | ||
| 		unsigned long val, void *v)
 | ||
| {
 | ||
| 	int ret;
 | ||
| 	int idx;
 | ||
| 
 | ||
| 	idx = srcu_read_lock(&nh->srcu);
 | ||
| 	ret = notifier_call_chain(&nh->head, val, v);
 | ||
| 	srcu_read_unlock(&nh->srcu, idx);
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
 | ||
| 
 | ||
| /**
 | ||
|  *	srcu_init_notifier_head - Initialize an SRCU notifier head
 | ||
|  *	@nh: Pointer to head of the srcu notifier chain
 | ||
|  *
 | ||
|  *	Unlike other sorts of notifier heads, SRCU notifier heads require
 | ||
|  *	dynamic initialization.  Be sure to call this routine before
 | ||
|  *	calling any of the other SRCU notifier routines for this head.
 | ||
|  *
 | ||
|  *	If an SRCU notifier head is deallocated, it must first be cleaned
 | ||
|  *	up by calling srcu_cleanup_notifier_head().  Otherwise the head's
 | ||
|  *	per-cpu data (used by the SRCU mechanism) will leak.
 | ||
|  */
 | ||
| 
 | ||
| void srcu_init_notifier_head(struct srcu_notifier_head *nh)
 | ||
| {
 | ||
| 	mutex_init(&nh->mutex);
 | ||
| 	if (init_srcu_struct(&nh->srcu) < 0)
 | ||
| 		BUG();
 | ||
| 	nh->head = NULL;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
 | ||
| 
 | ||
| /**
 | ||
|  *	register_reboot_notifier - Register function to be called at reboot time
 | ||
|  *	@nb: Info about notifier function to be called
 | ||
|  *
 | ||
|  *	Registers a function with the list of functions
 | ||
|  *	to be called at reboot time.
 | ||
|  *
 | ||
|  *	Currently always returns zero, as blocking_notifier_chain_register()
 | ||
|  *	always returns zero.
 | ||
|  */
 | ||
|  
 | ||
| int register_reboot_notifier(struct notifier_block * nb)
 | ||
| {
 | ||
| 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(register_reboot_notifier);
 | ||
| 
 | ||
| /**
 | ||
|  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
 | ||
|  *	@nb: Hook to be unregistered
 | ||
|  *
 | ||
|  *	Unregisters a previously registered reboot
 | ||
|  *	notifier function.
 | ||
|  *
 | ||
|  *	Returns zero on success, or %-ENOENT on failure.
 | ||
|  */
 | ||
|  
 | ||
| int unregister_reboot_notifier(struct notifier_block * nb)
 | ||
| {
 | ||
| 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(unregister_reboot_notifier);
 | ||
| 
 | ||
| static int set_one_prio(struct task_struct *p, int niceval, int error)
 | ||
| {
 | ||
| 	int no_nice;
 | ||
| 
 | ||
| 	if (p->uid != current->euid &&
 | ||
| 		p->euid != current->euid && !capable(CAP_SYS_NICE)) {
 | ||
| 		error = -EPERM;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 | ||
| 		error = -EACCES;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 	no_nice = security_task_setnice(p, niceval);
 | ||
| 	if (no_nice) {
 | ||
| 		error = no_nice;
 | ||
| 		goto out;
 | ||
| 	}
 | ||
| 	if (error == -ESRCH)
 | ||
| 		error = 0;
 | ||
| 	set_user_nice(p, niceval);
 | ||
| out:
 | ||
| 	return error;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_setpriority(int which, int who, int niceval)
 | ||
| {
 | ||
| 	struct task_struct *g, *p;
 | ||
| 	struct user_struct *user;
 | ||
| 	int error = -EINVAL;
 | ||
| 	struct pid *pgrp;
 | ||
| 
 | ||
| 	if (which > 2 || which < 0)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/* normalize: avoid signed division (rounding problems) */
 | ||
| 	error = -ESRCH;
 | ||
| 	if (niceval < -20)
 | ||
| 		niceval = -20;
 | ||
| 	if (niceval > 19)
 | ||
| 		niceval = 19;
 | ||
| 
 | ||
| 	read_lock(&tasklist_lock);
 | ||
| 	switch (which) {
 | ||
| 		case PRIO_PROCESS:
 | ||
| 			if (who)
 | ||
| 				p = find_task_by_pid(who);
 | ||
| 			else
 | ||
| 				p = current;
 | ||
| 			if (p)
 | ||
| 				error = set_one_prio(p, niceval, error);
 | ||
| 			break;
 | ||
| 		case PRIO_PGRP:
 | ||
| 			if (who)
 | ||
| 				pgrp = find_pid(who);
 | ||
| 			else
 | ||
| 				pgrp = task_pgrp(current);
 | ||
| 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | ||
| 				error = set_one_prio(p, niceval, error);
 | ||
| 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | ||
| 			break;
 | ||
| 		case PRIO_USER:
 | ||
| 			user = current->user;
 | ||
| 			if (!who)
 | ||
| 				who = current->uid;
 | ||
| 			else
 | ||
| 				if ((who != current->uid) && !(user = find_user(who)))
 | ||
| 					goto out_unlock;	/* No processes for this user */
 | ||
| 
 | ||
| 			do_each_thread(g, p)
 | ||
| 				if (p->uid == who)
 | ||
| 					error = set_one_prio(p, niceval, error);
 | ||
| 			while_each_thread(g, p);
 | ||
| 			if (who != current->uid)
 | ||
| 				free_uid(user);		/* For find_user() */
 | ||
| 			break;
 | ||
| 	}
 | ||
| out_unlock:
 | ||
| 	read_unlock(&tasklist_lock);
 | ||
| out:
 | ||
| 	return error;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Ugh. To avoid negative return values, "getpriority()" will
 | ||
|  * not return the normal nice-value, but a negated value that
 | ||
|  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 | ||
|  * to stay compatible.
 | ||
|  */
 | ||
| asmlinkage long sys_getpriority(int which, int who)
 | ||
| {
 | ||
| 	struct task_struct *g, *p;
 | ||
| 	struct user_struct *user;
 | ||
| 	long niceval, retval = -ESRCH;
 | ||
| 	struct pid *pgrp;
 | ||
| 
 | ||
| 	if (which > 2 || which < 0)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	read_lock(&tasklist_lock);
 | ||
| 	switch (which) {
 | ||
| 		case PRIO_PROCESS:
 | ||
| 			if (who)
 | ||
| 				p = find_task_by_pid(who);
 | ||
| 			else
 | ||
| 				p = current;
 | ||
| 			if (p) {
 | ||
| 				niceval = 20 - task_nice(p);
 | ||
| 				if (niceval > retval)
 | ||
| 					retval = niceval;
 | ||
| 			}
 | ||
| 			break;
 | ||
| 		case PRIO_PGRP:
 | ||
| 			if (who)
 | ||
| 				pgrp = find_pid(who);
 | ||
| 			else
 | ||
| 				pgrp = task_pgrp(current);
 | ||
| 			do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 | ||
| 				niceval = 20 - task_nice(p);
 | ||
| 				if (niceval > retval)
 | ||
| 					retval = niceval;
 | ||
| 			} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 | ||
| 			break;
 | ||
| 		case PRIO_USER:
 | ||
| 			user = current->user;
 | ||
| 			if (!who)
 | ||
| 				who = current->uid;
 | ||
| 			else
 | ||
| 				if ((who != current->uid) && !(user = find_user(who)))
 | ||
| 					goto out_unlock;	/* No processes for this user */
 | ||
| 
 | ||
| 			do_each_thread(g, p)
 | ||
| 				if (p->uid == who) {
 | ||
| 					niceval = 20 - task_nice(p);
 | ||
| 					if (niceval > retval)
 | ||
| 						retval = niceval;
 | ||
| 				}
 | ||
| 			while_each_thread(g, p);
 | ||
| 			if (who != current->uid)
 | ||
| 				free_uid(user);		/* for find_user() */
 | ||
| 			break;
 | ||
| 	}
 | ||
| out_unlock:
 | ||
| 	read_unlock(&tasklist_lock);
 | ||
| 
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  *	emergency_restart - reboot the system
 | ||
|  *
 | ||
|  *	Without shutting down any hardware or taking any locks
 | ||
|  *	reboot the system.  This is called when we know we are in
 | ||
|  *	trouble so this is our best effort to reboot.  This is
 | ||
|  *	safe to call in interrupt context.
 | ||
|  */
 | ||
| void emergency_restart(void)
 | ||
| {
 | ||
| 	machine_emergency_restart();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(emergency_restart);
 | ||
| 
 | ||
| static void kernel_restart_prepare(char *cmd)
 | ||
| {
 | ||
| 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 | ||
| 	system_state = SYSTEM_RESTART;
 | ||
| 	device_shutdown();
 | ||
| }
 | ||
| 
 | ||
| /**
 | ||
|  *	kernel_restart - reboot the system
 | ||
|  *	@cmd: pointer to buffer containing command to execute for restart
 | ||
|  *		or %NULL
 | ||
|  *
 | ||
|  *	Shutdown everything and perform a clean reboot.
 | ||
|  *	This is not safe to call in interrupt context.
 | ||
|  */
 | ||
| void kernel_restart(char *cmd)
 | ||
| {
 | ||
| 	kernel_restart_prepare(cmd);
 | ||
| 	if (!cmd)
 | ||
| 		printk(KERN_EMERG "Restarting system.\n");
 | ||
| 	else
 | ||
| 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 | ||
| 	machine_restart(cmd);
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(kernel_restart);
 | ||
| 
 | ||
| /**
 | ||
|  *	kernel_kexec - reboot the system
 | ||
|  *
 | ||
|  *	Move into place and start executing a preloaded standalone
 | ||
|  *	executable.  If nothing was preloaded return an error.
 | ||
|  */
 | ||
| static void kernel_kexec(void)
 | ||
| {
 | ||
| #ifdef CONFIG_KEXEC
 | ||
| 	struct kimage *image;
 | ||
| 	image = xchg(&kexec_image, NULL);
 | ||
| 	if (!image)
 | ||
| 		return;
 | ||
| 	kernel_restart_prepare(NULL);
 | ||
| 	printk(KERN_EMERG "Starting new kernel\n");
 | ||
| 	machine_shutdown();
 | ||
| 	machine_kexec(image);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| void kernel_shutdown_prepare(enum system_states state)
 | ||
| {
 | ||
| 	blocking_notifier_call_chain(&reboot_notifier_list,
 | ||
| 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 | ||
| 	system_state = state;
 | ||
| 	device_shutdown();
 | ||
| }
 | ||
| /**
 | ||
|  *	kernel_halt - halt the system
 | ||
|  *
 | ||
|  *	Shutdown everything and perform a clean system halt.
 | ||
|  */
 | ||
| void kernel_halt(void)
 | ||
| {
 | ||
| 	kernel_shutdown_prepare(SYSTEM_HALT);
 | ||
| 	printk(KERN_EMERG "System halted.\n");
 | ||
| 	machine_halt();
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL_GPL(kernel_halt);
 | ||
| 
 | ||
| /**
 | ||
|  *	kernel_power_off - power_off the system
 | ||
|  *
 | ||
|  *	Shutdown everything and perform a clean system power_off.
 | ||
|  */
 | ||
| void kernel_power_off(void)
 | ||
| {
 | ||
| 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 | ||
| 	printk(KERN_EMERG "Power down.\n");
 | ||
| 	machine_power_off();
 | ||
| }
 | ||
| EXPORT_SYMBOL_GPL(kernel_power_off);
 | ||
| /*
 | ||
|  * Reboot system call: for obvious reasons only root may call it,
 | ||
|  * and even root needs to set up some magic numbers in the registers
 | ||
|  * so that some mistake won't make this reboot the whole machine.
 | ||
|  * You can also set the meaning of the ctrl-alt-del-key here.
 | ||
|  *
 | ||
|  * reboot doesn't sync: do that yourself before calling this.
 | ||
|  */
 | ||
| asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
 | ||
| {
 | ||
| 	char buffer[256];
 | ||
| 
 | ||
| 	/* We only trust the superuser with rebooting the system. */
 | ||
| 	if (!capable(CAP_SYS_BOOT))
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	/* For safety, we require "magic" arguments. */
 | ||
| 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
 | ||
| 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
 | ||
| 	                magic2 != LINUX_REBOOT_MAGIC2A &&
 | ||
| 			magic2 != LINUX_REBOOT_MAGIC2B &&
 | ||
| 	                magic2 != LINUX_REBOOT_MAGIC2C))
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	/* Instead of trying to make the power_off code look like
 | ||
| 	 * halt when pm_power_off is not set do it the easy way.
 | ||
| 	 */
 | ||
| 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 | ||
| 		cmd = LINUX_REBOOT_CMD_HALT;
 | ||
| 
 | ||
| 	lock_kernel();
 | ||
| 	switch (cmd) {
 | ||
| 	case LINUX_REBOOT_CMD_RESTART:
 | ||
| 		kernel_restart(NULL);
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_CAD_ON:
 | ||
| 		C_A_D = 1;
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_CAD_OFF:
 | ||
| 		C_A_D = 0;
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_HALT:
 | ||
| 		kernel_halt();
 | ||
| 		unlock_kernel();
 | ||
| 		do_exit(0);
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_POWER_OFF:
 | ||
| 		kernel_power_off();
 | ||
| 		unlock_kernel();
 | ||
| 		do_exit(0);
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_RESTART2:
 | ||
| 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 | ||
| 			unlock_kernel();
 | ||
| 			return -EFAULT;
 | ||
| 		}
 | ||
| 		buffer[sizeof(buffer) - 1] = '\0';
 | ||
| 
 | ||
| 		kernel_restart(buffer);
 | ||
| 		break;
 | ||
| 
 | ||
| 	case LINUX_REBOOT_CMD_KEXEC:
 | ||
| 		kernel_kexec();
 | ||
| 		unlock_kernel();
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| #ifdef CONFIG_SOFTWARE_SUSPEND
 | ||
| 	case LINUX_REBOOT_CMD_SW_SUSPEND:
 | ||
| 		{
 | ||
| 			int ret = software_suspend();
 | ||
| 			unlock_kernel();
 | ||
| 			return ret;
 | ||
| 		}
 | ||
| #endif
 | ||
| 
 | ||
| 	default:
 | ||
| 		unlock_kernel();
 | ||
| 		return -EINVAL;
 | ||
| 	}
 | ||
| 	unlock_kernel();
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| static void deferred_cad(struct work_struct *dummy)
 | ||
| {
 | ||
| 	kernel_restart(NULL);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 | ||
|  * As it's called within an interrupt, it may NOT sync: the only choice
 | ||
|  * is whether to reboot at once, or just ignore the ctrl-alt-del.
 | ||
|  */
 | ||
| void ctrl_alt_del(void)
 | ||
| {
 | ||
| 	static DECLARE_WORK(cad_work, deferred_cad);
 | ||
| 
 | ||
| 	if (C_A_D)
 | ||
| 		schedule_work(&cad_work);
 | ||
| 	else
 | ||
| 		kill_cad_pid(SIGINT, 1);
 | ||
| }
 | ||
| 	
 | ||
| /*
 | ||
|  * Unprivileged users may change the real gid to the effective gid
 | ||
|  * or vice versa.  (BSD-style)
 | ||
|  *
 | ||
|  * If you set the real gid at all, or set the effective gid to a value not
 | ||
|  * equal to the real gid, then the saved gid is set to the new effective gid.
 | ||
|  *
 | ||
|  * This makes it possible for a setgid program to completely drop its
 | ||
|  * privileges, which is often a useful assertion to make when you are doing
 | ||
|  * a security audit over a program.
 | ||
|  *
 | ||
|  * The general idea is that a program which uses just setregid() will be
 | ||
|  * 100% compatible with BSD.  A program which uses just setgid() will be
 | ||
|  * 100% compatible with POSIX with saved IDs. 
 | ||
|  *
 | ||
|  * SMP: There are not races, the GIDs are checked only by filesystem
 | ||
|  *      operations (as far as semantic preservation is concerned).
 | ||
|  */
 | ||
| asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
 | ||
| {
 | ||
| 	int old_rgid = current->gid;
 | ||
| 	int old_egid = current->egid;
 | ||
| 	int new_rgid = old_rgid;
 | ||
| 	int new_egid = old_egid;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	if (rgid != (gid_t) -1) {
 | ||
| 		if ((old_rgid == rgid) ||
 | ||
| 		    (current->egid==rgid) ||
 | ||
| 		    capable(CAP_SETGID))
 | ||
| 			new_rgid = rgid;
 | ||
| 		else
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 	if (egid != (gid_t) -1) {
 | ||
| 		if ((old_rgid == egid) ||
 | ||
| 		    (current->egid == egid) ||
 | ||
| 		    (current->sgid == egid) ||
 | ||
| 		    capable(CAP_SETGID))
 | ||
| 			new_egid = egid;
 | ||
| 		else
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 	if (new_egid != old_egid) {
 | ||
| 		current->mm->dumpable = suid_dumpable;
 | ||
| 		smp_wmb();
 | ||
| 	}
 | ||
| 	if (rgid != (gid_t) -1 ||
 | ||
| 	    (egid != (gid_t) -1 && egid != old_rgid))
 | ||
| 		current->sgid = new_egid;
 | ||
| 	current->fsgid = new_egid;
 | ||
| 	current->egid = new_egid;
 | ||
| 	current->gid = new_rgid;
 | ||
| 	key_fsgid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_GID);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * setgid() is implemented like SysV w/ SAVED_IDS 
 | ||
|  *
 | ||
|  * SMP: Same implicit races as above.
 | ||
|  */
 | ||
| asmlinkage long sys_setgid(gid_t gid)
 | ||
| {
 | ||
| 	int old_egid = current->egid;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	if (capable(CAP_SETGID)) {
 | ||
| 		if (old_egid != gid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->gid = current->egid = current->sgid = current->fsgid = gid;
 | ||
| 	} else if ((gid == current->gid) || (gid == current->sgid)) {
 | ||
| 		if (old_egid != gid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->egid = current->fsgid = gid;
 | ||
| 	}
 | ||
| 	else
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	key_fsgid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_GID);
 | ||
| 	return 0;
 | ||
| }
 | ||
|   
 | ||
| static int set_user(uid_t new_ruid, int dumpclear)
 | ||
| {
 | ||
| 	struct user_struct *new_user;
 | ||
| 
 | ||
| 	new_user = alloc_uid(new_ruid);
 | ||
| 	if (!new_user)
 | ||
| 		return -EAGAIN;
 | ||
| 
 | ||
| 	if (atomic_read(&new_user->processes) >=
 | ||
| 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
 | ||
| 			new_user != &root_user) {
 | ||
| 		free_uid(new_user);
 | ||
| 		return -EAGAIN;
 | ||
| 	}
 | ||
| 
 | ||
| 	switch_uid(new_user);
 | ||
| 
 | ||
| 	if (dumpclear) {
 | ||
| 		current->mm->dumpable = suid_dumpable;
 | ||
| 		smp_wmb();
 | ||
| 	}
 | ||
| 	current->uid = new_ruid;
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Unprivileged users may change the real uid to the effective uid
 | ||
|  * or vice versa.  (BSD-style)
 | ||
|  *
 | ||
|  * If you set the real uid at all, or set the effective uid to a value not
 | ||
|  * equal to the real uid, then the saved uid is set to the new effective uid.
 | ||
|  *
 | ||
|  * This makes it possible for a setuid program to completely drop its
 | ||
|  * privileges, which is often a useful assertion to make when you are doing
 | ||
|  * a security audit over a program.
 | ||
|  *
 | ||
|  * The general idea is that a program which uses just setreuid() will be
 | ||
|  * 100% compatible with BSD.  A program which uses just setuid() will be
 | ||
|  * 100% compatible with POSIX with saved IDs. 
 | ||
|  */
 | ||
| asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
 | ||
| {
 | ||
| 	int old_ruid, old_euid, old_suid, new_ruid, new_euid;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	new_ruid = old_ruid = current->uid;
 | ||
| 	new_euid = old_euid = current->euid;
 | ||
| 	old_suid = current->suid;
 | ||
| 
 | ||
| 	if (ruid != (uid_t) -1) {
 | ||
| 		new_ruid = ruid;
 | ||
| 		if ((old_ruid != ruid) &&
 | ||
| 		    (current->euid != ruid) &&
 | ||
| 		    !capable(CAP_SETUID))
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (euid != (uid_t) -1) {
 | ||
| 		new_euid = euid;
 | ||
| 		if ((old_ruid != euid) &&
 | ||
| 		    (current->euid != euid) &&
 | ||
| 		    (current->suid != euid) &&
 | ||
| 		    !capable(CAP_SETUID))
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 
 | ||
| 	if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
 | ||
| 		return -EAGAIN;
 | ||
| 
 | ||
| 	if (new_euid != old_euid) {
 | ||
| 		current->mm->dumpable = suid_dumpable;
 | ||
| 		smp_wmb();
 | ||
| 	}
 | ||
| 	current->fsuid = current->euid = new_euid;
 | ||
| 	if (ruid != (uid_t) -1 ||
 | ||
| 	    (euid != (uid_t) -1 && euid != old_ruid))
 | ||
| 		current->suid = current->euid;
 | ||
| 	current->fsuid = current->euid;
 | ||
| 
 | ||
| 	key_fsuid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_UID);
 | ||
| 
 | ||
| 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 		
 | ||
| /*
 | ||
|  * setuid() is implemented like SysV with SAVED_IDS 
 | ||
|  * 
 | ||
|  * Note that SAVED_ID's is deficient in that a setuid root program
 | ||
|  * like sendmail, for example, cannot set its uid to be a normal 
 | ||
|  * user and then switch back, because if you're root, setuid() sets
 | ||
|  * the saved uid too.  If you don't like this, blame the bright people
 | ||
|  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 | ||
|  * will allow a root program to temporarily drop privileges and be able to
 | ||
|  * regain them by swapping the real and effective uid.  
 | ||
|  */
 | ||
| asmlinkage long sys_setuid(uid_t uid)
 | ||
| {
 | ||
| 	int old_euid = current->euid;
 | ||
| 	int old_ruid, old_suid, new_suid;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	old_ruid = current->uid;
 | ||
| 	old_suid = current->suid;
 | ||
| 	new_suid = old_suid;
 | ||
| 	
 | ||
| 	if (capable(CAP_SETUID)) {
 | ||
| 		if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
 | ||
| 			return -EAGAIN;
 | ||
| 		new_suid = uid;
 | ||
| 	} else if ((uid != current->uid) && (uid != new_suid))
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	if (old_euid != uid) {
 | ||
| 		current->mm->dumpable = suid_dumpable;
 | ||
| 		smp_wmb();
 | ||
| 	}
 | ||
| 	current->fsuid = current->euid = uid;
 | ||
| 	current->suid = new_suid;
 | ||
| 
 | ||
| 	key_fsuid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_UID);
 | ||
| 
 | ||
| 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * This function implements a generic ability to update ruid, euid,
 | ||
|  * and suid.  This allows you to implement the 4.4 compatible seteuid().
 | ||
|  */
 | ||
| asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 | ||
| {
 | ||
| 	int old_ruid = current->uid;
 | ||
| 	int old_euid = current->euid;
 | ||
| 	int old_suid = current->suid;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	if (!capable(CAP_SETUID)) {
 | ||
| 		if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
 | ||
| 		    (ruid != current->euid) && (ruid != current->suid))
 | ||
| 			return -EPERM;
 | ||
| 		if ((euid != (uid_t) -1) && (euid != current->uid) &&
 | ||
| 		    (euid != current->euid) && (euid != current->suid))
 | ||
| 			return -EPERM;
 | ||
| 		if ((suid != (uid_t) -1) && (suid != current->uid) &&
 | ||
| 		    (suid != current->euid) && (suid != current->suid))
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 	if (ruid != (uid_t) -1) {
 | ||
| 		if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
 | ||
| 			return -EAGAIN;
 | ||
| 	}
 | ||
| 	if (euid != (uid_t) -1) {
 | ||
| 		if (euid != current->euid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->euid = euid;
 | ||
| 	}
 | ||
| 	current->fsuid = current->euid;
 | ||
| 	if (suid != (uid_t) -1)
 | ||
| 		current->suid = suid;
 | ||
| 
 | ||
| 	key_fsuid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_UID);
 | ||
| 
 | ||
| 	return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
 | ||
| {
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	if (!(retval = put_user(current->uid, ruid)) &&
 | ||
| 	    !(retval = put_user(current->euid, euid)))
 | ||
| 		retval = put_user(current->suid, suid);
 | ||
| 
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Same as above, but for rgid, egid, sgid.
 | ||
|  */
 | ||
| asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 | ||
| {
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	if (!capable(CAP_SETGID)) {
 | ||
| 		if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
 | ||
| 		    (rgid != current->egid) && (rgid != current->sgid))
 | ||
| 			return -EPERM;
 | ||
| 		if ((egid != (gid_t) -1) && (egid != current->gid) &&
 | ||
| 		    (egid != current->egid) && (egid != current->sgid))
 | ||
| 			return -EPERM;
 | ||
| 		if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
 | ||
| 		    (sgid != current->egid) && (sgid != current->sgid))
 | ||
| 			return -EPERM;
 | ||
| 	}
 | ||
| 	if (egid != (gid_t) -1) {
 | ||
| 		if (egid != current->egid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->egid = egid;
 | ||
| 	}
 | ||
| 	current->fsgid = current->egid;
 | ||
| 	if (rgid != (gid_t) -1)
 | ||
| 		current->gid = rgid;
 | ||
| 	if (sgid != (gid_t) -1)
 | ||
| 		current->sgid = sgid;
 | ||
| 
 | ||
| 	key_fsgid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_GID);
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
 | ||
| {
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	if (!(retval = put_user(current->gid, rgid)) &&
 | ||
| 	    !(retval = put_user(current->egid, egid)))
 | ||
| 		retval = put_user(current->sgid, sgid);
 | ||
| 
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 | ||
|  * is used for "access()" and for the NFS daemon (letting nfsd stay at
 | ||
|  * whatever uid it wants to). It normally shadows "euid", except when
 | ||
|  * explicitly set by setfsuid() or for access..
 | ||
|  */
 | ||
| asmlinkage long sys_setfsuid(uid_t uid)
 | ||
| {
 | ||
| 	int old_fsuid;
 | ||
| 
 | ||
| 	old_fsuid = current->fsuid;
 | ||
| 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
 | ||
| 		return old_fsuid;
 | ||
| 
 | ||
| 	if (uid == current->uid || uid == current->euid ||
 | ||
| 	    uid == current->suid || uid == current->fsuid || 
 | ||
| 	    capable(CAP_SETUID)) {
 | ||
| 		if (uid != old_fsuid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->fsuid = uid;
 | ||
| 	}
 | ||
| 
 | ||
| 	key_fsuid_changed(current);
 | ||
| 	proc_id_connector(current, PROC_EVENT_UID);
 | ||
| 
 | ||
| 	security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
 | ||
| 
 | ||
| 	return old_fsuid;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Samma p<> svenska..
 | ||
|  */
 | ||
| asmlinkage long sys_setfsgid(gid_t gid)
 | ||
| {
 | ||
| 	int old_fsgid;
 | ||
| 
 | ||
| 	old_fsgid = current->fsgid;
 | ||
| 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
 | ||
| 		return old_fsgid;
 | ||
| 
 | ||
| 	if (gid == current->gid || gid == current->egid ||
 | ||
| 	    gid == current->sgid || gid == current->fsgid || 
 | ||
| 	    capable(CAP_SETGID)) {
 | ||
| 		if (gid != old_fsgid) {
 | ||
| 			current->mm->dumpable = suid_dumpable;
 | ||
| 			smp_wmb();
 | ||
| 		}
 | ||
| 		current->fsgid = gid;
 | ||
| 		key_fsgid_changed(current);
 | ||
| 		proc_id_connector(current, PROC_EVENT_GID);
 | ||
| 	}
 | ||
| 	return old_fsgid;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_times(struct tms __user * tbuf)
 | ||
| {
 | ||
| 	/*
 | ||
| 	 *	In the SMP world we might just be unlucky and have one of
 | ||
| 	 *	the times increment as we use it. Since the value is an
 | ||
| 	 *	atomically safe type this is just fine. Conceptually its
 | ||
| 	 *	as if the syscall took an instant longer to occur.
 | ||
| 	 */
 | ||
| 	if (tbuf) {
 | ||
| 		struct tms tmp;
 | ||
| 		struct task_struct *tsk = current;
 | ||
| 		struct task_struct *t;
 | ||
| 		cputime_t utime, stime, cutime, cstime;
 | ||
| 
 | ||
| 		spin_lock_irq(&tsk->sighand->siglock);
 | ||
| 		utime = tsk->signal->utime;
 | ||
| 		stime = tsk->signal->stime;
 | ||
| 		t = tsk;
 | ||
| 		do {
 | ||
| 			utime = cputime_add(utime, t->utime);
 | ||
| 			stime = cputime_add(stime, t->stime);
 | ||
| 			t = next_thread(t);
 | ||
| 		} while (t != tsk);
 | ||
| 
 | ||
| 		cutime = tsk->signal->cutime;
 | ||
| 		cstime = tsk->signal->cstime;
 | ||
| 		spin_unlock_irq(&tsk->sighand->siglock);
 | ||
| 
 | ||
| 		tmp.tms_utime = cputime_to_clock_t(utime);
 | ||
| 		tmp.tms_stime = cputime_to_clock_t(stime);
 | ||
| 		tmp.tms_cutime = cputime_to_clock_t(cutime);
 | ||
| 		tmp.tms_cstime = cputime_to_clock_t(cstime);
 | ||
| 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 | ||
| 			return -EFAULT;
 | ||
| 	}
 | ||
| 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * This needs some heavy checking ...
 | ||
|  * I just haven't the stomach for it. I also don't fully
 | ||
|  * understand sessions/pgrp etc. Let somebody who does explain it.
 | ||
|  *
 | ||
|  * OK, I think I have the protection semantics right.... this is really
 | ||
|  * only important on a multi-user system anyway, to make sure one user
 | ||
|  * can't send a signal to a process owned by another.  -TYT, 12/12/91
 | ||
|  *
 | ||
|  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 | ||
|  * LBT 04.03.94
 | ||
|  */
 | ||
| 
 | ||
| asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
 | ||
| {
 | ||
| 	struct task_struct *p;
 | ||
| 	struct task_struct *group_leader = current->group_leader;
 | ||
| 	int err = -EINVAL;
 | ||
| 
 | ||
| 	if (!pid)
 | ||
| 		pid = group_leader->pid;
 | ||
| 	if (!pgid)
 | ||
| 		pgid = pid;
 | ||
| 	if (pgid < 0)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	/* From this point forward we keep holding onto the tasklist lock
 | ||
| 	 * so that our parent does not change from under us. -DaveM
 | ||
| 	 */
 | ||
| 	write_lock_irq(&tasklist_lock);
 | ||
| 
 | ||
| 	err = -ESRCH;
 | ||
| 	p = find_task_by_pid(pid);
 | ||
| 	if (!p)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	err = -EINVAL;
 | ||
| 	if (!thread_group_leader(p))
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	if (p->real_parent == group_leader) {
 | ||
| 		err = -EPERM;
 | ||
| 		if (task_session(p) != task_session(group_leader))
 | ||
| 			goto out;
 | ||
| 		err = -EACCES;
 | ||
| 		if (p->did_exec)
 | ||
| 			goto out;
 | ||
| 	} else {
 | ||
| 		err = -ESRCH;
 | ||
| 		if (p != group_leader)
 | ||
| 			goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = -EPERM;
 | ||
| 	if (p->signal->leader)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	if (pgid != pid) {
 | ||
| 		struct task_struct *g =
 | ||
| 			find_task_by_pid_type(PIDTYPE_PGID, pgid);
 | ||
| 
 | ||
| 		if (!g || task_session(g) != task_session(group_leader))
 | ||
| 			goto out;
 | ||
| 	}
 | ||
| 
 | ||
| 	err = security_task_setpgid(p, pgid);
 | ||
| 	if (err)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	if (process_group(p) != pgid) {
 | ||
| 		detach_pid(p, PIDTYPE_PGID);
 | ||
| 		p->signal->pgrp = pgid;
 | ||
| 		attach_pid(p, PIDTYPE_PGID, pgid);
 | ||
| 	}
 | ||
| 
 | ||
| 	err = 0;
 | ||
| out:
 | ||
| 	/* All paths lead to here, thus we are safe. -DaveM */
 | ||
| 	write_unlock_irq(&tasklist_lock);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getpgid(pid_t pid)
 | ||
| {
 | ||
| 	if (!pid)
 | ||
| 		return process_group(current);
 | ||
| 	else {
 | ||
| 		int retval;
 | ||
| 		struct task_struct *p;
 | ||
| 
 | ||
| 		read_lock(&tasklist_lock);
 | ||
| 		p = find_task_by_pid(pid);
 | ||
| 
 | ||
| 		retval = -ESRCH;
 | ||
| 		if (p) {
 | ||
| 			retval = security_task_getpgid(p);
 | ||
| 			if (!retval)
 | ||
| 				retval = process_group(p);
 | ||
| 		}
 | ||
| 		read_unlock(&tasklist_lock);
 | ||
| 		return retval;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #ifdef __ARCH_WANT_SYS_GETPGRP
 | ||
| 
 | ||
| asmlinkage long sys_getpgrp(void)
 | ||
| {
 | ||
| 	/* SMP - assuming writes are word atomic this is fine */
 | ||
| 	return process_group(current);
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| asmlinkage long sys_getsid(pid_t pid)
 | ||
| {
 | ||
| 	if (!pid)
 | ||
| 		return process_session(current);
 | ||
| 	else {
 | ||
| 		int retval;
 | ||
| 		struct task_struct *p;
 | ||
| 
 | ||
| 		read_lock(&tasklist_lock);
 | ||
| 		p = find_task_by_pid(pid);
 | ||
| 
 | ||
| 		retval = -ESRCH;
 | ||
| 		if (p) {
 | ||
| 			retval = security_task_getsid(p);
 | ||
| 			if (!retval)
 | ||
| 				retval = process_session(p);
 | ||
| 		}
 | ||
| 		read_unlock(&tasklist_lock);
 | ||
| 		return retval;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_setsid(void)
 | ||
| {
 | ||
| 	struct task_struct *group_leader = current->group_leader;
 | ||
| 	pid_t session;
 | ||
| 	int err = -EPERM;
 | ||
| 
 | ||
| 	write_lock_irq(&tasklist_lock);
 | ||
| 
 | ||
| 	/* Fail if I am already a session leader */
 | ||
| 	if (group_leader->signal->leader)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	session = group_leader->pid;
 | ||
| 	/* Fail if a process group id already exists that equals the
 | ||
| 	 * proposed session id.
 | ||
| 	 *
 | ||
| 	 * Don't check if session id == 1 because kernel threads use this
 | ||
| 	 * session id and so the check will always fail and make it so
 | ||
| 	 * init cannot successfully call setsid.
 | ||
| 	 */
 | ||
| 	if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	group_leader->signal->leader = 1;
 | ||
| 	__set_special_pids(session, session);
 | ||
| 
 | ||
| 	spin_lock(&group_leader->sighand->siglock);
 | ||
| 	group_leader->signal->tty = NULL;
 | ||
| 	spin_unlock(&group_leader->sighand->siglock);
 | ||
| 
 | ||
| 	err = process_group(group_leader);
 | ||
| out:
 | ||
| 	write_unlock_irq(&tasklist_lock);
 | ||
| 	return err;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Supplementary group IDs
 | ||
|  */
 | ||
| 
 | ||
| /* init to 2 - one for init_task, one to ensure it is never freed */
 | ||
| struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
 | ||
| 
 | ||
| struct group_info *groups_alloc(int gidsetsize)
 | ||
| {
 | ||
| 	struct group_info *group_info;
 | ||
| 	int nblocks;
 | ||
| 	int i;
 | ||
| 
 | ||
| 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
 | ||
| 	/* Make sure we always allocate at least one indirect block pointer */
 | ||
| 	nblocks = nblocks ? : 1;
 | ||
| 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
 | ||
| 	if (!group_info)
 | ||
| 		return NULL;
 | ||
| 	group_info->ngroups = gidsetsize;
 | ||
| 	group_info->nblocks = nblocks;
 | ||
| 	atomic_set(&group_info->usage, 1);
 | ||
| 
 | ||
| 	if (gidsetsize <= NGROUPS_SMALL)
 | ||
| 		group_info->blocks[0] = group_info->small_block;
 | ||
| 	else {
 | ||
| 		for (i = 0; i < nblocks; i++) {
 | ||
| 			gid_t *b;
 | ||
| 			b = (void *)__get_free_page(GFP_USER);
 | ||
| 			if (!b)
 | ||
| 				goto out_undo_partial_alloc;
 | ||
| 			group_info->blocks[i] = b;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return group_info;
 | ||
| 
 | ||
| out_undo_partial_alloc:
 | ||
| 	while (--i >= 0) {
 | ||
| 		free_page((unsigned long)group_info->blocks[i]);
 | ||
| 	}
 | ||
| 	kfree(group_info);
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(groups_alloc);
 | ||
| 
 | ||
| void groups_free(struct group_info *group_info)
 | ||
| {
 | ||
| 	if (group_info->blocks[0] != group_info->small_block) {
 | ||
| 		int i;
 | ||
| 		for (i = 0; i < group_info->nblocks; i++)
 | ||
| 			free_page((unsigned long)group_info->blocks[i]);
 | ||
| 	}
 | ||
| 	kfree(group_info);
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(groups_free);
 | ||
| 
 | ||
| /* export the group_info to a user-space array */
 | ||
| static int groups_to_user(gid_t __user *grouplist,
 | ||
|     struct group_info *group_info)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int count = group_info->ngroups;
 | ||
| 
 | ||
| 	for (i = 0; i < group_info->nblocks; i++) {
 | ||
| 		int cp_count = min(NGROUPS_PER_BLOCK, count);
 | ||
| 		int off = i * NGROUPS_PER_BLOCK;
 | ||
| 		int len = cp_count * sizeof(*grouplist);
 | ||
| 
 | ||
| 		if (copy_to_user(grouplist+off, group_info->blocks[i], len))
 | ||
| 			return -EFAULT;
 | ||
| 
 | ||
| 		count -= cp_count;
 | ||
| 	}
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* fill a group_info from a user-space array - it must be allocated already */
 | ||
| static int groups_from_user(struct group_info *group_info,
 | ||
|     gid_t __user *grouplist)
 | ||
| {
 | ||
| 	int i;
 | ||
| 	int count = group_info->ngroups;
 | ||
| 
 | ||
| 	for (i = 0; i < group_info->nblocks; i++) {
 | ||
| 		int cp_count = min(NGROUPS_PER_BLOCK, count);
 | ||
| 		int off = i * NGROUPS_PER_BLOCK;
 | ||
| 		int len = cp_count * sizeof(*grouplist);
 | ||
| 
 | ||
| 		if (copy_from_user(group_info->blocks[i], grouplist+off, len))
 | ||
| 			return -EFAULT;
 | ||
| 
 | ||
| 		count -= cp_count;
 | ||
| 	}
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* a simple Shell sort */
 | ||
| static void groups_sort(struct group_info *group_info)
 | ||
| {
 | ||
| 	int base, max, stride;
 | ||
| 	int gidsetsize = group_info->ngroups;
 | ||
| 
 | ||
| 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
 | ||
| 		; /* nothing */
 | ||
| 	stride /= 3;
 | ||
| 
 | ||
| 	while (stride) {
 | ||
| 		max = gidsetsize - stride;
 | ||
| 		for (base = 0; base < max; base++) {
 | ||
| 			int left = base;
 | ||
| 			int right = left + stride;
 | ||
| 			gid_t tmp = GROUP_AT(group_info, right);
 | ||
| 
 | ||
| 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
 | ||
| 				GROUP_AT(group_info, right) =
 | ||
| 				    GROUP_AT(group_info, left);
 | ||
| 				right = left;
 | ||
| 				left -= stride;
 | ||
| 			}
 | ||
| 			GROUP_AT(group_info, right) = tmp;
 | ||
| 		}
 | ||
| 		stride /= 3;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| /* a simple bsearch */
 | ||
| int groups_search(struct group_info *group_info, gid_t grp)
 | ||
| {
 | ||
| 	unsigned int left, right;
 | ||
| 
 | ||
| 	if (!group_info)
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	left = 0;
 | ||
| 	right = group_info->ngroups;
 | ||
| 	while (left < right) {
 | ||
| 		unsigned int mid = (left+right)/2;
 | ||
| 		int cmp = grp - GROUP_AT(group_info, mid);
 | ||
| 		if (cmp > 0)
 | ||
| 			left = mid + 1;
 | ||
| 		else if (cmp < 0)
 | ||
| 			right = mid;
 | ||
| 		else
 | ||
| 			return 1;
 | ||
| 	}
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /* validate and set current->group_info */
 | ||
| int set_current_groups(struct group_info *group_info)
 | ||
| {
 | ||
| 	int retval;
 | ||
| 	struct group_info *old_info;
 | ||
| 
 | ||
| 	retval = security_task_setgroups(group_info);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	groups_sort(group_info);
 | ||
| 	get_group_info(group_info);
 | ||
| 
 | ||
| 	task_lock(current);
 | ||
| 	old_info = current->group_info;
 | ||
| 	current->group_info = group_info;
 | ||
| 	task_unlock(current);
 | ||
| 
 | ||
| 	put_group_info(old_info);
 | ||
| 
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(set_current_groups);
 | ||
| 
 | ||
| asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
 | ||
| {
 | ||
| 	int i = 0;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 *	SMP: Nobody else can change our grouplist. Thus we are
 | ||
| 	 *	safe.
 | ||
| 	 */
 | ||
| 
 | ||
| 	if (gidsetsize < 0)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	/* no need to grab task_lock here; it cannot change */
 | ||
| 	i = current->group_info->ngroups;
 | ||
| 	if (gidsetsize) {
 | ||
| 		if (i > gidsetsize) {
 | ||
| 			i = -EINVAL;
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 		if (groups_to_user(grouplist, current->group_info)) {
 | ||
| 			i = -EFAULT;
 | ||
| 			goto out;
 | ||
| 		}
 | ||
| 	}
 | ||
| out:
 | ||
| 	return i;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  *	SMP: Our groups are copy-on-write. We can set them safely
 | ||
|  *	without another task interfering.
 | ||
|  */
 | ||
|  
 | ||
| asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
 | ||
| {
 | ||
| 	struct group_info *group_info;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	if (!capable(CAP_SETGID))
 | ||
| 		return -EPERM;
 | ||
| 	if ((unsigned)gidsetsize > NGROUPS_MAX)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	group_info = groups_alloc(gidsetsize);
 | ||
| 	if (!group_info)
 | ||
| 		return -ENOMEM;
 | ||
| 	retval = groups_from_user(group_info, grouplist);
 | ||
| 	if (retval) {
 | ||
| 		put_group_info(group_info);
 | ||
| 		return retval;
 | ||
| 	}
 | ||
| 
 | ||
| 	retval = set_current_groups(group_info);
 | ||
| 	put_group_info(group_info);
 | ||
| 
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Check whether we're fsgid/egid or in the supplemental group..
 | ||
|  */
 | ||
| int in_group_p(gid_t grp)
 | ||
| {
 | ||
| 	int retval = 1;
 | ||
| 	if (grp != current->fsgid)
 | ||
| 		retval = groups_search(current->group_info, grp);
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(in_group_p);
 | ||
| 
 | ||
| int in_egroup_p(gid_t grp)
 | ||
| {
 | ||
| 	int retval = 1;
 | ||
| 	if (grp != current->egid)
 | ||
| 		retval = groups_search(current->group_info, grp);
 | ||
| 	return retval;
 | ||
| }
 | ||
| 
 | ||
| EXPORT_SYMBOL(in_egroup_p);
 | ||
| 
 | ||
| DECLARE_RWSEM(uts_sem);
 | ||
| 
 | ||
| EXPORT_SYMBOL(uts_sem);
 | ||
| 
 | ||
| asmlinkage long sys_newuname(struct new_utsname __user * name)
 | ||
| {
 | ||
| 	int errno = 0;
 | ||
| 
 | ||
| 	down_read(&uts_sem);
 | ||
| 	if (copy_to_user(name, utsname(), sizeof *name))
 | ||
| 		errno = -EFAULT;
 | ||
| 	up_read(&uts_sem);
 | ||
| 	return errno;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_sethostname(char __user *name, int len)
 | ||
| {
 | ||
| 	int errno;
 | ||
| 	char tmp[__NEW_UTS_LEN];
 | ||
| 
 | ||
| 	if (!capable(CAP_SYS_ADMIN))
 | ||
| 		return -EPERM;
 | ||
| 	if (len < 0 || len > __NEW_UTS_LEN)
 | ||
| 		return -EINVAL;
 | ||
| 	down_write(&uts_sem);
 | ||
| 	errno = -EFAULT;
 | ||
| 	if (!copy_from_user(tmp, name, len)) {
 | ||
| 		memcpy(utsname()->nodename, tmp, len);
 | ||
| 		utsname()->nodename[len] = 0;
 | ||
| 		errno = 0;
 | ||
| 	}
 | ||
| 	up_write(&uts_sem);
 | ||
| 	return errno;
 | ||
| }
 | ||
| 
 | ||
| #ifdef __ARCH_WANT_SYS_GETHOSTNAME
 | ||
| 
 | ||
| asmlinkage long sys_gethostname(char __user *name, int len)
 | ||
| {
 | ||
| 	int i, errno;
 | ||
| 
 | ||
| 	if (len < 0)
 | ||
| 		return -EINVAL;
 | ||
| 	down_read(&uts_sem);
 | ||
| 	i = 1 + strlen(utsname()->nodename);
 | ||
| 	if (i > len)
 | ||
| 		i = len;
 | ||
| 	errno = 0;
 | ||
| 	if (copy_to_user(name, utsname()->nodename, i))
 | ||
| 		errno = -EFAULT;
 | ||
| 	up_read(&uts_sem);
 | ||
| 	return errno;
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|  * Only setdomainname; getdomainname can be implemented by calling
 | ||
|  * uname()
 | ||
|  */
 | ||
| asmlinkage long sys_setdomainname(char __user *name, int len)
 | ||
| {
 | ||
| 	int errno;
 | ||
| 	char tmp[__NEW_UTS_LEN];
 | ||
| 
 | ||
| 	if (!capable(CAP_SYS_ADMIN))
 | ||
| 		return -EPERM;
 | ||
| 	if (len < 0 || len > __NEW_UTS_LEN)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	down_write(&uts_sem);
 | ||
| 	errno = -EFAULT;
 | ||
| 	if (!copy_from_user(tmp, name, len)) {
 | ||
| 		memcpy(utsname()->domainname, tmp, len);
 | ||
| 		utsname()->domainname[len] = 0;
 | ||
| 		errno = 0;
 | ||
| 	}
 | ||
| 	up_write(&uts_sem);
 | ||
| 	return errno;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
 | ||
| {
 | ||
| 	if (resource >= RLIM_NLIMITS)
 | ||
| 		return -EINVAL;
 | ||
| 	else {
 | ||
| 		struct rlimit value;
 | ||
| 		task_lock(current->group_leader);
 | ||
| 		value = current->signal->rlim[resource];
 | ||
| 		task_unlock(current->group_leader);
 | ||
| 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
 | ||
| 
 | ||
| /*
 | ||
|  *	Back compatibility for getrlimit. Needed for some apps.
 | ||
|  */
 | ||
|  
 | ||
| asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
 | ||
| {
 | ||
| 	struct rlimit x;
 | ||
| 	if (resource >= RLIM_NLIMITS)
 | ||
| 		return -EINVAL;
 | ||
| 
 | ||
| 	task_lock(current->group_leader);
 | ||
| 	x = current->signal->rlim[resource];
 | ||
| 	task_unlock(current->group_leader);
 | ||
| 	if (x.rlim_cur > 0x7FFFFFFF)
 | ||
| 		x.rlim_cur = 0x7FFFFFFF;
 | ||
| 	if (x.rlim_max > 0x7FFFFFFF)
 | ||
| 		x.rlim_max = 0x7FFFFFFF;
 | ||
| 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
 | ||
| {
 | ||
| 	struct rlimit new_rlim, *old_rlim;
 | ||
| 	unsigned long it_prof_secs;
 | ||
| 	int retval;
 | ||
| 
 | ||
| 	if (resource >= RLIM_NLIMITS)
 | ||
| 		return -EINVAL;
 | ||
| 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
 | ||
| 		return -EFAULT;
 | ||
| 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
 | ||
| 		return -EINVAL;
 | ||
| 	old_rlim = current->signal->rlim + resource;
 | ||
| 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
 | ||
| 	    !capable(CAP_SYS_RESOURCE))
 | ||
| 		return -EPERM;
 | ||
| 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
 | ||
| 		return -EPERM;
 | ||
| 
 | ||
| 	retval = security_task_setrlimit(resource, &new_rlim);
 | ||
| 	if (retval)
 | ||
| 		return retval;
 | ||
| 
 | ||
| 	task_lock(current->group_leader);
 | ||
| 	*old_rlim = new_rlim;
 | ||
| 	task_unlock(current->group_leader);
 | ||
| 
 | ||
| 	if (resource != RLIMIT_CPU)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
 | ||
| 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
 | ||
| 	 * very long-standing error, and fixing it now risks breakage of
 | ||
| 	 * applications, so we live with it
 | ||
| 	 */
 | ||
| 	if (new_rlim.rlim_cur == RLIM_INFINITY)
 | ||
| 		goto out;
 | ||
| 
 | ||
| 	it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
 | ||
| 	if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
 | ||
| 		unsigned long rlim_cur = new_rlim.rlim_cur;
 | ||
| 		cputime_t cputime;
 | ||
| 
 | ||
| 		if (rlim_cur == 0) {
 | ||
| 			/*
 | ||
| 			 * The caller is asking for an immediate RLIMIT_CPU
 | ||
| 			 * expiry.  But we use the zero value to mean "it was
 | ||
| 			 * never set".  So let's cheat and make it one second
 | ||
| 			 * instead
 | ||
| 			 */
 | ||
| 			rlim_cur = 1;
 | ||
| 		}
 | ||
| 		cputime = secs_to_cputime(rlim_cur);
 | ||
| 		read_lock(&tasklist_lock);
 | ||
| 		spin_lock_irq(¤t->sighand->siglock);
 | ||
| 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
 | ||
| 		spin_unlock_irq(¤t->sighand->siglock);
 | ||
| 		read_unlock(&tasklist_lock);
 | ||
| 	}
 | ||
| out:
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * It would make sense to put struct rusage in the task_struct,
 | ||
|  * except that would make the task_struct be *really big*.  After
 | ||
|  * task_struct gets moved into malloc'ed memory, it would
 | ||
|  * make sense to do this.  It will make moving the rest of the information
 | ||
|  * a lot simpler!  (Which we're not doing right now because we're not
 | ||
|  * measuring them yet).
 | ||
|  *
 | ||
|  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
 | ||
|  * races with threads incrementing their own counters.  But since word
 | ||
|  * reads are atomic, we either get new values or old values and we don't
 | ||
|  * care which for the sums.  We always take the siglock to protect reading
 | ||
|  * the c* fields from p->signal from races with exit.c updating those
 | ||
|  * fields when reaping, so a sample either gets all the additions of a
 | ||
|  * given child after it's reaped, or none so this sample is before reaping.
 | ||
|  *
 | ||
|  * Locking:
 | ||
|  * We need to take the siglock for CHILDEREN, SELF and BOTH
 | ||
|  * for  the cases current multithreaded, non-current single threaded
 | ||
|  * non-current multithreaded.  Thread traversal is now safe with
 | ||
|  * the siglock held.
 | ||
|  * Strictly speaking, we donot need to take the siglock if we are current and
 | ||
|  * single threaded,  as no one else can take our signal_struct away, no one
 | ||
|  * else can  reap the  children to update signal->c* counters, and no one else
 | ||
|  * can race with the signal-> fields. If we do not take any lock, the
 | ||
|  * signal-> fields could be read out of order while another thread was just
 | ||
|  * exiting. So we should  place a read memory barrier when we avoid the lock.
 | ||
|  * On the writer side,  write memory barrier is implied in  __exit_signal
 | ||
|  * as __exit_signal releases  the siglock spinlock after updating the signal->
 | ||
|  * fields. But we don't do this yet to keep things simple.
 | ||
|  *
 | ||
|  */
 | ||
| 
 | ||
| static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
 | ||
| {
 | ||
| 	struct task_struct *t;
 | ||
| 	unsigned long flags;
 | ||
| 	cputime_t utime, stime;
 | ||
| 
 | ||
| 	memset((char *) r, 0, sizeof *r);
 | ||
| 	utime = stime = cputime_zero;
 | ||
| 
 | ||
| 	rcu_read_lock();
 | ||
| 	if (!lock_task_sighand(p, &flags)) {
 | ||
| 		rcu_read_unlock();
 | ||
| 		return;
 | ||
| 	}
 | ||
| 
 | ||
| 	switch (who) {
 | ||
| 		case RUSAGE_BOTH:
 | ||
| 		case RUSAGE_CHILDREN:
 | ||
| 			utime = p->signal->cutime;
 | ||
| 			stime = p->signal->cstime;
 | ||
| 			r->ru_nvcsw = p->signal->cnvcsw;
 | ||
| 			r->ru_nivcsw = p->signal->cnivcsw;
 | ||
| 			r->ru_minflt = p->signal->cmin_flt;
 | ||
| 			r->ru_majflt = p->signal->cmaj_flt;
 | ||
| 
 | ||
| 			if (who == RUSAGE_CHILDREN)
 | ||
| 				break;
 | ||
| 
 | ||
| 		case RUSAGE_SELF:
 | ||
| 			utime = cputime_add(utime, p->signal->utime);
 | ||
| 			stime = cputime_add(stime, p->signal->stime);
 | ||
| 			r->ru_nvcsw += p->signal->nvcsw;
 | ||
| 			r->ru_nivcsw += p->signal->nivcsw;
 | ||
| 			r->ru_minflt += p->signal->min_flt;
 | ||
| 			r->ru_majflt += p->signal->maj_flt;
 | ||
| 			t = p;
 | ||
| 			do {
 | ||
| 				utime = cputime_add(utime, t->utime);
 | ||
| 				stime = cputime_add(stime, t->stime);
 | ||
| 				r->ru_nvcsw += t->nvcsw;
 | ||
| 				r->ru_nivcsw += t->nivcsw;
 | ||
| 				r->ru_minflt += t->min_flt;
 | ||
| 				r->ru_majflt += t->maj_flt;
 | ||
| 				t = next_thread(t);
 | ||
| 			} while (t != p);
 | ||
| 			break;
 | ||
| 
 | ||
| 		default:
 | ||
| 			BUG();
 | ||
| 	}
 | ||
| 
 | ||
| 	unlock_task_sighand(p, &flags);
 | ||
| 	rcu_read_unlock();
 | ||
| 
 | ||
| 	cputime_to_timeval(utime, &r->ru_utime);
 | ||
| 	cputime_to_timeval(stime, &r->ru_stime);
 | ||
| }
 | ||
| 
 | ||
| int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
 | ||
| {
 | ||
| 	struct rusage r;
 | ||
| 	k_getrusage(p, who, &r);
 | ||
| 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
 | ||
| {
 | ||
| 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
 | ||
| 		return -EINVAL;
 | ||
| 	return getrusage(current, who, ru);
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_umask(int mask)
 | ||
| {
 | ||
| 	mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
 | ||
| 	return mask;
 | ||
| }
 | ||
|     
 | ||
| asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
 | ||
| 			  unsigned long arg4, unsigned long arg5)
 | ||
| {
 | ||
| 	long error;
 | ||
| 
 | ||
| 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
 | ||
| 	if (error)
 | ||
| 		return error;
 | ||
| 
 | ||
| 	switch (option) {
 | ||
| 		case PR_SET_PDEATHSIG:
 | ||
| 			if (!valid_signal(arg2)) {
 | ||
| 				error = -EINVAL;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 			current->pdeath_signal = arg2;
 | ||
| 			break;
 | ||
| 		case PR_GET_PDEATHSIG:
 | ||
| 			error = put_user(current->pdeath_signal, (int __user *)arg2);
 | ||
| 			break;
 | ||
| 		case PR_GET_DUMPABLE:
 | ||
| 			error = current->mm->dumpable;
 | ||
| 			break;
 | ||
| 		case PR_SET_DUMPABLE:
 | ||
| 			if (arg2 < 0 || arg2 > 1) {
 | ||
| 				error = -EINVAL;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 			current->mm->dumpable = arg2;
 | ||
| 			break;
 | ||
| 
 | ||
| 		case PR_SET_UNALIGN:
 | ||
| 			error = SET_UNALIGN_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_GET_UNALIGN:
 | ||
| 			error = GET_UNALIGN_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_SET_FPEMU:
 | ||
| 			error = SET_FPEMU_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_GET_FPEMU:
 | ||
| 			error = GET_FPEMU_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_SET_FPEXC:
 | ||
| 			error = SET_FPEXC_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_GET_FPEXC:
 | ||
| 			error = GET_FPEXC_CTL(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_GET_TIMING:
 | ||
| 			error = PR_TIMING_STATISTICAL;
 | ||
| 			break;
 | ||
| 		case PR_SET_TIMING:
 | ||
| 			if (arg2 == PR_TIMING_STATISTICAL)
 | ||
| 				error = 0;
 | ||
| 			else
 | ||
| 				error = -EINVAL;
 | ||
| 			break;
 | ||
| 
 | ||
| 		case PR_GET_KEEPCAPS:
 | ||
| 			if (current->keep_capabilities)
 | ||
| 				error = 1;
 | ||
| 			break;
 | ||
| 		case PR_SET_KEEPCAPS:
 | ||
| 			if (arg2 != 0 && arg2 != 1) {
 | ||
| 				error = -EINVAL;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 			current->keep_capabilities = arg2;
 | ||
| 			break;
 | ||
| 		case PR_SET_NAME: {
 | ||
| 			struct task_struct *me = current;
 | ||
| 			unsigned char ncomm[sizeof(me->comm)];
 | ||
| 
 | ||
| 			ncomm[sizeof(me->comm)-1] = 0;
 | ||
| 			if (strncpy_from_user(ncomm, (char __user *)arg2,
 | ||
| 						sizeof(me->comm)-1) < 0)
 | ||
| 				return -EFAULT;
 | ||
| 			set_task_comm(me, ncomm);
 | ||
| 			return 0;
 | ||
| 		}
 | ||
| 		case PR_GET_NAME: {
 | ||
| 			struct task_struct *me = current;
 | ||
| 			unsigned char tcomm[sizeof(me->comm)];
 | ||
| 
 | ||
| 			get_task_comm(tcomm, me);
 | ||
| 			if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
 | ||
| 				return -EFAULT;
 | ||
| 			return 0;
 | ||
| 		}
 | ||
| 		case PR_GET_ENDIAN:
 | ||
| 			error = GET_ENDIAN(current, arg2);
 | ||
| 			break;
 | ||
| 		case PR_SET_ENDIAN:
 | ||
| 			error = SET_ENDIAN(current, arg2);
 | ||
| 			break;
 | ||
| 
 | ||
| 		default:
 | ||
| 			error = -EINVAL;
 | ||
| 			break;
 | ||
| 	}
 | ||
| 	return error;
 | ||
| }
 | ||
| 
 | ||
| asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
 | ||
| 	   		   struct getcpu_cache __user *cache)
 | ||
| {
 | ||
| 	int err = 0;
 | ||
| 	int cpu = raw_smp_processor_id();
 | ||
| 	if (cpup)
 | ||
| 		err |= put_user(cpu, cpup);
 | ||
| 	if (nodep)
 | ||
| 		err |= put_user(cpu_to_node(cpu), nodep);
 | ||
| 	if (cache) {
 | ||
| 		/*
 | ||
| 		 * The cache is not needed for this implementation,
 | ||
| 		 * but make sure user programs pass something
 | ||
| 		 * valid. vsyscall implementations can instead make
 | ||
| 		 * good use of the cache. Only use t0 and t1 because
 | ||
| 		 * these are available in both 32bit and 64bit ABI (no
 | ||
| 		 * need for a compat_getcpu). 32bit has enough
 | ||
| 		 * padding
 | ||
| 		 */
 | ||
| 		unsigned long t0, t1;
 | ||
| 		get_user(t0, &cache->blob[0]);
 | ||
| 		get_user(t1, &cache->blob[1]);
 | ||
| 		t0++;
 | ||
| 		t1++;
 | ||
| 		put_user(t0, &cache->blob[0]);
 | ||
| 		put_user(t1, &cache->blob[1]);
 | ||
| 	}
 | ||
| 	return err ? -EFAULT : 0;
 | ||
| }
 |