mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 92a5bbc11f
			
		
	
	
		92a5bbc11f
		
	
	
	
	
		
			
			This patch fixes the following build breakage when memory hotplug is enabled on UMA configurations: /home/test/linux-2.6/mm/slub.c: In function 'kmem_cache_init': /home/test/linux-2.6/mm/slub.c:3031:2: error: 'slab_memory_callback' undeclared (first use in this function) /home/test/linux-2.6/mm/slub.c:3031:2: note: each undeclared identifier is reported only once for each function it appears in make[2]: *** [mm/slub.o] Error 1 make[1]: *** [mm] Error 2 make: *** [sub-make] Error 2 Reported-by: Zimny Lech <napohybelskurwysynom2010@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
		
			
				
	
	
		
			4725 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4725 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SLUB: A slab allocator that limits cache line use instead of queuing
 | |
|  * objects in per cpu and per node lists.
 | |
|  *
 | |
|  * The allocator synchronizes using per slab locks and only
 | |
|  * uses a centralized lock to manage a pool of partial slabs.
 | |
|  *
 | |
|  * (C) 2007 SGI, Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h> /* struct reclaim_state */
 | |
| #include <linux/module.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/kmemcheck.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/fault-inject.h>
 | |
| 
 | |
| /*
 | |
|  * Lock order:
 | |
|  *   1. slab_lock(page)
 | |
|  *   2. slab->list_lock
 | |
|  *
 | |
|  *   The slab_lock protects operations on the object of a particular
 | |
|  *   slab and its metadata in the page struct. If the slab lock
 | |
|  *   has been taken then no allocations nor frees can be performed
 | |
|  *   on the objects in the slab nor can the slab be added or removed
 | |
|  *   from the partial or full lists since this would mean modifying
 | |
|  *   the page_struct of the slab.
 | |
|  *
 | |
|  *   The list_lock protects the partial and full list on each node and
 | |
|  *   the partial slab counter. If taken then no new slabs may be added or
 | |
|  *   removed from the lists nor make the number of partial slabs be modified.
 | |
|  *   (Note that the total number of slabs is an atomic value that may be
 | |
|  *   modified without taking the list lock).
 | |
|  *
 | |
|  *   The list_lock is a centralized lock and thus we avoid taking it as
 | |
|  *   much as possible. As long as SLUB does not have to handle partial
 | |
|  *   slabs, operations can continue without any centralized lock. F.e.
 | |
|  *   allocating a long series of objects that fill up slabs does not require
 | |
|  *   the list lock.
 | |
|  *
 | |
|  *   The lock order is sometimes inverted when we are trying to get a slab
 | |
|  *   off a list. We take the list_lock and then look for a page on the list
 | |
|  *   to use. While we do that objects in the slabs may be freed. We can
 | |
|  *   only operate on the slab if we have also taken the slab_lock. So we use
 | |
|  *   a slab_trylock() on the slab. If trylock was successful then no frees
 | |
|  *   can occur anymore and we can use the slab for allocations etc. If the
 | |
|  *   slab_trylock() does not succeed then frees are in progress in the slab and
 | |
|  *   we must stay away from it for a while since we may cause a bouncing
 | |
|  *   cacheline if we try to acquire the lock. So go onto the next slab.
 | |
|  *   If all pages are busy then we may allocate a new slab instead of reusing
 | |
|  *   a partial slab. A new slab has noone operating on it and thus there is
 | |
|  *   no danger of cacheline contention.
 | |
|  *
 | |
|  *   Interrupts are disabled during allocation and deallocation in order to
 | |
|  *   make the slab allocator safe to use in the context of an irq. In addition
 | |
|  *   interrupts are disabled to ensure that the processor does not change
 | |
|  *   while handling per_cpu slabs, due to kernel preemption.
 | |
|  *
 | |
|  * SLUB assigns one slab for allocation to each processor.
 | |
|  * Allocations only occur from these slabs called cpu slabs.
 | |
|  *
 | |
|  * Slabs with free elements are kept on a partial list and during regular
 | |
|  * operations no list for full slabs is used. If an object in a full slab is
 | |
|  * freed then the slab will show up again on the partial lists.
 | |
|  * We track full slabs for debugging purposes though because otherwise we
 | |
|  * cannot scan all objects.
 | |
|  *
 | |
|  * Slabs are freed when they become empty. Teardown and setup is
 | |
|  * minimal so we rely on the page allocators per cpu caches for
 | |
|  * fast frees and allocs.
 | |
|  *
 | |
|  * Overloading of page flags that are otherwise used for LRU management.
 | |
|  *
 | |
|  * PageActive 		The slab is frozen and exempt from list processing.
 | |
|  * 			This means that the slab is dedicated to a purpose
 | |
|  * 			such as satisfying allocations for a specific
 | |
|  * 			processor. Objects may be freed in the slab while
 | |
|  * 			it is frozen but slab_free will then skip the usual
 | |
|  * 			list operations. It is up to the processor holding
 | |
|  * 			the slab to integrate the slab into the slab lists
 | |
|  * 			when the slab is no longer needed.
 | |
|  *
 | |
|  * 			One use of this flag is to mark slabs that are
 | |
|  * 			used for allocations. Then such a slab becomes a cpu
 | |
|  * 			slab. The cpu slab may be equipped with an additional
 | |
|  * 			freelist that allows lockless access to
 | |
|  * 			free objects in addition to the regular freelist
 | |
|  * 			that requires the slab lock.
 | |
|  *
 | |
|  * PageError		Slab requires special handling due to debug
 | |
|  * 			options set. This moves	slab handling out of
 | |
|  * 			the fast path and disables lockless freelists.
 | |
|  */
 | |
| 
 | |
| #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 		SLAB_TRACE | SLAB_DEBUG_FREE)
 | |
| 
 | |
| static inline int kmem_cache_debug(struct kmem_cache *s)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issues still to be resolved:
 | |
|  *
 | |
|  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 | |
|  *
 | |
|  * - Variable sizing of the per node arrays
 | |
|  */
 | |
| 
 | |
| /* Enable to test recovery from slab corruption on boot */
 | |
| #undef SLUB_RESILIENCY_TEST
 | |
| 
 | |
| /*
 | |
|  * Mininum number of partial slabs. These will be left on the partial
 | |
|  * lists even if they are empty. kmem_cache_shrink may reclaim them.
 | |
|  */
 | |
| #define MIN_PARTIAL 5
 | |
| 
 | |
| /*
 | |
|  * Maximum number of desirable partial slabs.
 | |
|  * The existence of more partial slabs makes kmem_cache_shrink
 | |
|  * sort the partial list by the number of objects in the.
 | |
|  */
 | |
| #define MAX_PARTIAL 10
 | |
| 
 | |
| #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 | |
| 				SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| /*
 | |
|  * Debugging flags that require metadata to be stored in the slab.  These get
 | |
|  * disabled when slub_debug=O is used and a cache's min order increases with
 | |
|  * metadata.
 | |
|  */
 | |
| #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 | |
| 
 | |
| /*
 | |
|  * Set of flags that will prevent slab merging
 | |
|  */
 | |
| #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 | |
| 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
 | |
| 		SLAB_FAILSLAB)
 | |
| 
 | |
| #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 | |
| 		SLAB_CACHE_DMA | SLAB_NOTRACK)
 | |
| 
 | |
| #define OO_SHIFT	16
 | |
| #define OO_MASK		((1 << OO_SHIFT) - 1)
 | |
| #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
 | |
| 
 | |
| /* Internal SLUB flags */
 | |
| #define __OBJECT_POISON		0x80000000UL /* Poison object */
 | |
| 
 | |
| static int kmem_size = sizeof(struct kmem_cache);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static struct notifier_block slab_notifier;
 | |
| #endif
 | |
| 
 | |
| static enum {
 | |
| 	DOWN,		/* No slab functionality available */
 | |
| 	PARTIAL,	/* Kmem_cache_node works */
 | |
| 	UP,		/* Everything works but does not show up in sysfs */
 | |
| 	SYSFS		/* Sysfs up */
 | |
| } slab_state = DOWN;
 | |
| 
 | |
| /* A list of all slab caches on the system */
 | |
| static DECLARE_RWSEM(slub_lock);
 | |
| static LIST_HEAD(slab_caches);
 | |
| 
 | |
| /*
 | |
|  * Tracking user of a slab.
 | |
|  */
 | |
| struct track {
 | |
| 	unsigned long addr;	/* Called from address */
 | |
| 	int cpu;		/* Was running on cpu */
 | |
| 	int pid;		/* Pid context */
 | |
| 	unsigned long when;	/* When did the operation occur */
 | |
| };
 | |
| 
 | |
| enum track_item { TRACK_ALLOC, TRACK_FREE };
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static int sysfs_slab_add(struct kmem_cache *);
 | |
| static int sysfs_slab_alias(struct kmem_cache *, const char *);
 | |
| static void sysfs_slab_remove(struct kmem_cache *);
 | |
| 
 | |
| #else
 | |
| static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 | |
| static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 | |
| 							{ return 0; }
 | |
| static inline void sysfs_slab_remove(struct kmem_cache *s)
 | |
| {
 | |
| 	kfree(s->name);
 | |
| 	kfree(s);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline void stat(struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	__this_cpu_inc(s->cpu_slab->stat[si]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  * 			Core slab cache functions
 | |
|  *******************************************************************/
 | |
| 
 | |
| int slab_is_available(void)
 | |
| {
 | |
| 	return slab_state >= UP;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	return s->node[node];
 | |
| }
 | |
| 
 | |
| /* Verify that a pointer has an address that is valid within a slab page */
 | |
| static inline int check_valid_pointer(struct kmem_cache *s,
 | |
| 				struct page *page, const void *object)
 | |
| {
 | |
| 	void *base;
 | |
| 
 | |
| 	if (!object)
 | |
| 		return 1;
 | |
| 
 | |
| 	base = page_address(page);
 | |
| 	if (object < base || object >= base + page->objects * s->size ||
 | |
| 		(object - base) % s->size) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void *get_freepointer(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	return *(void **)(object + s->offset);
 | |
| }
 | |
| 
 | |
| static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 | |
| {
 | |
| 	*(void **)(object + s->offset) = fp;
 | |
| }
 | |
| 
 | |
| /* Loop over all objects in a slab */
 | |
| #define for_each_object(__p, __s, __addr, __objects) \
 | |
| 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
 | |
| 			__p += (__s)->size)
 | |
| 
 | |
| /* Scan freelist */
 | |
| #define for_each_free_object(__p, __s, __free) \
 | |
| 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
 | |
| 
 | |
| /* Determine object index from a given position */
 | |
| static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 | |
| {
 | |
| 	return (p - addr) / s->size;
 | |
| }
 | |
| 
 | |
| static inline struct kmem_cache_order_objects oo_make(int order,
 | |
| 						unsigned long size)
 | |
| {
 | |
| 	struct kmem_cache_order_objects x = {
 | |
| 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
 | |
| 	};
 | |
| 
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static inline int oo_order(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x >> OO_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline int oo_objects(struct kmem_cache_order_objects x)
 | |
| {
 | |
| 	return x.x & OO_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| /*
 | |
|  * Debug settings:
 | |
|  */
 | |
| #ifdef CONFIG_SLUB_DEBUG_ON
 | |
| static int slub_debug = DEBUG_DEFAULT_FLAGS;
 | |
| #else
 | |
| static int slub_debug;
 | |
| #endif
 | |
| 
 | |
| static char *slub_debug_slabs;
 | |
| static int disable_higher_order_debug;
 | |
| 
 | |
| /*
 | |
|  * Object debugging
 | |
|  */
 | |
| static void print_section(char *text, u8 *addr, unsigned int length)
 | |
| {
 | |
| 	int i, offset;
 | |
| 	int newline = 1;
 | |
| 	char ascii[17];
 | |
| 
 | |
| 	ascii[16] = 0;
 | |
| 
 | |
| 	for (i = 0; i < length; i++) {
 | |
| 		if (newline) {
 | |
| 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
 | |
| 			newline = 0;
 | |
| 		}
 | |
| 		printk(KERN_CONT " %02x", addr[i]);
 | |
| 		offset = i % 16;
 | |
| 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
 | |
| 		if (offset == 15) {
 | |
| 			printk(KERN_CONT " %s\n", ascii);
 | |
| 			newline = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!newline) {
 | |
| 		i %= 16;
 | |
| 		while (i < 16) {
 | |
| 			printk(KERN_CONT "   ");
 | |
| 			ascii[i] = ' ';
 | |
| 			i++;
 | |
| 		}
 | |
| 		printk(KERN_CONT " %s\n", ascii);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct track *get_track(struct kmem_cache *s, void *object,
 | |
| 	enum track_item alloc)
 | |
| {
 | |
| 	struct track *p;
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		p = object + s->offset + sizeof(void *);
 | |
| 	else
 | |
| 		p = object + s->inuse;
 | |
| 
 | |
| 	return p + alloc;
 | |
| }
 | |
| 
 | |
| static void set_track(struct kmem_cache *s, void *object,
 | |
| 			enum track_item alloc, unsigned long addr)
 | |
| {
 | |
| 	struct track *p = get_track(s, object, alloc);
 | |
| 
 | |
| 	if (addr) {
 | |
| 		p->addr = addr;
 | |
| 		p->cpu = smp_processor_id();
 | |
| 		p->pid = current->pid;
 | |
| 		p->when = jiffies;
 | |
| 	} else
 | |
| 		memset(p, 0, sizeof(struct track));
 | |
| }
 | |
| 
 | |
| static void init_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	set_track(s, object, TRACK_FREE, 0UL);
 | |
| 	set_track(s, object, TRACK_ALLOC, 0UL);
 | |
| }
 | |
| 
 | |
| static void print_track(const char *s, struct track *t)
 | |
| {
 | |
| 	if (!t->addr)
 | |
| 		return;
 | |
| 
 | |
| 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 | |
| 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 | |
| }
 | |
| 
 | |
| static void print_tracking(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 | |
| 	print_track("Freed", get_track(s, object, TRACK_FREE));
 | |
| }
 | |
| 
 | |
| static void print_page_info(struct page *page)
 | |
| {
 | |
| 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 | |
| 		page, page->objects, page->inuse, page->freelist, page->flags);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char buf[100];
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vsnprintf(buf, sizeof(buf), fmt, args);
 | |
| 	va_end(args);
 | |
| 	printk(KERN_ERR "========================================"
 | |
| 			"=====================================\n");
 | |
| 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
 | |
| 	printk(KERN_ERR "----------------------------------------"
 | |
| 			"-------------------------------------\n\n");
 | |
| }
 | |
| 
 | |
| static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char buf[100];
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vsnprintf(buf, sizeof(buf), fmt, args);
 | |
| 	va_end(args);
 | |
| 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 | |
| }
 | |
| 
 | |
| static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 | |
| {
 | |
| 	unsigned int off;	/* Offset of last byte */
 | |
| 	u8 *addr = page_address(page);
 | |
| 
 | |
| 	print_tracking(s, p);
 | |
| 
 | |
| 	print_page_info(page);
 | |
| 
 | |
| 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 | |
| 			p, p - addr, get_freepointer(s, p));
 | |
| 
 | |
| 	if (p > addr + 16)
 | |
| 		print_section("Bytes b4", p - 16, 16);
 | |
| 
 | |
| 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		print_section("Redzone", p + s->objsize,
 | |
| 			s->inuse - s->objsize);
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		off = s->offset + sizeof(void *);
 | |
| 	else
 | |
| 		off = s->inuse;
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 	if (off != s->size)
 | |
| 		/* Beginning of the filler is the free pointer */
 | |
| 		print_section("Padding", p + off, s->size - off);
 | |
| 
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void object_err(struct kmem_cache *s, struct page *page,
 | |
| 			u8 *object, char *reason)
 | |
| {
 | |
| 	slab_bug(s, "%s", reason);
 | |
| 	print_trailer(s, page, object);
 | |
| }
 | |
| 
 | |
| static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char buf[100];
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vsnprintf(buf, sizeof(buf), fmt, args);
 | |
| 	va_end(args);
 | |
| 	slab_bug(s, "%s", buf);
 | |
| 	print_page_info(page);
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void init_object(struct kmem_cache *s, void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = object;
 | |
| 
 | |
| 	if (s->flags & __OBJECT_POISON) {
 | |
| 		memset(p, POISON_FREE, s->objsize - 1);
 | |
| 		p[s->objsize - 1] = POISON_END;
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE)
 | |
| 		memset(p + s->objsize, val, s->inuse - s->objsize);
 | |
| }
 | |
| 
 | |
| static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
 | |
| {
 | |
| 	while (bytes) {
 | |
| 		if (*start != (u8)value)
 | |
| 			return start;
 | |
| 		start++;
 | |
| 		bytes--;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 | |
| 						void *from, void *to)
 | |
| {
 | |
| 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 | |
| 	memset(from, data, to - from);
 | |
| }
 | |
| 
 | |
| static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 | |
| 			u8 *object, char *what,
 | |
| 			u8 *start, unsigned int value, unsigned int bytes)
 | |
| {
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 
 | |
| 	fault = check_bytes(start, value, bytes);
 | |
| 	if (!fault)
 | |
| 		return 1;
 | |
| 
 | |
| 	end = start + bytes;
 | |
| 	while (end > fault && end[-1] == value)
 | |
| 		end--;
 | |
| 
 | |
| 	slab_bug(s, "%s overwritten", what);
 | |
| 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 | |
| 					fault, end - 1, fault[0], value);
 | |
| 	print_trailer(s, page, object);
 | |
| 
 | |
| 	restore_bytes(s, what, value, fault, end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object layout:
 | |
|  *
 | |
|  * object address
 | |
|  * 	Bytes of the object to be managed.
 | |
|  * 	If the freepointer may overlay the object then the free
 | |
|  * 	pointer is the first word of the object.
 | |
|  *
 | |
|  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 | |
|  * 	0xa5 (POISON_END)
 | |
|  *
 | |
|  * object + s->objsize
 | |
|  * 	Padding to reach word boundary. This is also used for Redzoning.
 | |
|  * 	Padding is extended by another word if Redzoning is enabled and
 | |
|  * 	objsize == inuse.
 | |
|  *
 | |
|  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 | |
|  * 	0xcc (RED_ACTIVE) for objects in use.
 | |
|  *
 | |
|  * object + s->inuse
 | |
|  * 	Meta data starts here.
 | |
|  *
 | |
|  * 	A. Free pointer (if we cannot overwrite object on free)
 | |
|  * 	B. Tracking data for SLAB_STORE_USER
 | |
|  * 	C. Padding to reach required alignment boundary or at mininum
 | |
|  * 		one word if debugging is on to be able to detect writes
 | |
|  * 		before the word boundary.
 | |
|  *
 | |
|  *	Padding is done using 0x5a (POISON_INUSE)
 | |
|  *
 | |
|  * object + s->size
 | |
|  * 	Nothing is used beyond s->size.
 | |
|  *
 | |
|  * If slabcaches are merged then the objsize and inuse boundaries are mostly
 | |
|  * ignored. And therefore no slab options that rely on these boundaries
 | |
|  * may be used with merged slabcaches.
 | |
|  */
 | |
| 
 | |
| static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 | |
| {
 | |
| 	unsigned long off = s->inuse;	/* The end of info */
 | |
| 
 | |
| 	if (s->offset)
 | |
| 		/* Freepointer is placed after the object. */
 | |
| 		off += sizeof(void *);
 | |
| 
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		/* We also have user information there */
 | |
| 		off += 2 * sizeof(struct track);
 | |
| 
 | |
| 	if (s->size == off)
 | |
| 		return 1;
 | |
| 
 | |
| 	return check_bytes_and_report(s, page, p, "Object padding",
 | |
| 				p + off, POISON_INUSE, s->size - off);
 | |
| }
 | |
| 
 | |
| /* Check the pad bytes at the end of a slab page */
 | |
| static int slab_pad_check(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	u8 *start;
 | |
| 	u8 *fault;
 | |
| 	u8 *end;
 | |
| 	int length;
 | |
| 	int remainder;
 | |
| 
 | |
| 	if (!(s->flags & SLAB_POISON))
 | |
| 		return 1;
 | |
| 
 | |
| 	start = page_address(page);
 | |
| 	length = (PAGE_SIZE << compound_order(page));
 | |
| 	end = start + length;
 | |
| 	remainder = length % s->size;
 | |
| 	if (!remainder)
 | |
| 		return 1;
 | |
| 
 | |
| 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
 | |
| 	if (!fault)
 | |
| 		return 1;
 | |
| 	while (end > fault && end[-1] == POISON_INUSE)
 | |
| 		end--;
 | |
| 
 | |
| 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 | |
| 	print_section("Padding", end - remainder, remainder);
 | |
| 
 | |
| 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int check_object(struct kmem_cache *s, struct page *page,
 | |
| 					void *object, u8 val)
 | |
| {
 | |
| 	u8 *p = object;
 | |
| 	u8 *endobject = object + s->objsize;
 | |
| 
 | |
| 	if (s->flags & SLAB_RED_ZONE) {
 | |
| 		if (!check_bytes_and_report(s, page, object, "Redzone",
 | |
| 			endobject, val, s->inuse - s->objsize))
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
 | |
| 			check_bytes_and_report(s, page, p, "Alignment padding",
 | |
| 				endobject, POISON_INUSE, s->inuse - s->objsize);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (s->flags & SLAB_POISON) {
 | |
| 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 | |
| 			(!check_bytes_and_report(s, page, p, "Poison", p,
 | |
| 					POISON_FREE, s->objsize - 1) ||
 | |
| 			 !check_bytes_and_report(s, page, p, "Poison",
 | |
| 				p + s->objsize - 1, POISON_END, 1)))
 | |
| 			return 0;
 | |
| 		/*
 | |
| 		 * check_pad_bytes cleans up on its own.
 | |
| 		 */
 | |
| 		check_pad_bytes(s, page, p);
 | |
| 	}
 | |
| 
 | |
| 	if (!s->offset && val == SLUB_RED_ACTIVE)
 | |
| 		/*
 | |
| 		 * Object and freepointer overlap. Cannot check
 | |
| 		 * freepointer while object is allocated.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check free pointer validity */
 | |
| 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 | |
| 		object_err(s, page, p, "Freepointer corrupt");
 | |
| 		/*
 | |
| 		 * No choice but to zap it and thus lose the remainder
 | |
| 		 * of the free objects in this slab. May cause
 | |
| 		 * another error because the object count is now wrong.
 | |
| 		 */
 | |
| 		set_freepointer(s, p, NULL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int check_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	int maxobj;
 | |
| 
 | |
| 	VM_BUG_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (!PageSlab(page)) {
 | |
| 		slab_err(s, page, "Not a valid slab page");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
 | |
| 	if (page->objects > maxobj) {
 | |
| 		slab_err(s, page, "objects %u > max %u",
 | |
| 			s->name, page->objects, maxobj);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (page->inuse > page->objects) {
 | |
| 		slab_err(s, page, "inuse %u > max %u",
 | |
| 			s->name, page->inuse, page->objects);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* Slab_pad_check fixes things up after itself */
 | |
| 	slab_pad_check(s, page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if a certain object on a page is on the freelist. Must hold the
 | |
|  * slab lock to guarantee that the chains are in a consistent state.
 | |
|  */
 | |
| static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 | |
| {
 | |
| 	int nr = 0;
 | |
| 	void *fp = page->freelist;
 | |
| 	void *object = NULL;
 | |
| 	unsigned long max_objects;
 | |
| 
 | |
| 	while (fp && nr <= page->objects) {
 | |
| 		if (fp == search)
 | |
| 			return 1;
 | |
| 		if (!check_valid_pointer(s, page, fp)) {
 | |
| 			if (object) {
 | |
| 				object_err(s, page, object,
 | |
| 					"Freechain corrupt");
 | |
| 				set_freepointer(s, object, NULL);
 | |
| 				break;
 | |
| 			} else {
 | |
| 				slab_err(s, page, "Freepointer corrupt");
 | |
| 				page->freelist = NULL;
 | |
| 				page->inuse = page->objects;
 | |
| 				slab_fix(s, "Freelist cleared");
 | |
| 				return 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		object = fp;
 | |
| 		fp = get_freepointer(s, object);
 | |
| 		nr++;
 | |
| 	}
 | |
| 
 | |
| 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
 | |
| 	if (max_objects > MAX_OBJS_PER_PAGE)
 | |
| 		max_objects = MAX_OBJS_PER_PAGE;
 | |
| 
 | |
| 	if (page->objects != max_objects) {
 | |
| 		slab_err(s, page, "Wrong number of objects. Found %d but "
 | |
| 			"should be %d", page->objects, max_objects);
 | |
| 		page->objects = max_objects;
 | |
| 		slab_fix(s, "Number of objects adjusted.");
 | |
| 	}
 | |
| 	if (page->inuse != page->objects - nr) {
 | |
| 		slab_err(s, page, "Wrong object count. Counter is %d but "
 | |
| 			"counted were %d", page->inuse, page->objects - nr);
 | |
| 		page->inuse = page->objects - nr;
 | |
| 		slab_fix(s, "Object count adjusted.");
 | |
| 	}
 | |
| 	return search == NULL;
 | |
| }
 | |
| 
 | |
| static void trace(struct kmem_cache *s, struct page *page, void *object,
 | |
| 								int alloc)
 | |
| {
 | |
| 	if (s->flags & SLAB_TRACE) {
 | |
| 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 | |
| 			s->name,
 | |
| 			alloc ? "alloc" : "free",
 | |
| 			object, page->inuse,
 | |
| 			page->freelist);
 | |
| 
 | |
| 		if (!alloc)
 | |
| 			print_section("Object", (void *)object, s->objsize);
 | |
| 
 | |
| 		dump_stack();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hooks for other subsystems that check memory allocations. In a typical
 | |
|  * production configuration these hooks all should produce no code at all.
 | |
|  */
 | |
| static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 | |
| {
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 	lockdep_trace_alloc(flags);
 | |
| 	might_sleep_if(flags & __GFP_WAIT);
 | |
| 
 | |
| 	return should_failslab(s->objsize, flags, s->flags);
 | |
| }
 | |
| 
 | |
| static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
 | |
| {
 | |
| 	flags &= gfp_allowed_mask;
 | |
| 	kmemcheck_slab_alloc(s, flags, object, s->objsize);
 | |
| 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
 | |
| }
 | |
| 
 | |
| static inline void slab_free_hook(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	kmemleak_free_recursive(x, s->flags);
 | |
| }
 | |
| 
 | |
| static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
 | |
| {
 | |
| 	kmemcheck_slab_free(s, object, s->objsize);
 | |
| 	debug_check_no_locks_freed(object, s->objsize);
 | |
| 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
 | |
| 		debug_check_no_obj_freed(object, s->objsize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tracking of fully allocated slabs for debugging purposes.
 | |
|  */
 | |
| static void add_full(struct kmem_cache_node *n, struct page *page)
 | |
| {
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	list_add(&page->lru, &n->full);
 | |
| 	spin_unlock(&n->list_lock);
 | |
| }
 | |
| 
 | |
| static void remove_full(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return;
 | |
| 
 | |
| 	n = get_node(s, page_to_nid(page));
 | |
| 
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	list_del(&page->lru);
 | |
| 	spin_unlock(&n->list_lock);
 | |
| }
 | |
| 
 | |
| /* Tracking of the number of slabs for debugging purposes */
 | |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	return atomic_long_read(&n->nr_slabs);
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| {
 | |
| 	return atomic_long_read(&n->nr_slabs);
 | |
| }
 | |
| 
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	/*
 | |
| 	 * May be called early in order to allocate a slab for the
 | |
| 	 * kmem_cache_node structure. Solve the chicken-egg
 | |
| 	 * dilemma by deferring the increment of the count during
 | |
| 	 * bootstrap (see early_kmem_cache_node_alloc).
 | |
| 	 */
 | |
| 	if (n) {
 | |
| 		atomic_long_inc(&n->nr_slabs);
 | |
| 		atomic_long_add(objects, &n->total_objects);
 | |
| 	}
 | |
| }
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 	atomic_long_dec(&n->nr_slabs);
 | |
| 	atomic_long_sub(objects, &n->total_objects);
 | |
| }
 | |
| 
 | |
| /* Object debug checks for alloc/free paths */
 | |
| static void setup_object_debug(struct kmem_cache *s, struct page *page,
 | |
| 								void *object)
 | |
| {
 | |
| 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
 | |
| 		return;
 | |
| 
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 	init_tracking(s, object);
 | |
| }
 | |
| 
 | |
| static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
 | |
| 					void *object, unsigned long addr)
 | |
| {
 | |
| 	if (!check_slab(s, page))
 | |
| 		goto bad;
 | |
| 
 | |
| 	if (!on_freelist(s, page, object)) {
 | |
| 		object_err(s, page, object, "Object already allocated");
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_valid_pointer(s, page, object)) {
 | |
| 		object_err(s, page, object, "Freelist Pointer check fails");
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
 | |
| 		goto bad;
 | |
| 
 | |
| 	/* Success perform special debug activities for allocs */
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		set_track(s, object, TRACK_ALLOC, addr);
 | |
| 	trace(s, page, object, 1);
 | |
| 	init_object(s, object, SLUB_RED_ACTIVE);
 | |
| 	return 1;
 | |
| 
 | |
| bad:
 | |
| 	if (PageSlab(page)) {
 | |
| 		/*
 | |
| 		 * If this is a slab page then lets do the best we can
 | |
| 		 * to avoid issues in the future. Marking all objects
 | |
| 		 * as used avoids touching the remaining objects.
 | |
| 		 */
 | |
| 		slab_fix(s, "Marking all objects used");
 | |
| 		page->inuse = page->objects;
 | |
| 		page->freelist = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int free_debug_processing(struct kmem_cache *s,
 | |
| 		 struct page *page, void *object, unsigned long addr)
 | |
| {
 | |
| 	if (!check_slab(s, page))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!check_valid_pointer(s, page, object)) {
 | |
| 		slab_err(s, page, "Invalid object pointer 0x%p", object);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (on_freelist(s, page, object)) {
 | |
| 		object_err(s, page, object, "Object already free");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(s != page->slab)) {
 | |
| 		if (!PageSlab(page)) {
 | |
| 			slab_err(s, page, "Attempt to free object(0x%p) "
 | |
| 				"outside of slab", object);
 | |
| 		} else if (!page->slab) {
 | |
| 			printk(KERN_ERR
 | |
| 				"SLUB <none>: no slab for object 0x%p.\n",
 | |
| 						object);
 | |
| 			dump_stack();
 | |
| 		} else
 | |
| 			object_err(s, page, object,
 | |
| 					"page slab pointer corrupt.");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Special debug activities for freeing objects */
 | |
| 	if (!PageSlubFrozen(page) && !page->freelist)
 | |
| 		remove_full(s, page);
 | |
| 	if (s->flags & SLAB_STORE_USER)
 | |
| 		set_track(s, object, TRACK_FREE, addr);
 | |
| 	trace(s, page, object, 0);
 | |
| 	init_object(s, object, SLUB_RED_INACTIVE);
 | |
| 	return 1;
 | |
| 
 | |
| fail:
 | |
| 	slab_fix(s, "Object at 0x%p not freed", object);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init setup_slub_debug(char *str)
 | |
| {
 | |
| 	slub_debug = DEBUG_DEFAULT_FLAGS;
 | |
| 	if (*str++ != '=' || !*str)
 | |
| 		/*
 | |
| 		 * No options specified. Switch on full debugging.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	if (*str == ',')
 | |
| 		/*
 | |
| 		 * No options but restriction on slabs. This means full
 | |
| 		 * debugging for slabs matching a pattern.
 | |
| 		 */
 | |
| 		goto check_slabs;
 | |
| 
 | |
| 	if (tolower(*str) == 'o') {
 | |
| 		/*
 | |
| 		 * Avoid enabling debugging on caches if its minimum order
 | |
| 		 * would increase as a result.
 | |
| 		 */
 | |
| 		disable_higher_order_debug = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	slub_debug = 0;
 | |
| 	if (*str == '-')
 | |
| 		/*
 | |
| 		 * Switch off all debugging measures.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine which debug features should be switched on
 | |
| 	 */
 | |
| 	for (; *str && *str != ','; str++) {
 | |
| 		switch (tolower(*str)) {
 | |
| 		case 'f':
 | |
| 			slub_debug |= SLAB_DEBUG_FREE;
 | |
| 			break;
 | |
| 		case 'z':
 | |
| 			slub_debug |= SLAB_RED_ZONE;
 | |
| 			break;
 | |
| 		case 'p':
 | |
| 			slub_debug |= SLAB_POISON;
 | |
| 			break;
 | |
| 		case 'u':
 | |
| 			slub_debug |= SLAB_STORE_USER;
 | |
| 			break;
 | |
| 		case 't':
 | |
| 			slub_debug |= SLAB_TRACE;
 | |
| 			break;
 | |
| 		case 'a':
 | |
| 			slub_debug |= SLAB_FAILSLAB;
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk(KERN_ERR "slub_debug option '%c' "
 | |
| 				"unknown. skipped\n", *str);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| check_slabs:
 | |
| 	if (*str == ',')
 | |
| 		slub_debug_slabs = str + 1;
 | |
| out:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_debug", setup_slub_debug);
 | |
| 
 | |
| static unsigned long kmem_cache_flags(unsigned long objsize,
 | |
| 	unsigned long flags, const char *name,
 | |
| 	void (*ctor)(void *))
 | |
| {
 | |
| 	/*
 | |
| 	 * Enable debugging if selected on the kernel commandline.
 | |
| 	 */
 | |
| 	if (slub_debug && (!slub_debug_slabs ||
 | |
| 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
 | |
| 		flags |= slub_debug;
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| #else
 | |
| static inline void setup_object_debug(struct kmem_cache *s,
 | |
| 			struct page *page, void *object) {}
 | |
| 
 | |
| static inline int alloc_debug_processing(struct kmem_cache *s,
 | |
| 	struct page *page, void *object, unsigned long addr) { return 0; }
 | |
| 
 | |
| static inline int free_debug_processing(struct kmem_cache *s,
 | |
| 	struct page *page, void *object, unsigned long addr) { return 0; }
 | |
| 
 | |
| static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
 | |
| 			{ return 1; }
 | |
| static inline int check_object(struct kmem_cache *s, struct page *page,
 | |
| 			void *object, u8 val) { return 1; }
 | |
| static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
 | |
| static inline unsigned long kmem_cache_flags(unsigned long objsize,
 | |
| 	unsigned long flags, const char *name,
 | |
| 	void (*ctor)(void *))
 | |
| {
 | |
| 	return flags;
 | |
| }
 | |
| #define slub_debug 0
 | |
| 
 | |
| #define disable_higher_order_debug 0
 | |
| 
 | |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node)
 | |
| 							{ return 0; }
 | |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
 | |
| 							{ return 0; }
 | |
| static inline void inc_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| static inline void dec_slabs_node(struct kmem_cache *s, int node,
 | |
| 							int objects) {}
 | |
| 
 | |
| static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
 | |
| 							{ return 0; }
 | |
| 
 | |
| static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
 | |
| 		void *object) {}
 | |
| 
 | |
| static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
 | |
| 
 | |
| static inline void slab_free_hook_irq(struct kmem_cache *s,
 | |
| 		void *object) {}
 | |
| 
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Slab allocation and freeing
 | |
|  */
 | |
| static inline struct page *alloc_slab_page(gfp_t flags, int node,
 | |
| 					struct kmem_cache_order_objects oo)
 | |
| {
 | |
| 	int order = oo_order(oo);
 | |
| 
 | |
| 	flags |= __GFP_NOTRACK;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE)
 | |
| 		return alloc_pages(flags, order);
 | |
| 	else
 | |
| 		return alloc_pages_exact_node(node, flags, order);
 | |
| }
 | |
| 
 | |
| static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_order_objects oo = s->oo;
 | |
| 	gfp_t alloc_gfp;
 | |
| 
 | |
| 	flags |= s->allocflags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let the initial higher-order allocation fail under memory pressure
 | |
| 	 * so we fall-back to the minimum order allocation.
 | |
| 	 */
 | |
| 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
 | |
| 
 | |
| 	page = alloc_slab_page(alloc_gfp, node, oo);
 | |
| 	if (unlikely(!page)) {
 | |
| 		oo = s->min;
 | |
| 		/*
 | |
| 		 * Allocation may have failed due to fragmentation.
 | |
| 		 * Try a lower order alloc if possible
 | |
| 		 */
 | |
| 		page = alloc_slab_page(flags, node, oo);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 
 | |
| 		stat(s, ORDER_FALLBACK);
 | |
| 	}
 | |
| 
 | |
| 	if (kmemcheck_enabled
 | |
| 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
 | |
| 		int pages = 1 << oo_order(oo);
 | |
| 
 | |
| 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
 | |
| 
 | |
| 		/*
 | |
| 		 * Objects from caches that have a constructor don't get
 | |
| 		 * cleared when they're allocated, so we need to do it here.
 | |
| 		 */
 | |
| 		if (s->ctor)
 | |
| 			kmemcheck_mark_uninitialized_pages(page, pages);
 | |
| 		else
 | |
| 			kmemcheck_mark_unallocated_pages(page, pages);
 | |
| 	}
 | |
| 
 | |
| 	page->objects = oo_objects(oo);
 | |
| 	mod_zone_page_state(page_zone(page),
 | |
| 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
 | |
| 		1 << oo_order(oo));
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void setup_object(struct kmem_cache *s, struct page *page,
 | |
| 				void *object)
 | |
| {
 | |
| 	setup_object_debug(s, page, object);
 | |
| 	if (unlikely(s->ctor))
 | |
| 		s->ctor(object);
 | |
| }
 | |
| 
 | |
| static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *start;
 | |
| 	void *last;
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
 | |
| 
 | |
| 	page = allocate_slab(s,
 | |
| 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
 | |
| 	if (!page)
 | |
| 		goto out;
 | |
| 
 | |
| 	inc_slabs_node(s, page_to_nid(page), page->objects);
 | |
| 	page->slab = s;
 | |
| 	page->flags |= 1 << PG_slab;
 | |
| 
 | |
| 	start = page_address(page);
 | |
| 
 | |
| 	if (unlikely(s->flags & SLAB_POISON))
 | |
| 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
 | |
| 
 | |
| 	last = start;
 | |
| 	for_each_object(p, s, start, page->objects) {
 | |
| 		setup_object(s, page, last);
 | |
| 		set_freepointer(s, last, p);
 | |
| 		last = p;
 | |
| 	}
 | |
| 	setup_object(s, page, last);
 | |
| 	set_freepointer(s, last, NULL);
 | |
| 
 | |
| 	page->freelist = start;
 | |
| 	page->inuse = 0;
 | |
| out:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void __free_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	int order = compound_order(page);
 | |
| 	int pages = 1 << order;
 | |
| 
 | |
| 	if (kmem_cache_debug(s)) {
 | |
| 		void *p;
 | |
| 
 | |
| 		slab_pad_check(s, page);
 | |
| 		for_each_object(p, s, page_address(page),
 | |
| 						page->objects)
 | |
| 			check_object(s, page, p, SLUB_RED_INACTIVE);
 | |
| 	}
 | |
| 
 | |
| 	kmemcheck_free_shadow(page, compound_order(page));
 | |
| 
 | |
| 	mod_zone_page_state(page_zone(page),
 | |
| 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
 | |
| 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
 | |
| 		-pages);
 | |
| 
 | |
| 	__ClearPageSlab(page);
 | |
| 	reset_page_mapcount(page);
 | |
| 	if (current->reclaim_state)
 | |
| 		current->reclaim_state->reclaimed_slab += pages;
 | |
| 	__free_pages(page, order);
 | |
| }
 | |
| 
 | |
| static void rcu_free_slab(struct rcu_head *h)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = container_of((struct list_head *)h, struct page, lru);
 | |
| 	__free_slab(page->slab, page);
 | |
| }
 | |
| 
 | |
| static void free_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
 | |
| 		/*
 | |
| 		 * RCU free overloads the RCU head over the LRU
 | |
| 		 */
 | |
| 		struct rcu_head *head = (void *)&page->lru;
 | |
| 
 | |
| 		call_rcu(head, rcu_free_slab);
 | |
| 	} else
 | |
| 		__free_slab(s, page);
 | |
| }
 | |
| 
 | |
| static void discard_slab(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	dec_slabs_node(s, page_to_nid(page), page->objects);
 | |
| 	free_slab(s, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per slab locking using the pagelock
 | |
|  */
 | |
| static __always_inline void slab_lock(struct page *page)
 | |
| {
 | |
| 	bit_spin_lock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static __always_inline void slab_unlock(struct page *page)
 | |
| {
 | |
| 	__bit_spin_unlock(PG_locked, &page->flags);
 | |
| }
 | |
| 
 | |
| static __always_inline int slab_trylock(struct page *page)
 | |
| {
 | |
| 	int rc = 1;
 | |
| 
 | |
| 	rc = bit_spin_trylock(PG_locked, &page->flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Management of partially allocated slabs
 | |
|  */
 | |
| static void add_partial(struct kmem_cache_node *n,
 | |
| 				struct page *page, int tail)
 | |
| {
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	n->nr_partial++;
 | |
| 	if (tail)
 | |
| 		list_add_tail(&page->lru, &n->partial);
 | |
| 	else
 | |
| 		list_add(&page->lru, &n->partial);
 | |
| 	spin_unlock(&n->list_lock);
 | |
| }
 | |
| 
 | |
| static inline void __remove_partial(struct kmem_cache_node *n,
 | |
| 					struct page *page)
 | |
| {
 | |
| 	list_del(&page->lru);
 | |
| 	n->nr_partial--;
 | |
| }
 | |
| 
 | |
| static void remove_partial(struct kmem_cache *s, struct page *page)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 | |
| 
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	__remove_partial(n, page);
 | |
| 	spin_unlock(&n->list_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock slab and remove from the partial list.
 | |
|  *
 | |
|  * Must hold list_lock.
 | |
|  */
 | |
| static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
 | |
| 							struct page *page)
 | |
| {
 | |
| 	if (slab_trylock(page)) {
 | |
| 		__remove_partial(n, page);
 | |
| 		__SetPageSlubFrozen(page);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to allocate a partial slab from a specific node.
 | |
|  */
 | |
| static struct page *get_partial_node(struct kmem_cache_node *n)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check. If we mistakenly see no partial slabs then we
 | |
| 	 * just allocate an empty slab. If we mistakenly try to get a
 | |
| 	 * partial slab and there is none available then get_partials()
 | |
| 	 * will return NULL.
 | |
| 	 */
 | |
| 	if (!n || !n->nr_partial)
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&n->list_lock);
 | |
| 	list_for_each_entry(page, &n->partial, lru)
 | |
| 		if (lock_and_freeze_slab(n, page))
 | |
| 			goto out;
 | |
| 	page = NULL;
 | |
| out:
 | |
| 	spin_unlock(&n->list_lock);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a page from somewhere. Search in increasing NUMA distances.
 | |
|  */
 | |
| static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct zonelist *zonelist;
 | |
| 	struct zoneref *z;
 | |
| 	struct zone *zone;
 | |
| 	enum zone_type high_zoneidx = gfp_zone(flags);
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * The defrag ratio allows a configuration of the tradeoffs between
 | |
| 	 * inter node defragmentation and node local allocations. A lower
 | |
| 	 * defrag_ratio increases the tendency to do local allocations
 | |
| 	 * instead of attempting to obtain partial slabs from other nodes.
 | |
| 	 *
 | |
| 	 * If the defrag_ratio is set to 0 then kmalloc() always
 | |
| 	 * returns node local objects. If the ratio is higher then kmalloc()
 | |
| 	 * may return off node objects because partial slabs are obtained
 | |
| 	 * from other nodes and filled up.
 | |
| 	 *
 | |
| 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
 | |
| 	 * defrag_ratio = 1000) then every (well almost) allocation will
 | |
| 	 * first attempt to defrag slab caches on other nodes. This means
 | |
| 	 * scanning over all nodes to look for partial slabs which may be
 | |
| 	 * expensive if we do it every time we are trying to find a slab
 | |
| 	 * with available objects.
 | |
| 	 */
 | |
| 	if (!s->remote_node_defrag_ratio ||
 | |
| 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
 | |
| 		return NULL;
 | |
| 
 | |
| 	get_mems_allowed();
 | |
| 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
 | |
| 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		n = get_node(s, zone_to_nid(zone));
 | |
| 
 | |
| 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
 | |
| 				n->nr_partial > s->min_partial) {
 | |
| 			page = get_partial_node(n);
 | |
| 			if (page) {
 | |
| 				put_mems_allowed();
 | |
| 				return page;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	put_mems_allowed();
 | |
| #endif
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a partial page, lock it and return it.
 | |
|  */
 | |
| static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
 | |
| 
 | |
| 	page = get_partial_node(get_node(s, searchnode));
 | |
| 	if (page || node != -1)
 | |
| 		return page;
 | |
| 
 | |
| 	return get_any_partial(s, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a page back to the lists.
 | |
|  *
 | |
|  * Must be called with the slab lock held.
 | |
|  *
 | |
|  * On exit the slab lock will have been dropped.
 | |
|  */
 | |
| static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
 | |
| 	__releases(bitlock)
 | |
| {
 | |
| 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 | |
| 
 | |
| 	__ClearPageSlubFrozen(page);
 | |
| 	if (page->inuse) {
 | |
| 
 | |
| 		if (page->freelist) {
 | |
| 			add_partial(n, page, tail);
 | |
| 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
 | |
| 		} else {
 | |
| 			stat(s, DEACTIVATE_FULL);
 | |
| 			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
 | |
| 				add_full(n, page);
 | |
| 		}
 | |
| 		slab_unlock(page);
 | |
| 	} else {
 | |
| 		stat(s, DEACTIVATE_EMPTY);
 | |
| 		if (n->nr_partial < s->min_partial) {
 | |
| 			/*
 | |
| 			 * Adding an empty slab to the partial slabs in order
 | |
| 			 * to avoid page allocator overhead. This slab needs
 | |
| 			 * to come after the other slabs with objects in
 | |
| 			 * so that the others get filled first. That way the
 | |
| 			 * size of the partial list stays small.
 | |
| 			 *
 | |
| 			 * kmem_cache_shrink can reclaim any empty slabs from
 | |
| 			 * the partial list.
 | |
| 			 */
 | |
| 			add_partial(n, page, 1);
 | |
| 			slab_unlock(page);
 | |
| 		} else {
 | |
| 			slab_unlock(page);
 | |
| 			stat(s, FREE_SLAB);
 | |
| 			discard_slab(s, page);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the cpu slab
 | |
|  */
 | |
| static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 | |
| 	__releases(bitlock)
 | |
| {
 | |
| 	struct page *page = c->page;
 | |
| 	int tail = 1;
 | |
| 
 | |
| 	if (page->freelist)
 | |
| 		stat(s, DEACTIVATE_REMOTE_FREES);
 | |
| 	/*
 | |
| 	 * Merge cpu freelist into slab freelist. Typically we get here
 | |
| 	 * because both freelists are empty. So this is unlikely
 | |
| 	 * to occur.
 | |
| 	 */
 | |
| 	while (unlikely(c->freelist)) {
 | |
| 		void **object;
 | |
| 
 | |
| 		tail = 0;	/* Hot objects. Put the slab first */
 | |
| 
 | |
| 		/* Retrieve object from cpu_freelist */
 | |
| 		object = c->freelist;
 | |
| 		c->freelist = get_freepointer(s, c->freelist);
 | |
| 
 | |
| 		/* And put onto the regular freelist */
 | |
| 		set_freepointer(s, object, page->freelist);
 | |
| 		page->freelist = object;
 | |
| 		page->inuse--;
 | |
| 	}
 | |
| 	c->page = NULL;
 | |
| 	unfreeze_slab(s, page, tail);
 | |
| }
 | |
| 
 | |
| static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	stat(s, CPUSLAB_FLUSH);
 | |
| 	slab_lock(c->page);
 | |
| 	deactivate_slab(s, c);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush cpu slab.
 | |
|  *
 | |
|  * Called from IPI handler with interrupts disabled.
 | |
|  */
 | |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
 | |
| {
 | |
| 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 
 | |
| 	if (likely(c && c->page))
 | |
| 		flush_slab(s, c);
 | |
| }
 | |
| 
 | |
| static void flush_cpu_slab(void *d)
 | |
| {
 | |
| 	struct kmem_cache *s = d;
 | |
| 
 | |
| 	__flush_cpu_slab(s, smp_processor_id());
 | |
| }
 | |
| 
 | |
| static void flush_all(struct kmem_cache *s)
 | |
| {
 | |
| 	on_each_cpu(flush_cpu_slab, s, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the objects in a per cpu structure fit numa
 | |
|  * locality expectations.
 | |
|  */
 | |
| static inline int node_match(struct kmem_cache_cpu *c, int node)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (node != NUMA_NO_NODE && c->node != node)
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int count_free(struct page *page)
 | |
| {
 | |
| 	return page->objects - page->inuse;
 | |
| }
 | |
| 
 | |
| static unsigned long count_partial(struct kmem_cache_node *n,
 | |
| 					int (*get_count)(struct page *))
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long x = 0;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry(page, &n->partial, lru)
 | |
| 		x += get_count(page);
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	return atomic_long_read(&n->total_objects);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	printk(KERN_WARNING
 | |
| 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
 | |
| 		nid, gfpflags);
 | |
| 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
 | |
| 		"default order: %d, min order: %d\n", s->name, s->objsize,
 | |
| 		s->size, oo_order(s->oo), oo_order(s->min));
 | |
| 
 | |
| 	if (oo_order(s->min) > get_order(s->objsize))
 | |
| 		printk(KERN_WARNING "  %s debugging increased min order, use "
 | |
| 		       "slub_debug=O to disable.\n", s->name);
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 		unsigned long nr_slabs;
 | |
| 		unsigned long nr_objs;
 | |
| 		unsigned long nr_free;
 | |
| 
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		nr_free  = count_partial(n, count_free);
 | |
| 		nr_slabs = node_nr_slabs(n);
 | |
| 		nr_objs  = node_nr_objs(n);
 | |
| 
 | |
| 		printk(KERN_WARNING
 | |
| 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
 | |
| 			node, nr_slabs, nr_objs, nr_free);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Slow path. The lockless freelist is empty or we need to perform
 | |
|  * debugging duties.
 | |
|  *
 | |
|  * Interrupts are disabled.
 | |
|  *
 | |
|  * Processing is still very fast if new objects have been freed to the
 | |
|  * regular freelist. In that case we simply take over the regular freelist
 | |
|  * as the lockless freelist and zap the regular freelist.
 | |
|  *
 | |
|  * If that is not working then we fall back to the partial lists. We take the
 | |
|  * first element of the freelist as the object to allocate now and move the
 | |
|  * rest of the freelist to the lockless freelist.
 | |
|  *
 | |
|  * And if we were unable to get a new slab from the partial slab lists then
 | |
|  * we need to allocate a new slab. This is the slowest path since it involves
 | |
|  * a call to the page allocator and the setup of a new slab.
 | |
|  */
 | |
| static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
 | |
| 			  unsigned long addr, struct kmem_cache_cpu *c)
 | |
| {
 | |
| 	void **object;
 | |
| 	struct page *new;
 | |
| 
 | |
| 	/* We handle __GFP_ZERO in the caller */
 | |
| 	gfpflags &= ~__GFP_ZERO;
 | |
| 
 | |
| 	if (!c->page)
 | |
| 		goto new_slab;
 | |
| 
 | |
| 	slab_lock(c->page);
 | |
| 	if (unlikely(!node_match(c, node)))
 | |
| 		goto another_slab;
 | |
| 
 | |
| 	stat(s, ALLOC_REFILL);
 | |
| 
 | |
| load_freelist:
 | |
| 	object = c->page->freelist;
 | |
| 	if (unlikely(!object))
 | |
| 		goto another_slab;
 | |
| 	if (kmem_cache_debug(s))
 | |
| 		goto debug;
 | |
| 
 | |
| 	c->freelist = get_freepointer(s, object);
 | |
| 	c->page->inuse = c->page->objects;
 | |
| 	c->page->freelist = NULL;
 | |
| 	c->node = page_to_nid(c->page);
 | |
| unlock_out:
 | |
| 	slab_unlock(c->page);
 | |
| 	stat(s, ALLOC_SLOWPATH);
 | |
| 	return object;
 | |
| 
 | |
| another_slab:
 | |
| 	deactivate_slab(s, c);
 | |
| 
 | |
| new_slab:
 | |
| 	new = get_partial(s, gfpflags, node);
 | |
| 	if (new) {
 | |
| 		c->page = new;
 | |
| 		stat(s, ALLOC_FROM_PARTIAL);
 | |
| 		goto load_freelist;
 | |
| 	}
 | |
| 
 | |
| 	gfpflags &= gfp_allowed_mask;
 | |
| 	if (gfpflags & __GFP_WAIT)
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 	new = new_slab(s, gfpflags, node);
 | |
| 
 | |
| 	if (gfpflags & __GFP_WAIT)
 | |
| 		local_irq_disable();
 | |
| 
 | |
| 	if (new) {
 | |
| 		c = __this_cpu_ptr(s->cpu_slab);
 | |
| 		stat(s, ALLOC_SLAB);
 | |
| 		if (c->page)
 | |
| 			flush_slab(s, c);
 | |
| 		slab_lock(new);
 | |
| 		__SetPageSlubFrozen(new);
 | |
| 		c->page = new;
 | |
| 		goto load_freelist;
 | |
| 	}
 | |
| 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
 | |
| 		slab_out_of_memory(s, gfpflags, node);
 | |
| 	return NULL;
 | |
| debug:
 | |
| 	if (!alloc_debug_processing(s, c->page, object, addr))
 | |
| 		goto another_slab;
 | |
| 
 | |
| 	c->page->inuse++;
 | |
| 	c->page->freelist = get_freepointer(s, object);
 | |
| 	c->node = NUMA_NO_NODE;
 | |
| 	goto unlock_out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 | |
|  * have the fastpath folded into their functions. So no function call
 | |
|  * overhead for requests that can be satisfied on the fastpath.
 | |
|  *
 | |
|  * The fastpath works by first checking if the lockless freelist can be used.
 | |
|  * If not then __slab_alloc is called for slow processing.
 | |
|  *
 | |
|  * Otherwise we can simply pick the next object from the lockless free list.
 | |
|  */
 | |
| static __always_inline void *slab_alloc(struct kmem_cache *s,
 | |
| 		gfp_t gfpflags, int node, unsigned long addr)
 | |
| {
 | |
| 	void **object;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (slab_pre_alloc_hook(s, gfpflags))
 | |
| 		return NULL;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	c = __this_cpu_ptr(s->cpu_slab);
 | |
| 	object = c->freelist;
 | |
| 	if (unlikely(!object || !node_match(c, node)))
 | |
| 
 | |
| 		object = __slab_alloc(s, gfpflags, node, addr, c);
 | |
| 
 | |
| 	else {
 | |
| 		c->freelist = get_freepointer(s, object);
 | |
| 		stat(s, ALLOC_FASTPATH);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (unlikely(gfpflags & __GFP_ZERO) && object)
 | |
| 		memset(object, 0, s->objsize);
 | |
| 
 | |
| 	slab_post_alloc_hook(s, gfpflags, object);
 | |
| 
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
 | |
| {
 | |
| 	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_notrace);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
 | |
| {
 | |
| 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
 | |
| 				    s->objsize, s->size, gfpflags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node);
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
 | |
| 				    gfp_t gfpflags,
 | |
| 				    int node)
 | |
| {
 | |
| 	return slab_alloc(s, gfpflags, node, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Slow patch handling. This may still be called frequently since objects
 | |
|  * have a longer lifetime than the cpu slabs in most processing loads.
 | |
|  *
 | |
|  * So we still attempt to reduce cache line usage. Just take the slab
 | |
|  * lock and free the item. If there is no additional partial page
 | |
|  * handling required then we can return immediately.
 | |
|  */
 | |
| static void __slab_free(struct kmem_cache *s, struct page *page,
 | |
| 			void *x, unsigned long addr)
 | |
| {
 | |
| 	void *prior;
 | |
| 	void **object = (void *)x;
 | |
| 
 | |
| 	stat(s, FREE_SLOWPATH);
 | |
| 	slab_lock(page);
 | |
| 
 | |
| 	if (kmem_cache_debug(s))
 | |
| 		goto debug;
 | |
| 
 | |
| checks_ok:
 | |
| 	prior = page->freelist;
 | |
| 	set_freepointer(s, object, prior);
 | |
| 	page->freelist = object;
 | |
| 	page->inuse--;
 | |
| 
 | |
| 	if (unlikely(PageSlubFrozen(page))) {
 | |
| 		stat(s, FREE_FROZEN);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!page->inuse))
 | |
| 		goto slab_empty;
 | |
| 
 | |
| 	/*
 | |
| 	 * Objects left in the slab. If it was not on the partial list before
 | |
| 	 * then add it.
 | |
| 	 */
 | |
| 	if (unlikely(!prior)) {
 | |
| 		add_partial(get_node(s, page_to_nid(page)), page, 1);
 | |
| 		stat(s, FREE_ADD_PARTIAL);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	slab_unlock(page);
 | |
| 	return;
 | |
| 
 | |
| slab_empty:
 | |
| 	if (prior) {
 | |
| 		/*
 | |
| 		 * Slab still on the partial list.
 | |
| 		 */
 | |
| 		remove_partial(s, page);
 | |
| 		stat(s, FREE_REMOVE_PARTIAL);
 | |
| 	}
 | |
| 	slab_unlock(page);
 | |
| 	stat(s, FREE_SLAB);
 | |
| 	discard_slab(s, page);
 | |
| 	return;
 | |
| 
 | |
| debug:
 | |
| 	if (!free_debug_processing(s, page, x, addr))
 | |
| 		goto out_unlock;
 | |
| 	goto checks_ok;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 | |
|  * can perform fastpath freeing without additional function calls.
 | |
|  *
 | |
|  * The fastpath is only possible if we are freeing to the current cpu slab
 | |
|  * of this processor. This typically the case if we have just allocated
 | |
|  * the item before.
 | |
|  *
 | |
|  * If fastpath is not possible then fall back to __slab_free where we deal
 | |
|  * with all sorts of special processing.
 | |
|  */
 | |
| static __always_inline void slab_free(struct kmem_cache *s,
 | |
| 			struct page *page, void *x, unsigned long addr)
 | |
| {
 | |
| 	void **object = (void *)x;
 | |
| 	struct kmem_cache_cpu *c;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	slab_free_hook(s, x);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	c = __this_cpu_ptr(s->cpu_slab);
 | |
| 
 | |
| 	slab_free_hook_irq(s, x);
 | |
| 
 | |
| 	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
 | |
| 		set_freepointer(s, object, c->freelist);
 | |
| 		c->freelist = object;
 | |
| 		stat(s, FREE_FASTPATH);
 | |
| 	} else
 | |
| 		__slab_free(s, page, x, addr);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void kmem_cache_free(struct kmem_cache *s, void *x)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = virt_to_head_page(x);
 | |
| 
 | |
| 	slab_free(s, page, x, _RET_IP_);
 | |
| 
 | |
| 	trace_kmem_cache_free(_RET_IP_, x);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_free);
 | |
| 
 | |
| /* Figure out on which slab page the object resides */
 | |
| static struct page *get_object_page(const void *x)
 | |
| {
 | |
| 	struct page *page = virt_to_head_page(x);
 | |
| 
 | |
| 	if (!PageSlab(page))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Object placement in a slab is made very easy because we always start at
 | |
|  * offset 0. If we tune the size of the object to the alignment then we can
 | |
|  * get the required alignment by putting one properly sized object after
 | |
|  * another.
 | |
|  *
 | |
|  * Notice that the allocation order determines the sizes of the per cpu
 | |
|  * caches. Each processor has always one slab available for allocations.
 | |
|  * Increasing the allocation order reduces the number of times that slabs
 | |
|  * must be moved on and off the partial lists and is therefore a factor in
 | |
|  * locking overhead.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Mininum / Maximum order of slab pages. This influences locking overhead
 | |
|  * and slab fragmentation. A higher order reduces the number of partial slabs
 | |
|  * and increases the number of allocations possible without having to
 | |
|  * take the list_lock.
 | |
|  */
 | |
| static int slub_min_order;
 | |
| static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
 | |
| static int slub_min_objects;
 | |
| 
 | |
| /*
 | |
|  * Merge control. If this is set then no merging of slab caches will occur.
 | |
|  * (Could be removed. This was introduced to pacify the merge skeptics.)
 | |
|  */
 | |
| static int slub_nomerge;
 | |
| 
 | |
| /*
 | |
|  * Calculate the order of allocation given an slab object size.
 | |
|  *
 | |
|  * The order of allocation has significant impact on performance and other
 | |
|  * system components. Generally order 0 allocations should be preferred since
 | |
|  * order 0 does not cause fragmentation in the page allocator. Larger objects
 | |
|  * be problematic to put into order 0 slabs because there may be too much
 | |
|  * unused space left. We go to a higher order if more than 1/16th of the slab
 | |
|  * would be wasted.
 | |
|  *
 | |
|  * In order to reach satisfactory performance we must ensure that a minimum
 | |
|  * number of objects is in one slab. Otherwise we may generate too much
 | |
|  * activity on the partial lists which requires taking the list_lock. This is
 | |
|  * less a concern for large slabs though which are rarely used.
 | |
|  *
 | |
|  * slub_max_order specifies the order where we begin to stop considering the
 | |
|  * number of objects in a slab as critical. If we reach slub_max_order then
 | |
|  * we try to keep the page order as low as possible. So we accept more waste
 | |
|  * of space in favor of a small page order.
 | |
|  *
 | |
|  * Higher order allocations also allow the placement of more objects in a
 | |
|  * slab and thereby reduce object handling overhead. If the user has
 | |
|  * requested a higher mininum order then we start with that one instead of
 | |
|  * the smallest order which will fit the object.
 | |
|  */
 | |
| static inline int slab_order(int size, int min_objects,
 | |
| 				int max_order, int fract_leftover)
 | |
| {
 | |
| 	int order;
 | |
| 	int rem;
 | |
| 	int min_order = slub_min_order;
 | |
| 
 | |
| 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
 | |
| 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
 | |
| 
 | |
| 	for (order = max(min_order,
 | |
| 				fls(min_objects * size - 1) - PAGE_SHIFT);
 | |
| 			order <= max_order; order++) {
 | |
| 
 | |
| 		unsigned long slab_size = PAGE_SIZE << order;
 | |
| 
 | |
| 		if (slab_size < min_objects * size)
 | |
| 			continue;
 | |
| 
 | |
| 		rem = slab_size % size;
 | |
| 
 | |
| 		if (rem <= slab_size / fract_leftover)
 | |
| 			break;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return order;
 | |
| }
 | |
| 
 | |
| static inline int calculate_order(int size)
 | |
| {
 | |
| 	int order;
 | |
| 	int min_objects;
 | |
| 	int fraction;
 | |
| 	int max_objects;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to find best configuration for a slab. This
 | |
| 	 * works by first attempting to generate a layout with
 | |
| 	 * the best configuration and backing off gradually.
 | |
| 	 *
 | |
| 	 * First we reduce the acceptable waste in a slab. Then
 | |
| 	 * we reduce the minimum objects required in a slab.
 | |
| 	 */
 | |
| 	min_objects = slub_min_objects;
 | |
| 	if (!min_objects)
 | |
| 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
 | |
| 	max_objects = (PAGE_SIZE << slub_max_order)/size;
 | |
| 	min_objects = min(min_objects, max_objects);
 | |
| 
 | |
| 	while (min_objects > 1) {
 | |
| 		fraction = 16;
 | |
| 		while (fraction >= 4) {
 | |
| 			order = slab_order(size, min_objects,
 | |
| 						slub_max_order, fraction);
 | |
| 			if (order <= slub_max_order)
 | |
| 				return order;
 | |
| 			fraction /= 2;
 | |
| 		}
 | |
| 		min_objects--;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We were unable to place multiple objects in a slab. Now
 | |
| 	 * lets see if we can place a single object there.
 | |
| 	 */
 | |
| 	order = slab_order(size, 1, slub_max_order, 1);
 | |
| 	if (order <= slub_max_order)
 | |
| 		return order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Doh this slab cannot be placed using slub_max_order.
 | |
| 	 */
 | |
| 	order = slab_order(size, 1, MAX_ORDER, 1);
 | |
| 	if (order < MAX_ORDER)
 | |
| 		return order;
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out what the alignment of the objects will be.
 | |
|  */
 | |
| static unsigned long calculate_alignment(unsigned long flags,
 | |
| 		unsigned long align, unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the user wants hardware cache aligned objects then follow that
 | |
| 	 * suggestion if the object is sufficiently large.
 | |
| 	 *
 | |
| 	 * The hardware cache alignment cannot override the specified
 | |
| 	 * alignment though. If that is greater then use it.
 | |
| 	 */
 | |
| 	if (flags & SLAB_HWCACHE_ALIGN) {
 | |
| 		unsigned long ralign = cache_line_size();
 | |
| 		while (size <= ralign / 2)
 | |
| 			ralign /= 2;
 | |
| 		align = max(align, ralign);
 | |
| 	}
 | |
| 
 | |
| 	if (align < ARCH_SLAB_MINALIGN)
 | |
| 		align = ARCH_SLAB_MINALIGN;
 | |
| 
 | |
| 	return ALIGN(align, sizeof(void *));
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
 | |
| {
 | |
| 	n->nr_partial = 0;
 | |
| 	spin_lock_init(&n->list_lock);
 | |
| 	INIT_LIST_HEAD(&n->partial);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	atomic_long_set(&n->nr_slabs, 0);
 | |
| 	atomic_long_set(&n->total_objects, 0);
 | |
| 	INIT_LIST_HEAD(&n->full);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
 | |
| {
 | |
| 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
 | |
| 			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
 | |
| 
 | |
| 	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
 | |
| 
 | |
| 	return s->cpu_slab != NULL;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *kmem_cache_node;
 | |
| 
 | |
| /*
 | |
|  * No kmalloc_node yet so do it by hand. We know that this is the first
 | |
|  * slab on the node for this slabcache. There are no concurrent accesses
 | |
|  * possible.
 | |
|  *
 | |
|  * Note that this function only works on the kmalloc_node_cache
 | |
|  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 | |
|  * memory on a fresh node that has no slab structures yet.
 | |
|  */
 | |
| static void early_kmem_cache_node_alloc(int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
 | |
| 
 | |
| 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
 | |
| 
 | |
| 	BUG_ON(!page);
 | |
| 	if (page_to_nid(page) != node) {
 | |
| 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
 | |
| 				"node %d\n", node);
 | |
| 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
 | |
| 				"in order to be able to continue\n");
 | |
| 	}
 | |
| 
 | |
| 	n = page->freelist;
 | |
| 	BUG_ON(!n);
 | |
| 	page->freelist = get_freepointer(kmem_cache_node, n);
 | |
| 	page->inuse++;
 | |
| 	kmem_cache_node->node[node] = n;
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
 | |
| 	init_tracking(kmem_cache_node, n);
 | |
| #endif
 | |
| 	init_kmem_cache_node(n, kmem_cache_node);
 | |
| 	inc_slabs_node(kmem_cache_node, node, page->objects);
 | |
| 
 | |
| 	/*
 | |
| 	 * lockdep requires consistent irq usage for each lock
 | |
| 	 * so even though there cannot be a race this early in
 | |
| 	 * the boot sequence, we still disable irqs.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	add_partial(n, page, 0);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static void free_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n = s->node[node];
 | |
| 
 | |
| 		if (n)
 | |
| 			kmem_cache_free(kmem_cache_node, n);
 | |
| 
 | |
| 		s->node[node] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int init_kmem_cache_nodes(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n;
 | |
| 
 | |
| 		if (slab_state == DOWN) {
 | |
| 			early_kmem_cache_node_alloc(node);
 | |
| 			continue;
 | |
| 		}
 | |
| 		n = kmem_cache_alloc_node(kmem_cache_node,
 | |
| 						GFP_KERNEL, node);
 | |
| 
 | |
| 		if (!n) {
 | |
| 			free_kmem_cache_nodes(s);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		s->node[node] = n;
 | |
| 		init_kmem_cache_node(n, s);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void set_min_partial(struct kmem_cache *s, unsigned long min)
 | |
| {
 | |
| 	if (min < MIN_PARTIAL)
 | |
| 		min = MIN_PARTIAL;
 | |
| 	else if (min > MAX_PARTIAL)
 | |
| 		min = MAX_PARTIAL;
 | |
| 	s->min_partial = min;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate_sizes() determines the order and the distribution of data within
 | |
|  * a slab object.
 | |
|  */
 | |
| static int calculate_sizes(struct kmem_cache *s, int forced_order)
 | |
| {
 | |
| 	unsigned long flags = s->flags;
 | |
| 	unsigned long size = s->objsize;
 | |
| 	unsigned long align = s->align;
 | |
| 	int order;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up object size to the next word boundary. We can only
 | |
| 	 * place the free pointer at word boundaries and this determines
 | |
| 	 * the possible location of the free pointer.
 | |
| 	 */
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Determine if we can poison the object itself. If the user of
 | |
| 	 * the slab may touch the object after free or before allocation
 | |
| 	 * then we should never poison the object itself.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
 | |
| 			!s->ctor)
 | |
| 		s->flags |= __OBJECT_POISON;
 | |
| 	else
 | |
| 		s->flags &= ~__OBJECT_POISON;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are Redzoning then check if there is some space between the
 | |
| 	 * end of the object and the free pointer. If not then add an
 | |
| 	 * additional word to have some bytes to store Redzone information.
 | |
| 	 */
 | |
| 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
 | |
| 		size += sizeof(void *);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * With that we have determined the number of bytes in actual use
 | |
| 	 * by the object. This is the potential offset to the free pointer.
 | |
| 	 */
 | |
| 	s->inuse = size;
 | |
| 
 | |
| 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
 | |
| 		s->ctor)) {
 | |
| 		/*
 | |
| 		 * Relocate free pointer after the object if it is not
 | |
| 		 * permitted to overwrite the first word of the object on
 | |
| 		 * kmem_cache_free.
 | |
| 		 *
 | |
| 		 * This is the case if we do RCU, have a constructor or
 | |
| 		 * destructor or are poisoning the objects.
 | |
| 		 */
 | |
| 		s->offset = size;
 | |
| 		size += sizeof(void *);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SLAB_STORE_USER)
 | |
| 		/*
 | |
| 		 * Need to store information about allocs and frees after
 | |
| 		 * the object.
 | |
| 		 */
 | |
| 		size += 2 * sizeof(struct track);
 | |
| 
 | |
| 	if (flags & SLAB_RED_ZONE)
 | |
| 		/*
 | |
| 		 * Add some empty padding so that we can catch
 | |
| 		 * overwrites from earlier objects rather than let
 | |
| 		 * tracking information or the free pointer be
 | |
| 		 * corrupted if a user writes before the start
 | |
| 		 * of the object.
 | |
| 		 */
 | |
| 		size += sizeof(void *);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the alignment based on various parameters that the
 | |
| 	 * user specified and the dynamic determination of cache line size
 | |
| 	 * on bootup.
 | |
| 	 */
 | |
| 	align = calculate_alignment(flags, align, s->objsize);
 | |
| 	s->align = align;
 | |
| 
 | |
| 	/*
 | |
| 	 * SLUB stores one object immediately after another beginning from
 | |
| 	 * offset 0. In order to align the objects we have to simply size
 | |
| 	 * each object to conform to the alignment.
 | |
| 	 */
 | |
| 	size = ALIGN(size, align);
 | |
| 	s->size = size;
 | |
| 	if (forced_order >= 0)
 | |
| 		order = forced_order;
 | |
| 	else
 | |
| 		order = calculate_order(size);
 | |
| 
 | |
| 	if (order < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	s->allocflags = 0;
 | |
| 	if (order)
 | |
| 		s->allocflags |= __GFP_COMP;
 | |
| 
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		s->allocflags |= SLUB_DMA;
 | |
| 
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		s->allocflags |= __GFP_RECLAIMABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the number of objects per slab
 | |
| 	 */
 | |
| 	s->oo = oo_make(order, size);
 | |
| 	s->min = oo_make(get_order(size), size);
 | |
| 	if (oo_objects(s->oo) > oo_objects(s->max))
 | |
| 		s->max = s->oo;
 | |
| 
 | |
| 	return !!oo_objects(s->oo);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int kmem_cache_open(struct kmem_cache *s,
 | |
| 		const char *name, size_t size,
 | |
| 		size_t align, unsigned long flags,
 | |
| 		void (*ctor)(void *))
 | |
| {
 | |
| 	memset(s, 0, kmem_size);
 | |
| 	s->name = name;
 | |
| 	s->ctor = ctor;
 | |
| 	s->objsize = size;
 | |
| 	s->align = align;
 | |
| 	s->flags = kmem_cache_flags(size, flags, name, ctor);
 | |
| 
 | |
| 	if (!calculate_sizes(s, -1))
 | |
| 		goto error;
 | |
| 	if (disable_higher_order_debug) {
 | |
| 		/*
 | |
| 		 * Disable debugging flags that store metadata if the min slab
 | |
| 		 * order increased.
 | |
| 		 */
 | |
| 		if (get_order(s->size) > get_order(s->objsize)) {
 | |
| 			s->flags &= ~DEBUG_METADATA_FLAGS;
 | |
| 			s->offset = 0;
 | |
| 			if (!calculate_sizes(s, -1))
 | |
| 				goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The larger the object size is, the more pages we want on the partial
 | |
| 	 * list to avoid pounding the page allocator excessively.
 | |
| 	 */
 | |
| 	set_min_partial(s, ilog2(s->size));
 | |
| 	s->refcount = 1;
 | |
| #ifdef CONFIG_NUMA
 | |
| 	s->remote_node_defrag_ratio = 1000;
 | |
| #endif
 | |
| 	if (!init_kmem_cache_nodes(s))
 | |
| 		goto error;
 | |
| 
 | |
| 	if (alloc_kmem_cache_cpus(s))
 | |
| 		return 1;
 | |
| 
 | |
| 	free_kmem_cache_nodes(s);
 | |
| error:
 | |
| 	if (flags & SLAB_PANIC)
 | |
| 		panic("Cannot create slab %s size=%lu realsize=%u "
 | |
| 			"order=%u offset=%u flags=%lx\n",
 | |
| 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
 | |
| 			s->offset, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if a given pointer is valid
 | |
|  */
 | |
| int kmem_ptr_validate(struct kmem_cache *s, const void *object)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!kern_ptr_validate(object, s->size))
 | |
| 		return 0;
 | |
| 
 | |
| 	page = get_object_page(object);
 | |
| 
 | |
| 	if (!page || s != page->slab)
 | |
| 		/* No slab or wrong slab */
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!check_valid_pointer(s, page, object))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We could also check if the object is on the slabs freelist.
 | |
| 	 * But this would be too expensive and it seems that the main
 | |
| 	 * purpose of kmem_ptr_valid() is to check if the object belongs
 | |
| 	 * to a certain slab.
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_ptr_validate);
 | |
| 
 | |
| /*
 | |
|  * Determine the size of a slab object
 | |
|  */
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->objsize;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_size);
 | |
| 
 | |
| const char *kmem_cache_name(struct kmem_cache *s)
 | |
| {
 | |
| 	return s->name;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_name);
 | |
| 
 | |
| static void list_slab_objects(struct kmem_cache *s, struct page *page,
 | |
| 							const char *text)
 | |
| {
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	void *addr = page_address(page);
 | |
| 	void *p;
 | |
| 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
 | |
| 				     sizeof(long), GFP_ATOMIC);
 | |
| 	if (!map)
 | |
| 		return;
 | |
| 	slab_err(s, page, "%s", text);
 | |
| 	slab_lock(page);
 | |
| 	for_each_free_object(p, s, page->freelist)
 | |
| 		set_bit(slab_index(p, s, addr), map);
 | |
| 
 | |
| 	for_each_object(p, s, addr, page->objects) {
 | |
| 
 | |
| 		if (!test_bit(slab_index(p, s, addr), map)) {
 | |
| 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
 | |
| 							p, p - addr);
 | |
| 			print_tracking(s, p);
 | |
| 		}
 | |
| 	}
 | |
| 	slab_unlock(page);
 | |
| 	kfree(map);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to free all partial slabs on a node.
 | |
|  */
 | |
| static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct page *page, *h;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 	list_for_each_entry_safe(page, h, &n->partial, lru) {
 | |
| 		if (!page->inuse) {
 | |
| 			__remove_partial(n, page);
 | |
| 			discard_slab(s, page);
 | |
| 		} else {
 | |
| 			list_slab_objects(s, page,
 | |
| 				"Objects remaining on kmem_cache_close()");
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release all resources used by a slab cache.
 | |
|  */
 | |
| static inline int kmem_cache_close(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	free_percpu(s->cpu_slab);
 | |
| 	/* Attempt to free all objects */
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 		free_partial(s, n);
 | |
| 		if (n->nr_partial || slabs_node(s, node))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	free_kmem_cache_nodes(s);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Close a cache and release the kmem_cache structure
 | |
|  * (must be used for caches created using kmem_cache_create)
 | |
|  */
 | |
| void kmem_cache_destroy(struct kmem_cache *s)
 | |
| {
 | |
| 	down_write(&slub_lock);
 | |
| 	s->refcount--;
 | |
| 	if (!s->refcount) {
 | |
| 		list_del(&s->list);
 | |
| 		if (kmem_cache_close(s)) {
 | |
| 			printk(KERN_ERR "SLUB %s: %s called for cache that "
 | |
| 				"still has objects.\n", s->name, __func__);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		if (s->flags & SLAB_DESTROY_BY_RCU)
 | |
| 			rcu_barrier();
 | |
| 		sysfs_slab_remove(s);
 | |
| 	}
 | |
| 	up_write(&slub_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_destroy);
 | |
| 
 | |
| /********************************************************************
 | |
|  *		Kmalloc subsystem
 | |
|  *******************************************************************/
 | |
| 
 | |
| struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
 | |
| EXPORT_SYMBOL(kmalloc_caches);
 | |
| 
 | |
| static struct kmem_cache *kmem_cache;
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
 | |
| #endif
 | |
| 
 | |
| static int __init setup_slub_min_order(char *str)
 | |
| {
 | |
| 	get_option(&str, &slub_min_order);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_min_order=", setup_slub_min_order);
 | |
| 
 | |
| static int __init setup_slub_max_order(char *str)
 | |
| {
 | |
| 	get_option(&str, &slub_max_order);
 | |
| 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_max_order=", setup_slub_max_order);
 | |
| 
 | |
| static int __init setup_slub_min_objects(char *str)
 | |
| {
 | |
| 	get_option(&str, &slub_min_objects);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_min_objects=", setup_slub_min_objects);
 | |
| 
 | |
| static int __init setup_slub_nomerge(char *str)
 | |
| {
 | |
| 	slub_nomerge = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("slub_nomerge", setup_slub_nomerge);
 | |
| 
 | |
| static struct kmem_cache *__init create_kmalloc_cache(const char *name,
 | |
| 						int size, unsigned int flags)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is called with IRQs disabled during early-boot on
 | |
| 	 * single CPU so there's no need to take slub_lock here.
 | |
| 	 */
 | |
| 	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
 | |
| 								flags, NULL))
 | |
| 		goto panic;
 | |
| 
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	return s;
 | |
| 
 | |
| panic:
 | |
| 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conversion table for small slabs sizes / 8 to the index in the
 | |
|  * kmalloc array. This is necessary for slabs < 192 since we have non power
 | |
|  * of two cache sizes there. The size of larger slabs can be determined using
 | |
|  * fls.
 | |
|  */
 | |
| static s8 size_index[24] = {
 | |
| 	3,	/* 8 */
 | |
| 	4,	/* 16 */
 | |
| 	5,	/* 24 */
 | |
| 	5,	/* 32 */
 | |
| 	6,	/* 40 */
 | |
| 	6,	/* 48 */
 | |
| 	6,	/* 56 */
 | |
| 	6,	/* 64 */
 | |
| 	1,	/* 72 */
 | |
| 	1,	/* 80 */
 | |
| 	1,	/* 88 */
 | |
| 	1,	/* 96 */
 | |
| 	7,	/* 104 */
 | |
| 	7,	/* 112 */
 | |
| 	7,	/* 120 */
 | |
| 	7,	/* 128 */
 | |
| 	2,	/* 136 */
 | |
| 	2,	/* 144 */
 | |
| 	2,	/* 152 */
 | |
| 	2,	/* 160 */
 | |
| 	2,	/* 168 */
 | |
| 	2,	/* 176 */
 | |
| 	2,	/* 184 */
 | |
| 	2	/* 192 */
 | |
| };
 | |
| 
 | |
| static inline int size_index_elem(size_t bytes)
 | |
| {
 | |
| 	return (bytes - 1) / 8;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *get_slab(size_t size, gfp_t flags)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if (size <= 192) {
 | |
| 		if (!size)
 | |
| 			return ZERO_SIZE_PTR;
 | |
| 
 | |
| 		index = size_index[size_index_elem(size)];
 | |
| 	} else
 | |
| 		index = fls(size - 1);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	if (unlikely((flags & SLUB_DMA)))
 | |
| 		return kmalloc_dma_caches[index];
 | |
| 
 | |
| #endif
 | |
| 	return kmalloc_caches[index];
 | |
| }
 | |
| 
 | |
| void *__kmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > SLUB_MAX_SIZE))
 | |
| 		return kmalloc_large(size, flags);
 | |
| 
 | |
| 	s = get_slab(size, flags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| 	flags |= __GFP_COMP | __GFP_NOTRACK;
 | |
| 	page = alloc_pages_node(node, flags, get_order(size));
 | |
| 	if (page)
 | |
| 		ptr = page_address(page);
 | |
| 
 | |
| 	kmemleak_alloc(ptr, size, 1, flags);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void *__kmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > SLUB_MAX_SIZE)) {
 | |
| 		ret = kmalloc_large_node(size, flags, node);
 | |
| 
 | |
| 		trace_kmalloc_node(_RET_IP_, ret,
 | |
| 				   size, PAGE_SIZE << get_order(size),
 | |
| 				   flags, node);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	s = get_slab(size, flags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, flags, node, _RET_IP_);
 | |
| 
 | |
| 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__kmalloc_node);
 | |
| #endif
 | |
| 
 | |
| size_t ksize(const void *object)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	if (unlikely(object == ZERO_SIZE_PTR))
 | |
| 		return 0;
 | |
| 
 | |
| 	page = virt_to_head_page(object);
 | |
| 
 | |
| 	if (unlikely(!PageSlab(page))) {
 | |
| 		WARN_ON(!PageCompound(page));
 | |
| 		return PAGE_SIZE << compound_order(page);
 | |
| 	}
 | |
| 	s = page->slab;
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	/*
 | |
| 	 * Debugging requires use of the padding between object
 | |
| 	 * and whatever may come after it.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
 | |
| 		return s->objsize;
 | |
| 
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If we have the need to store the freelist pointer
 | |
| 	 * back there or track user information then we can
 | |
| 	 * only use the space before that information.
 | |
| 	 */
 | |
| 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
 | |
| 		return s->inuse;
 | |
| 	/*
 | |
| 	 * Else we can use all the padding etc for the allocation
 | |
| 	 */
 | |
| 	return s->size;
 | |
| }
 | |
| EXPORT_SYMBOL(ksize);
 | |
| 
 | |
| void kfree(const void *x)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *object = (void *)x;
 | |
| 
 | |
| 	trace_kfree(_RET_IP_, x);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(x)))
 | |
| 		return;
 | |
| 
 | |
| 	page = virt_to_head_page(x);
 | |
| 	if (unlikely(!PageSlab(page))) {
 | |
| 		BUG_ON(!PageCompound(page));
 | |
| 		kmemleak_free(x);
 | |
| 		put_page(page);
 | |
| 		return;
 | |
| 	}
 | |
| 	slab_free(page->slab, page, object, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree);
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 | |
|  * the remaining slabs by the number of items in use. The slabs with the
 | |
|  * most items in use come first. New allocations will then fill those up
 | |
|  * and thus they can be removed from the partial lists.
 | |
|  *
 | |
|  * The slabs with the least items are placed last. This results in them
 | |
|  * being allocated from last increasing the chance that the last objects
 | |
|  * are freed in them.
 | |
|  */
 | |
| int kmem_cache_shrink(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	int i;
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct page *page;
 | |
| 	struct page *t;
 | |
| 	int objects = oo_objects(s->max);
 | |
| 	struct list_head *slabs_by_inuse =
 | |
| 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!slabs_by_inuse)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		n = get_node(s, node);
 | |
| 
 | |
| 		if (!n->nr_partial)
 | |
| 			continue;
 | |
| 
 | |
| 		for (i = 0; i < objects; i++)
 | |
| 			INIT_LIST_HEAD(slabs_by_inuse + i);
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Build lists indexed by the items in use in each slab.
 | |
| 		 *
 | |
| 		 * Note that concurrent frees may occur while we hold the
 | |
| 		 * list_lock. page->inuse here is the upper limit.
 | |
| 		 */
 | |
| 		list_for_each_entry_safe(page, t, &n->partial, lru) {
 | |
| 			if (!page->inuse && slab_trylock(page)) {
 | |
| 				/*
 | |
| 				 * Must hold slab lock here because slab_free
 | |
| 				 * may have freed the last object and be
 | |
| 				 * waiting to release the slab.
 | |
| 				 */
 | |
| 				__remove_partial(n, page);
 | |
| 				slab_unlock(page);
 | |
| 				discard_slab(s, page);
 | |
| 			} else {
 | |
| 				list_move(&page->lru,
 | |
| 				slabs_by_inuse + page->inuse);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Rebuild the partial list with the slabs filled up most
 | |
| 		 * first and the least used slabs at the end.
 | |
| 		 */
 | |
| 		for (i = objects - 1; i >= 0; i--)
 | |
| 			list_splice(slabs_by_inuse + i, n->partial.prev);
 | |
| 
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	kfree(slabs_by_inuse);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_shrink);
 | |
| 
 | |
| #if defined(CONFIG_MEMORY_HOTPLUG)
 | |
| static int slab_mem_going_offline_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	down_read(&slub_lock);
 | |
| 	list_for_each_entry(s, &slab_caches, list)
 | |
| 		kmem_cache_shrink(s);
 | |
| 	up_read(&slub_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void slab_mem_offline_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct kmem_cache *s;
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int offline_node;
 | |
| 
 | |
| 	offline_node = marg->status_change_nid;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node still has available memory. we need kmem_cache_node
 | |
| 	 * for it yet.
 | |
| 	 */
 | |
| 	if (offline_node < 0)
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&slub_lock);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		n = get_node(s, offline_node);
 | |
| 		if (n) {
 | |
| 			/*
 | |
| 			 * if n->nr_slabs > 0, slabs still exist on the node
 | |
| 			 * that is going down. We were unable to free them,
 | |
| 			 * and offline_pages() function shouldn't call this
 | |
| 			 * callback. So, we must fail.
 | |
| 			 */
 | |
| 			BUG_ON(slabs_node(s, offline_node));
 | |
| 
 | |
| 			s->node[offline_node] = NULL;
 | |
| 			kmem_cache_free(kmem_cache_node, n);
 | |
| 		}
 | |
| 	}
 | |
| 	up_read(&slub_lock);
 | |
| }
 | |
| 
 | |
| static int slab_mem_going_online_callback(void *arg)
 | |
| {
 | |
| 	struct kmem_cache_node *n;
 | |
| 	struct kmem_cache *s;
 | |
| 	struct memory_notify *marg = arg;
 | |
| 	int nid = marg->status_change_nid;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the node's memory is already available, then kmem_cache_node is
 | |
| 	 * already created. Nothing to do.
 | |
| 	 */
 | |
| 	if (nid < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are bringing a node online. No memory is available yet. We must
 | |
| 	 * allocate a kmem_cache_node structure in order to bring the node
 | |
| 	 * online.
 | |
| 	 */
 | |
| 	down_read(&slub_lock);
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		/*
 | |
| 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
 | |
| 		 *      since memory is not yet available from the node that
 | |
| 		 *      is brought up.
 | |
| 		 */
 | |
| 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
 | |
| 		if (!n) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		init_kmem_cache_node(n, s);
 | |
| 		s->node[nid] = n;
 | |
| 	}
 | |
| out:
 | |
| 	up_read(&slub_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int slab_memory_callback(struct notifier_block *self,
 | |
| 				unsigned long action, void *arg)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		ret = slab_mem_going_online_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		ret = slab_mem_going_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 		slab_mem_offline_callback(arg);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| 	if (ret)
 | |
| 		ret = notifier_from_errno(ret);
 | |
| 	else
 | |
| 		ret = NOTIFY_OK;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| /********************************************************************
 | |
|  *			Basic setup of slabs
 | |
|  *******************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Used for early kmem_cache structures that were allocated using
 | |
|  * the page allocator
 | |
|  */
 | |
| 
 | |
| static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	list_add(&s->list, &slab_caches);
 | |
| 	s->refcount = -1;
 | |
| 
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 		struct page *p;
 | |
| 
 | |
| 		if (n) {
 | |
| 			list_for_each_entry(p, &n->partial, lru)
 | |
| 				p->slab = s;
 | |
| 
 | |
| #ifdef CONFIG_SLAB_DEBUG
 | |
| 			list_for_each_entry(p, &n->full, lru)
 | |
| 				p->slab = s;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	int caches = 0;
 | |
| 	struct kmem_cache *temp_kmem_cache;
 | |
| 	int order;
 | |
| 	struct kmem_cache *temp_kmem_cache_node;
 | |
| 	unsigned long kmalloc_size;
 | |
| 
 | |
| 	kmem_size = offsetof(struct kmem_cache, node) +
 | |
| 				nr_node_ids * sizeof(struct kmem_cache_node *);
 | |
| 
 | |
| 	/* Allocate two kmem_caches from the page allocator */
 | |
| 	kmalloc_size = ALIGN(kmem_size, cache_line_size());
 | |
| 	order = get_order(2 * kmalloc_size);
 | |
| 	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
 | |
| 
 | |
| 	/*
 | |
| 	 * Must first have the slab cache available for the allocations of the
 | |
| 	 * struct kmem_cache_node's. There is special bootstrap code in
 | |
| 	 * kmem_cache_open for slab_state == DOWN.
 | |
| 	 */
 | |
| 	kmem_cache_node = (void *)kmem_cache + kmalloc_size;
 | |
| 
 | |
| 	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
 | |
| 		sizeof(struct kmem_cache_node),
 | |
| 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
 | |
| 
 | |
| 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 | |
| 
 | |
| 	/* Able to allocate the per node structures */
 | |
| 	slab_state = PARTIAL;
 | |
| 
 | |
| 	temp_kmem_cache = kmem_cache;
 | |
| 	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
 | |
| 		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
 | |
| 	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
 | |
| 	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
 | |
| 	 * kmem_cache_node is separately allocated so no need to
 | |
| 	 * update any list pointers.
 | |
| 	 */
 | |
| 	temp_kmem_cache_node = kmem_cache_node;
 | |
| 
 | |
| 	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
 | |
| 	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
 | |
| 
 | |
| 	kmem_cache_bootstrap_fixup(kmem_cache_node);
 | |
| 
 | |
| 	caches++;
 | |
| 	kmem_cache_bootstrap_fixup(kmem_cache);
 | |
| 	caches++;
 | |
| 	/* Free temporary boot structure */
 | |
| 	free_pages((unsigned long)temp_kmem_cache, order);
 | |
| 
 | |
| 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
 | |
| 
 | |
| 	/*
 | |
| 	 * Patch up the size_index table if we have strange large alignment
 | |
| 	 * requirements for the kmalloc array. This is only the case for
 | |
| 	 * MIPS it seems. The standard arches will not generate any code here.
 | |
| 	 *
 | |
| 	 * Largest permitted alignment is 256 bytes due to the way we
 | |
| 	 * handle the index determination for the smaller caches.
 | |
| 	 *
 | |
| 	 * Make sure that nothing crazy happens if someone starts tinkering
 | |
| 	 * around with ARCH_KMALLOC_MINALIGN
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 | |
| 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 | |
| 
 | |
| 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 | |
| 		int elem = size_index_elem(i);
 | |
| 		if (elem >= ARRAY_SIZE(size_index))
 | |
| 			break;
 | |
| 		size_index[elem] = KMALLOC_SHIFT_LOW;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE == 64) {
 | |
| 		/*
 | |
| 		 * The 96 byte size cache is not used if the alignment
 | |
| 		 * is 64 byte.
 | |
| 		 */
 | |
| 		for (i = 64 + 8; i <= 96; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 7;
 | |
| 	} else if (KMALLOC_MIN_SIZE == 128) {
 | |
| 		/*
 | |
| 		 * The 192 byte sized cache is not used if the alignment
 | |
| 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		for (i = 128 + 8; i <= 192; i += 8)
 | |
| 			size_index[size_index_elem(i)] = 8;
 | |
| 	}
 | |
| 
 | |
| 	/* Caches that are not of the two-to-the-power-of size */
 | |
| 	if (KMALLOC_MIN_SIZE <= 32) {
 | |
| 		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
 | |
| 		caches++;
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE <= 64) {
 | |
| 		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
 | |
| 		caches++;
 | |
| 	}
 | |
| 
 | |
| 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
 | |
| 		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
 | |
| 		caches++;
 | |
| 	}
 | |
| 
 | |
| 	slab_state = UP;
 | |
| 
 | |
| 	/* Provide the correct kmalloc names now that the caches are up */
 | |
| 	if (KMALLOC_MIN_SIZE <= 32) {
 | |
| 		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
 | |
| 		BUG_ON(!kmalloc_caches[1]->name);
 | |
| 	}
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE <= 64) {
 | |
| 		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
 | |
| 		BUG_ON(!kmalloc_caches[2]->name);
 | |
| 	}
 | |
| 
 | |
| 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
 | |
| 		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
 | |
| 
 | |
| 		BUG_ON(!s);
 | |
| 		kmalloc_caches[i]->name = s;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	register_cpu_notifier(&slab_notifier);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
 | |
| 		struct kmem_cache *s = kmalloc_caches[i];
 | |
| 
 | |
| 		if (s && s->size) {
 | |
| 			char *name = kasprintf(GFP_NOWAIT,
 | |
| 				 "dma-kmalloc-%d", s->objsize);
 | |
| 
 | |
| 			BUG_ON(!name);
 | |
| 			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
 | |
| 				s->objsize, SLAB_CACHE_DMA);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	printk(KERN_INFO
 | |
| 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
 | |
| 		" CPUs=%d, Nodes=%d\n",
 | |
| 		caches, cache_line_size(),
 | |
| 		slub_min_order, slub_max_order, slub_min_objects,
 | |
| 		nr_cpu_ids, nr_node_ids);
 | |
| }
 | |
| 
 | |
| void __init kmem_cache_init_late(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a mergeable slab cache
 | |
|  */
 | |
| static int slab_unmergeable(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (s->ctor)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have set a slab to be unmergeable during bootstrap.
 | |
| 	 */
 | |
| 	if (s->refcount < 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *find_mergeable(size_t size,
 | |
| 		size_t align, unsigned long flags, const char *name,
 | |
| 		void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 
 | |
| 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (ctor)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = ALIGN(size, sizeof(void *));
 | |
| 	align = calculate_alignment(flags, align, size);
 | |
| 	size = ALIGN(size, align);
 | |
| 	flags = kmem_cache_flags(size, flags, name, NULL);
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		if (slab_unmergeable(s))
 | |
| 			continue;
 | |
| 
 | |
| 		if (size > s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
 | |
| 				continue;
 | |
| 		/*
 | |
| 		 * Check if alignment is compatible.
 | |
| 		 * Courtesy of Adrian Drzewiecki
 | |
| 		 */
 | |
| 		if ((s->size & ~(align - 1)) != s->size)
 | |
| 			continue;
 | |
| 
 | |
| 		if (s->size - size >= sizeof(void *))
 | |
| 			continue;
 | |
| 
 | |
| 		return s;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct kmem_cache *kmem_cache_create(const char *name, size_t size,
 | |
| 		size_t align, unsigned long flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	char *n;
 | |
| 
 | |
| 	if (WARN_ON(!name))
 | |
| 		return NULL;
 | |
| 
 | |
| 	down_write(&slub_lock);
 | |
| 	s = find_mergeable(size, align, flags, name, ctor);
 | |
| 	if (s) {
 | |
| 		s->refcount++;
 | |
| 		/*
 | |
| 		 * Adjust the object sizes so that we clear
 | |
| 		 * the complete object on kzalloc.
 | |
| 		 */
 | |
| 		s->objsize = max(s->objsize, (int)size);
 | |
| 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
 | |
| 
 | |
| 		if (sysfs_slab_alias(s, name)) {
 | |
| 			s->refcount--;
 | |
| 			goto err;
 | |
| 		}
 | |
| 		up_write(&slub_lock);
 | |
| 		return s;
 | |
| 	}
 | |
| 
 | |
| 	n = kstrdup(name, GFP_KERNEL);
 | |
| 	if (!n)
 | |
| 		goto err;
 | |
| 
 | |
| 	s = kmalloc(kmem_size, GFP_KERNEL);
 | |
| 	if (s) {
 | |
| 		if (kmem_cache_open(s, n,
 | |
| 				size, align, flags, ctor)) {
 | |
| 			list_add(&s->list, &slab_caches);
 | |
| 			if (sysfs_slab_add(s)) {
 | |
| 				list_del(&s->list);
 | |
| 				kfree(n);
 | |
| 				kfree(s);
 | |
| 				goto err;
 | |
| 			}
 | |
| 			up_write(&slub_lock);
 | |
| 			return s;
 | |
| 		}
 | |
| 		kfree(n);
 | |
| 		kfree(s);
 | |
| 	}
 | |
| 	up_write(&slub_lock);
 | |
| 
 | |
| err:
 | |
| 	if (flags & SLAB_PANIC)
 | |
| 		panic("Cannot create slabcache %s\n", name);
 | |
| 	else
 | |
| 		s = NULL;
 | |
| 	return s;
 | |
| }
 | |
| EXPORT_SYMBOL(kmem_cache_create);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Use the cpu notifier to insure that the cpu slabs are flushed when
 | |
|  * necessary.
 | |
|  */
 | |
| static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
 | |
| 		unsigned long action, void *hcpu)
 | |
| {
 | |
| 	long cpu = (long)hcpu;
 | |
| 	struct kmem_cache *s;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 		down_read(&slub_lock);
 | |
| 		list_for_each_entry(s, &slab_caches, list) {
 | |
| 			local_irq_save(flags);
 | |
| 			__flush_cpu_slab(s, cpu);
 | |
| 			local_irq_restore(flags);
 | |
| 		}
 | |
| 		up_read(&slub_lock);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata slab_notifier = {
 | |
| 	.notifier_call = slab_cpuup_callback
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > SLUB_MAX_SIZE))
 | |
| 		return kmalloc_large(size, gfpflags);
 | |
| 
 | |
| 	s = get_slab(size, gfpflags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
 | |
| 
 | |
| 	/* Honor the call site pointer we recieved. */
 | |
| 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
 | |
| 					int node, unsigned long caller)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (unlikely(size > SLUB_MAX_SIZE)) {
 | |
| 		ret = kmalloc_large_node(size, gfpflags, node);
 | |
| 
 | |
| 		trace_kmalloc_node(caller, ret,
 | |
| 				   size, PAGE_SIZE << get_order(size),
 | |
| 				   gfpflags, node);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	s = get_slab(size, gfpflags);
 | |
| 
 | |
| 	if (unlikely(ZERO_OR_NULL_PTR(s)))
 | |
| 		return s;
 | |
| 
 | |
| 	ret = slab_alloc(s, gfpflags, node, caller);
 | |
| 
 | |
| 	/* Honor the call site pointer we recieved. */
 | |
| 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| static int count_inuse(struct page *page)
 | |
| {
 | |
| 	return page->inuse;
 | |
| }
 | |
| 
 | |
| static int count_total(struct page *page)
 | |
| {
 | |
| 	return page->objects;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int validate_slab(struct kmem_cache *s, struct page *page,
 | |
| 						unsigned long *map)
 | |
| {
 | |
| 	void *p;
 | |
| 	void *addr = page_address(page);
 | |
| 
 | |
| 	if (!check_slab(s, page) ||
 | |
| 			!on_freelist(s, page, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Now we know that a valid freelist exists */
 | |
| 	bitmap_zero(map, page->objects);
 | |
| 
 | |
| 	for_each_free_object(p, s, page->freelist) {
 | |
| 		set_bit(slab_index(p, s, addr), map);
 | |
| 		if (!check_object(s, page, p, 0))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	for_each_object(p, s, addr, page->objects)
 | |
| 		if (!test_bit(slab_index(p, s, addr), map))
 | |
| 			if (!check_object(s, page, p, 1))
 | |
| 				return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void validate_slab_slab(struct kmem_cache *s, struct page *page,
 | |
| 						unsigned long *map)
 | |
| {
 | |
| 	if (slab_trylock(page)) {
 | |
| 		validate_slab(s, page, map);
 | |
| 		slab_unlock(page);
 | |
| 	} else
 | |
| 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
 | |
| 			s->name, page);
 | |
| }
 | |
| 
 | |
| static int validate_slab_node(struct kmem_cache *s,
 | |
| 		struct kmem_cache_node *n, unsigned long *map)
 | |
| {
 | |
| 	unsigned long count = 0;
 | |
| 	struct page *page;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&n->list_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry(page, &n->partial, lru) {
 | |
| 		validate_slab_slab(s, page, map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != n->nr_partial)
 | |
| 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
 | |
| 			"counter=%ld\n", s->name, count, n->nr_partial);
 | |
| 
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		goto out;
 | |
| 
 | |
| 	list_for_each_entry(page, &n->full, lru) {
 | |
| 		validate_slab_slab(s, page, map);
 | |
| 		count++;
 | |
| 	}
 | |
| 	if (count != atomic_long_read(&n->nr_slabs))
 | |
| 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
 | |
| 			"counter=%ld\n", s->name, count,
 | |
| 			atomic_long_read(&n->nr_slabs));
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static long validate_slab_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 	unsigned long count = 0;
 | |
| 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
 | |
| 				sizeof(unsigned long), GFP_KERNEL);
 | |
| 
 | |
| 	if (!map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flush_all(s);
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 		count += validate_slab_node(s, n, map);
 | |
| 	}
 | |
| 	kfree(map);
 | |
| 	return count;
 | |
| }
 | |
| /*
 | |
|  * Generate lists of code addresses where slabcache objects are allocated
 | |
|  * and freed.
 | |
|  */
 | |
| 
 | |
| struct location {
 | |
| 	unsigned long count;
 | |
| 	unsigned long addr;
 | |
| 	long long sum_time;
 | |
| 	long min_time;
 | |
| 	long max_time;
 | |
| 	long min_pid;
 | |
| 	long max_pid;
 | |
| 	DECLARE_BITMAP(cpus, NR_CPUS);
 | |
| 	nodemask_t nodes;
 | |
| };
 | |
| 
 | |
| struct loc_track {
 | |
| 	unsigned long max;
 | |
| 	unsigned long count;
 | |
| 	struct location *loc;
 | |
| };
 | |
| 
 | |
| static void free_loc_track(struct loc_track *t)
 | |
| {
 | |
| 	if (t->max)
 | |
| 		free_pages((unsigned long)t->loc,
 | |
| 			get_order(sizeof(struct location) * t->max));
 | |
| }
 | |
| 
 | |
| static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
 | |
| {
 | |
| 	struct location *l;
 | |
| 	int order;
 | |
| 
 | |
| 	order = get_order(sizeof(struct location) * max);
 | |
| 
 | |
| 	l = (void *)__get_free_pages(flags, order);
 | |
| 	if (!l)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (t->count) {
 | |
| 		memcpy(l, t->loc, sizeof(struct location) * t->count);
 | |
| 		free_loc_track(t);
 | |
| 	}
 | |
| 	t->max = max;
 | |
| 	t->loc = l;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int add_location(struct loc_track *t, struct kmem_cache *s,
 | |
| 				const struct track *track)
 | |
| {
 | |
| 	long start, end, pos;
 | |
| 	struct location *l;
 | |
| 	unsigned long caddr;
 | |
| 	unsigned long age = jiffies - track->when;
 | |
| 
 | |
| 	start = -1;
 | |
| 	end = t->count;
 | |
| 
 | |
| 	for ( ; ; ) {
 | |
| 		pos = start + (end - start + 1) / 2;
 | |
| 
 | |
| 		/*
 | |
| 		 * There is nothing at "end". If we end up there
 | |
| 		 * we need to add something to before end.
 | |
| 		 */
 | |
| 		if (pos == end)
 | |
| 			break;
 | |
| 
 | |
| 		caddr = t->loc[pos].addr;
 | |
| 		if (track->addr == caddr) {
 | |
| 
 | |
| 			l = &t->loc[pos];
 | |
| 			l->count++;
 | |
| 			if (track->when) {
 | |
| 				l->sum_time += age;
 | |
| 				if (age < l->min_time)
 | |
| 					l->min_time = age;
 | |
| 				if (age > l->max_time)
 | |
| 					l->max_time = age;
 | |
| 
 | |
| 				if (track->pid < l->min_pid)
 | |
| 					l->min_pid = track->pid;
 | |
| 				if (track->pid > l->max_pid)
 | |
| 					l->max_pid = track->pid;
 | |
| 
 | |
| 				cpumask_set_cpu(track->cpu,
 | |
| 						to_cpumask(l->cpus));
 | |
| 			}
 | |
| 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (track->addr < caddr)
 | |
| 			end = pos;
 | |
| 		else
 | |
| 			start = pos;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Not found. Insert new tracking element.
 | |
| 	 */
 | |
| 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
 | |
| 		return 0;
 | |
| 
 | |
| 	l = t->loc + pos;
 | |
| 	if (pos < t->count)
 | |
| 		memmove(l + 1, l,
 | |
| 			(t->count - pos) * sizeof(struct location));
 | |
| 	t->count++;
 | |
| 	l->count = 1;
 | |
| 	l->addr = track->addr;
 | |
| 	l->sum_time = age;
 | |
| 	l->min_time = age;
 | |
| 	l->max_time = age;
 | |
| 	l->min_pid = track->pid;
 | |
| 	l->max_pid = track->pid;
 | |
| 	cpumask_clear(to_cpumask(l->cpus));
 | |
| 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
 | |
| 	nodes_clear(l->nodes);
 | |
| 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void process_slab(struct loc_track *t, struct kmem_cache *s,
 | |
| 		struct page *page, enum track_item alloc,
 | |
| 		unsigned long *map)
 | |
| {
 | |
| 	void *addr = page_address(page);
 | |
| 	void *p;
 | |
| 
 | |
| 	bitmap_zero(map, page->objects);
 | |
| 	for_each_free_object(p, s, page->freelist)
 | |
| 		set_bit(slab_index(p, s, addr), map);
 | |
| 
 | |
| 	for_each_object(p, s, addr, page->objects)
 | |
| 		if (!test_bit(slab_index(p, s, addr), map))
 | |
| 			add_location(t, s, get_track(s, p, alloc));
 | |
| }
 | |
| 
 | |
| static int list_locations(struct kmem_cache *s, char *buf,
 | |
| 					enum track_item alloc)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	unsigned long i;
 | |
| 	struct loc_track t = { 0, 0, NULL };
 | |
| 	int node;
 | |
| 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
 | |
| 				     sizeof(unsigned long), GFP_KERNEL);
 | |
| 
 | |
| 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
 | |
| 				     GFP_TEMPORARY)) {
 | |
| 		kfree(map);
 | |
| 		return sprintf(buf, "Out of memory\n");
 | |
| 	}
 | |
| 	/* Push back cpu slabs */
 | |
| 	flush_all(s);
 | |
| 
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 		unsigned long flags;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (!atomic_long_read(&n->nr_slabs))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&n->list_lock, flags);
 | |
| 		list_for_each_entry(page, &n->partial, lru)
 | |
| 			process_slab(&t, s, page, alloc, map);
 | |
| 		list_for_each_entry(page, &n->full, lru)
 | |
| 			process_slab(&t, s, page, alloc, map);
 | |
| 		spin_unlock_irqrestore(&n->list_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < t.count; i++) {
 | |
| 		struct location *l = &t.loc[i];
 | |
| 
 | |
| 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
 | |
| 			break;
 | |
| 		len += sprintf(buf + len, "%7ld ", l->count);
 | |
| 
 | |
| 		if (l->addr)
 | |
| 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
 | |
| 		else
 | |
| 			len += sprintf(buf + len, "<not-available>");
 | |
| 
 | |
| 		if (l->sum_time != l->min_time) {
 | |
| 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
 | |
| 				l->min_time,
 | |
| 				(long)div_u64(l->sum_time, l->count),
 | |
| 				l->max_time);
 | |
| 		} else
 | |
| 			len += sprintf(buf + len, " age=%ld",
 | |
| 				l->min_time);
 | |
| 
 | |
| 		if (l->min_pid != l->max_pid)
 | |
| 			len += sprintf(buf + len, " pid=%ld-%ld",
 | |
| 				l->min_pid, l->max_pid);
 | |
| 		else
 | |
| 			len += sprintf(buf + len, " pid=%ld",
 | |
| 				l->min_pid);
 | |
| 
 | |
| 		if (num_online_cpus() > 1 &&
 | |
| 				!cpumask_empty(to_cpumask(l->cpus)) &&
 | |
| 				len < PAGE_SIZE - 60) {
 | |
| 			len += sprintf(buf + len, " cpus=");
 | |
| 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
 | |
| 						 to_cpumask(l->cpus));
 | |
| 		}
 | |
| 
 | |
| 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
 | |
| 				len < PAGE_SIZE - 60) {
 | |
| 			len += sprintf(buf + len, " nodes=");
 | |
| 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
 | |
| 					l->nodes);
 | |
| 		}
 | |
| 
 | |
| 		len += sprintf(buf + len, "\n");
 | |
| 	}
 | |
| 
 | |
| 	free_loc_track(&t);
 | |
| 	kfree(map);
 | |
| 	if (!t.count)
 | |
| 		len += sprintf(buf, "No data\n");
 | |
| 	return len;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SLUB_RESILIENCY_TEST
 | |
| static void resiliency_test(void)
 | |
| {
 | |
| 	u8 *p;
 | |
| 
 | |
| 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
 | |
| 
 | |
| 	printk(KERN_ERR "SLUB resiliency testing\n");
 | |
| 	printk(KERN_ERR "-----------------------\n");
 | |
| 	printk(KERN_ERR "A. Corruption after allocation\n");
 | |
| 
 | |
| 	p = kzalloc(16, GFP_KERNEL);
 | |
| 	p[16] = 0x12;
 | |
| 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
 | |
| 			" 0x12->0x%p\n\n", p + 16);
 | |
| 
 | |
| 	validate_slab_cache(kmalloc_caches[4]);
 | |
| 
 | |
| 	/* Hmmm... The next two are dangerous */
 | |
| 	p = kzalloc(32, GFP_KERNEL);
 | |
| 	p[32 + sizeof(void *)] = 0x34;
 | |
| 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
 | |
| 			" 0x34 -> -0x%p\n", p);
 | |
| 	printk(KERN_ERR
 | |
| 		"If allocated object is overwritten then not detectable\n\n");
 | |
| 
 | |
| 	validate_slab_cache(kmalloc_caches[5]);
 | |
| 	p = kzalloc(64, GFP_KERNEL);
 | |
| 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
 | |
| 	*p = 0x56;
 | |
| 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
 | |
| 									p);
 | |
| 	printk(KERN_ERR
 | |
| 		"If allocated object is overwritten then not detectable\n\n");
 | |
| 	validate_slab_cache(kmalloc_caches[6]);
 | |
| 
 | |
| 	printk(KERN_ERR "\nB. Corruption after free\n");
 | |
| 	p = kzalloc(128, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	*p = 0x78;
 | |
| 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
 | |
| 	validate_slab_cache(kmalloc_caches[7]);
 | |
| 
 | |
| 	p = kzalloc(256, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	p[50] = 0x9a;
 | |
| 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
 | |
| 			p);
 | |
| 	validate_slab_cache(kmalloc_caches[8]);
 | |
| 
 | |
| 	p = kzalloc(512, GFP_KERNEL);
 | |
| 	kfree(p);
 | |
| 	p[512] = 0xab;
 | |
| 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
 | |
| 	validate_slab_cache(kmalloc_caches[9]);
 | |
| }
 | |
| #else
 | |
| #ifdef CONFIG_SYSFS
 | |
| static void resiliency_test(void) {};
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| enum slab_stat_type {
 | |
| 	SL_ALL,			/* All slabs */
 | |
| 	SL_PARTIAL,		/* Only partially allocated slabs */
 | |
| 	SL_CPU,			/* Only slabs used for cpu caches */
 | |
| 	SL_OBJECTS,		/* Determine allocated objects not slabs */
 | |
| 	SL_TOTAL		/* Determine object capacity not slabs */
 | |
| };
 | |
| 
 | |
| #define SO_ALL		(1 << SL_ALL)
 | |
| #define SO_PARTIAL	(1 << SL_PARTIAL)
 | |
| #define SO_CPU		(1 << SL_CPU)
 | |
| #define SO_OBJECTS	(1 << SL_OBJECTS)
 | |
| #define SO_TOTAL	(1 << SL_TOTAL)
 | |
| 
 | |
| static ssize_t show_slab_objects(struct kmem_cache *s,
 | |
| 			    char *buf, unsigned long flags)
 | |
| {
 | |
| 	unsigned long total = 0;
 | |
| 	int node;
 | |
| 	int x;
 | |
| 	unsigned long *nodes;
 | |
| 	unsigned long *per_cpu;
 | |
| 
 | |
| 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
 | |
| 	if (!nodes)
 | |
| 		return -ENOMEM;
 | |
| 	per_cpu = nodes + nr_node_ids;
 | |
| 
 | |
| 	if (flags & SO_CPU) {
 | |
| 		int cpu;
 | |
| 
 | |
| 		for_each_possible_cpu(cpu) {
 | |
| 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
 | |
| 
 | |
| 			if (!c || c->node < 0)
 | |
| 				continue;
 | |
| 
 | |
| 			if (c->page) {
 | |
| 					if (flags & SO_TOTAL)
 | |
| 						x = c->page->objects;
 | |
| 				else if (flags & SO_OBJECTS)
 | |
| 					x = c->page->inuse;
 | |
| 				else
 | |
| 					x = 1;
 | |
| 
 | |
| 				total += x;
 | |
| 				nodes[c->node] += x;
 | |
| 			}
 | |
| 			per_cpu[c->node]++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	down_read(&slub_lock);
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	if (flags & SO_ALL) {
 | |
| 		for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 			struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 		if (flags & SO_TOTAL)
 | |
| 			x = atomic_long_read(&n->total_objects);
 | |
| 		else if (flags & SO_OBJECTS)
 | |
| 			x = atomic_long_read(&n->total_objects) -
 | |
| 				count_partial(n, count_free);
 | |
| 
 | |
| 			else
 | |
| 				x = atomic_long_read(&n->nr_slabs);
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 
 | |
| 	} else
 | |
| #endif
 | |
| 	if (flags & SO_PARTIAL) {
 | |
| 		for_each_node_state(node, N_NORMAL_MEMORY) {
 | |
| 			struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 			if (flags & SO_TOTAL)
 | |
| 				x = count_partial(n, count_total);
 | |
| 			else if (flags & SO_OBJECTS)
 | |
| 				x = count_partial(n, count_inuse);
 | |
| 			else
 | |
| 				x = n->nr_partial;
 | |
| 			total += x;
 | |
| 			nodes[node] += x;
 | |
| 		}
 | |
| 	}
 | |
| 	x = sprintf(buf, "%lu", total);
 | |
| #ifdef CONFIG_NUMA
 | |
| 	for_each_node_state(node, N_NORMAL_MEMORY)
 | |
| 		if (nodes[node])
 | |
| 			x += sprintf(buf + x, " N%d=%lu",
 | |
| 					node, nodes[node]);
 | |
| #endif
 | |
| 	kfree(nodes);
 | |
| 	return x + sprintf(buf + x, "\n");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static int any_slab_objects(struct kmem_cache *s)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		if (atomic_long_read(&n->total_objects))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
 | |
| #define to_slab(n) container_of(n, struct kmem_cache, kobj);
 | |
| 
 | |
| struct slab_attribute {
 | |
| 	struct attribute attr;
 | |
| 	ssize_t (*show)(struct kmem_cache *s, char *buf);
 | |
| 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
 | |
| };
 | |
| 
 | |
| #define SLAB_ATTR_RO(_name) \
 | |
| 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
 | |
| 
 | |
| #define SLAB_ATTR(_name) \
 | |
| 	static struct slab_attribute _name##_attr =  \
 | |
| 	__ATTR(_name, 0644, _name##_show, _name##_store)
 | |
| 
 | |
| static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->size);
 | |
| }
 | |
| SLAB_ATTR_RO(slab_size);
 | |
| 
 | |
| static ssize_t align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->align);
 | |
| }
 | |
| SLAB_ATTR_RO(align);
 | |
| 
 | |
| static ssize_t object_size_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->objsize);
 | |
| }
 | |
| SLAB_ATTR_RO(object_size);
 | |
| 
 | |
| static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", oo_objects(s->oo));
 | |
| }
 | |
| SLAB_ATTR_RO(objs_per_slab);
 | |
| 
 | |
| static ssize_t order_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	unsigned long order;
 | |
| 	int err;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &order);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (order > slub_max_order || order < slub_min_order)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	calculate_sizes(s, order);
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| static ssize_t order_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", oo_order(s->oo));
 | |
| }
 | |
| SLAB_ATTR(order);
 | |
| 
 | |
| static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%lu\n", s->min_partial);
 | |
| }
 | |
| 
 | |
| static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
 | |
| 				 size_t length)
 | |
| {
 | |
| 	unsigned long min;
 | |
| 	int err;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &min);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	set_min_partial(s, min);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(min_partial);
 | |
| 
 | |
| static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (s->ctor) {
 | |
| 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
 | |
| 
 | |
| 		return n + sprintf(buf + n, "\n");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| SLAB_ATTR_RO(ctor);
 | |
| 
 | |
| static ssize_t aliases_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->refcount - 1);
 | |
| }
 | |
| SLAB_ATTR_RO(aliases);
 | |
| 
 | |
| static ssize_t partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL);
 | |
| }
 | |
| SLAB_ATTR_RO(partial);
 | |
| 
 | |
| static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_CPU);
 | |
| }
 | |
| SLAB_ATTR_RO(cpu_slabs);
 | |
| 
 | |
| static ssize_t objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects);
 | |
| 
 | |
| static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
 | |
| }
 | |
| SLAB_ATTR_RO(objects_partial);
 | |
| 
 | |
| static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
 | |
| }
 | |
| 
 | |
| static ssize_t reclaim_account_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_RECLAIM_ACCOUNT;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(reclaim_account);
 | |
| 
 | |
| static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
 | |
| }
 | |
| SLAB_ATTR_RO(hwcache_align);
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
 | |
| }
 | |
| SLAB_ATTR_RO(cache_dma);
 | |
| #endif
 | |
| 
 | |
| static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
 | |
| }
 | |
| SLAB_ATTR_RO(destroy_by_rcu);
 | |
| 
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| static ssize_t slabs_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL);
 | |
| }
 | |
| SLAB_ATTR_RO(slabs);
 | |
| 
 | |
| static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
 | |
| }
 | |
| SLAB_ATTR_RO(total_objects);
 | |
| 
 | |
| static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
 | |
| }
 | |
| 
 | |
| static ssize_t sanity_checks_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_DEBUG_FREE;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_DEBUG_FREE;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(sanity_checks);
 | |
| 
 | |
| static ssize_t trace_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
 | |
| }
 | |
| 
 | |
| static ssize_t trace_store(struct kmem_cache *s, const char *buf,
 | |
| 							size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_TRACE;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_TRACE;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(trace);
 | |
| 
 | |
| static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
 | |
| }
 | |
| 
 | |
| static ssize_t red_zone_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_RED_ZONE;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_RED_ZONE;
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(red_zone);
 | |
| 
 | |
| static ssize_t poison_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
 | |
| }
 | |
| 
 | |
| static ssize_t poison_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_POISON;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_POISON;
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(poison);
 | |
| 
 | |
| static ssize_t store_user_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
 | |
| }
 | |
| 
 | |
| static ssize_t store_user_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	if (any_slab_objects(s))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	s->flags &= ~SLAB_STORE_USER;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_STORE_USER;
 | |
| 	calculate_sizes(s, -1);
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(store_user);
 | |
| 
 | |
| static ssize_t validate_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t validate_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (buf[0] == '1') {
 | |
| 		ret = validate_slab_cache(s);
 | |
| 		if (ret >= 0)
 | |
| 			ret = length;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| SLAB_ATTR(validate);
 | |
| 
 | |
| static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return -ENOSYS;
 | |
| 	return list_locations(s, buf, TRACK_ALLOC);
 | |
| }
 | |
| SLAB_ATTR_RO(alloc_calls);
 | |
| 
 | |
| static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	if (!(s->flags & SLAB_STORE_USER))
 | |
| 		return -ENOSYS;
 | |
| 	return list_locations(s, buf, TRACK_FREE);
 | |
| }
 | |
| SLAB_ATTR_RO(free_calls);
 | |
| #endif /* CONFIG_SLUB_DEBUG */
 | |
| 
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| static ssize_t failslab_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
 | |
| }
 | |
| 
 | |
| static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
 | |
| 							size_t length)
 | |
| {
 | |
| 	s->flags &= ~SLAB_FAILSLAB;
 | |
| 	if (buf[0] == '1')
 | |
| 		s->flags |= SLAB_FAILSLAB;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(failslab);
 | |
| #endif
 | |
| 
 | |
| static ssize_t shrink_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t shrink_store(struct kmem_cache *s,
 | |
| 			const char *buf, size_t length)
 | |
| {
 | |
| 	if (buf[0] == '1') {
 | |
| 		int rc = kmem_cache_shrink(s);
 | |
| 
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(shrink);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
 | |
| }
 | |
| 
 | |
| static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
 | |
| 				const char *buf, size_t length)
 | |
| {
 | |
| 	unsigned long ratio;
 | |
| 	int err;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &ratio);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (ratio <= 100)
 | |
| 		s->remote_node_defrag_ratio = ratio * 10;
 | |
| 
 | |
| 	return length;
 | |
| }
 | |
| SLAB_ATTR(remote_node_defrag_ratio);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
 | |
| {
 | |
| 	unsigned long sum  = 0;
 | |
| 	int cpu;
 | |
| 	int len;
 | |
| 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
 | |
| 
 | |
| 		data[cpu] = x;
 | |
| 		sum += x;
 | |
| 	}
 | |
| 
 | |
| 	len = sprintf(buf, "%lu", sum);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (data[cpu] && len < PAGE_SIZE - 20)
 | |
| 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
 | |
| 	}
 | |
| #endif
 | |
| 	kfree(data);
 | |
| 	return len + sprintf(buf + len, "\n");
 | |
| }
 | |
| 
 | |
| static void clear_stat(struct kmem_cache *s, enum stat_item si)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
 | |
| }
 | |
| 
 | |
| #define STAT_ATTR(si, text) 					\
 | |
| static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
 | |
| {								\
 | |
| 	return show_stat(s, buf, si);				\
 | |
| }								\
 | |
| static ssize_t text##_store(struct kmem_cache *s,		\
 | |
| 				const char *buf, size_t length)	\
 | |
| {								\
 | |
| 	if (buf[0] != '0')					\
 | |
| 		return -EINVAL;					\
 | |
| 	clear_stat(s, si);					\
 | |
| 	return length;						\
 | |
| }								\
 | |
| SLAB_ATTR(text);						\
 | |
| 
 | |
| STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
 | |
| STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
 | |
| STAT_ATTR(FREE_FASTPATH, free_fastpath);
 | |
| STAT_ATTR(FREE_SLOWPATH, free_slowpath);
 | |
| STAT_ATTR(FREE_FROZEN, free_frozen);
 | |
| STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
 | |
| STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
 | |
| STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
 | |
| STAT_ATTR(ALLOC_SLAB, alloc_slab);
 | |
| STAT_ATTR(ALLOC_REFILL, alloc_refill);
 | |
| STAT_ATTR(FREE_SLAB, free_slab);
 | |
| STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
 | |
| STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
 | |
| STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
 | |
| STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
 | |
| STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
 | |
| STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
 | |
| STAT_ATTR(ORDER_FALLBACK, order_fallback);
 | |
| #endif
 | |
| 
 | |
| static struct attribute *slab_attrs[] = {
 | |
| 	&slab_size_attr.attr,
 | |
| 	&object_size_attr.attr,
 | |
| 	&objs_per_slab_attr.attr,
 | |
| 	&order_attr.attr,
 | |
| 	&min_partial_attr.attr,
 | |
| 	&objects_attr.attr,
 | |
| 	&objects_partial_attr.attr,
 | |
| 	&partial_attr.attr,
 | |
| 	&cpu_slabs_attr.attr,
 | |
| 	&ctor_attr.attr,
 | |
| 	&aliases_attr.attr,
 | |
| 	&align_attr.attr,
 | |
| 	&hwcache_align_attr.attr,
 | |
| 	&reclaim_account_attr.attr,
 | |
| 	&destroy_by_rcu_attr.attr,
 | |
| 	&shrink_attr.attr,
 | |
| #ifdef CONFIG_SLUB_DEBUG
 | |
| 	&total_objects_attr.attr,
 | |
| 	&slabs_attr.attr,
 | |
| 	&sanity_checks_attr.attr,
 | |
| 	&trace_attr.attr,
 | |
| 	&red_zone_attr.attr,
 | |
| 	&poison_attr.attr,
 | |
| 	&store_user_attr.attr,
 | |
| 	&validate_attr.attr,
 | |
| 	&alloc_calls_attr.attr,
 | |
| 	&free_calls_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	&cache_dma_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	&remote_node_defrag_ratio_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_SLUB_STATS
 | |
| 	&alloc_fastpath_attr.attr,
 | |
| 	&alloc_slowpath_attr.attr,
 | |
| 	&free_fastpath_attr.attr,
 | |
| 	&free_slowpath_attr.attr,
 | |
| 	&free_frozen_attr.attr,
 | |
| 	&free_add_partial_attr.attr,
 | |
| 	&free_remove_partial_attr.attr,
 | |
| 	&alloc_from_partial_attr.attr,
 | |
| 	&alloc_slab_attr.attr,
 | |
| 	&alloc_refill_attr.attr,
 | |
| 	&free_slab_attr.attr,
 | |
| 	&cpuslab_flush_attr.attr,
 | |
| 	&deactivate_full_attr.attr,
 | |
| 	&deactivate_empty_attr.attr,
 | |
| 	&deactivate_to_head_attr.attr,
 | |
| 	&deactivate_to_tail_attr.attr,
 | |
| 	&deactivate_remote_frees_attr.attr,
 | |
| 	&order_fallback_attr.attr,
 | |
| #endif
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| 	&failslab_attr.attr,
 | |
| #endif
 | |
| 
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct attribute_group slab_attr_group = {
 | |
| 	.attrs = slab_attrs,
 | |
| };
 | |
| 
 | |
| static ssize_t slab_attr_show(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				char *buf)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->show)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	err = attribute->show(s, buf);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t slab_attr_store(struct kobject *kobj,
 | |
| 				struct attribute *attr,
 | |
| 				const char *buf, size_t len)
 | |
| {
 | |
| 	struct slab_attribute *attribute;
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	attribute = to_slab_attr(attr);
 | |
| 	s = to_slab(kobj);
 | |
| 
 | |
| 	if (!attribute->store)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	err = attribute->store(s, buf, len);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void kmem_cache_release(struct kobject *kobj)
 | |
| {
 | |
| 	struct kmem_cache *s = to_slab(kobj);
 | |
| 
 | |
| 	kfree(s->name);
 | |
| 	kfree(s);
 | |
| }
 | |
| 
 | |
| static const struct sysfs_ops slab_sysfs_ops = {
 | |
| 	.show = slab_attr_show,
 | |
| 	.store = slab_attr_store,
 | |
| };
 | |
| 
 | |
| static struct kobj_type slab_ktype = {
 | |
| 	.sysfs_ops = &slab_sysfs_ops,
 | |
| 	.release = kmem_cache_release
 | |
| };
 | |
| 
 | |
| static int uevent_filter(struct kset *kset, struct kobject *kobj)
 | |
| {
 | |
| 	struct kobj_type *ktype = get_ktype(kobj);
 | |
| 
 | |
| 	if (ktype == &slab_ktype)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct kset_uevent_ops slab_uevent_ops = {
 | |
| 	.filter = uevent_filter,
 | |
| };
 | |
| 
 | |
| static struct kset *slab_kset;
 | |
| 
 | |
| #define ID_STR_LENGTH 64
 | |
| 
 | |
| /* Create a unique string id for a slab cache:
 | |
|  *
 | |
|  * Format	:[flags-]size
 | |
|  */
 | |
| static char *create_unique_id(struct kmem_cache *s)
 | |
| {
 | |
| 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
 | |
| 	char *p = name;
 | |
| 
 | |
| 	BUG_ON(!name);
 | |
| 
 | |
| 	*p++ = ':';
 | |
| 	/*
 | |
| 	 * First flags affecting slabcache operations. We will only
 | |
| 	 * get here for aliasable slabs so we do not need to support
 | |
| 	 * too many flags. The flags here must cover all flags that
 | |
| 	 * are matched during merging to guarantee that the id is
 | |
| 	 * unique.
 | |
| 	 */
 | |
| 	if (s->flags & SLAB_CACHE_DMA)
 | |
| 		*p++ = 'd';
 | |
| 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
 | |
| 		*p++ = 'a';
 | |
| 	if (s->flags & SLAB_DEBUG_FREE)
 | |
| 		*p++ = 'F';
 | |
| 	if (!(s->flags & SLAB_NOTRACK))
 | |
| 		*p++ = 't';
 | |
| 	if (p != name + 1)
 | |
| 		*p++ = '-';
 | |
| 	p += sprintf(p, "%07d", s->size);
 | |
| 	BUG_ON(p > name + ID_STR_LENGTH - 1);
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| static int sysfs_slab_add(struct kmem_cache *s)
 | |
| {
 | |
| 	int err;
 | |
| 	const char *name;
 | |
| 	int unmergeable;
 | |
| 
 | |
| 	if (slab_state < SYSFS)
 | |
| 		/* Defer until later */
 | |
| 		return 0;
 | |
| 
 | |
| 	unmergeable = slab_unmergeable(s);
 | |
| 	if (unmergeable) {
 | |
| 		/*
 | |
| 		 * Slabcache can never be merged so we can use the name proper.
 | |
| 		 * This is typically the case for debug situations. In that
 | |
| 		 * case we can catch duplicate names easily.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, s->name);
 | |
| 		name = s->name;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Create a unique name for the slab as a target
 | |
| 		 * for the symlinks.
 | |
| 		 */
 | |
| 		name = create_unique_id(s);
 | |
| 	}
 | |
| 
 | |
| 	s->kobj.kset = slab_kset;
 | |
| 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
 | |
| 	if (err) {
 | |
| 		kobject_put(&s->kobj);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
 | |
| 	if (err) {
 | |
| 		kobject_del(&s->kobj);
 | |
| 		kobject_put(&s->kobj);
 | |
| 		return err;
 | |
| 	}
 | |
| 	kobject_uevent(&s->kobj, KOBJ_ADD);
 | |
| 	if (!unmergeable) {
 | |
| 		/* Setup first alias */
 | |
| 		sysfs_slab_alias(s, s->name);
 | |
| 		kfree(name);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sysfs_slab_remove(struct kmem_cache *s)
 | |
| {
 | |
| 	if (slab_state < SYSFS)
 | |
| 		/*
 | |
| 		 * Sysfs has not been setup yet so no need to remove the
 | |
| 		 * cache from sysfs.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
 | |
| 	kobject_del(&s->kobj);
 | |
| 	kobject_put(&s->kobj);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Need to buffer aliases during bootup until sysfs becomes
 | |
|  * available lest we lose that information.
 | |
|  */
 | |
| struct saved_alias {
 | |
| 	struct kmem_cache *s;
 | |
| 	const char *name;
 | |
| 	struct saved_alias *next;
 | |
| };
 | |
| 
 | |
| static struct saved_alias *alias_list;
 | |
| 
 | |
| static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
 | |
| {
 | |
| 	struct saved_alias *al;
 | |
| 
 | |
| 	if (slab_state == SYSFS) {
 | |
| 		/*
 | |
| 		 * If we have a leftover link then remove it.
 | |
| 		 */
 | |
| 		sysfs_remove_link(&slab_kset->kobj, name);
 | |
| 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
 | |
| 	}
 | |
| 
 | |
| 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
 | |
| 	if (!al)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	al->s = s;
 | |
| 	al->name = name;
 | |
| 	al->next = alias_list;
 | |
| 	alias_list = al;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init slab_sysfs_init(void)
 | |
| {
 | |
| 	struct kmem_cache *s;
 | |
| 	int err;
 | |
| 
 | |
| 	down_write(&slub_lock);
 | |
| 
 | |
| 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
 | |
| 	if (!slab_kset) {
 | |
| 		up_write(&slub_lock);
 | |
| 		printk(KERN_ERR "Cannot register slab subsystem.\n");
 | |
| 		return -ENOSYS;
 | |
| 	}
 | |
| 
 | |
| 	slab_state = SYSFS;
 | |
| 
 | |
| 	list_for_each_entry(s, &slab_caches, list) {
 | |
| 		err = sysfs_slab_add(s);
 | |
| 		if (err)
 | |
| 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
 | |
| 						" to sysfs\n", s->name);
 | |
| 	}
 | |
| 
 | |
| 	while (alias_list) {
 | |
| 		struct saved_alias *al = alias_list;
 | |
| 
 | |
| 		alias_list = alias_list->next;
 | |
| 		err = sysfs_slab_alias(al->s, al->name);
 | |
| 		if (err)
 | |
| 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
 | |
| 					" %s to sysfs\n", s->name);
 | |
| 		kfree(al);
 | |
| 	}
 | |
| 
 | |
| 	up_write(&slub_lock);
 | |
| 	resiliency_test();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(slab_sysfs_init);
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| /*
 | |
|  * The /proc/slabinfo ABI
 | |
|  */
 | |
| #ifdef CONFIG_SLABINFO
 | |
| static void print_slabinfo_header(struct seq_file *m)
 | |
| {
 | |
| 	seq_puts(m, "slabinfo - version: 2.1\n");
 | |
| 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
 | |
| 		 "<objperslab> <pagesperslab>");
 | |
| 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
 | |
| 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
 | |
| 	seq_putc(m, '\n');
 | |
| }
 | |
| 
 | |
| static void *s_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	loff_t n = *pos;
 | |
| 
 | |
| 	down_read(&slub_lock);
 | |
| 	if (!n)
 | |
| 		print_slabinfo_header(m);
 | |
| 
 | |
| 	return seq_list_start(&slab_caches, *pos);
 | |
| }
 | |
| 
 | |
| static void *s_next(struct seq_file *m, void *p, loff_t *pos)
 | |
| {
 | |
| 	return seq_list_next(p, &slab_caches, pos);
 | |
| }
 | |
| 
 | |
| static void s_stop(struct seq_file *m, void *p)
 | |
| {
 | |
| 	up_read(&slub_lock);
 | |
| }
 | |
| 
 | |
| static int s_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	unsigned long nr_partials = 0;
 | |
| 	unsigned long nr_slabs = 0;
 | |
| 	unsigned long nr_inuse = 0;
 | |
| 	unsigned long nr_objs = 0;
 | |
| 	unsigned long nr_free = 0;
 | |
| 	struct kmem_cache *s;
 | |
| 	int node;
 | |
| 
 | |
| 	s = list_entry(p, struct kmem_cache, list);
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		struct kmem_cache_node *n = get_node(s, node);
 | |
| 
 | |
| 		if (!n)
 | |
| 			continue;
 | |
| 
 | |
| 		nr_partials += n->nr_partial;
 | |
| 		nr_slabs += atomic_long_read(&n->nr_slabs);
 | |
| 		nr_objs += atomic_long_read(&n->total_objects);
 | |
| 		nr_free += count_partial(n, count_free);
 | |
| 	}
 | |
| 
 | |
| 	nr_inuse = nr_objs - nr_free;
 | |
| 
 | |
| 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
 | |
| 		   nr_objs, s->size, oo_objects(s->oo),
 | |
| 		   (1 << oo_order(s->oo)));
 | |
| 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
 | |
| 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
 | |
| 		   0UL);
 | |
| 	seq_putc(m, '\n');
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations slabinfo_op = {
 | |
| 	.start = s_start,
 | |
| 	.next = s_next,
 | |
| 	.stop = s_stop,
 | |
| 	.show = s_show,
 | |
| };
 | |
| 
 | |
| static int slabinfo_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &slabinfo_op);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_slabinfo_operations = {
 | |
| 	.open		= slabinfo_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= seq_release,
 | |
| };
 | |
| 
 | |
| static int __init slab_proc_init(void)
 | |
| {
 | |
| 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(slab_proc_init);
 | |
| #endif /* CONFIG_SLABINFO */
 |