mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:53:24 +00:00 
			
		
		
		
	 1f2ea0837d
			
		
	
	
		1f2ea0837d
		
	
	
	
	
		
			
			Use RCU to avoid the need to acquire tasklist_lock in the single-threaded case of clock_gettime(). It still acquires tasklist_lock when for a (potentially multithreaded) process. This change allows realtime applications to frequently monitor CPU consumption of individual tasks, as requested (and now deployed) by some off-list users. This has been in Ingo Molnar's -rt patchset since late 2005 with no problems reported, and tests successfully on 2.6.20-rc6, so I believe that it is long-since ready for mainline adoption. [paulmck@linux.vnet.ibm.com: fix exit()/posix_cpu_clock_get() race spotted by Oleg] Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1630 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1630 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Implement CPU time clocks for the POSIX clock interface.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/errno.h>
 | |
| 
 | |
| static int check_clock(const clockid_t which_clock)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	struct task_struct *p;
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pid == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	p = find_task_by_pid(pid);
 | |
| 	if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
 | |
| 		   p->tgid != current->tgid : p->tgid != pid)) {
 | |
| 		error = -EINVAL;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline union cpu_time_count
 | |
| timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	union cpu_time_count ret;
 | |
| 	ret.sched = 0;		/* high half always zero when .cpu used */
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
 | |
| 	} else {
 | |
| 		ret.cpu = timespec_to_cputime(tp);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sample_to_timespec(const clockid_t which_clock,
 | |
| 			       union cpu_time_count cpu,
 | |
| 			       struct timespec *tp)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		tp->tv_sec = div_long_long_rem(cpu.sched,
 | |
| 					       NSEC_PER_SEC, &tp->tv_nsec);
 | |
| 	} else {
 | |
| 		cputime_to_timespec(cpu.cpu, tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int cpu_time_before(const clockid_t which_clock,
 | |
| 				  union cpu_time_count now,
 | |
| 				  union cpu_time_count then)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		return now.sched < then.sched;
 | |
| 	}  else {
 | |
| 		return cputime_lt(now.cpu, then.cpu);
 | |
| 	}
 | |
| }
 | |
| static inline void cpu_time_add(const clockid_t which_clock,
 | |
| 				union cpu_time_count *acc,
 | |
| 			        union cpu_time_count val)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		acc->sched += val.sched;
 | |
| 	}  else {
 | |
| 		acc->cpu = cputime_add(acc->cpu, val.cpu);
 | |
| 	}
 | |
| }
 | |
| static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
 | |
| 						union cpu_time_count a,
 | |
| 						union cpu_time_count b)
 | |
| {
 | |
| 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 		a.sched -= b.sched;
 | |
| 	}  else {
 | |
| 		a.cpu = cputime_sub(a.cpu, b.cpu);
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Divide and limit the result to res >= 1
 | |
|  *
 | |
|  * This is necessary to prevent signal delivery starvation, when the result of
 | |
|  * the division would be rounded down to 0.
 | |
|  */
 | |
| static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
 | |
| {
 | |
| 	cputime_t res = cputime_div(time, div);
 | |
| 
 | |
| 	return max_t(cputime_t, res, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update expiry time from increment, and increase overrun count,
 | |
|  * given the current clock sample.
 | |
|  */
 | |
| static void bump_cpu_timer(struct k_itimer *timer,
 | |
| 				  union cpu_time_count now)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (timer->it.cpu.incr.sched == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 | |
| 		unsigned long long delta, incr;
 | |
| 
 | |
| 		if (now.sched < timer->it.cpu.expires.sched)
 | |
| 			return;
 | |
| 		incr = timer->it.cpu.incr.sched;
 | |
| 		delta = now.sched + incr - timer->it.cpu.expires.sched;
 | |
| 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 		for (i = 0; incr < delta - incr; i++)
 | |
| 			incr = incr << 1;
 | |
| 		for (; i >= 0; incr >>= 1, i--) {
 | |
| 			if (delta < incr)
 | |
| 				continue;
 | |
| 			timer->it.cpu.expires.sched += incr;
 | |
| 			timer->it_overrun += 1 << i;
 | |
| 			delta -= incr;
 | |
| 		}
 | |
| 	} else {
 | |
| 		cputime_t delta, incr;
 | |
| 
 | |
| 		if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 | |
| 			return;
 | |
| 		incr = timer->it.cpu.incr.cpu;
 | |
| 		delta = cputime_sub(cputime_add(now.cpu, incr),
 | |
| 				    timer->it.cpu.expires.cpu);
 | |
| 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 | |
| 		for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 | |
| 			     incr = cputime_add(incr, incr);
 | |
| 		for (; i >= 0; incr = cputime_halve(incr), i--) {
 | |
| 			if (cputime_lt(delta, incr))
 | |
| 				continue;
 | |
| 			timer->it.cpu.expires.cpu =
 | |
| 				cputime_add(timer->it.cpu.expires.cpu, incr);
 | |
| 			timer->it_overrun += 1 << i;
 | |
| 			delta = cputime_sub(delta, incr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline cputime_t prof_ticks(struct task_struct *p)
 | |
| {
 | |
| 	return cputime_add(p->utime, p->stime);
 | |
| }
 | |
| static inline cputime_t virt_ticks(struct task_struct *p)
 | |
| {
 | |
| 	return p->utime;
 | |
| }
 | |
| static inline unsigned long long sched_ns(struct task_struct *p)
 | |
| {
 | |
| 	return (p == current) ? current_sched_time(p) : p->sched_time;
 | |
| }
 | |
| 
 | |
| int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (!error) {
 | |
| 		tp->tv_sec = 0;
 | |
| 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 | |
| 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 | |
| 			/*
 | |
| 			 * If sched_clock is using a cycle counter, we
 | |
| 			 * don't have any idea of its true resolution
 | |
| 			 * exported, but it is much more than 1s/HZ.
 | |
| 			 */
 | |
| 			tp->tv_nsec = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can never reset a CPU clock, but we check for other errors
 | |
| 	 * in the call before failing with EPERM.
 | |
| 	 */
 | |
| 	int error = check_clock(which_clock);
 | |
| 	if (error == 0) {
 | |
| 		error = -EPERM;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Sample a per-thread clock for the given task.
 | |
|  */
 | |
| static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 | |
| 			    union cpu_time_count *cpu)
 | |
| {
 | |
| 	switch (CPUCLOCK_WHICH(which_clock)) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		cpu->cpu = prof_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		cpu->cpu = virt_ticks(p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		cpu->sched = sched_ns(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) clock for the given group_leader task.
 | |
|  * Must be called with tasklist_lock held for reading.
 | |
|  * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
 | |
|  */
 | |
| static int cpu_clock_sample_group_locked(unsigned int clock_idx,
 | |
| 					 struct task_struct *p,
 | |
| 					 union cpu_time_count *cpu)
 | |
| {
 | |
| 	struct task_struct *t = p;
 | |
|  	switch (clock_idx) {
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
 | |
| 		do {
 | |
| 			cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		cpu->cpu = p->signal->utime;
 | |
| 		do {
 | |
| 			cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		cpu->sched = p->signal->sched_time;
 | |
| 		/* Add in each other live thread.  */
 | |
| 		while ((t = next_thread(t)) != p) {
 | |
| 			cpu->sched += t->sched_time;
 | |
| 		}
 | |
| 		cpu->sched += sched_ns(p);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sample a process (thread group) clock for the given group_leader task.
 | |
|  * Must be called with tasklist_lock held for reading.
 | |
|  */
 | |
| static int cpu_clock_sample_group(const clockid_t which_clock,
 | |
| 				  struct task_struct *p,
 | |
| 				  union cpu_time_count *cpu)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&p->sighand->siglock, flags);
 | |
| 	ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
 | |
| 					    cpu);
 | |
| 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	const pid_t pid = CPUCLOCK_PID(which_clock);
 | |
| 	int error = -EINVAL;
 | |
| 	union cpu_time_count rtn;
 | |
| 
 | |
| 	if (pid == 0) {
 | |
| 		/*
 | |
| 		 * Special case constant value for our own clocks.
 | |
| 		 * We don't have to do any lookup to find ourselves.
 | |
| 		 */
 | |
| 		if (CPUCLOCK_PERTHREAD(which_clock)) {
 | |
| 			/*
 | |
| 			 * Sampling just ourselves we can do with no locking.
 | |
| 			 */
 | |
| 			error = cpu_clock_sample(which_clock,
 | |
| 						 current, &rtn);
 | |
| 		} else {
 | |
| 			read_lock(&tasklist_lock);
 | |
| 			error = cpu_clock_sample_group(which_clock,
 | |
| 						       current, &rtn);
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Find the given PID, and validate that the caller
 | |
| 		 * should be able to see it.
 | |
| 		 */
 | |
| 		struct task_struct *p;
 | |
| 		rcu_read_lock();
 | |
| 		p = find_task_by_pid(pid);
 | |
| 		if (p) {
 | |
| 			if (CPUCLOCK_PERTHREAD(which_clock)) {
 | |
| 				if (p->tgid == current->tgid) {
 | |
| 					error = cpu_clock_sample(which_clock,
 | |
| 								 p, &rtn);
 | |
| 				}
 | |
| 			} else {
 | |
| 				read_lock(&tasklist_lock);
 | |
| 				if (p->tgid == pid && p->signal) {
 | |
| 					error =
 | |
| 					    cpu_clock_sample_group(which_clock,
 | |
| 							           p, &rtn);
 | |
| 				}
 | |
| 				read_unlock(&tasklist_lock);
 | |
| 			}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	sample_to_timespec(which_clock, rtn, tp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 | |
|  * This is called from sys_timer_create with the new timer already locked.
 | |
|  */
 | |
| int posix_cpu_timer_create(struct k_itimer *new_timer)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 | |
| 	struct task_struct *p;
 | |
| 
 | |
| 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 | |
| 	new_timer->it.cpu.incr.sched = 0;
 | |
| 	new_timer->it.cpu.expires.sched = 0;
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 | |
| 		if (pid == 0) {
 | |
| 			p = current;
 | |
| 		} else {
 | |
| 			p = find_task_by_pid(pid);
 | |
| 			if (p && p->tgid != current->tgid)
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (pid == 0) {
 | |
| 			p = current->group_leader;
 | |
| 		} else {
 | |
| 			p = find_task_by_pid(pid);
 | |
| 			if (p && p->tgid != pid)
 | |
| 				p = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	new_timer->it.cpu.task = p;
 | |
| 	if (p) {
 | |
| 		get_task_struct(p);
 | |
| 	} else {
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up a CPU-clock timer that is about to be destroyed.
 | |
|  * This is called from timer deletion with the timer already locked.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| int posix_cpu_timer_del(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (likely(p != NULL)) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->signal == NULL)) {
 | |
| 			/*
 | |
| 			 * We raced with the reaping of the task.
 | |
| 			 * The deletion should have cleared us off the list.
 | |
| 			 */
 | |
| 			BUG_ON(!list_empty(&timer->it.cpu.entry));
 | |
| 		} else {
 | |
| 			spin_lock(&p->sighand->siglock);
 | |
| 			if (timer->it.cpu.firing)
 | |
| 				ret = TIMER_RETRY;
 | |
| 			else
 | |
| 				list_del(&timer->it.cpu.entry);
 | |
| 			spin_unlock(&p->sighand->siglock);
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 
 | |
| 		if (!ret)
 | |
| 			put_task_struct(p);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean out CPU timers still ticking when a thread exited.  The task
 | |
|  * pointer is cleared, and the expiry time is replaced with the residual
 | |
|  * time for later timer_gettime calls to return.
 | |
|  * This must be called with the siglock held.
 | |
|  */
 | |
| static void cleanup_timers(struct list_head *head,
 | |
| 			   cputime_t utime, cputime_t stime,
 | |
| 			   unsigned long long sched_time)
 | |
| {
 | |
| 	struct cpu_timer_list *timer, *next;
 | |
| 	cputime_t ptime = cputime_add(utime, stime);
 | |
| 
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (cputime_lt(timer->expires.cpu, ptime)) {
 | |
| 			timer->expires.cpu = cputime_zero;
 | |
| 		} else {
 | |
| 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 | |
| 							 ptime);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	++head;
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (cputime_lt(timer->expires.cpu, utime)) {
 | |
| 			timer->expires.cpu = cputime_zero;
 | |
| 		} else {
 | |
| 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
 | |
| 							 utime);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	++head;
 | |
| 	list_for_each_entry_safe(timer, next, head, entry) {
 | |
| 		list_del_init(&timer->entry);
 | |
| 		if (timer->expires.sched < sched_time) {
 | |
| 			timer->expires.sched = 0;
 | |
| 		} else {
 | |
| 			timer->expires.sched -= sched_time;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are both called with the siglock held, when the current thread
 | |
|  * is being reaped.  When the final (leader) thread in the group is reaped,
 | |
|  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 | |
|  */
 | |
| void posix_cpu_timers_exit(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(tsk->cpu_timers,
 | |
| 		       tsk->utime, tsk->stime, tsk->sched_time);
 | |
| 
 | |
| }
 | |
| void posix_cpu_timers_exit_group(struct task_struct *tsk)
 | |
| {
 | |
| 	cleanup_timers(tsk->signal->cpu_timers,
 | |
| 		       cputime_add(tsk->utime, tsk->signal->utime),
 | |
| 		       cputime_add(tsk->stime, tsk->signal->stime),
 | |
| 		       tsk->sched_time + tsk->signal->sched_time);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Set the expiry times of all the threads in the process so one of them
 | |
|  * will go off before the process cumulative expiry total is reached.
 | |
|  */
 | |
| static void process_timer_rebalance(struct task_struct *p,
 | |
| 				    unsigned int clock_idx,
 | |
| 				    union cpu_time_count expires,
 | |
| 				    union cpu_time_count val)
 | |
| {
 | |
| 	cputime_t ticks, left;
 | |
| 	unsigned long long ns, nsleft;
 | |
|  	struct task_struct *t = p;
 | |
| 	unsigned int nthreads = atomic_read(&p->signal->live);
 | |
| 
 | |
| 	if (!nthreads)
 | |
| 		return;
 | |
| 
 | |
| 	switch (clock_idx) {
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	case CPUCLOCK_PROF:
 | |
| 		left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
 | |
| 				       nthreads);
 | |
| 		do {
 | |
| 			if (likely(!(t->flags & PF_EXITING))) {
 | |
| 				ticks = cputime_add(prof_ticks(t), left);
 | |
| 				if (cputime_eq(t->it_prof_expires,
 | |
| 					       cputime_zero) ||
 | |
| 				    cputime_gt(t->it_prof_expires, ticks)) {
 | |
| 					t->it_prof_expires = ticks;
 | |
| 				}
 | |
| 			}
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_VIRT:
 | |
| 		left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
 | |
| 				       nthreads);
 | |
| 		do {
 | |
| 			if (likely(!(t->flags & PF_EXITING))) {
 | |
| 				ticks = cputime_add(virt_ticks(t), left);
 | |
| 				if (cputime_eq(t->it_virt_expires,
 | |
| 					       cputime_zero) ||
 | |
| 				    cputime_gt(t->it_virt_expires, ticks)) {
 | |
| 					t->it_virt_expires = ticks;
 | |
| 				}
 | |
| 			}
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		break;
 | |
| 	case CPUCLOCK_SCHED:
 | |
| 		nsleft = expires.sched - val.sched;
 | |
| 		do_div(nsleft, nthreads);
 | |
| 		nsleft = max_t(unsigned long long, nsleft, 1);
 | |
| 		do {
 | |
| 			if (likely(!(t->flags & PF_EXITING))) {
 | |
| 				ns = t->sched_time + nsleft;
 | |
| 				if (t->it_sched_expires == 0 ||
 | |
| 				    t->it_sched_expires > ns) {
 | |
| 					t->it_sched_expires = ns;
 | |
| 				}
 | |
| 			}
 | |
| 			t = next_thread(t);
 | |
| 		} while (t != p);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 | |
| {
 | |
| 	/*
 | |
| 	 * That's all for this thread or process.
 | |
| 	 * We leave our residual in expires to be reported.
 | |
| 	 */
 | |
| 	put_task_struct(timer->it.cpu.task);
 | |
| 	timer->it.cpu.task = NULL;
 | |
| 	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 | |
| 					     timer->it.cpu.expires,
 | |
| 					     now);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert the timer on the appropriate list before any timers that
 | |
|  * expire later.  This must be called with the tasklist_lock held
 | |
|  * for reading, and interrupts disabled.
 | |
|  */
 | |
| static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	struct list_head *head, *listpos;
 | |
| 	struct cpu_timer_list *const nt = &timer->it.cpu;
 | |
| 	struct cpu_timer_list *next;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
 | |
| 		p->cpu_timers : p->signal->cpu_timers);
 | |
| 	head += CPUCLOCK_WHICH(timer->it_clock);
 | |
| 
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 	spin_lock(&p->sighand->siglock);
 | |
| 
 | |
| 	listpos = head;
 | |
| 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 | |
| 		list_for_each_entry(next, head, entry) {
 | |
| 			if (next->expires.sched > nt->expires.sched)
 | |
| 				break;
 | |
| 			listpos = &next->entry;
 | |
| 		}
 | |
| 	} else {
 | |
| 		list_for_each_entry(next, head, entry) {
 | |
| 			if (cputime_gt(next->expires.cpu, nt->expires.cpu))
 | |
| 				break;
 | |
| 			listpos = &next->entry;
 | |
| 		}
 | |
| 	}
 | |
| 	list_add(&nt->entry, listpos);
 | |
| 
 | |
| 	if (listpos == head) {
 | |
| 		/*
 | |
| 		 * We are the new earliest-expiring timer.
 | |
| 		 * If we are a thread timer, there can always
 | |
| 		 * be a process timer telling us to stop earlier.
 | |
| 		 */
 | |
| 
 | |
| 		if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 			switch (CPUCLOCK_WHICH(timer->it_clock)) {
 | |
| 			default:
 | |
| 				BUG();
 | |
| 			case CPUCLOCK_PROF:
 | |
| 				if (cputime_eq(p->it_prof_expires,
 | |
| 					       cputime_zero) ||
 | |
| 				    cputime_gt(p->it_prof_expires,
 | |
| 					       nt->expires.cpu))
 | |
| 					p->it_prof_expires = nt->expires.cpu;
 | |
| 				break;
 | |
| 			case CPUCLOCK_VIRT:
 | |
| 				if (cputime_eq(p->it_virt_expires,
 | |
| 					       cputime_zero) ||
 | |
| 				    cputime_gt(p->it_virt_expires,
 | |
| 					       nt->expires.cpu))
 | |
| 					p->it_virt_expires = nt->expires.cpu;
 | |
| 				break;
 | |
| 			case CPUCLOCK_SCHED:
 | |
| 				if (p->it_sched_expires == 0 ||
 | |
| 				    p->it_sched_expires > nt->expires.sched)
 | |
| 					p->it_sched_expires = nt->expires.sched;
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * For a process timer, we must balance
 | |
| 			 * all the live threads' expirations.
 | |
| 			 */
 | |
| 			switch (CPUCLOCK_WHICH(timer->it_clock)) {
 | |
| 			default:
 | |
| 				BUG();
 | |
| 			case CPUCLOCK_VIRT:
 | |
| 				if (!cputime_eq(p->signal->it_virt_expires,
 | |
| 						cputime_zero) &&
 | |
| 				    cputime_lt(p->signal->it_virt_expires,
 | |
| 					       timer->it.cpu.expires.cpu))
 | |
| 					break;
 | |
| 				goto rebalance;
 | |
| 			case CPUCLOCK_PROF:
 | |
| 				if (!cputime_eq(p->signal->it_prof_expires,
 | |
| 						cputime_zero) &&
 | |
| 				    cputime_lt(p->signal->it_prof_expires,
 | |
| 					       timer->it.cpu.expires.cpu))
 | |
| 					break;
 | |
| 				i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
 | |
| 				if (i != RLIM_INFINITY &&
 | |
| 				    i <= cputime_to_secs(timer->it.cpu.expires.cpu))
 | |
| 					break;
 | |
| 				goto rebalance;
 | |
| 			case CPUCLOCK_SCHED:
 | |
| 			rebalance:
 | |
| 				process_timer_rebalance(
 | |
| 					timer->it.cpu.task,
 | |
| 					CPUCLOCK_WHICH(timer->it_clock),
 | |
| 					timer->it.cpu.expires, now);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&p->sighand->siglock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The timer is locked, fire it and arrange for its reload.
 | |
|  */
 | |
| static void cpu_timer_fire(struct k_itimer *timer)
 | |
| {
 | |
| 	if (unlikely(timer->sigq == NULL)) {
 | |
| 		/*
 | |
| 		 * This a special case for clock_nanosleep,
 | |
| 		 * not a normal timer from sys_timer_create.
 | |
| 		 */
 | |
| 		wake_up_process(timer->it_process);
 | |
| 		timer->it.cpu.expires.sched = 0;
 | |
| 	} else if (timer->it.cpu.incr.sched == 0) {
 | |
| 		/*
 | |
| 		 * One-shot timer.  Clear it as soon as it's fired.
 | |
| 		 */
 | |
| 		posix_timer_event(timer, 0);
 | |
| 		timer->it.cpu.expires.sched = 0;
 | |
| 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 | |
| 		/*
 | |
| 		 * The signal did not get queued because the signal
 | |
| 		 * was ignored, so we won't get any callback to
 | |
| 		 * reload the timer.  But we need to keep it
 | |
| 		 * ticking in case the signal is deliverable next time.
 | |
| 		 */
 | |
| 		posix_cpu_timer_schedule(timer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guts of sys_timer_settime for CPU timers.
 | |
|  * This is called with the timer locked and interrupts disabled.
 | |
|  * If we return TIMER_RETRY, it's necessary to release the timer's lock
 | |
|  * and try again.  (This happens when the timer is in the middle of firing.)
 | |
|  */
 | |
| int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 | |
| 			struct itimerspec *new, struct itimerspec *old)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	union cpu_time_count old_expires, new_expires, val;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(p == NULL)) {
 | |
| 		/*
 | |
| 		 * Timer refers to a dead task's clock.
 | |
| 		 */
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	/*
 | |
| 	 * We need the tasklist_lock to protect against reaping that
 | |
| 	 * clears p->signal.  If p has just been reaped, we can no
 | |
| 	 * longer get any information about it at all.
 | |
| 	 */
 | |
| 	if (unlikely(p->signal == NULL)) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		put_task_struct(p);
 | |
| 		timer->it.cpu.task = NULL;
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disarm any old timer after extracting its expiry time.
 | |
| 	 */
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 
 | |
| 	ret = 0;
 | |
| 	spin_lock(&p->sighand->siglock);
 | |
| 	old_expires = timer->it.cpu.expires;
 | |
| 	if (unlikely(timer->it.cpu.firing)) {
 | |
| 		timer->it.cpu.firing = -1;
 | |
| 		ret = TIMER_RETRY;
 | |
| 	} else
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 	spin_unlock(&p->sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to sample the current value to convert the new
 | |
| 	 * value from to relative and absolute, and to convert the
 | |
| 	 * old value from absolute to relative.  To set a process
 | |
| 	 * timer, we need a sample to balance the thread expiry
 | |
| 	 * times (in arm_timer).  With an absolute time, we must
 | |
| 	 * check if it's already passed.  In short, we need a sample.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &val);
 | |
| 	} else {
 | |
| 		cpu_clock_sample_group(timer->it_clock, p, &val);
 | |
| 	}
 | |
| 
 | |
| 	if (old) {
 | |
| 		if (old_expires.sched == 0) {
 | |
| 			old->it_value.tv_sec = 0;
 | |
| 			old->it_value.tv_nsec = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Update the timer in case it has
 | |
| 			 * overrun already.  If it has,
 | |
| 			 * we'll report it as having overrun
 | |
| 			 * and with the next reloaded timer
 | |
| 			 * already ticking, though we are
 | |
| 			 * swallowing that pending
 | |
| 			 * notification here to install the
 | |
| 			 * new setting.
 | |
| 			 */
 | |
| 			bump_cpu_timer(timer, val);
 | |
| 			if (cpu_time_before(timer->it_clock, val,
 | |
| 					    timer->it.cpu.expires)) {
 | |
| 				old_expires = cpu_time_sub(
 | |
| 					timer->it_clock,
 | |
| 					timer->it.cpu.expires, val);
 | |
| 				sample_to_timespec(timer->it_clock,
 | |
| 						   old_expires,
 | |
| 						   &old->it_value);
 | |
| 			} else {
 | |
| 				old->it_value.tv_nsec = 1;
 | |
| 				old->it_value.tv_sec = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		/*
 | |
| 		 * We are colliding with the timer actually firing.
 | |
| 		 * Punt after filling in the timer's old value, and
 | |
| 		 * disable this firing since we are already reporting
 | |
| 		 * it as an overrun (thanks to bump_cpu_timer above).
 | |
| 		 */
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 | |
| 		cpu_time_add(timer->it_clock, &new_expires, val);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new expiry time (or zero).
 | |
| 	 * For a timer with no notification action, we don't actually
 | |
| 	 * arm the timer (we'll just fake it for timer_gettime).
 | |
| 	 */
 | |
| 	timer->it.cpu.expires = new_expires;
 | |
| 	if (new_expires.sched != 0 &&
 | |
| 	    (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 | |
| 	    cpu_time_before(timer->it_clock, val, new_expires)) {
 | |
| 		arm_timer(timer, val);
 | |
| 	}
 | |
| 
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new reload setting, and
 | |
| 	 * set up the signal and overrun bookkeeping.
 | |
| 	 */
 | |
| 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 | |
| 						&new->it_interval);
 | |
| 
 | |
| 	/*
 | |
| 	 * This acts as a modification timestamp for the timer,
 | |
| 	 * so any automatic reload attempt will punt on seeing
 | |
| 	 * that we have reset the timer manually.
 | |
| 	 */
 | |
| 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 | |
| 		~REQUEUE_PENDING;
 | |
| 	timer->it_overrun_last = 0;
 | |
| 	timer->it_overrun = -1;
 | |
| 
 | |
| 	if (new_expires.sched != 0 &&
 | |
| 	    (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 | |
| 	    !cpu_time_before(timer->it_clock, val, new_expires)) {
 | |
| 		/*
 | |
| 		 * The designated time already passed, so we notify
 | |
| 		 * immediately, even if the thread never runs to
 | |
| 		 * accumulate more time on this clock.
 | |
| 		 */
 | |
| 		cpu_timer_fire(timer);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
|  out:
 | |
| 	if (old) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   timer->it.cpu.incr, &old->it_interval);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 | |
| {
 | |
| 	union cpu_time_count now;
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	int clear_dead;
 | |
| 
 | |
| 	/*
 | |
| 	 * Easy part: convert the reload time.
 | |
| 	 */
 | |
| 	sample_to_timespec(timer->it_clock,
 | |
| 			   timer->it.cpu.incr, &itp->it_interval);
 | |
| 
 | |
| 	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
 | |
| 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(p == NULL)) {
 | |
| 		/*
 | |
| 		 * This task already died and the timer will never fire.
 | |
| 		 * In this case, expires is actually the dead value.
 | |
| 		 */
 | |
| 	dead:
 | |
| 		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 | |
| 				   &itp->it_value);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sample the clock to take the difference with the expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 		clear_dead = p->exit_state;
 | |
| 	} else {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->signal == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 * Call the timer disarmed, nothing else to do.
 | |
| 			 */
 | |
| 			put_task_struct(p);
 | |
| 			timer->it.cpu.task = NULL;
 | |
| 			timer->it.cpu.expires.sched = 0;
 | |
| 			read_unlock(&tasklist_lock);
 | |
| 			goto dead;
 | |
| 		} else {
 | |
| 			cpu_clock_sample_group(timer->it_clock, p, &now);
 | |
| 			clear_dead = (unlikely(p->exit_state) &&
 | |
| 				      thread_group_empty(p));
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 | |
| 		if (timer->it.cpu.incr.sched == 0 &&
 | |
| 		    cpu_time_before(timer->it_clock,
 | |
| 				    timer->it.cpu.expires, now)) {
 | |
| 			/*
 | |
| 			 * Do-nothing timer expired and has no reload,
 | |
| 			 * so it's as if it was never set.
 | |
| 			 */
 | |
| 			timer->it.cpu.expires.sched = 0;
 | |
| 			itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Account for any expirations and reloads that should
 | |
| 		 * have happened.
 | |
| 		 */
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(clear_dead)) {
 | |
| 		/*
 | |
| 		 * We've noticed that the thread is dead, but
 | |
| 		 * not yet reaped.  Take this opportunity to
 | |
| 		 * drop our task ref.
 | |
| 		 */
 | |
| 		clear_dead_task(timer, now);
 | |
| 		goto dead;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 | |
| 		sample_to_timespec(timer->it_clock,
 | |
| 				   cpu_time_sub(timer->it_clock,
 | |
| 						timer->it.cpu.expires, now),
 | |
| 				   &itp->it_value);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The timer should have expired already, but the firing
 | |
| 		 * hasn't taken place yet.  Say it's just about to expire.
 | |
| 		 */
 | |
| 		itp->it_value.tv_nsec = 1;
 | |
| 		itp->it_value.tv_sec = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them off
 | |
|  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 | |
|  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 | |
|  */
 | |
| static void check_thread_timers(struct task_struct *tsk,
 | |
| 				struct list_head *firing)
 | |
| {
 | |
| 	int maxfire;
 | |
| 	struct list_head *timers = tsk->cpu_timers;
 | |
| 
 | |
| 	maxfire = 20;
 | |
| 	tsk->it_prof_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 | |
| 			tsk->it_prof_expires = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	tsk->it_virt_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
 | |
| 			tsk->it_virt_expires = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	tsk->it_sched_expires = 0;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || tsk->sched_time < t->expires.sched) {
 | |
| 			tsk->it_sched_expires = t->expires.sched;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for any per-thread CPU timers that have fired and move them
 | |
|  * off the tsk->*_timers list onto the firing list.  Per-thread timers
 | |
|  * have already been taken off.
 | |
|  */
 | |
| static void check_process_timers(struct task_struct *tsk,
 | |
| 				 struct list_head *firing)
 | |
| {
 | |
| 	int maxfire;
 | |
| 	struct signal_struct *const sig = tsk->signal;
 | |
| 	cputime_t utime, stime, ptime, virt_expires, prof_expires;
 | |
| 	unsigned long long sched_time, sched_expires;
 | |
| 	struct task_struct *t;
 | |
| 	struct list_head *timers = sig->cpu_timers;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't sample the current process CPU clocks if there are no timers.
 | |
| 	 */
 | |
| 	if (list_empty(&timers[CPUCLOCK_PROF]) &&
 | |
| 	    cputime_eq(sig->it_prof_expires, cputime_zero) &&
 | |
| 	    sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
 | |
| 	    list_empty(&timers[CPUCLOCK_VIRT]) &&
 | |
| 	    cputime_eq(sig->it_virt_expires, cputime_zero) &&
 | |
| 	    list_empty(&timers[CPUCLOCK_SCHED]))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the current process totals.
 | |
| 	 */
 | |
| 	utime = sig->utime;
 | |
| 	stime = sig->stime;
 | |
| 	sched_time = sig->sched_time;
 | |
| 	t = tsk;
 | |
| 	do {
 | |
| 		utime = cputime_add(utime, t->utime);
 | |
| 		stime = cputime_add(stime, t->stime);
 | |
| 		sched_time += t->sched_time;
 | |
| 		t = next_thread(t);
 | |
| 	} while (t != tsk);
 | |
| 	ptime = cputime_add(utime, stime);
 | |
| 
 | |
| 	maxfire = 20;
 | |
| 	prof_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
 | |
| 			prof_expires = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	virt_expires = cputime_zero;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
 | |
| 			virt_expires = t->expires.cpu;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	++timers;
 | |
| 	maxfire = 20;
 | |
| 	sched_expires = 0;
 | |
| 	while (!list_empty(timers)) {
 | |
| 		struct cpu_timer_list *t = list_entry(timers->next,
 | |
| 						      struct cpu_timer_list,
 | |
| 						      entry);
 | |
| 		if (!--maxfire || sched_time < t->expires.sched) {
 | |
| 			sched_expires = t->expires.sched;
 | |
| 			break;
 | |
| 		}
 | |
| 		t->firing = 1;
 | |
| 		list_move_tail(&t->entry, firing);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for the special case process timers.
 | |
| 	 */
 | |
| 	if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
 | |
| 		if (cputime_ge(ptime, sig->it_prof_expires)) {
 | |
| 			/* ITIMER_PROF fires and reloads.  */
 | |
| 			sig->it_prof_expires = sig->it_prof_incr;
 | |
| 			if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
 | |
| 				sig->it_prof_expires = cputime_add(
 | |
| 					sig->it_prof_expires, ptime);
 | |
| 			}
 | |
| 			__group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
 | |
| 		}
 | |
| 		if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
 | |
| 		    (cputime_eq(prof_expires, cputime_zero) ||
 | |
| 		     cputime_lt(sig->it_prof_expires, prof_expires))) {
 | |
| 			prof_expires = sig->it_prof_expires;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
 | |
| 		if (cputime_ge(utime, sig->it_virt_expires)) {
 | |
| 			/* ITIMER_VIRTUAL fires and reloads.  */
 | |
| 			sig->it_virt_expires = sig->it_virt_incr;
 | |
| 			if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
 | |
| 				sig->it_virt_expires = cputime_add(
 | |
| 					sig->it_virt_expires, utime);
 | |
| 			}
 | |
| 			__group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
 | |
| 		}
 | |
| 		if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
 | |
| 		    (cputime_eq(virt_expires, cputime_zero) ||
 | |
| 		     cputime_lt(sig->it_virt_expires, virt_expires))) {
 | |
| 			virt_expires = sig->it_virt_expires;
 | |
| 		}
 | |
| 	}
 | |
| 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
 | |
| 		unsigned long psecs = cputime_to_secs(ptime);
 | |
| 		cputime_t x;
 | |
| 		if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
 | |
| 			/*
 | |
| 			 * At the hard limit, we just die.
 | |
| 			 * No need to calculate anything else now.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
 | |
| 			/*
 | |
| 			 * At the soft limit, send a SIGXCPU every second.
 | |
| 			 */
 | |
| 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 | |
| 			if (sig->rlim[RLIMIT_CPU].rlim_cur
 | |
| 			    < sig->rlim[RLIMIT_CPU].rlim_max) {
 | |
| 				sig->rlim[RLIMIT_CPU].rlim_cur++;
 | |
| 			}
 | |
| 		}
 | |
| 		x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
 | |
| 		if (cputime_eq(prof_expires, cputime_zero) ||
 | |
| 		    cputime_lt(x, prof_expires)) {
 | |
| 			prof_expires = x;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!cputime_eq(prof_expires, cputime_zero) ||
 | |
| 	    !cputime_eq(virt_expires, cputime_zero) ||
 | |
| 	    sched_expires != 0) {
 | |
| 		/*
 | |
| 		 * Rebalance the threads' expiry times for the remaining
 | |
| 		 * process CPU timers.
 | |
| 		 */
 | |
| 
 | |
| 		cputime_t prof_left, virt_left, ticks;
 | |
| 		unsigned long long sched_left, sched;
 | |
| 		const unsigned int nthreads = atomic_read(&sig->live);
 | |
| 
 | |
| 		if (!nthreads)
 | |
| 			return;
 | |
| 
 | |
| 		prof_left = cputime_sub(prof_expires, utime);
 | |
| 		prof_left = cputime_sub(prof_left, stime);
 | |
| 		prof_left = cputime_div_non_zero(prof_left, nthreads);
 | |
| 		virt_left = cputime_sub(virt_expires, utime);
 | |
| 		virt_left = cputime_div_non_zero(virt_left, nthreads);
 | |
| 		if (sched_expires) {
 | |
| 			sched_left = sched_expires - sched_time;
 | |
| 			do_div(sched_left, nthreads);
 | |
| 			sched_left = max_t(unsigned long long, sched_left, 1);
 | |
| 		} else {
 | |
| 			sched_left = 0;
 | |
| 		}
 | |
| 		t = tsk;
 | |
| 		do {
 | |
| 			if (unlikely(t->flags & PF_EXITING))
 | |
| 				continue;
 | |
| 
 | |
| 			ticks = cputime_add(cputime_add(t->utime, t->stime),
 | |
| 					    prof_left);
 | |
| 			if (!cputime_eq(prof_expires, cputime_zero) &&
 | |
| 			    (cputime_eq(t->it_prof_expires, cputime_zero) ||
 | |
| 			     cputime_gt(t->it_prof_expires, ticks))) {
 | |
| 				t->it_prof_expires = ticks;
 | |
| 			}
 | |
| 
 | |
| 			ticks = cputime_add(t->utime, virt_left);
 | |
| 			if (!cputime_eq(virt_expires, cputime_zero) &&
 | |
| 			    (cputime_eq(t->it_virt_expires, cputime_zero) ||
 | |
| 			     cputime_gt(t->it_virt_expires, ticks))) {
 | |
| 				t->it_virt_expires = ticks;
 | |
| 			}
 | |
| 
 | |
| 			sched = t->sched_time + sched_left;
 | |
| 			if (sched_expires && (t->it_sched_expires == 0 ||
 | |
| 					      t->it_sched_expires > sched)) {
 | |
| 				t->it_sched_expires = sched;
 | |
| 			}
 | |
| 		} while ((t = next_thread(t)) != tsk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the signal code (via do_schedule_next_timer)
 | |
|  * when the last timer signal was delivered and we have to reload the timer.
 | |
|  */
 | |
| void posix_cpu_timer_schedule(struct k_itimer *timer)
 | |
| {
 | |
| 	struct task_struct *p = timer->it.cpu.task;
 | |
| 	union cpu_time_count now;
 | |
| 
 | |
| 	if (unlikely(p == NULL))
 | |
| 		/*
 | |
| 		 * The task was cleaned up already, no future firings.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fetch the current sample and update the timer's expiry time.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 | |
| 		cpu_clock_sample(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		if (unlikely(p->exit_state)) {
 | |
| 			clear_dead_task(timer, now);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		read_lock(&tasklist_lock); /* arm_timer needs it.  */
 | |
| 	} else {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (unlikely(p->signal == NULL)) {
 | |
| 			/*
 | |
| 			 * The process has been reaped.
 | |
| 			 * We can't even collect a sample any more.
 | |
| 			 */
 | |
| 			put_task_struct(p);
 | |
| 			timer->it.cpu.task = p = NULL;
 | |
| 			timer->it.cpu.expires.sched = 0;
 | |
| 			goto out_unlock;
 | |
| 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
 | |
| 			/*
 | |
| 			 * We've noticed that the thread is dead, but
 | |
| 			 * not yet reaped.  Take this opportunity to
 | |
| 			 * drop our task ref.
 | |
| 			 */
 | |
| 			clear_dead_task(timer, now);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		cpu_clock_sample_group(timer->it_clock, p, &now);
 | |
| 		bump_cpu_timer(timer, now);
 | |
| 		/* Leave the tasklist_lock locked for the call below.  */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now re-arm for the new expiry time.
 | |
| 	 */
 | |
| 	arm_timer(timer, now);
 | |
| 
 | |
| out_unlock:
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| out:
 | |
| 	timer->it_overrun_last = timer->it_overrun;
 | |
| 	timer->it_overrun = -1;
 | |
| 	++timer->it_requeue_pending;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called from the timer interrupt handler.  The irq handler has
 | |
|  * already updated our counts.  We need to check if any timers fire now.
 | |
|  * Interrupts are disabled.
 | |
|  */
 | |
| void run_posix_cpu_timers(struct task_struct *tsk)
 | |
| {
 | |
| 	LIST_HEAD(firing);
 | |
| 	struct k_itimer *timer, *next;
 | |
| 
 | |
| 	BUG_ON(!irqs_disabled());
 | |
| 
 | |
| #define UNEXPIRED(clock) \
 | |
| 		(cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
 | |
| 		 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
 | |
| 
 | |
| 	if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
 | |
| 	    (tsk->it_sched_expires == 0 ||
 | |
| 	     tsk->sched_time < tsk->it_sched_expires))
 | |
| 		return;
 | |
| 
 | |
| #undef	UNEXPIRED
 | |
| 
 | |
| 	/*
 | |
| 	 * Double-check with locks held.
 | |
| 	 */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (likely(tsk->signal != NULL)) {
 | |
| 		spin_lock(&tsk->sighand->siglock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
 | |
| 		 * all the timers that are firing, and put them on the firing list.
 | |
| 		 */
 | |
| 		check_thread_timers(tsk, &firing);
 | |
| 		check_process_timers(tsk, &firing);
 | |
| 
 | |
| 		/*
 | |
| 		 * We must release these locks before taking any timer's lock.
 | |
| 		 * There is a potential race with timer deletion here, as the
 | |
| 		 * siglock now protects our private firing list.  We have set
 | |
| 		 * the firing flag in each timer, so that a deletion attempt
 | |
| 		 * that gets the timer lock before we do will give it up and
 | |
| 		 * spin until we've taken care of that timer below.
 | |
| 		 */
 | |
| 		spin_unlock(&tsk->sighand->siglock);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that all the timers on our list have the firing flag,
 | |
| 	 * noone will touch their list entries but us.  We'll take
 | |
| 	 * each timer's lock before clearing its firing flag, so no
 | |
| 	 * timer call will interfere.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
 | |
| 		int firing;
 | |
| 		spin_lock(&timer->it_lock);
 | |
| 		list_del_init(&timer->it.cpu.entry);
 | |
| 		firing = timer->it.cpu.firing;
 | |
| 		timer->it.cpu.firing = 0;
 | |
| 		/*
 | |
| 		 * The firing flag is -1 if we collided with a reset
 | |
| 		 * of the timer, which already reported this
 | |
| 		 * almost-firing as an overrun.  So don't generate an event.
 | |
| 		 */
 | |
| 		if (likely(firing >= 0)) {
 | |
| 			cpu_timer_fire(timer);
 | |
| 		}
 | |
| 		spin_unlock(&timer->it_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set one of the process-wide special case CPU timers.
 | |
|  * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
 | |
|  * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
 | |
|  * absolute; non-null for ITIMER_*, where *newval is relative and we update
 | |
|  * it to be absolute, *oldval is absolute and we update it to be relative.
 | |
|  */
 | |
| void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
 | |
| 			   cputime_t *newval, cputime_t *oldval)
 | |
| {
 | |
| 	union cpu_time_count now;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	BUG_ON(clock_idx == CPUCLOCK_SCHED);
 | |
| 	cpu_clock_sample_group_locked(clock_idx, tsk, &now);
 | |
| 
 | |
| 	if (oldval) {
 | |
| 		if (!cputime_eq(*oldval, cputime_zero)) {
 | |
| 			if (cputime_le(*oldval, now.cpu)) {
 | |
| 				/* Just about to fire. */
 | |
| 				*oldval = jiffies_to_cputime(1);
 | |
| 			} else {
 | |
| 				*oldval = cputime_sub(*oldval, now.cpu);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (cputime_eq(*newval, cputime_zero))
 | |
| 			return;
 | |
| 		*newval = cputime_add(*newval, now.cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the RLIMIT_CPU timer will expire before the
 | |
| 		 * ITIMER_PROF timer, we have nothing else to do.
 | |
| 		 */
 | |
| 		if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
 | |
| 		    < cputime_to_secs(*newval))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether there are any process timers already set to fire
 | |
| 	 * before this one.  If so, we don't have anything more to do.
 | |
| 	 */
 | |
| 	head = &tsk->signal->cpu_timers[clock_idx];
 | |
| 	if (list_empty(head) ||
 | |
| 	    cputime_ge(list_entry(head->next,
 | |
| 				  struct cpu_timer_list, entry)->expires.cpu,
 | |
| 		       *newval)) {
 | |
| 		/*
 | |
| 		 * Rejigger each thread's expiry time so that one will
 | |
| 		 * notice before we hit the process-cumulative expiry time.
 | |
| 		 */
 | |
| 		union cpu_time_count expires = { .sched = 0 };
 | |
| 		expires.cpu = *newval;
 | |
| 		process_timer_rebalance(tsk, clock_idx, expires, now);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
 | |
| 			    struct timespec *rqtp, struct itimerspec *it)
 | |
| {
 | |
| 	struct k_itimer timer;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up a temporary timer and then wait for it to go off.
 | |
| 	 */
 | |
| 	memset(&timer, 0, sizeof timer);
 | |
| 	spin_lock_init(&timer.it_lock);
 | |
| 	timer.it_clock = which_clock;
 | |
| 	timer.it_overrun = -1;
 | |
| 	error = posix_cpu_timer_create(&timer);
 | |
| 	timer.it_process = current;
 | |
| 	if (!error) {
 | |
| 		static struct itimerspec zero_it;
 | |
| 
 | |
| 		memset(it, 0, sizeof *it);
 | |
| 		it->it_value = *rqtp;
 | |
| 
 | |
| 		spin_lock_irq(&timer.it_lock);
 | |
| 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
 | |
| 		if (error) {
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		while (!signal_pending(current)) {
 | |
| 			if (timer.it.cpu.expires.sched == 0) {
 | |
| 				/*
 | |
| 				 * Our timer fired and was reset.
 | |
| 				 */
 | |
| 				spin_unlock_irq(&timer.it_lock);
 | |
| 				return 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Block until cpu_timer_fire (or a signal) wakes us.
 | |
| 			 */
 | |
| 			__set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			spin_unlock_irq(&timer.it_lock);
 | |
| 			schedule();
 | |
| 			spin_lock_irq(&timer.it_lock);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We were interrupted by a signal.
 | |
| 		 */
 | |
| 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
 | |
| 		posix_cpu_timer_set(&timer, 0, &zero_it, it);
 | |
| 		spin_unlock_irq(&timer.it_lock);
 | |
| 
 | |
| 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
 | |
| 			/*
 | |
| 			 * It actually did fire already.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		error = -ERESTART_RESTARTBLOCK;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int posix_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 		     struct timespec *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct restart_block *restart_block =
 | |
| 	    ¤t_thread_info()->restart_block;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Diagnose required errors first.
 | |
| 	 */
 | |
| 	if (CPUCLOCK_PERTHREAD(which_clock) &&
 | |
| 	    (CPUCLOCK_PID(which_clock) == 0 ||
 | |
| 	     CPUCLOCK_PID(which_clock) == current->pid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 
 | |
| 	       	if (flags & TIMER_ABSTIME)
 | |
| 			return -ERESTARTNOHAND;
 | |
| 		/*
 | |
| 	 	 * Report back to the user the time still remaining.
 | |
| 	 	 */
 | |
| 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->fn = posix_cpu_nsleep_restart;
 | |
| 		restart_block->arg0 = which_clock;
 | |
| 		restart_block->arg1 = (unsigned long) rmtp;
 | |
| 		restart_block->arg2 = rqtp->tv_sec;
 | |
| 		restart_block->arg3 = rqtp->tv_nsec;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| long posix_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	clockid_t which_clock = restart_block->arg0;
 | |
| 	struct timespec __user *rmtp;
 | |
| 	struct timespec t;
 | |
| 	struct itimerspec it;
 | |
| 	int error;
 | |
| 
 | |
| 	rmtp = (struct timespec __user *) restart_block->arg1;
 | |
| 	t.tv_sec = restart_block->arg2;
 | |
| 	t.tv_nsec = restart_block->arg3;
 | |
| 
 | |
| 	restart_block->fn = do_no_restart_syscall;
 | |
| 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
 | |
| 
 | |
| 	if (error == -ERESTART_RESTARTBLOCK) {
 | |
| 		/*
 | |
| 	 	 * Report back to the user the time still remaining.
 | |
| 	 	 */
 | |
| 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		restart_block->fn = posix_cpu_nsleep_restart;
 | |
| 		restart_block->arg0 = which_clock;
 | |
| 		restart_block->arg1 = (unsigned long) rmtp;
 | |
| 		restart_block->arg2 = t.tv_sec;
 | |
| 		restart_block->arg3 = t.tv_nsec;
 | |
| 	}
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
 | |
| 
 | |
| static int process_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				    struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_clock_get(const clockid_t which_clock,
 | |
| 				 struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
 | |
| }
 | |
| static int process_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = PROCESS_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int process_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      struct timespec *rqtp,
 | |
| 			      struct timespec __user *rmtp)
 | |
| {
 | |
| 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
 | |
| }
 | |
| static long process_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static int thread_cpu_clock_getres(const clockid_t which_clock,
 | |
| 				   struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_clock_get(const clockid_t which_clock,
 | |
| 				struct timespec *tp)
 | |
| {
 | |
| 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
 | |
| }
 | |
| static int thread_cpu_timer_create(struct k_itimer *timer)
 | |
| {
 | |
| 	timer->it_clock = THREAD_CLOCK;
 | |
| 	return posix_cpu_timer_create(timer);
 | |
| }
 | |
| static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
 | |
| 			      struct timespec *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static __init int init_posix_cpu_timers(void)
 | |
| {
 | |
| 	struct k_clock process = {
 | |
| 		.clock_getres = process_cpu_clock_getres,
 | |
| 		.clock_get = process_cpu_clock_get,
 | |
| 		.clock_set = do_posix_clock_nosettime,
 | |
| 		.timer_create = process_cpu_timer_create,
 | |
| 		.nsleep = process_cpu_nsleep,
 | |
| 		.nsleep_restart = process_cpu_nsleep_restart,
 | |
| 	};
 | |
| 	struct k_clock thread = {
 | |
| 		.clock_getres = thread_cpu_clock_getres,
 | |
| 		.clock_get = thread_cpu_clock_get,
 | |
| 		.clock_set = do_posix_clock_nosettime,
 | |
| 		.timer_create = thread_cpu_timer_create,
 | |
| 		.nsleep = thread_cpu_nsleep,
 | |
| 		.nsleep_restart = thread_cpu_nsleep_restart,
 | |
| 	};
 | |
| 
 | |
| 	register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
 | |
| 	register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(init_posix_cpu_timers);
 |