mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 06:18:54 +00:00 
			
		
		
		
	 72d7c3b33c
			
		
	
	
		72d7c3b33c
		
	
	
	
	
		
			
			1. replace find_e820_area with memblock_find_in_range
2. replace reserve_early with memblock_x86_reserve_range
3. replace free_early with memblock_x86_free_range.
4. NO_BOOTMEM will switch to use memblock too.
5. use _e820, _early wrap in the patch, in following patch, will
   replace them all
6. because memblock_x86_free_range support partial free, we can remove some special care
7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill()
   so adjust some calling later in setup.c::setup_arch()
   -- corruption_check and mptable_update
-v2: Move reserve_brk() early
    Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range()
    that could happen We have more then 128 RAM entry in E820 tables, and
    memblock_x86_fill() could use memblock_find_in_range() to find a new place for
    memblock.memory.region array.
    and We don't need to use extend_brk() after fill_memblock_area()
    So move reserve_brk() early before fill_memblock_area().
-v3: Move find_smp_config early
    To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable
    in right place.
-v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in
    memblock.reserved already..
    use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later.
-v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit
    active_region for 32bit does include high pages
    need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped()
-v6: Use current_limit instead
-v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L
-v8: Set memblock_can_resize early to handle EFI with more RAM entries
-v9: update after kmemleak changes in mainline
Suggested-by: David S. Miller <davem@davemloft.net>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
		
	
			
		
			
				
	
	
		
			228 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Virtual Memory Map support
 | |
|  *
 | |
|  * (C) 2007 sgi. Christoph Lameter.
 | |
|  *
 | |
|  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 | |
|  * virt_to_page, page_address() to be implemented as a base offset
 | |
|  * calculation without memory access.
 | |
|  *
 | |
|  * However, virtual mappings need a page table and TLBs. Many Linux
 | |
|  * architectures already map their physical space using 1-1 mappings
 | |
|  * via TLBs. For those arches the virtual memmory map is essentially
 | |
|  * for free if we use the same page size as the 1-1 mappings. In that
 | |
|  * case the overhead consists of a few additional pages that are
 | |
|  * allocated to create a view of memory for vmemmap.
 | |
|  *
 | |
|  * The architecture is expected to provide a vmemmap_populate() function
 | |
|  * to instantiate the mapping.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sched.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * Allocate a block of memory to be used to back the virtual memory map
 | |
|  * or to back the page tables that are used to create the mapping.
 | |
|  * Uses the main allocators if they are available, else bootmem.
 | |
|  */
 | |
| 
 | |
| static void * __init_refok __earlyonly_bootmem_alloc(int node,
 | |
| 				unsigned long size,
 | |
| 				unsigned long align,
 | |
| 				unsigned long goal)
 | |
| {
 | |
| 	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
 | |
| }
 | |
| 
 | |
| static void *vmemmap_buf;
 | |
| static void *vmemmap_buf_end;
 | |
| 
 | |
| void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 | |
| {
 | |
| 	/* If the main allocator is up use that, fallback to bootmem. */
 | |
| 	if (slab_is_available()) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (node_state(node, N_HIGH_MEMORY))
 | |
| 			page = alloc_pages_node(node,
 | |
| 				GFP_KERNEL | __GFP_ZERO, get_order(size));
 | |
| 		else
 | |
| 			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
 | |
| 				get_order(size));
 | |
| 		if (page)
 | |
| 			return page_address(page);
 | |
| 		return NULL;
 | |
| 	} else
 | |
| 		return __earlyonly_bootmem_alloc(node, size, size,
 | |
| 				__pa(MAX_DMA_ADDRESS));
 | |
| }
 | |
| 
 | |
| /* need to make sure size is all the same during early stage */
 | |
| void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (!vmemmap_buf)
 | |
| 		return vmemmap_alloc_block(size, node);
 | |
| 
 | |
| 	/* take the from buf */
 | |
| 	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 | |
| 	if (ptr + size > vmemmap_buf_end)
 | |
| 		return vmemmap_alloc_block(size, node);
 | |
| 
 | |
| 	vmemmap_buf = ptr + size;
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void __meminit vmemmap_verify(pte_t *pte, int node,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn = pte_pfn(*pte);
 | |
| 	int actual_node = early_pfn_to_nid(pfn);
 | |
| 
 | |
| 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 | |
| 		printk(KERN_WARNING "[%lx-%lx] potential offnode "
 | |
| 			"page_structs\n", start, end - 1);
 | |
| }
 | |
| 
 | |
| pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
 | |
| {
 | |
| 	pte_t *pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte)) {
 | |
| 		pte_t entry;
 | |
| 		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
 | |
| 		set_pte_at(&init_mm, addr, pte, entry);
 | |
| 	}
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pmd_populate_kernel(&init_mm, pmd, p);
 | |
| 	}
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none(*pud)) {
 | |
| 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pud_populate(&init_mm, pud, p);
 | |
| 	}
 | |
| 	return pud;
 | |
| }
 | |
| 
 | |
| pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
 | |
| 		if (!p)
 | |
| 			return NULL;
 | |
| 		pgd_populate(&init_mm, pgd, p);
 | |
| 	}
 | |
| 	return pgd;
 | |
| }
 | |
| 
 | |
| int __meminit vmemmap_populate_basepages(struct page *start_page,
 | |
| 						unsigned long size, int node)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)start_page;
 | |
| 	unsigned long end = (unsigned long)(start_page + size);
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	for (; addr < end; addr += PAGE_SIZE) {
 | |
| 		pgd = vmemmap_pgd_populate(addr, node);
 | |
| 		if (!pgd)
 | |
| 			return -ENOMEM;
 | |
| 		pud = vmemmap_pud_populate(pgd, addr, node);
 | |
| 		if (!pud)
 | |
| 			return -ENOMEM;
 | |
| 		pmd = vmemmap_pmd_populate(pud, addr, node);
 | |
| 		if (!pmd)
 | |
| 			return -ENOMEM;
 | |
| 		pte = vmemmap_pte_populate(pmd, addr, node);
 | |
| 		if (!pte)
 | |
| 			return -ENOMEM;
 | |
| 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
 | |
| {
 | |
| 	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
 | |
| 	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
 | |
| 	if (error)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| void __init sparse_mem_maps_populate_node(struct page **map_map,
 | |
| 					  unsigned long pnum_begin,
 | |
| 					  unsigned long pnum_end,
 | |
| 					  unsigned long map_count, int nodeid)
 | |
| {
 | |
| 	unsigned long pnum;
 | |
| 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 | |
| 	void *vmemmap_buf_start;
 | |
| 
 | |
| 	size = ALIGN(size, PMD_SIZE);
 | |
| 	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
 | |
| 			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
 | |
| 
 | |
| 	if (vmemmap_buf_start) {
 | |
| 		vmemmap_buf = vmemmap_buf_start;
 | |
| 		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
 | |
| 	}
 | |
| 
 | |
| 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		if (!present_section_nr(pnum))
 | |
| 			continue;
 | |
| 
 | |
| 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
 | |
| 		if (map_map[pnum])
 | |
| 			continue;
 | |
| 		ms = __nr_to_section(pnum);
 | |
| 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
 | |
| 			"some memory will not be available.\n", __func__);
 | |
| 		ms->section_mem_map = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vmemmap_buf_start) {
 | |
| 		/* need to free left buf */
 | |
| 		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
 | |
| 		vmemmap_buf = NULL;
 | |
| 		vmemmap_buf_end = NULL;
 | |
| 	}
 | |
| }
 |