mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 8af3c153ba
			
		
	
	
		8af3c153ba
		
	
	
	
	
		
			
			Clamp update interval to reduce PLL gain with low sampling rate (e.g. intermittent network connection) to avoid instability. The clamp roughly corresponds to the loop time constant, it's 8 * poll interval for SHIFT_PLL 2 and 32 * poll interval for SHIFT_PLL 4. This gives good results without affecting the gain in normal conditions where ntpd skips only up to seven consecutive samples. Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Acked-by: john stultz <johnstul@us.ibm.com> LKML-Reference: <1283870626-9472-1-git-send-email-mlichvar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
		
			
				
	
	
		
			563 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			563 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NTP state machine interfaces and logic.
 | |
|  *
 | |
|  * This code was mainly moved from kernel/timer.c and kernel/time.c
 | |
|  * Please see those files for relevant copyright info and historical
 | |
|  * changelogs.
 | |
|  */
 | |
| #include <linux/capability.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/mm.h>
 | |
| 
 | |
| /*
 | |
|  * NTP timekeeping variables:
 | |
|  */
 | |
| 
 | |
| /* USER_HZ period (usecs): */
 | |
| unsigned long			tick_usec = TICK_USEC;
 | |
| 
 | |
| /* ACTHZ period (nsecs): */
 | |
| unsigned long			tick_nsec;
 | |
| 
 | |
| u64				tick_length;
 | |
| static u64			tick_length_base;
 | |
| 
 | |
| static struct hrtimer		leap_timer;
 | |
| 
 | |
| #define MAX_TICKADJ		500LL		/* usecs */
 | |
| #define MAX_TICKADJ_SCALED \
 | |
| 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 | |
| 
 | |
| /*
 | |
|  * phase-lock loop variables
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * clock synchronization status
 | |
|  *
 | |
|  * (TIME_ERROR prevents overwriting the CMOS clock)
 | |
|  */
 | |
| static int			time_state = TIME_OK;
 | |
| 
 | |
| /* clock status bits:							*/
 | |
| int				time_status = STA_UNSYNC;
 | |
| 
 | |
| /* TAI offset (secs):							*/
 | |
| static long			time_tai;
 | |
| 
 | |
| /* time adjustment (nsecs):						*/
 | |
| static s64			time_offset;
 | |
| 
 | |
| /* pll time constant:							*/
 | |
| static long			time_constant = 2;
 | |
| 
 | |
| /* maximum error (usecs):						*/
 | |
| static long			time_maxerror = NTP_PHASE_LIMIT;
 | |
| 
 | |
| /* estimated error (usecs):						*/
 | |
| static long			time_esterror = NTP_PHASE_LIMIT;
 | |
| 
 | |
| /* frequency offset (scaled nsecs/secs):				*/
 | |
| static s64			time_freq;
 | |
| 
 | |
| /* time at last adjustment (secs):					*/
 | |
| static long			time_reftime;
 | |
| 
 | |
| static long			time_adjust;
 | |
| 
 | |
| /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
 | |
| static s64			ntp_tick_adj;
 | |
| 
 | |
| /*
 | |
|  * NTP methods:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Update (tick_length, tick_length_base, tick_nsec), based
 | |
|  * on (tick_usec, ntp_tick_adj, time_freq):
 | |
|  */
 | |
| static void ntp_update_frequency(void)
 | |
| {
 | |
| 	u64 second_length;
 | |
| 	u64 new_base;
 | |
| 
 | |
| 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
 | |
| 						<< NTP_SCALE_SHIFT;
 | |
| 
 | |
| 	second_length		+= ntp_tick_adj;
 | |
| 	second_length		+= time_freq;
 | |
| 
 | |
| 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
 | |
| 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't wait for the next second_overflow, apply
 | |
| 	 * the change to the tick length immediately:
 | |
| 	 */
 | |
| 	tick_length		+= new_base - tick_length_base;
 | |
| 	tick_length_base	 = new_base;
 | |
| }
 | |
| 
 | |
| static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
 | |
| {
 | |
| 	time_status &= ~STA_MODE;
 | |
| 
 | |
| 	if (secs < MINSEC)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
 | |
| 		return 0;
 | |
| 
 | |
| 	time_status |= STA_MODE;
 | |
| 
 | |
| 	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 | |
| }
 | |
| 
 | |
| static void ntp_update_offset(long offset)
 | |
| {
 | |
| 	s64 freq_adj;
 | |
| 	s64 offset64;
 | |
| 	long secs;
 | |
| 
 | |
| 	if (!(time_status & STA_PLL))
 | |
| 		return;
 | |
| 
 | |
| 	if (!(time_status & STA_NANO))
 | |
| 		offset *= NSEC_PER_USEC;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scale the phase adjustment and
 | |
| 	 * clamp to the operating range.
 | |
| 	 */
 | |
| 	offset = min(offset, MAXPHASE);
 | |
| 	offset = max(offset, -MAXPHASE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Select how the frequency is to be controlled
 | |
| 	 * and in which mode (PLL or FLL).
 | |
| 	 */
 | |
| 	secs = get_seconds() - time_reftime;
 | |
| 	if (unlikely(time_status & STA_FREQHOLD))
 | |
| 		secs = 0;
 | |
| 
 | |
| 	time_reftime = get_seconds();
 | |
| 
 | |
| 	offset64    = offset;
 | |
| 	freq_adj    = ntp_update_offset_fll(offset64, secs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clamp update interval to reduce PLL gain with low
 | |
| 	 * sampling rate (e.g. intermittent network connection)
 | |
| 	 * to avoid instability.
 | |
| 	 */
 | |
| 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
 | |
| 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
 | |
| 
 | |
| 	freq_adj    += (offset64 * secs) <<
 | |
| 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
 | |
| 
 | |
| 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
 | |
| 
 | |
| 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 | |
| 
 | |
| 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ntp_clear - Clears the NTP state variables
 | |
|  *
 | |
|  * Must be called while holding a write on the xtime_lock
 | |
|  */
 | |
| void ntp_clear(void)
 | |
| {
 | |
| 	time_adjust	= 0;		/* stop active adjtime() */
 | |
| 	time_status	|= STA_UNSYNC;
 | |
| 	time_maxerror	= NTP_PHASE_LIMIT;
 | |
| 	time_esterror	= NTP_PHASE_LIMIT;
 | |
| 
 | |
| 	ntp_update_frequency();
 | |
| 
 | |
| 	tick_length	= tick_length_base;
 | |
| 	time_offset	= 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Leap second processing. If in leap-insert state at the end of the
 | |
|  * day, the system clock is set back one second; if in leap-delete
 | |
|  * state, the system clock is set ahead one second.
 | |
|  */
 | |
| static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
 | |
| {
 | |
| 	enum hrtimer_restart res = HRTIMER_NORESTART;
 | |
| 
 | |
| 	write_seqlock(&xtime_lock);
 | |
| 
 | |
| 	switch (time_state) {
 | |
| 	case TIME_OK:
 | |
| 		break;
 | |
| 	case TIME_INS:
 | |
| 		timekeeping_leap_insert(-1);
 | |
| 		time_state = TIME_OOP;
 | |
| 		printk(KERN_NOTICE
 | |
| 			"Clock: inserting leap second 23:59:60 UTC\n");
 | |
| 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
 | |
| 		res = HRTIMER_RESTART;
 | |
| 		break;
 | |
| 	case TIME_DEL:
 | |
| 		timekeeping_leap_insert(1);
 | |
| 		time_tai--;
 | |
| 		time_state = TIME_WAIT;
 | |
| 		printk(KERN_NOTICE
 | |
| 			"Clock: deleting leap second 23:59:59 UTC\n");
 | |
| 		break;
 | |
| 	case TIME_OOP:
 | |
| 		time_tai++;
 | |
| 		time_state = TIME_WAIT;
 | |
| 		/* fall through */
 | |
| 	case TIME_WAIT:
 | |
| 		if (!(time_status & (STA_INS | STA_DEL)))
 | |
| 			time_state = TIME_OK;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	write_sequnlock(&xtime_lock);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this routine handles the overflow of the microsecond field
 | |
|  *
 | |
|  * The tricky bits of code to handle the accurate clock support
 | |
|  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 | |
|  * They were originally developed for SUN and DEC kernels.
 | |
|  * All the kudos should go to Dave for this stuff.
 | |
|  */
 | |
| void second_overflow(void)
 | |
| {
 | |
| 	s64 delta;
 | |
| 
 | |
| 	/* Bump the maxerror field */
 | |
| 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
 | |
| 	if (time_maxerror > NTP_PHASE_LIMIT) {
 | |
| 		time_maxerror = NTP_PHASE_LIMIT;
 | |
| 		time_status |= STA_UNSYNC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the phase adjustment for the next second. The offset is
 | |
| 	 * reduced by a fixed factor times the time constant.
 | |
| 	 */
 | |
| 	tick_length	 = tick_length_base;
 | |
| 
 | |
| 	delta		 = shift_right(time_offset, SHIFT_PLL + time_constant);
 | |
| 	time_offset	-= delta;
 | |
| 	tick_length	+= delta;
 | |
| 
 | |
| 	if (!time_adjust)
 | |
| 		return;
 | |
| 
 | |
| 	if (time_adjust > MAX_TICKADJ) {
 | |
| 		time_adjust -= MAX_TICKADJ;
 | |
| 		tick_length += MAX_TICKADJ_SCALED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (time_adjust < -MAX_TICKADJ) {
 | |
| 		time_adjust += MAX_TICKADJ;
 | |
| 		tick_length -= MAX_TICKADJ_SCALED;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 | |
| 							 << NTP_SCALE_SHIFT;
 | |
| 	time_adjust = 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_GENERIC_CMOS_UPDATE
 | |
| 
 | |
| /* Disable the cmos update - used by virtualization and embedded */
 | |
| int no_sync_cmos_clock  __read_mostly;
 | |
| 
 | |
| static void sync_cmos_clock(struct work_struct *work);
 | |
| 
 | |
| static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
 | |
| 
 | |
| static void sync_cmos_clock(struct work_struct *work)
 | |
| {
 | |
| 	struct timespec now, next;
 | |
| 	int fail = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an externally synchronized Linux clock, then update
 | |
| 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 | |
| 	 * called as close as possible to 500 ms before the new second starts.
 | |
| 	 * This code is run on a timer.  If the clock is set, that timer
 | |
| 	 * may not expire at the correct time.  Thus, we adjust...
 | |
| 	 */
 | |
| 	if (!ntp_synced()) {
 | |
| 		/*
 | |
| 		 * Not synced, exit, do not restart a timer (if one is
 | |
| 		 * running, let it run out).
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	getnstimeofday(&now);
 | |
| 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
 | |
| 		fail = update_persistent_clock(now);
 | |
| 
 | |
| 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
 | |
| 	if (next.tv_nsec <= 0)
 | |
| 		next.tv_nsec += NSEC_PER_SEC;
 | |
| 
 | |
| 	if (!fail)
 | |
| 		next.tv_sec = 659;
 | |
| 	else
 | |
| 		next.tv_sec = 0;
 | |
| 
 | |
| 	if (next.tv_nsec >= NSEC_PER_SEC) {
 | |
| 		next.tv_sec++;
 | |
| 		next.tv_nsec -= NSEC_PER_SEC;
 | |
| 	}
 | |
| 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
 | |
| }
 | |
| 
 | |
| static void notify_cmos_timer(void)
 | |
| {
 | |
| 	if (!no_sync_cmos_clock)
 | |
| 		schedule_delayed_work(&sync_cmos_work, 0);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void notify_cmos_timer(void) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Start the leap seconds timer:
 | |
|  */
 | |
| static inline void ntp_start_leap_timer(struct timespec *ts)
 | |
| {
 | |
| 	long now = ts->tv_sec;
 | |
| 
 | |
| 	if (time_status & STA_INS) {
 | |
| 		time_state = TIME_INS;
 | |
| 		now += 86400 - now % 86400;
 | |
| 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (time_status & STA_DEL) {
 | |
| 		time_state = TIME_DEL;
 | |
| 		now += 86400 - (now + 1) % 86400;
 | |
| 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Propagate a new txc->status value into the NTP state:
 | |
|  */
 | |
| static inline void process_adj_status(struct timex *txc, struct timespec *ts)
 | |
| {
 | |
| 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 | |
| 		time_state = TIME_OK;
 | |
| 		time_status = STA_UNSYNC;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we turn on PLL adjustments then reset the
 | |
| 	 * reference time to current time.
 | |
| 	 */
 | |
| 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
 | |
| 		time_reftime = get_seconds();
 | |
| 
 | |
| 	/* only set allowed bits */
 | |
| 	time_status &= STA_RONLY;
 | |
| 	time_status |= txc->status & ~STA_RONLY;
 | |
| 
 | |
| 	switch (time_state) {
 | |
| 	case TIME_OK:
 | |
| 		ntp_start_leap_timer(ts);
 | |
| 		break;
 | |
| 	case TIME_INS:
 | |
| 	case TIME_DEL:
 | |
| 		time_state = TIME_OK;
 | |
| 		ntp_start_leap_timer(ts);
 | |
| 	case TIME_WAIT:
 | |
| 		if (!(time_status & (STA_INS | STA_DEL)))
 | |
| 			time_state = TIME_OK;
 | |
| 		break;
 | |
| 	case TIME_OOP:
 | |
| 		hrtimer_restart(&leap_timer);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| /*
 | |
|  * Called with the xtime lock held, so we can access and modify
 | |
|  * all the global NTP state:
 | |
|  */
 | |
| static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
 | |
| {
 | |
| 	if (txc->modes & ADJ_STATUS)
 | |
| 		process_adj_status(txc, ts);
 | |
| 
 | |
| 	if (txc->modes & ADJ_NANO)
 | |
| 		time_status |= STA_NANO;
 | |
| 
 | |
| 	if (txc->modes & ADJ_MICRO)
 | |
| 		time_status &= ~STA_NANO;
 | |
| 
 | |
| 	if (txc->modes & ADJ_FREQUENCY) {
 | |
| 		time_freq = txc->freq * PPM_SCALE;
 | |
| 		time_freq = min(time_freq, MAXFREQ_SCALED);
 | |
| 		time_freq = max(time_freq, -MAXFREQ_SCALED);
 | |
| 	}
 | |
| 
 | |
| 	if (txc->modes & ADJ_MAXERROR)
 | |
| 		time_maxerror = txc->maxerror;
 | |
| 
 | |
| 	if (txc->modes & ADJ_ESTERROR)
 | |
| 		time_esterror = txc->esterror;
 | |
| 
 | |
| 	if (txc->modes & ADJ_TIMECONST) {
 | |
| 		time_constant = txc->constant;
 | |
| 		if (!(time_status & STA_NANO))
 | |
| 			time_constant += 4;
 | |
| 		time_constant = min(time_constant, (long)MAXTC);
 | |
| 		time_constant = max(time_constant, 0l);
 | |
| 	}
 | |
| 
 | |
| 	if (txc->modes & ADJ_TAI && txc->constant > 0)
 | |
| 		time_tai = txc->constant;
 | |
| 
 | |
| 	if (txc->modes & ADJ_OFFSET)
 | |
| 		ntp_update_offset(txc->offset);
 | |
| 
 | |
| 	if (txc->modes & ADJ_TICK)
 | |
| 		tick_usec = txc->tick;
 | |
| 
 | |
| 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 | |
| 		ntp_update_frequency();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * adjtimex mainly allows reading (and writing, if superuser) of
 | |
|  * kernel time-keeping variables. used by xntpd.
 | |
|  */
 | |
| int do_adjtimex(struct timex *txc)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 	int result;
 | |
| 
 | |
| 	/* Validate the data before disabling interrupts */
 | |
| 	if (txc->modes & ADJ_ADJTIME) {
 | |
| 		/* singleshot must not be used with any other mode bits */
 | |
| 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
 | |
| 			return -EINVAL;
 | |
| 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
 | |
| 		    !capable(CAP_SYS_TIME))
 | |
| 			return -EPERM;
 | |
| 	} else {
 | |
| 		/* In order to modify anything, you gotta be super-user! */
 | |
| 		 if (txc->modes && !capable(CAP_SYS_TIME))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/*
 | |
| 		 * if the quartz is off by more than 10% then
 | |
| 		 * something is VERY wrong!
 | |
| 		 */
 | |
| 		if (txc->modes & ADJ_TICK &&
 | |
| 		    (txc->tick <  900000/USER_HZ ||
 | |
| 		     txc->tick > 1100000/USER_HZ))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
 | |
| 			hrtimer_cancel(&leap_timer);
 | |
| 	}
 | |
| 
 | |
| 	getnstimeofday(&ts);
 | |
| 
 | |
| 	write_seqlock_irq(&xtime_lock);
 | |
| 
 | |
| 	if (txc->modes & ADJ_ADJTIME) {
 | |
| 		long save_adjust = time_adjust;
 | |
| 
 | |
| 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 | |
| 			/* adjtime() is independent from ntp_adjtime() */
 | |
| 			time_adjust = txc->offset;
 | |
| 			ntp_update_frequency();
 | |
| 		}
 | |
| 		txc->offset = save_adjust;
 | |
| 	} else {
 | |
| 
 | |
| 		/* If there are input parameters, then process them: */
 | |
| 		if (txc->modes)
 | |
| 			process_adjtimex_modes(txc, &ts);
 | |
| 
 | |
| 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
 | |
| 				  NTP_SCALE_SHIFT);
 | |
| 		if (!(time_status & STA_NANO))
 | |
| 			txc->offset /= NSEC_PER_USEC;
 | |
| 	}
 | |
| 
 | |
| 	result = time_state;	/* mostly `TIME_OK' */
 | |
| 	if (time_status & (STA_UNSYNC|STA_CLOCKERR))
 | |
| 		result = TIME_ERROR;
 | |
| 
 | |
| 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
 | |
| 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 | |
| 	txc->maxerror	   = time_maxerror;
 | |
| 	txc->esterror	   = time_esterror;
 | |
| 	txc->status	   = time_status;
 | |
| 	txc->constant	   = time_constant;
 | |
| 	txc->precision	   = 1;
 | |
| 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 | |
| 	txc->tick	   = tick_usec;
 | |
| 	txc->tai	   = time_tai;
 | |
| 
 | |
| 	/* PPS is not implemented, so these are zero */
 | |
| 	txc->ppsfreq	   = 0;
 | |
| 	txc->jitter	   = 0;
 | |
| 	txc->shift	   = 0;
 | |
| 	txc->stabil	   = 0;
 | |
| 	txc->jitcnt	   = 0;
 | |
| 	txc->calcnt	   = 0;
 | |
| 	txc->errcnt	   = 0;
 | |
| 	txc->stbcnt	   = 0;
 | |
| 
 | |
| 	write_sequnlock_irq(&xtime_lock);
 | |
| 
 | |
| 	txc->time.tv_sec = ts.tv_sec;
 | |
| 	txc->time.tv_usec = ts.tv_nsec;
 | |
| 	if (!(time_status & STA_NANO))
 | |
| 		txc->time.tv_usec /= NSEC_PER_USEC;
 | |
| 
 | |
| 	notify_cmos_timer();
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int __init ntp_tick_adj_setup(char *str)
 | |
| {
 | |
| 	ntp_tick_adj = simple_strtol(str, NULL, 0);
 | |
| 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("ntp_tick_adj=", ntp_tick_adj_setup);
 | |
| 
 | |
| void __init ntp_init(void)
 | |
| {
 | |
| 	ntp_clear();
 | |
| 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 | |
| 	leap_timer.function = ntp_leap_second;
 | |
| }
 |