mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 9fbbd4dd17
			
		
	
	
		9fbbd4dd17
		
	
	
	
	
		
			
			and in other strange binfmts. vDSO is not necessarily mapped there. Signed-off-by: Andi Kleen <ak@suse.de>
		
			
				
	
	
		
			1769 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1769 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/fs/binfmt_elf.c
 | |
|  *
 | |
|  * These are the functions used to load ELF format executables as used
 | |
|  * on SVr4 machines.  Information on the format may be found in the book
 | |
|  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
 | |
|  * Tools".
 | |
|  *
 | |
|  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/stat.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/a.out.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/shm.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/elf.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/param.h>
 | |
| #include <asm/page.h>
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
 | |
| static int load_elf_library(struct file *);
 | |
| static unsigned long elf_map (struct file *, unsigned long, struct elf_phdr *, int, int);
 | |
| 
 | |
| /*
 | |
|  * If we don't support core dumping, then supply a NULL so we
 | |
|  * don't even try.
 | |
|  */
 | |
| #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
 | |
| static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file);
 | |
| #else
 | |
| #define elf_core_dump	NULL
 | |
| #endif
 | |
| 
 | |
| #if ELF_EXEC_PAGESIZE > PAGE_SIZE
 | |
| #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
 | |
| #else
 | |
| #define ELF_MIN_ALIGN	PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_CORE_EFLAGS
 | |
| #define ELF_CORE_EFLAGS	0
 | |
| #endif
 | |
| 
 | |
| #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
 | |
| 
 | |
| static struct linux_binfmt elf_format = {
 | |
| 		.module		= THIS_MODULE,
 | |
| 		.load_binary	= load_elf_binary,
 | |
| 		.load_shlib	= load_elf_library,
 | |
| 		.core_dump	= elf_core_dump,
 | |
| 		.min_coredump	= ELF_EXEC_PAGESIZE,
 | |
| 		.hasvdso	= 1
 | |
| };
 | |
| 
 | |
| #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
 | |
| 
 | |
| static int set_brk(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	start = ELF_PAGEALIGN(start);
 | |
| 	end = ELF_PAGEALIGN(end);
 | |
| 	if (end > start) {
 | |
| 		unsigned long addr;
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		addr = do_brk(start, end - start);
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 		if (BAD_ADDR(addr))
 | |
| 			return addr;
 | |
| 	}
 | |
| 	current->mm->start_brk = current->mm->brk = end;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We need to explicitly zero any fractional pages
 | |
|    after the data section (i.e. bss).  This would
 | |
|    contain the junk from the file that should not
 | |
|    be in memory
 | |
|  */
 | |
| static int padzero(unsigned long elf_bss)
 | |
| {
 | |
| 	unsigned long nbyte;
 | |
| 
 | |
| 	nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 	if (nbyte) {
 | |
| 		nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 		if (clear_user((void __user *) elf_bss, nbyte))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Let's use some macros to make this stack manipulation a litle clearer */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) ({ \
 | |
| 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 | |
| 	old_sp; })
 | |
| #else
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	(((unsigned long) (sp - items)) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 | |
| 		int interp_aout, unsigned long load_addr,
 | |
| 		unsigned long interp_load_addr)
 | |
| {
 | |
| 	unsigned long p = bprm->p;
 | |
| 	int argc = bprm->argc;
 | |
| 	int envc = bprm->envc;
 | |
| 	elf_addr_t __user *argv;
 | |
| 	elf_addr_t __user *envp;
 | |
| 	elf_addr_t __user *sp;
 | |
| 	elf_addr_t __user *u_platform;
 | |
| 	const char *k_platform = ELF_PLATFORM;
 | |
| 	int items;
 | |
| 	elf_addr_t *elf_info;
 | |
| 	int ei_index = 0;
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this architecture has a platform capability string, copy it
 | |
| 	 * to userspace.  In some cases (Sparc), this info is impossible
 | |
| 	 * for userspace to get any other way, in others (i386) it is
 | |
| 	 * merely difficult.
 | |
| 	 */
 | |
| 	u_platform = NULL;
 | |
| 	if (k_platform) {
 | |
| 		size_t len = strlen(k_platform) + 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 | |
| 		 * evictions by the processes running on the same package. One
 | |
| 		 * thing we can do is to shuffle the initial stack for them.
 | |
| 		 */
 | |
| 
 | |
| 		p = arch_align_stack(p);
 | |
| 
 | |
| 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | |
| 		if (__copy_to_user(u_platform, k_platform, len))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Create the ELF interpreter info */
 | |
| 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 | |
| #define NEW_AUX_ENT(id, val) \
 | |
| 	do { \
 | |
| 		elf_info[ei_index++] = id; \
 | |
| 		elf_info[ei_index++] = val; \
 | |
| 	} while (0)
 | |
| 
 | |
| #ifdef ARCH_DLINFO
 | |
| 	/* 
 | |
| 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 | |
| 	 * AUXV.
 | |
| 	 */
 | |
| 	ARCH_DLINFO;
 | |
| #endif
 | |
| 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 | |
| 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 | |
| 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 | |
| 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 | |
| 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 | |
| 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 | |
| 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 | |
| 	NEW_AUX_ENT(AT_FLAGS, 0);
 | |
| 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 | |
| 	NEW_AUX_ENT(AT_UID, tsk->uid);
 | |
| 	NEW_AUX_ENT(AT_EUID, tsk->euid);
 | |
| 	NEW_AUX_ENT(AT_GID, tsk->gid);
 | |
| 	NEW_AUX_ENT(AT_EGID, tsk->egid);
 | |
|  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 | |
| 	if (k_platform) {
 | |
| 		NEW_AUX_ENT(AT_PLATFORM,
 | |
| 			    (elf_addr_t)(unsigned long)u_platform);
 | |
| 	}
 | |
| 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 | |
| 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 | |
| 	}
 | |
| #undef NEW_AUX_ENT
 | |
| 	/* AT_NULL is zero; clear the rest too */
 | |
| 	memset(&elf_info[ei_index], 0,
 | |
| 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 | |
| 
 | |
| 	/* And advance past the AT_NULL entry.  */
 | |
| 	ei_index += 2;
 | |
| 
 | |
| 	sp = STACK_ADD(p, ei_index);
 | |
| 
 | |
| 	items = (argc + 1) + (envc + 1);
 | |
| 	if (interp_aout) {
 | |
| 		items += 3; /* a.out interpreters require argv & envp too */
 | |
| 	} else {
 | |
| 		items += 1; /* ELF interpreters only put argc on the stack */
 | |
| 	}
 | |
| 	bprm->p = STACK_ROUND(sp, items);
 | |
| 
 | |
| 	/* Point sp at the lowest address on the stack */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 | |
| 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 | |
| #else
 | |
| 	sp = (elf_addr_t __user *)bprm->p;
 | |
| #endif
 | |
| 
 | |
| 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 | |
| 	if (__put_user(argc, sp++))
 | |
| 		return -EFAULT;
 | |
| 	if (interp_aout) {
 | |
| 		argv = sp + 2;
 | |
| 		envp = argv + argc + 1;
 | |
| 		if (__put_user((elf_addr_t)(unsigned long)argv, sp++) ||
 | |
| 		    __put_user((elf_addr_t)(unsigned long)envp, sp++))
 | |
| 			return -EFAULT;
 | |
| 	} else {
 | |
| 		argv = sp;
 | |
| 		envp = argv + argc + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Populate argv and envp */
 | |
| 	p = current->mm->arg_end = current->mm->arg_start;
 | |
| 	while (argc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (__put_user((elf_addr_t)p, argv++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES);
 | |
| 		if (!len || len > PAGE_SIZE*MAX_ARG_PAGES)
 | |
| 			return 0;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (__put_user(0, argv))
 | |
| 		return -EFAULT;
 | |
| 	current->mm->arg_end = current->mm->env_start = p;
 | |
| 	while (envc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (__put_user((elf_addr_t)p, envp++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES);
 | |
| 		if (!len || len > PAGE_SIZE*MAX_ARG_PAGES)
 | |
| 			return 0;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (__put_user(0, envp))
 | |
| 		return -EFAULT;
 | |
| 	current->mm->env_end = p;
 | |
| 
 | |
| 	/* Put the elf_info on the stack in the right place.  */
 | |
| 	sp = (elf_addr_t __user *)envp + 1;
 | |
| 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef elf_map
 | |
| 
 | |
| static unsigned long elf_map(struct file *filep, unsigned long addr,
 | |
| 		struct elf_phdr *eppnt, int prot, int type)
 | |
| {
 | |
| 	unsigned long map_addr;
 | |
| 	unsigned long pageoffset = ELF_PAGEOFFSET(eppnt->p_vaddr);
 | |
| 
 | |
| 	down_write(¤t->mm->mmap_sem);
 | |
| 	/* mmap() will return -EINVAL if given a zero size, but a
 | |
| 	 * segment with zero filesize is perfectly valid */
 | |
| 	if (eppnt->p_filesz + pageoffset)
 | |
| 		map_addr = do_mmap(filep, ELF_PAGESTART(addr),
 | |
| 				   eppnt->p_filesz + pageoffset, prot, type,
 | |
| 				   eppnt->p_offset - pageoffset);
 | |
| 	else
 | |
| 		map_addr = ELF_PAGESTART(addr);
 | |
| 	up_write(¤t->mm->mmap_sem);
 | |
| 	return(map_addr);
 | |
| }
 | |
| 
 | |
| #endif /* !elf_map */
 | |
| 
 | |
| /* This is much more generalized than the library routine read function,
 | |
|    so we keep this separate.  Technically the library read function
 | |
|    is only provided so that we can read a.out libraries that have
 | |
|    an ELF header */
 | |
| 
 | |
| static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 | |
| 		struct file *interpreter, unsigned long *interp_load_addr)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata;
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long load_addr = 0;
 | |
| 	int load_addr_set = 0;
 | |
| 	unsigned long last_bss = 0, elf_bss = 0;
 | |
| 	unsigned long error = ~0UL;
 | |
| 	int retval, i, size;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (interp_elf_ex->e_type != ET_EXEC &&
 | |
| 	    interp_elf_ex->e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(interp_elf_ex))
 | |
| 		goto out;
 | |
| 	if (!interpreter->f_op || !interpreter->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the size of this structure has changed, then punt, since
 | |
| 	 * we will be doing the wrong thing.
 | |
| 	 */
 | |
| 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	if (interp_elf_ex->e_phnum < 1 ||
 | |
| 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
 | |
| 	if (size > ELF_MIN_ALIGN)
 | |
| 		goto out;
 | |
| 	elf_phdata = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
 | |
| 			     (char *)elf_phdata,size);
 | |
| 	error = -EIO;
 | |
| 	if (retval != size) {
 | |
| 		if (retval < 0)
 | |
| 			error = retval;	
 | |
| 		goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	eppnt = elf_phdata;
 | |
| 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 | |
| 		if (eppnt->p_type == PT_LOAD) {
 | |
| 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 | |
| 			int elf_prot = 0;
 | |
| 			unsigned long vaddr = 0;
 | |
| 			unsigned long k, map_addr;
 | |
| 
 | |
| 			if (eppnt->p_flags & PF_R)
 | |
| 		    		elf_prot = PROT_READ;
 | |
| 			if (eppnt->p_flags & PF_W)
 | |
| 				elf_prot |= PROT_WRITE;
 | |
| 			if (eppnt->p_flags & PF_X)
 | |
| 				elf_prot |= PROT_EXEC;
 | |
| 			vaddr = eppnt->p_vaddr;
 | |
| 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 | |
| 				elf_type |= MAP_FIXED;
 | |
| 
 | |
| 			map_addr = elf_map(interpreter, load_addr + vaddr,
 | |
| 					   eppnt, elf_prot, elf_type);
 | |
| 			error = map_addr;
 | |
| 			if (BAD_ADDR(map_addr))
 | |
| 				goto out_close;
 | |
| 
 | |
| 			if (!load_addr_set &&
 | |
| 			    interp_elf_ex->e_type == ET_DYN) {
 | |
| 				load_addr = map_addr - ELF_PAGESTART(vaddr);
 | |
| 				load_addr_set = 1;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Check to see if the section's size will overflow the
 | |
| 			 * allowed task size. Note that p_filesz must always be
 | |
| 			 * <= p_memsize so it's only necessary to check p_memsz.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr;
 | |
| 			if (BAD_ADDR(k) ||
 | |
| 			    eppnt->p_filesz > eppnt->p_memsz ||
 | |
| 			    eppnt->p_memsz > TASK_SIZE ||
 | |
| 			    TASK_SIZE - eppnt->p_memsz < k) {
 | |
| 				error = -ENOMEM;
 | |
| 				goto out_close;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Find the end of the file mapping for this phdr, and
 | |
| 			 * keep track of the largest address we see for this.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 			if (k > elf_bss)
 | |
| 				elf_bss = k;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do the same thing for the memory mapping - between
 | |
| 			 * elf_bss and last_bss is the bss section.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
 | |
| 			if (k > last_bss)
 | |
| 				last_bss = k;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now fill out the bss section.  First pad the last page up
 | |
| 	 * to the page boundary, and then perform a mmap to make sure
 | |
| 	 * that there are zero-mapped pages up to and including the 
 | |
| 	 * last bss page.
 | |
| 	 */
 | |
| 	if (padzero(elf_bss)) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	/* What we have mapped so far */
 | |
| 	elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
 | |
| 
 | |
| 	/* Map the last of the bss segment */
 | |
| 	if (last_bss > elf_bss) {
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		error = do_brk(elf_bss, last_bss - elf_bss);
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 		if (BAD_ADDR(error))
 | |
| 			goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	*interp_load_addr = load_addr;
 | |
| 	error = ((unsigned long)interp_elf_ex->e_entry) + load_addr;
 | |
| 
 | |
| out_close:
 | |
| 	kfree(elf_phdata);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static unsigned long load_aout_interp(struct exec *interp_ex,
 | |
| 		struct file *interpreter)
 | |
| {
 | |
| 	unsigned long text_data, elf_entry = ~0UL;
 | |
| 	char __user * addr;
 | |
| 	loff_t offset;
 | |
| 
 | |
| 	current->mm->end_code = interp_ex->a_text;
 | |
| 	text_data = interp_ex->a_text + interp_ex->a_data;
 | |
| 	current->mm->end_data = text_data;
 | |
| 	current->mm->brk = interp_ex->a_bss + text_data;
 | |
| 
 | |
| 	switch (N_MAGIC(*interp_ex)) {
 | |
| 	case OMAGIC:
 | |
| 		offset = 32;
 | |
| 		addr = (char __user *)0;
 | |
| 		break;
 | |
| 	case ZMAGIC:
 | |
| 	case QMAGIC:
 | |
| 		offset = N_TXTOFF(*interp_ex);
 | |
| 		addr = (char __user *)N_TXTADDR(*interp_ex);
 | |
| 		break;
 | |
| 	default:
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	down_write(¤t->mm->mmap_sem);	
 | |
| 	do_brk(0, text_data);
 | |
| 	up_write(¤t->mm->mmap_sem);
 | |
| 	if (!interpreter->f_op || !interpreter->f_op->read)
 | |
| 		goto out;
 | |
| 	if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0)
 | |
| 		goto out;
 | |
| 	flush_icache_range((unsigned long)addr,
 | |
| 	                   (unsigned long)addr + text_data);
 | |
| 
 | |
| 	down_write(¤t->mm->mmap_sem);	
 | |
| 	do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1),
 | |
| 		interp_ex->a_bss);
 | |
| 	up_write(¤t->mm->mmap_sem);
 | |
| 	elf_entry = interp_ex->a_entry;
 | |
| 
 | |
| out:
 | |
| 	return elf_entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the functions used to load ELF style executables and shared
 | |
|  * libraries.  There is no binary dependent code anywhere else.
 | |
|  */
 | |
| 
 | |
| #define INTERPRETER_NONE 0
 | |
| #define INTERPRETER_AOUT 1
 | |
| #define INTERPRETER_ELF 2
 | |
| 
 | |
| #ifndef STACK_RND_MASK
 | |
| #define STACK_RND_MASK 0x7ff		/* with 4K pages 8MB of VA */
 | |
| #endif
 | |
| 
 | |
| static unsigned long randomize_stack_top(unsigned long stack_top)
 | |
| {
 | |
| 	unsigned int random_variable = 0;
 | |
| 
 | |
| 	if ((current->flags & PF_RANDOMIZE) &&
 | |
| 		!(current->personality & ADDR_NO_RANDOMIZE)) {
 | |
| 		random_variable = get_random_int() & STACK_RND_MASK;
 | |
| 		random_variable <<= PAGE_SHIFT;
 | |
| 	}
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return PAGE_ALIGN(stack_top) + random_variable;
 | |
| #else
 | |
| 	return PAGE_ALIGN(stack_top) - random_variable;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
 | |
| {
 | |
| 	struct file *interpreter = NULL; /* to shut gcc up */
 | |
|  	unsigned long load_addr = 0, load_bias = 0;
 | |
| 	int load_addr_set = 0;
 | |
| 	char * elf_interpreter = NULL;
 | |
| 	unsigned int interpreter_type = INTERPRETER_NONE;
 | |
| 	unsigned char ibcs2_interpreter = 0;
 | |
| 	unsigned long error;
 | |
| 	struct elf_phdr *elf_ppnt, *elf_phdata;
 | |
| 	unsigned long elf_bss, elf_brk;
 | |
| 	int elf_exec_fileno;
 | |
| 	int retval, i;
 | |
| 	unsigned int size;
 | |
| 	unsigned long elf_entry, interp_load_addr = 0;
 | |
| 	unsigned long start_code, end_code, start_data, end_data;
 | |
| 	unsigned long reloc_func_desc = 0;
 | |
| 	char passed_fileno[6];
 | |
| 	struct files_struct *files;
 | |
| 	int executable_stack = EXSTACK_DEFAULT;
 | |
| 	unsigned long def_flags = 0;
 | |
| 	struct {
 | |
| 		struct elfhdr elf_ex;
 | |
| 		struct elfhdr interp_elf_ex;
 | |
|   		struct exec interp_ex;
 | |
| 	} *loc;
 | |
| 
 | |
| 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 | |
| 	if (!loc) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 	
 | |
| 	/* Get the exec-header */
 | |
| 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 | |
| 
 | |
| 	retval = -ENOEXEC;
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(&loc->elf_ex))
 | |
| 		goto out;
 | |
| 	if (!bprm->file->f_op||!bprm->file->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	if (loc->elf_ex.e_phnum < 1 ||
 | |
| 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
 | |
| 	retval = -ENOMEM;
 | |
| 	elf_phdata = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
 | |
| 			     (char *)elf_phdata, size);
 | |
| 	if (retval != size) {
 | |
| 		if (retval >= 0)
 | |
| 			retval = -EIO;
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	files = current->files;	/* Refcounted so ok */
 | |
| 	retval = unshare_files();
 | |
| 	if (retval < 0)
 | |
| 		goto out_free_ph;
 | |
| 	if (files == current->files) {
 | |
| 		put_files_struct(files);
 | |
| 		files = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* exec will make our files private anyway, but for the a.out
 | |
| 	   loader stuff we need to do it earlier */
 | |
| 	retval = get_unused_fd();
 | |
| 	if (retval < 0)
 | |
| 		goto out_free_fh;
 | |
| 	get_file(bprm->file);
 | |
| 	fd_install(elf_exec_fileno = retval, bprm->file);
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	elf_bss = 0;
 | |
| 	elf_brk = 0;
 | |
| 
 | |
| 	start_code = ~0UL;
 | |
| 	end_code = 0;
 | |
| 	start_data = 0;
 | |
| 	end_data = 0;
 | |
| 
 | |
| 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 | |
| 		if (elf_ppnt->p_type == PT_INTERP) {
 | |
| 			/* This is the program interpreter used for
 | |
| 			 * shared libraries - for now assume that this
 | |
| 			 * is an a.out format binary
 | |
| 			 */
 | |
| 			retval = -ENOEXEC;
 | |
| 			if (elf_ppnt->p_filesz > PATH_MAX || 
 | |
| 			    elf_ppnt->p_filesz < 2)
 | |
| 				goto out_free_file;
 | |
| 
 | |
| 			retval = -ENOMEM;
 | |
| 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 | |
| 						  GFP_KERNEL);
 | |
| 			if (!elf_interpreter)
 | |
| 				goto out_free_file;
 | |
| 
 | |
| 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 | |
| 					     elf_interpreter,
 | |
| 					     elf_ppnt->p_filesz);
 | |
| 			if (retval != elf_ppnt->p_filesz) {
 | |
| 				if (retval >= 0)
 | |
| 					retval = -EIO;
 | |
| 				goto out_free_interp;
 | |
| 			}
 | |
| 			/* make sure path is NULL terminated */
 | |
| 			retval = -ENOEXEC;
 | |
| 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 | |
| 				goto out_free_interp;
 | |
| 
 | |
| 			/* If the program interpreter is one of these two,
 | |
| 			 * then assume an iBCS2 image. Otherwise assume
 | |
| 			 * a native linux image.
 | |
| 			 */
 | |
| 			if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
 | |
| 			    strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0)
 | |
| 				ibcs2_interpreter = 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * The early SET_PERSONALITY here is so that the lookup
 | |
| 			 * for the interpreter happens in the namespace of the 
 | |
| 			 * to-be-execed image.  SET_PERSONALITY can select an
 | |
| 			 * alternate root.
 | |
| 			 *
 | |
| 			 * However, SET_PERSONALITY is NOT allowed to switch
 | |
| 			 * this task into the new images's memory mapping
 | |
| 			 * policy - that is, TASK_SIZE must still evaluate to
 | |
| 			 * that which is appropriate to the execing application.
 | |
| 			 * This is because exit_mmap() needs to have TASK_SIZE
 | |
| 			 * evaluate to the size of the old image.
 | |
| 			 *
 | |
| 			 * So if (say) a 64-bit application is execing a 32-bit
 | |
| 			 * application it is the architecture's responsibility
 | |
| 			 * to defer changing the value of TASK_SIZE until the
 | |
| 			 * switch really is going to happen - do this in
 | |
| 			 * flush_thread().	- akpm
 | |
| 			 */
 | |
| 			SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
 | |
| 
 | |
| 			interpreter = open_exec(elf_interpreter);
 | |
| 			retval = PTR_ERR(interpreter);
 | |
| 			if (IS_ERR(interpreter))
 | |
| 				goto out_free_interp;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the binary is not readable then enforce
 | |
| 			 * mm->dumpable = 0 regardless of the interpreter's
 | |
| 			 * permissions.
 | |
| 			 */
 | |
| 			if (file_permission(interpreter, MAY_READ) < 0)
 | |
| 				bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
 | |
| 
 | |
| 			retval = kernel_read(interpreter, 0, bprm->buf,
 | |
| 					     BINPRM_BUF_SIZE);
 | |
| 			if (retval != BINPRM_BUF_SIZE) {
 | |
| 				if (retval >= 0)
 | |
| 					retval = -EIO;
 | |
| 				goto out_free_dentry;
 | |
| 			}
 | |
| 
 | |
| 			/* Get the exec headers */
 | |
| 			loc->interp_ex = *((struct exec *)bprm->buf);
 | |
| 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
 | |
| 			break;
 | |
| 		}
 | |
| 		elf_ppnt++;
 | |
| 	}
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 | |
| 		if (elf_ppnt->p_type == PT_GNU_STACK) {
 | |
| 			if (elf_ppnt->p_flags & PF_X)
 | |
| 				executable_stack = EXSTACK_ENABLE_X;
 | |
| 			else
 | |
| 				executable_stack = EXSTACK_DISABLE_X;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	/* Some simple consistency checks for the interpreter */
 | |
| 	if (elf_interpreter) {
 | |
| 		interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
 | |
| 
 | |
| 		/* Now figure out which format our binary is */
 | |
| 		if ((N_MAGIC(loc->interp_ex) != OMAGIC) &&
 | |
| 		    (N_MAGIC(loc->interp_ex) != ZMAGIC) &&
 | |
| 		    (N_MAGIC(loc->interp_ex) != QMAGIC))
 | |
| 			interpreter_type = INTERPRETER_ELF;
 | |
| 
 | |
| 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 			interpreter_type &= ~INTERPRETER_ELF;
 | |
| 
 | |
| 		retval = -ELIBBAD;
 | |
| 		if (!interpreter_type)
 | |
| 			goto out_free_dentry;
 | |
| 
 | |
| 		/* Make sure only one type was selected */
 | |
| 		if ((interpreter_type & INTERPRETER_ELF) &&
 | |
| 		     interpreter_type != INTERPRETER_ELF) {
 | |
| 	     		// FIXME - ratelimit this before re-enabling
 | |
| 			// printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n");
 | |
| 			interpreter_type = INTERPRETER_ELF;
 | |
| 		}
 | |
| 		/* Verify the interpreter has a valid arch */
 | |
| 		if ((interpreter_type == INTERPRETER_ELF) &&
 | |
| 		    !elf_check_arch(&loc->interp_elf_ex))
 | |
| 			goto out_free_dentry;
 | |
| 	} else {
 | |
| 		/* Executables without an interpreter also need a personality  */
 | |
| 		SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
 | |
| 	}
 | |
| 
 | |
| 	/* OK, we are done with that, now set up the arg stuff,
 | |
| 	   and then start this sucker up */
 | |
| 	if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) {
 | |
| 		char *passed_p = passed_fileno;
 | |
| 		sprintf(passed_fileno, "%d", elf_exec_fileno);
 | |
| 
 | |
| 		if (elf_interpreter) {
 | |
| 			retval = copy_strings_kernel(1, &passed_p, bprm);
 | |
| 			if (retval)
 | |
| 				goto out_free_dentry; 
 | |
| 			bprm->argc++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Flush all traces of the currently running executable */
 | |
| 	retval = flush_old_exec(bprm);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	/* Discard our unneeded old files struct */
 | |
| 	if (files) {
 | |
| 		put_files_struct(files);
 | |
| 		files = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* OK, This is the point of no return */
 | |
| 	current->mm->start_data = 0;
 | |
| 	current->mm->end_data = 0;
 | |
| 	current->mm->end_code = 0;
 | |
| 	current->mm->mmap = NULL;
 | |
| 	current->flags &= ~PF_FORKNOEXEC;
 | |
| 	current->mm->def_flags = def_flags;
 | |
| 
 | |
| 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 | |
| 	   may depend on the personality.  */
 | |
| 	SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter);
 | |
| 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 | |
| 		current->personality |= READ_IMPLIES_EXEC;
 | |
| 
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		current->flags |= PF_RANDOMIZE;
 | |
| 	arch_pick_mmap_layout(current->mm);
 | |
| 
 | |
| 	/* Do this so that we can load the interpreter, if need be.  We will
 | |
| 	   change some of these later */
 | |
| 	current->mm->free_area_cache = current->mm->mmap_base;
 | |
| 	current->mm->cached_hole_size = 0;
 | |
| 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 | |
| 				 executable_stack);
 | |
| 	if (retval < 0) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 	
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 
 | |
| 	/* Now we do a little grungy work by mmaping the ELF image into
 | |
| 	   the correct location in memory.  At this point, we assume that
 | |
| 	   the image should be loaded at fixed address, not at a variable
 | |
| 	   address. */
 | |
| 	for(i = 0, elf_ppnt = elf_phdata;
 | |
| 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 | |
| 		int elf_prot = 0, elf_flags;
 | |
| 		unsigned long k, vaddr;
 | |
| 
 | |
| 		if (elf_ppnt->p_type != PT_LOAD)
 | |
| 			continue;
 | |
| 
 | |
| 		if (unlikely (elf_brk > elf_bss)) {
 | |
| 			unsigned long nbyte;
 | |
| 	            
 | |
| 			/* There was a PT_LOAD segment with p_memsz > p_filesz
 | |
| 			   before this one. Map anonymous pages, if needed,
 | |
| 			   and clear the area.  */
 | |
| 			retval = set_brk (elf_bss + load_bias,
 | |
| 					  elf_brk + load_bias);
 | |
| 			if (retval) {
 | |
| 				send_sig(SIGKILL, current, 0);
 | |
| 				goto out_free_dentry;
 | |
| 			}
 | |
| 			nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 			if (nbyte) {
 | |
| 				nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 				if (nbyte > elf_brk - elf_bss)
 | |
| 					nbyte = elf_brk - elf_bss;
 | |
| 				if (clear_user((void __user *)elf_bss +
 | |
| 							load_bias, nbyte)) {
 | |
| 					/*
 | |
| 					 * This bss-zeroing can fail if the ELF
 | |
| 					 * file specifies odd protections. So
 | |
| 					 * we don't check the return value
 | |
| 					 */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (elf_ppnt->p_flags & PF_R)
 | |
| 			elf_prot |= PROT_READ;
 | |
| 		if (elf_ppnt->p_flags & PF_W)
 | |
| 			elf_prot |= PROT_WRITE;
 | |
| 		if (elf_ppnt->p_flags & PF_X)
 | |
| 			elf_prot |= PROT_EXEC;
 | |
| 
 | |
| 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 | |
| 
 | |
| 		vaddr = elf_ppnt->p_vaddr;
 | |
| 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 | |
| 			elf_flags |= MAP_FIXED;
 | |
| 		} else if (loc->elf_ex.e_type == ET_DYN) {
 | |
| 			/* Try and get dynamic programs out of the way of the
 | |
| 			 * default mmap base, as well as whatever program they
 | |
| 			 * might try to exec.  This is because the brk will
 | |
| 			 * follow the loader, and is not movable.  */
 | |
| 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 | |
| 		}
 | |
| 
 | |
| 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 | |
| 				elf_prot, elf_flags);
 | |
| 		if (BAD_ADDR(error)) {
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		if (!load_addr_set) {
 | |
| 			load_addr_set = 1;
 | |
| 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 | |
| 			if (loc->elf_ex.e_type == ET_DYN) {
 | |
| 				load_bias += error -
 | |
| 				             ELF_PAGESTART(load_bias + vaddr);
 | |
| 				load_addr += load_bias;
 | |
| 				reloc_func_desc = load_bias;
 | |
| 			}
 | |
| 		}
 | |
| 		k = elf_ppnt->p_vaddr;
 | |
| 		if (k < start_code)
 | |
| 			start_code = k;
 | |
| 		if (start_data < k)
 | |
| 			start_data = k;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to see if the section's size will overflow the
 | |
| 		 * allowed task size. Note that p_filesz must always be
 | |
| 		 * <= p_memsz so it is only necessary to check p_memsz.
 | |
| 		 */
 | |
| 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 | |
| 		    elf_ppnt->p_memsz > TASK_SIZE ||
 | |
| 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 | |
| 			/* set_brk can never work. Avoid overflows. */
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 | |
| 
 | |
| 		if (k > elf_bss)
 | |
| 			elf_bss = k;
 | |
| 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 | |
| 			end_code = k;
 | |
| 		if (end_data < k)
 | |
| 			end_data = k;
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 | |
| 		if (k > elf_brk)
 | |
| 			elf_brk = k;
 | |
| 	}
 | |
| 
 | |
| 	loc->elf_ex.e_entry += load_bias;
 | |
| 	elf_bss += load_bias;
 | |
| 	elf_brk += load_bias;
 | |
| 	start_code += load_bias;
 | |
| 	end_code += load_bias;
 | |
| 	start_data += load_bias;
 | |
| 	end_data += load_bias;
 | |
| 
 | |
| 	/* Calling set_brk effectively mmaps the pages that we need
 | |
| 	 * for the bss and break sections.  We must do this before
 | |
| 	 * mapping in the interpreter, to make sure it doesn't wind
 | |
| 	 * up getting placed where the bss needs to go.
 | |
| 	 */
 | |
| 	retval = set_brk(elf_bss, elf_brk);
 | |
| 	if (retval) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 | |
| 		send_sig(SIGSEGV, current, 0);
 | |
| 		retval = -EFAULT; /* Nobody gets to see this, but.. */
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 
 | |
| 	if (elf_interpreter) {
 | |
| 		if (interpreter_type == INTERPRETER_AOUT)
 | |
| 			elf_entry = load_aout_interp(&loc->interp_ex,
 | |
| 						     interpreter);
 | |
| 		else
 | |
| 			elf_entry = load_elf_interp(&loc->interp_elf_ex,
 | |
| 						    interpreter,
 | |
| 						    &interp_load_addr);
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			force_sig(SIGSEGV, current);
 | |
| 			retval = IS_ERR((void *)elf_entry) ?
 | |
| 					(int)elf_entry : -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 		reloc_func_desc = interp_load_addr;
 | |
| 
 | |
| 		allow_write_access(interpreter);
 | |
| 		fput(interpreter);
 | |
| 		kfree(elf_interpreter);
 | |
| 	} else {
 | |
| 		elf_entry = loc->elf_ex.e_entry;
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			force_sig(SIGSEGV, current);
 | |
| 			retval = -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(elf_phdata);
 | |
| 
 | |
| 	if (interpreter_type != INTERPRETER_AOUT)
 | |
| 		sys_close(elf_exec_fileno);
 | |
| 
 | |
| 	set_binfmt(&elf_format);
 | |
| 
 | |
| #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
 | |
| 	retval = arch_setup_additional_pages(bprm, executable_stack);
 | |
| 	if (retval < 0) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
 | |
| 
 | |
| 	compute_creds(bprm);
 | |
| 	current->flags &= ~PF_FORKNOEXEC;
 | |
| 	create_elf_tables(bprm, &loc->elf_ex,
 | |
| 			  (interpreter_type == INTERPRETER_AOUT),
 | |
| 			  load_addr, interp_load_addr);
 | |
| 	/* N.B. passed_fileno might not be initialized? */
 | |
| 	if (interpreter_type == INTERPRETER_AOUT)
 | |
| 		current->mm->arg_start += strlen(passed_fileno) + 1;
 | |
| 	current->mm->end_code = end_code;
 | |
| 	current->mm->start_code = start_code;
 | |
| 	current->mm->start_data = start_data;
 | |
| 	current->mm->end_data = end_data;
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 
 | |
| 	if (current->personality & MMAP_PAGE_ZERO) {
 | |
| 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
| 		   and some applications "depend" upon this behavior.
 | |
| 		   Since we do not have the power to recompile these, we
 | |
| 		   emulate the SVr4 behavior. Sigh. */
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
 | |
| 				MAP_FIXED | MAP_PRIVATE, 0);
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_PLAT_INIT
 | |
| 	/*
 | |
| 	 * The ABI may specify that certain registers be set up in special
 | |
| 	 * ways (on i386 %edx is the address of a DT_FINI function, for
 | |
| 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
 | |
| 	 * that the e_entry field is the address of the function descriptor
 | |
| 	 * for the startup routine, rather than the address of the startup
 | |
| 	 * routine itself.  This macro performs whatever initialization to
 | |
| 	 * the regs structure is required as well as any relocations to the
 | |
| 	 * function descriptor entries when executing dynamically links apps.
 | |
| 	 */
 | |
| 	ELF_PLAT_INIT(regs, reloc_func_desc);
 | |
| #endif
 | |
| 
 | |
| 	start_thread(regs, elf_entry, bprm->p);
 | |
| 	if (unlikely(current->ptrace & PT_PTRACED)) {
 | |
| 		if (current->ptrace & PT_TRACE_EXEC)
 | |
| 			ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
 | |
| 		else
 | |
| 			send_sig(SIGTRAP, current, 0);
 | |
| 	}
 | |
| 	retval = 0;
 | |
| out:
 | |
| 	kfree(loc);
 | |
| out_ret:
 | |
| 	return retval;
 | |
| 
 | |
| 	/* error cleanup */
 | |
| out_free_dentry:
 | |
| 	allow_write_access(interpreter);
 | |
| 	if (interpreter)
 | |
| 		fput(interpreter);
 | |
| out_free_interp:
 | |
| 	kfree(elf_interpreter);
 | |
| out_free_file:
 | |
| 	sys_close(elf_exec_fileno);
 | |
| out_free_fh:
 | |
| 	if (files)
 | |
| 		reset_files_struct(current, files);
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /* This is really simpleminded and specialized - we are loading an
 | |
|    a.out library that is given an ELF header. */
 | |
| static int load_elf_library(struct file *file)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata;
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long elf_bss, bss, len;
 | |
| 	int retval, error, i, j;
 | |
| 	struct elfhdr elf_ex;
 | |
| 
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
 | |
| 	if (retval != sizeof(elf_ex))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
 | |
| 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 
 | |
| 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
 | |
| 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
 | |
| 
 | |
| 	error = -ENOMEM;
 | |
| 	elf_phdata = kmalloc(j, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	eppnt = elf_phdata;
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
 | |
| 	if (retval != j)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
 | |
| 		if ((eppnt + i)->p_type == PT_LOAD)
 | |
| 			j++;
 | |
| 	if (j != 1)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	while (eppnt->p_type != PT_LOAD)
 | |
| 		eppnt++;
 | |
| 
 | |
| 	/* Now use mmap to map the library into memory. */
 | |
| 	down_write(¤t->mm->mmap_sem);
 | |
| 	error = do_mmap(file,
 | |
| 			ELF_PAGESTART(eppnt->p_vaddr),
 | |
| 			(eppnt->p_filesz +
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
 | |
| 			PROT_READ | PROT_WRITE | PROT_EXEC,
 | |
| 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
 | |
| 			(eppnt->p_offset -
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
 | |
| 	up_write(¤t->mm->mmap_sem);
 | |
| 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 	if (padzero(elf_bss)) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
 | |
| 			    ELF_MIN_ALIGN - 1);
 | |
| 	bss = eppnt->p_memsz + eppnt->p_vaddr;
 | |
| 	if (bss > len) {
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		do_brk(len, bss - len);
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 	}
 | |
| 	error = 0;
 | |
| 
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that some platforms still use traditional core dumps and not
 | |
|  * the ELF core dump.  Each platform can select it as appropriate.
 | |
|  */
 | |
| #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
 | |
| 
 | |
| /*
 | |
|  * ELF core dumper
 | |
|  *
 | |
|  * Modelled on fs/exec.c:aout_core_dump()
 | |
|  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
 | |
|  */
 | |
| /*
 | |
|  * These are the only things you should do on a core-file: use only these
 | |
|  * functions to write out all the necessary info.
 | |
|  */
 | |
| static int dump_write(struct file *file, const void *addr, int nr)
 | |
| {
 | |
| 	return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
 | |
| }
 | |
| 
 | |
| static int dump_seek(struct file *file, loff_t off)
 | |
| {
 | |
| 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
 | |
| 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!buf)
 | |
| 			return 0;
 | |
| 		while (off > 0) {
 | |
| 			unsigned long n = off;
 | |
| 			if (n > PAGE_SIZE)
 | |
| 				n = PAGE_SIZE;
 | |
| 			if (!dump_write(file, buf, n))
 | |
| 				return 0;
 | |
| 			off -= n;
 | |
| 		}
 | |
| 		free_page((unsigned long)buf);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decide whether a segment is worth dumping; default is yes to be
 | |
|  * sure (missing info is worse than too much; etc).
 | |
|  * Personally I'd include everything, and use the coredump limit...
 | |
|  *
 | |
|  * I think we should skip something. But I am not sure how. H.J.
 | |
|  */
 | |
| static int maydump(struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* The vma can be set up to tell us the answer directly.  */
 | |
| 	if (vma->vm_flags & VM_ALWAYSDUMP)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Do not dump I/O mapped devices or special mappings */
 | |
| 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Dump shared memory only if mapped from an anonymous file. */
 | |
| 	if (vma->vm_flags & VM_SHARED)
 | |
| 		return vma->vm_file->f_path.dentry->d_inode->i_nlink == 0;
 | |
| 
 | |
| 	/* If it hasn't been written to, don't write it out */
 | |
| 	if (!vma->anon_vma)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* An ELF note in memory */
 | |
| struct memelfnote
 | |
| {
 | |
| 	const char *name;
 | |
| 	int type;
 | |
| 	unsigned int datasz;
 | |
| 	void *data;
 | |
| };
 | |
| 
 | |
| static int notesize(struct memelfnote *en)
 | |
| {
 | |
| 	int sz;
 | |
| 
 | |
| 	sz = sizeof(struct elf_note);
 | |
| 	sz += roundup(strlen(en->name) + 1, 4);
 | |
| 	sz += roundup(en->datasz, 4);
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| #define DUMP_WRITE(addr, nr, foffset)	\
 | |
| 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
 | |
| 
 | |
| static int alignfile(struct file *file, loff_t *foffset)
 | |
| {
 | |
| 	static const char buf[4] = { 0, };
 | |
| 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int writenote(struct memelfnote *men, struct file *file,
 | |
| 			loff_t *foffset)
 | |
| {
 | |
| 	struct elf_note en;
 | |
| 	en.n_namesz = strlen(men->name) + 1;
 | |
| 	en.n_descsz = men->datasz;
 | |
| 	en.n_type = men->type;
 | |
| 
 | |
| 	DUMP_WRITE(&en, sizeof(en), foffset);
 | |
| 	DUMP_WRITE(men->name, en.n_namesz, foffset);
 | |
| 	if (!alignfile(file, foffset))
 | |
| 		return 0;
 | |
| 	DUMP_WRITE(men->data, men->datasz, foffset);
 | |
| 	if (!alignfile(file, foffset))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| #undef DUMP_WRITE
 | |
| 
 | |
| #define DUMP_WRITE(addr, nr)	\
 | |
| 	if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
 | |
| 		goto end_coredump;
 | |
| #define DUMP_SEEK(off)	\
 | |
| 	if (!dump_seek(file, (off))) \
 | |
| 		goto end_coredump;
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs)
 | |
| {
 | |
| 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
| 	elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
| 	elf->e_ident[EI_DATA] = ELF_DATA;
 | |
| 	elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 | |
| 
 | |
| 	elf->e_type = ET_CORE;
 | |
| 	elf->e_machine = ELF_ARCH;
 | |
| 	elf->e_version = EV_CURRENT;
 | |
| 	elf->e_entry = 0;
 | |
| 	elf->e_phoff = sizeof(struct elfhdr);
 | |
| 	elf->e_shoff = 0;
 | |
| 	elf->e_flags = ELF_CORE_EFLAGS;
 | |
| 	elf->e_ehsize = sizeof(struct elfhdr);
 | |
| 	elf->e_phentsize = sizeof(struct elf_phdr);
 | |
| 	elf->e_phnum = segs;
 | |
| 	elf->e_shentsize = 0;
 | |
| 	elf->e_shnum = 0;
 | |
| 	elf->e_shstrndx = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
 | |
| {
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_offset = offset;
 | |
| 	phdr->p_vaddr = 0;
 | |
| 	phdr->p_paddr = 0;
 | |
| 	phdr->p_filesz = sz;
 | |
| 	phdr->p_memsz = 0;
 | |
| 	phdr->p_flags = 0;
 | |
| 	phdr->p_align = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void fill_note(struct memelfnote *note, const char *name, int type, 
 | |
| 		unsigned int sz, void *data)
 | |
| {
 | |
| 	note->name = name;
 | |
| 	note->type = type;
 | |
| 	note->datasz = sz;
 | |
| 	note->data = data;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fill up all the fields in prstatus from the given task struct, except
 | |
|  * registers which need to be filled up separately.
 | |
|  */
 | |
| static void fill_prstatus(struct elf_prstatus *prstatus,
 | |
| 		struct task_struct *p, long signr)
 | |
| {
 | |
| 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | |
| 	prstatus->pr_sigpend = p->pending.signal.sig[0];
 | |
| 	prstatus->pr_sighold = p->blocked.sig[0];
 | |
| 	prstatus->pr_pid = p->pid;
 | |
| 	prstatus->pr_ppid = p->parent->pid;
 | |
| 	prstatus->pr_pgrp = process_group(p);
 | |
| 	prstatus->pr_sid = process_session(p);
 | |
| 	if (thread_group_leader(p)) {
 | |
| 		/*
 | |
| 		 * This is the record for the group leader.  Add in the
 | |
| 		 * cumulative times of previous dead threads.  This total
 | |
| 		 * won't include the time of each live thread whose state
 | |
| 		 * is included in the core dump.  The final total reported
 | |
| 		 * to our parent process when it calls wait4 will include
 | |
| 		 * those sums as well as the little bit more time it takes
 | |
| 		 * this and each other thread to finish dying after the
 | |
| 		 * core dump synchronization phase.
 | |
| 		 */
 | |
| 		cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
 | |
| 				   &prstatus->pr_utime);
 | |
| 		cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
 | |
| 				   &prstatus->pr_stime);
 | |
| 	} else {
 | |
| 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
 | |
| 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
 | |
| 	}
 | |
| 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
 | |
| 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
 | |
| }
 | |
| 
 | |
| static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
 | |
| 		       struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned int i, len;
 | |
| 	
 | |
| 	/* first copy the parameters from user space */
 | |
| 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
 | |
| 
 | |
| 	len = mm->arg_end - mm->arg_start;
 | |
| 	if (len >= ELF_PRARGSZ)
 | |
| 		len = ELF_PRARGSZ-1;
 | |
| 	if (copy_from_user(&psinfo->pr_psargs,
 | |
| 		           (const char __user *)mm->arg_start, len))
 | |
| 		return -EFAULT;
 | |
| 	for(i = 0; i < len; i++)
 | |
| 		if (psinfo->pr_psargs[i] == 0)
 | |
| 			psinfo->pr_psargs[i] = ' ';
 | |
| 	psinfo->pr_psargs[len] = 0;
 | |
| 
 | |
| 	psinfo->pr_pid = p->pid;
 | |
| 	psinfo->pr_ppid = p->parent->pid;
 | |
| 	psinfo->pr_pgrp = process_group(p);
 | |
| 	psinfo->pr_sid = process_session(p);
 | |
| 
 | |
| 	i = p->state ? ffz(~p->state) + 1 : 0;
 | |
| 	psinfo->pr_state = i;
 | |
| 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
 | |
| 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
 | |
| 	psinfo->pr_nice = task_nice(p);
 | |
| 	psinfo->pr_flag = p->flags;
 | |
| 	SET_UID(psinfo->pr_uid, p->uid);
 | |
| 	SET_GID(psinfo->pr_gid, p->gid);
 | |
| 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Here is the structure in which status of each thread is captured. */
 | |
| struct elf_thread_status
 | |
| {
 | |
| 	struct list_head list;
 | |
| 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
 | |
| 	elf_fpregset_t fpu;		/* NT_PRFPREG */
 | |
| 	struct task_struct *thread;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	elf_fpxregset_t xfpu;		/* NT_PRXFPREG */
 | |
| #endif
 | |
| 	struct memelfnote notes[3];
 | |
| 	int num_notes;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * In order to add the specific thread information for the elf file format,
 | |
|  * we need to keep a linked list of every threads pr_status and then create
 | |
|  * a single section for them in the final core file.
 | |
|  */
 | |
| static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
 | |
| {
 | |
| 	int sz = 0;
 | |
| 	struct task_struct *p = t->thread;
 | |
| 	t->num_notes = 0;
 | |
| 
 | |
| 	fill_prstatus(&t->prstatus, p, signr);
 | |
| 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
 | |
| 	
 | |
| 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
 | |
| 		  &(t->prstatus));
 | |
| 	t->num_notes++;
 | |
| 	sz += notesize(&t->notes[0]);
 | |
| 
 | |
| 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
 | |
| 								&t->fpu))) {
 | |
| 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
 | |
| 			  &(t->fpu));
 | |
| 		t->num_notes++;
 | |
| 		sz += notesize(&t->notes[1]);
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
 | |
| 		fill_note(&t->notes[2], "LINUX", NT_PRXFPREG, sizeof(t->xfpu),
 | |
| 			  &t->xfpu);
 | |
| 		t->num_notes++;
 | |
| 		sz += notesize(&t->notes[2]);
 | |
| 	}
 | |
| #endif	
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *first_vma(struct task_struct *tsk,
 | |
| 					struct vm_area_struct *gate_vma)
 | |
| {
 | |
| 	struct vm_area_struct *ret = tsk->mm->mmap;
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	return gate_vma;
 | |
| }
 | |
| /*
 | |
|  * Helper function for iterating across a vma list.  It ensures that the caller
 | |
|  * will visit `gate_vma' prior to terminating the search.
 | |
|  */
 | |
| static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
 | |
| 					struct vm_area_struct *gate_vma)
 | |
| {
 | |
| 	struct vm_area_struct *ret;
 | |
| 
 | |
| 	ret = this_vma->vm_next;
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (this_vma == gate_vma)
 | |
| 		return NULL;
 | |
| 	return gate_vma;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Actual dumper
 | |
|  *
 | |
|  * This is a two-pass process; first we find the offsets of the bits,
 | |
|  * and then they are actually written out.  If we run out of core limit
 | |
|  * we just truncate.
 | |
|  */
 | |
| static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file)
 | |
| {
 | |
| #define	NUM_NOTES	6
 | |
| 	int has_dumped = 0;
 | |
| 	mm_segment_t fs;
 | |
| 	int segs;
 | |
| 	size_t size = 0;
 | |
| 	int i;
 | |
| 	struct vm_area_struct *vma, *gate_vma;
 | |
| 	struct elfhdr *elf = NULL;
 | |
| 	loff_t offset = 0, dataoff, foffset;
 | |
| 	unsigned long limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
 | |
| 	int numnote;
 | |
| 	struct memelfnote *notes = NULL;
 | |
| 	struct elf_prstatus *prstatus = NULL;	/* NT_PRSTATUS */
 | |
| 	struct elf_prpsinfo *psinfo = NULL;	/* NT_PRPSINFO */
 | |
|  	struct task_struct *g, *p;
 | |
|  	LIST_HEAD(thread_list);
 | |
|  	struct list_head *t;
 | |
| 	elf_fpregset_t *fpu = NULL;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	elf_fpxregset_t *xfpu = NULL;
 | |
| #endif
 | |
| 	int thread_status_size = 0;
 | |
| 	elf_addr_t *auxv;
 | |
| 
 | |
| 	/*
 | |
| 	 * We no longer stop all VM operations.
 | |
| 	 * 
 | |
| 	 * This is because those proceses that could possibly change map_count
 | |
| 	 * or the mmap / vma pages are now blocked in do_exit on current
 | |
| 	 * finishing this core dump.
 | |
| 	 *
 | |
| 	 * Only ptrace can touch these memory addresses, but it doesn't change
 | |
| 	 * the map_count or the pages allocated. So no possibility of crashing
 | |
| 	 * exists while dumping the mm->vm_next areas to the core file.
 | |
| 	 */
 | |
|   
 | |
| 	/* alloc memory for large data structures: too large to be on stack */
 | |
| 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
 | |
| 	if (!elf)
 | |
| 		goto cleanup;
 | |
| 	prstatus = kmalloc(sizeof(*prstatus), GFP_KERNEL);
 | |
| 	if (!prstatus)
 | |
| 		goto cleanup;
 | |
| 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
 | |
| 	if (!psinfo)
 | |
| 		goto cleanup;
 | |
| 	notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), GFP_KERNEL);
 | |
| 	if (!notes)
 | |
| 		goto cleanup;
 | |
| 	fpu = kmalloc(sizeof(*fpu), GFP_KERNEL);
 | |
| 	if (!fpu)
 | |
| 		goto cleanup;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	xfpu = kmalloc(sizeof(*xfpu), GFP_KERNEL);
 | |
| 	if (!xfpu)
 | |
| 		goto cleanup;
 | |
| #endif
 | |
| 
 | |
| 	if (signr) {
 | |
| 		struct elf_thread_status *tmp;
 | |
| 		rcu_read_lock();
 | |
| 		do_each_thread(g,p)
 | |
| 			if (current->mm == p->mm && current != p) {
 | |
| 				tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
 | |
| 				if (!tmp) {
 | |
| 					rcu_read_unlock();
 | |
| 					goto cleanup;
 | |
| 				}
 | |
| 				tmp->thread = p;
 | |
| 				list_add(&tmp->list, &thread_list);
 | |
| 			}
 | |
| 		while_each_thread(g,p);
 | |
| 		rcu_read_unlock();
 | |
| 		list_for_each(t, &thread_list) {
 | |
| 			struct elf_thread_status *tmp;
 | |
| 			int sz;
 | |
| 
 | |
| 			tmp = list_entry(t, struct elf_thread_status, list);
 | |
| 			sz = elf_dump_thread_status(signr, tmp);
 | |
| 			thread_status_size += sz;
 | |
| 		}
 | |
| 	}
 | |
| 	/* now collect the dump for the current */
 | |
| 	memset(prstatus, 0, sizeof(*prstatus));
 | |
| 	fill_prstatus(prstatus, current, signr);
 | |
| 	elf_core_copy_regs(&prstatus->pr_reg, regs);
 | |
| 	
 | |
| 	segs = current->mm->map_count;
 | |
| #ifdef ELF_CORE_EXTRA_PHDRS
 | |
| 	segs += ELF_CORE_EXTRA_PHDRS;
 | |
| #endif
 | |
| 
 | |
| 	gate_vma = get_gate_vma(current);
 | |
| 	if (gate_vma != NULL)
 | |
| 		segs++;
 | |
| 
 | |
| 	/* Set up header */
 | |
| 	fill_elf_header(elf, segs + 1);	/* including notes section */
 | |
| 
 | |
| 	has_dumped = 1;
 | |
| 	current->flags |= PF_DUMPCORE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the notes in similar form to SVR4 core dumps made
 | |
| 	 * with info from their /proc.
 | |
| 	 */
 | |
| 
 | |
| 	fill_note(notes + 0, "CORE", NT_PRSTATUS, sizeof(*prstatus), prstatus);
 | |
| 	fill_psinfo(psinfo, current->group_leader, current->mm);
 | |
| 	fill_note(notes + 1, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
 | |
| 	
 | |
| 	numnote = 2;
 | |
| 
 | |
| 	auxv = (elf_addr_t *)current->mm->saved_auxv;
 | |
| 
 | |
| 	i = 0;
 | |
| 	do
 | |
| 		i += 2;
 | |
| 	while (auxv[i - 2] != AT_NULL);
 | |
| 	fill_note(¬es[numnote++], "CORE", NT_AUXV,
 | |
| 		  i * sizeof(elf_addr_t), auxv);
 | |
| 
 | |
|   	/* Try to dump the FPU. */
 | |
| 	if ((prstatus->pr_fpvalid =
 | |
| 	     elf_core_copy_task_fpregs(current, regs, fpu)))
 | |
| 		fill_note(notes + numnote++,
 | |
| 			  "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	if (elf_core_copy_task_xfpregs(current, xfpu))
 | |
| 		fill_note(notes + numnote++,
 | |
| 			  "LINUX", NT_PRXFPREG, sizeof(*xfpu), xfpu);
 | |
| #endif	
 | |
|   
 | |
| 	fs = get_fs();
 | |
| 	set_fs(KERNEL_DS);
 | |
| 
 | |
| 	DUMP_WRITE(elf, sizeof(*elf));
 | |
| 	offset += sizeof(*elf);				/* Elf header */
 | |
| 	offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
 | |
| 	foffset = offset;
 | |
| 
 | |
| 	/* Write notes phdr entry */
 | |
| 	{
 | |
| 		struct elf_phdr phdr;
 | |
| 		int sz = 0;
 | |
| 
 | |
| 		for (i = 0; i < numnote; i++)
 | |
| 			sz += notesize(notes + i);
 | |
| 		
 | |
| 		sz += thread_status_size;
 | |
| 
 | |
| #ifdef ELF_CORE_WRITE_EXTRA_NOTES
 | |
| 		sz += ELF_CORE_EXTRA_NOTES_SIZE;
 | |
| #endif
 | |
| 
 | |
| 		fill_elf_note_phdr(&phdr, sz, offset);
 | |
| 		offset += sz;
 | |
| 		DUMP_WRITE(&phdr, sizeof(phdr));
 | |
| 	}
 | |
| 
 | |
| 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
| 	/* Write program headers for segments dump */
 | |
| 	for (vma = first_vma(current, gate_vma); vma != NULL;
 | |
| 			vma = next_vma(vma, gate_vma)) {
 | |
| 		struct elf_phdr phdr;
 | |
| 		size_t sz;
 | |
| 
 | |
| 		sz = vma->vm_end - vma->vm_start;
 | |
| 
 | |
| 		phdr.p_type = PT_LOAD;
 | |
| 		phdr.p_offset = offset;
 | |
| 		phdr.p_vaddr = vma->vm_start;
 | |
| 		phdr.p_paddr = 0;
 | |
| 		phdr.p_filesz = maydump(vma) ? sz : 0;
 | |
| 		phdr.p_memsz = sz;
 | |
| 		offset += phdr.p_filesz;
 | |
| 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			phdr.p_flags |= PF_W;
 | |
| 		if (vma->vm_flags & VM_EXEC)
 | |
| 			phdr.p_flags |= PF_X;
 | |
| 		phdr.p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
| 		DUMP_WRITE(&phdr, sizeof(phdr));
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
 | |
| 	ELF_CORE_WRITE_EXTRA_PHDRS;
 | |
| #endif
 | |
| 
 | |
|  	/* write out the notes section */
 | |
| 	for (i = 0; i < numnote; i++)
 | |
| 		if (!writenote(notes + i, file, &foffset))
 | |
| 			goto end_coredump;
 | |
| 
 | |
| #ifdef ELF_CORE_WRITE_EXTRA_NOTES
 | |
| 	ELF_CORE_WRITE_EXTRA_NOTES;
 | |
| #endif
 | |
| 
 | |
| 	/* write out the thread status notes section */
 | |
| 	list_for_each(t, &thread_list) {
 | |
| 		struct elf_thread_status *tmp =
 | |
| 				list_entry(t, struct elf_thread_status, list);
 | |
| 
 | |
| 		for (i = 0; i < tmp->num_notes; i++)
 | |
| 			if (!writenote(&tmp->notes[i], file, &foffset))
 | |
| 				goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| 	/* Align to page */
 | |
| 	DUMP_SEEK(dataoff - foffset);
 | |
| 
 | |
| 	for (vma = first_vma(current, gate_vma); vma != NULL;
 | |
| 			vma = next_vma(vma, gate_vma)) {
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		if (!maydump(vma))
 | |
| 			continue;
 | |
| 
 | |
| 		for (addr = vma->vm_start;
 | |
| 		     addr < vma->vm_end;
 | |
| 		     addr += PAGE_SIZE) {
 | |
| 			struct page *page;
 | |
| 			struct vm_area_struct *vma;
 | |
| 
 | |
| 			if (get_user_pages(current, current->mm, addr, 1, 0, 1,
 | |
| 						&page, &vma) <= 0) {
 | |
| 				DUMP_SEEK(PAGE_SIZE);
 | |
| 			} else {
 | |
| 				if (page == ZERO_PAGE(addr)) {
 | |
| 					DUMP_SEEK(PAGE_SIZE);
 | |
| 				} else {
 | |
| 					void *kaddr;
 | |
| 					flush_cache_page(vma, addr,
 | |
| 							 page_to_pfn(page));
 | |
| 					kaddr = kmap(page);
 | |
| 					if ((size += PAGE_SIZE) > limit ||
 | |
| 					    !dump_write(file, kaddr,
 | |
| 					    PAGE_SIZE)) {
 | |
| 						kunmap(page);
 | |
| 						page_cache_release(page);
 | |
| 						goto end_coredump;
 | |
| 					}
 | |
| 					kunmap(page);
 | |
| 				}
 | |
| 				page_cache_release(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_CORE_WRITE_EXTRA_DATA
 | |
| 	ELF_CORE_WRITE_EXTRA_DATA;
 | |
| #endif
 | |
| 
 | |
| end_coredump:
 | |
| 	set_fs(fs);
 | |
| 
 | |
| cleanup:
 | |
| 	while (!list_empty(&thread_list)) {
 | |
| 		struct list_head *tmp = thread_list.next;
 | |
| 		list_del(tmp);
 | |
| 		kfree(list_entry(tmp, struct elf_thread_status, list));
 | |
| 	}
 | |
| 
 | |
| 	kfree(elf);
 | |
| 	kfree(prstatus);
 | |
| 	kfree(psinfo);
 | |
| 	kfree(notes);
 | |
| 	kfree(fpu);
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	kfree(xfpu);
 | |
| #endif
 | |
| 	return has_dumped;
 | |
| #undef NUM_NOTES
 | |
| }
 | |
| 
 | |
| #endif		/* USE_ELF_CORE_DUMP */
 | |
| 
 | |
| static int __init init_elf_binfmt(void)
 | |
| {
 | |
| 	return register_binfmt(&elf_format);
 | |
| }
 | |
| 
 | |
| static void __exit exit_elf_binfmt(void)
 | |
| {
 | |
| 	/* Remove the COFF and ELF loaders. */
 | |
| 	unregister_binfmt(&elf_format);
 | |
| }
 | |
| 
 | |
| core_initcall(init_elf_binfmt);
 | |
| module_exit(exit_elf_binfmt);
 | |
| MODULE_LICENSE("GPL");
 |