mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 11:03:14 +00:00 
			
		
		
		
	 0116651c85
			
		
	
	
		0116651c85
		
	
	
	
	
		
			
			'end' shadows earlier one and is not necessary at all. Remove it and use 'pos' instead. This removes following sparse warnings: mm/filemap.c:2180:24: warning: symbol 'end' shadows an earlier one mm/filemap.c:2132:25: originally declared here Signed-off-by: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2532 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2532 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	linux/mm/filemap.c
 | |
|  *
 | |
|  * Copyright (C) 1994-1999  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the generic file mmap semantics used by
 | |
|  * most "normal" filesystems (but you don't /have/ to use this:
 | |
|  * the NFS filesystem used to do this differently, for example)
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/aio.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mm_inline.h> /* for page_is_file_cache() */
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * FIXME: remove all knowledge of the buffer layer from the core VM
 | |
|  */
 | |
| #include <linux/buffer_head.h> /* for try_to_free_buffers */
 | |
| 
 | |
| #include <asm/mman.h>
 | |
| 
 | |
| /*
 | |
|  * Shared mappings implemented 30.11.1994. It's not fully working yet,
 | |
|  * though.
 | |
|  *
 | |
|  * Shared mappings now work. 15.8.1995  Bruno.
 | |
|  *
 | |
|  * finished 'unifying' the page and buffer cache and SMP-threaded the
 | |
|  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock ordering:
 | |
|  *
 | |
|  *  ->i_mmap_lock		(truncate_pagecache)
 | |
|  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
 | |
|  *      ->swap_lock		(exclusive_swap_page, others)
 | |
|  *        ->mapping->tree_lock
 | |
|  *
 | |
|  *  ->i_mutex
 | |
|  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
 | |
|  *
 | |
|  *  ->mmap_sem
 | |
|  *    ->i_mmap_lock
 | |
|  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
 | |
|  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
 | |
|  *
 | |
|  *  ->mmap_sem
 | |
|  *    ->lock_page		(access_process_vm)
 | |
|  *
 | |
|  *  ->i_mutex			(generic_file_buffered_write)
 | |
|  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
 | |
|  *
 | |
|  *  ->i_mutex
 | |
|  *    ->i_alloc_sem             (various)
 | |
|  *
 | |
|  *  ->inode_lock
 | |
|  *    ->sb_lock			(fs/fs-writeback.c)
 | |
|  *    ->mapping->tree_lock	(__sync_single_inode)
 | |
|  *
 | |
|  *  ->i_mmap_lock
 | |
|  *    ->anon_vma.lock		(vma_adjust)
 | |
|  *
 | |
|  *  ->anon_vma.lock
 | |
|  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 | |
|  *
 | |
|  *  ->page_table_lock or pte_lock
 | |
|  *    ->swap_lock		(try_to_unmap_one)
 | |
|  *    ->private_lock		(try_to_unmap_one)
 | |
|  *    ->tree_lock		(try_to_unmap_one)
 | |
|  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
 | |
|  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
 | |
|  *    ->private_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 | |
|  *
 | |
|  *  ->task->proc_lock
 | |
|  *    ->dcache_lock		(proc_pid_lookup)
 | |
|  *
 | |
|  *  (code doesn't rely on that order, so you could switch it around)
 | |
|  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
 | |
|  *    ->i_mmap_lock
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Remove a page from the page cache and free it. Caller has to make
 | |
|  * sure the page is locked and that nobody else uses it - or that usage
 | |
|  * is safe.  The caller must hold the mapping's tree_lock.
 | |
|  */
 | |
| void __remove_from_page_cache(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 
 | |
| 	radix_tree_delete(&mapping->page_tree, page->index);
 | |
| 	page->mapping = NULL;
 | |
| 	mapping->nrpages--;
 | |
| 	__dec_zone_page_state(page, NR_FILE_PAGES);
 | |
| 	if (PageSwapBacked(page))
 | |
| 		__dec_zone_page_state(page, NR_SHMEM);
 | |
| 	BUG_ON(page_mapped(page));
 | |
| 
 | |
| 	/*
 | |
| 	 * Some filesystems seem to re-dirty the page even after
 | |
| 	 * the VM has canceled the dirty bit (eg ext3 journaling).
 | |
| 	 *
 | |
| 	 * Fix it up by doing a final dirty accounting check after
 | |
| 	 * having removed the page entirely.
 | |
| 	 */
 | |
| 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 | |
| 		dec_zone_page_state(page, NR_FILE_DIRTY);
 | |
| 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void remove_from_page_cache(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	spin_lock_irq(&mapping->tree_lock);
 | |
| 	__remove_from_page_cache(page);
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| 	mem_cgroup_uncharge_cache_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(remove_from_page_cache);
 | |
| 
 | |
| static int sync_page(void *word)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = container_of((unsigned long *)word, struct page, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * page_mapping() is being called without PG_locked held.
 | |
| 	 * Some knowledge of the state and use of the page is used to
 | |
| 	 * reduce the requirements down to a memory barrier.
 | |
| 	 * The danger here is of a stale page_mapping() return value
 | |
| 	 * indicating a struct address_space different from the one it's
 | |
| 	 * associated with when it is associated with one.
 | |
| 	 * After smp_mb(), it's either the correct page_mapping() for
 | |
| 	 * the page, or an old page_mapping() and the page's own
 | |
| 	 * page_mapping() has gone NULL.
 | |
| 	 * The ->sync_page() address_space operation must tolerate
 | |
| 	 * page_mapping() going NULL. By an amazing coincidence,
 | |
| 	 * this comes about because none of the users of the page
 | |
| 	 * in the ->sync_page() methods make essential use of the
 | |
| 	 * page_mapping(), merely passing the page down to the backing
 | |
| 	 * device's unplug functions when it's non-NULL, which in turn
 | |
| 	 * ignore it for all cases but swap, where only page_private(page) is
 | |
| 	 * of interest. When page_mapping() does go NULL, the entire
 | |
| 	 * call stack gracefully ignores the page and returns.
 | |
| 	 * -- wli
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	mapping = page_mapping(page);
 | |
| 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
 | |
| 		mapping->a_ops->sync_page(page);
 | |
| 	io_schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sync_page_killable(void *word)
 | |
| {
 | |
| 	sync_page(word);
 | |
| 	return fatal_signal_pending(current) ? -EINTR : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 | |
|  * @mapping:	address space structure to write
 | |
|  * @start:	offset in bytes where the range starts
 | |
|  * @end:	offset in bytes where the range ends (inclusive)
 | |
|  * @sync_mode:	enable synchronous operation
 | |
|  *
 | |
|  * Start writeback against all of a mapping's dirty pages that lie
 | |
|  * within the byte offsets <start, end> inclusive.
 | |
|  *
 | |
|  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | |
|  * opposed to a regular memory cleansing writeback.  The difference between
 | |
|  * these two operations is that if a dirty page/buffer is encountered, it must
 | |
|  * be waited upon, and not just skipped over.
 | |
|  */
 | |
| int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end, int sync_mode)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = sync_mode,
 | |
| 		.nr_to_write = LONG_MAX,
 | |
| 		.range_start = start,
 | |
| 		.range_end = end,
 | |
| 	};
 | |
| 
 | |
| 	if (!mapping_cap_writeback_dirty(mapping))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = do_writepages(mapping, &wbc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int __filemap_fdatawrite(struct address_space *mapping,
 | |
| 	int sync_mode)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 | |
| }
 | |
| 
 | |
| int filemap_fdatawrite(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite);
 | |
| 
 | |
| int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_flush - mostly a non-blocking flush
 | |
|  * @mapping:	target address_space
 | |
|  *
 | |
|  * This is a mostly non-blocking flush.  Not suitable for data-integrity
 | |
|  * purposes - I/O may not be started against all dirty pages.
 | |
|  */
 | |
| int filemap_flush(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_flush);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_range - wait for writeback to complete
 | |
|  * @mapping:		address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * in the given range and wait for all of them.
 | |
|  */
 | |
| int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 | |
| 			    loff_t end_byte)
 | |
| {
 | |
| 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 | |
| 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (end_byte < start_byte)
 | |
| 		return 0;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while ((index <= end) &&
 | |
| 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 | |
| 			PAGECACHE_TAG_WRITEBACK,
 | |
| 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			/* until radix tree lookup accepts end_index */
 | |
| 			if (page->index > end)
 | |
| 				continue;
 | |
| 
 | |
| 			wait_on_page_writeback(page);
 | |
| 			if (PageError(page))
 | |
| 				ret = -EIO;
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		ret = -ENOSPC;
 | |
| 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
 | |
| 		ret = -EIO;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait - wait for all under-writeback pages to complete
 | |
|  * @mapping: address space structure to wait for
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * and wait for all of them.
 | |
|  */
 | |
| int filemap_fdatawait(struct address_space *mapping)
 | |
| {
 | |
| 	loff_t i_size = i_size_read(mapping->host);
 | |
| 
 | |
| 	if (i_size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait);
 | |
| 
 | |
| int filemap_write_and_wait(struct address_space *mapping)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (mapping->nrpages) {
 | |
| 		err = filemap_fdatawrite(mapping);
 | |
| 		/*
 | |
| 		 * Even if the above returned error, the pages may be
 | |
| 		 * written partially (e.g. -ENOSPC), so we wait for it.
 | |
| 		 * But the -EIO is special case, it may indicate the worst
 | |
| 		 * thing (e.g. bug) happened, so we avoid waiting for it.
 | |
| 		 */
 | |
| 		if (err != -EIO) {
 | |
| 			int err2 = filemap_fdatawait(mapping);
 | |
| 			if (!err)
 | |
| 				err = err2;
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_write_and_wait);
 | |
| 
 | |
| /**
 | |
|  * filemap_write_and_wait_range - write out & wait on a file range
 | |
|  * @mapping:	the address_space for the pages
 | |
|  * @lstart:	offset in bytes where the range starts
 | |
|  * @lend:	offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Write out and wait upon file offsets lstart->lend, inclusive.
 | |
|  *
 | |
|  * Note that `lend' is inclusive (describes the last byte to be written) so
 | |
|  * that this function can be used to write to the very end-of-file (end = -1).
 | |
|  */
 | |
| int filemap_write_and_wait_range(struct address_space *mapping,
 | |
| 				 loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (mapping->nrpages) {
 | |
| 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						 WB_SYNC_ALL);
 | |
| 		/* See comment of filemap_write_and_wait() */
 | |
| 		if (err != -EIO) {
 | |
| 			int err2 = filemap_fdatawait_range(mapping,
 | |
| 						lstart, lend);
 | |
| 			if (!err)
 | |
| 				err = err2;
 | |
| 		}
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_write_and_wait_range);
 | |
| 
 | |
| /**
 | |
|  * add_to_page_cache_locked - add a locked page to the pagecache
 | |
|  * @page:	page to add
 | |
|  * @mapping:	the page's address_space
 | |
|  * @offset:	page index
 | |
|  * @gfp_mask:	page allocation mode
 | |
|  *
 | |
|  * This function is used to add a page to the pagecache. It must be locked.
 | |
|  * This function does not add the page to the LRU.  The caller must do that.
 | |
|  */
 | |
| int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 | |
| 		pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	VM_BUG_ON(!PageLocked(page));
 | |
| 
 | |
| 	error = mem_cgroup_cache_charge(page, current->mm,
 | |
| 					gfp_mask & GFP_RECLAIM_MASK);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 | |
| 	if (error == 0) {
 | |
| 		page_cache_get(page);
 | |
| 		page->mapping = mapping;
 | |
| 		page->index = offset;
 | |
| 
 | |
| 		spin_lock_irq(&mapping->tree_lock);
 | |
| 		error = radix_tree_insert(&mapping->page_tree, offset, page);
 | |
| 		if (likely(!error)) {
 | |
| 			mapping->nrpages++;
 | |
| 			__inc_zone_page_state(page, NR_FILE_PAGES);
 | |
| 			if (PageSwapBacked(page))
 | |
| 				__inc_zone_page_state(page, NR_SHMEM);
 | |
| 			spin_unlock_irq(&mapping->tree_lock);
 | |
| 		} else {
 | |
| 			page->mapping = NULL;
 | |
| 			spin_unlock_irq(&mapping->tree_lock);
 | |
| 			mem_cgroup_uncharge_cache_page(page);
 | |
| 			page_cache_release(page);
 | |
| 		}
 | |
| 		radix_tree_preload_end();
 | |
| 	} else
 | |
| 		mem_cgroup_uncharge_cache_page(page);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(add_to_page_cache_locked);
 | |
| 
 | |
| int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 | |
| 				pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
 | |
| 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
 | |
| 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
 | |
| 	 * (called in add_to_page_cache) needs to know where they're going too.
 | |
| 	 */
 | |
| 	if (mapping_cap_swap_backed(mapping))
 | |
| 		SetPageSwapBacked(page);
 | |
| 
 | |
| 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 | |
| 	if (ret == 0) {
 | |
| 		if (page_is_file_cache(page))
 | |
| 			lru_cache_add_file(page);
 | |
| 		else
 | |
| 			lru_cache_add_anon(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| struct page *__page_cache_alloc(gfp_t gfp)
 | |
| {
 | |
| 	int n;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (cpuset_do_page_mem_spread()) {
 | |
| 		get_mems_allowed();
 | |
| 		n = cpuset_mem_spread_node();
 | |
| 		page = alloc_pages_exact_node(n, gfp, 0);
 | |
| 		put_mems_allowed();
 | |
| 		return page;
 | |
| 	}
 | |
| 	return alloc_pages(gfp, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(__page_cache_alloc);
 | |
| #endif
 | |
| 
 | |
| static int __sleep_on_page_lock(void *word)
 | |
| {
 | |
| 	io_schedule();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to wait for pages to become available there must be
 | |
|  * waitqueues associated with pages. By using a hash table of
 | |
|  * waitqueues where the bucket discipline is to maintain all
 | |
|  * waiters on the same queue and wake all when any of the pages
 | |
|  * become available, and for the woken contexts to check to be
 | |
|  * sure the appropriate page became available, this saves space
 | |
|  * at a cost of "thundering herd" phenomena during rare hash
 | |
|  * collisions.
 | |
|  */
 | |
| static wait_queue_head_t *page_waitqueue(struct page *page)
 | |
| {
 | |
| 	const struct zone *zone = page_zone(page);
 | |
| 
 | |
| 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 | |
| }
 | |
| 
 | |
| static inline void wake_up_page(struct page *page, int bit)
 | |
| {
 | |
| 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 | |
| }
 | |
| 
 | |
| void wait_on_page_bit(struct page *page, int bit_nr)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 | |
| 
 | |
| 	if (test_bit(bit_nr, &page->flags))
 | |
| 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
 | |
| 							TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_on_page_bit);
 | |
| 
 | |
| /**
 | |
|  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 | |
|  * @page: Page defining the wait queue of interest
 | |
|  * @waiter: Waiter to add to the queue
 | |
|  *
 | |
|  * Add an arbitrary @waiter to the wait queue for the nominated @page.
 | |
|  */
 | |
| void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 | |
| {
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue(q, waiter);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_page_wait_queue);
 | |
| 
 | |
| /**
 | |
|  * unlock_page - unlock a locked page
 | |
|  * @page: the page
 | |
|  *
 | |
|  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 | |
|  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 | |
|  * mechananism between PageLocked pages and PageWriteback pages is shared.
 | |
|  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 | |
|  *
 | |
|  * The mb is necessary to enforce ordering between the clear_bit and the read
 | |
|  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 | |
|  */
 | |
| void unlock_page(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON(!PageLocked(page));
 | |
| 	clear_bit_unlock(PG_locked, &page->flags);
 | |
| 	smp_mb__after_clear_bit();
 | |
| 	wake_up_page(page, PG_locked);
 | |
| }
 | |
| EXPORT_SYMBOL(unlock_page);
 | |
| 
 | |
| /**
 | |
|  * end_page_writeback - end writeback against a page
 | |
|  * @page: the page
 | |
|  */
 | |
| void end_page_writeback(struct page *page)
 | |
| {
 | |
| 	if (TestClearPageReclaim(page))
 | |
| 		rotate_reclaimable_page(page);
 | |
| 
 | |
| 	if (!test_clear_page_writeback(page))
 | |
| 		BUG();
 | |
| 
 | |
| 	smp_mb__after_clear_bit();
 | |
| 	wake_up_page(page, PG_writeback);
 | |
| }
 | |
| EXPORT_SYMBOL(end_page_writeback);
 | |
| 
 | |
| /**
 | |
|  * __lock_page - get a lock on the page, assuming we need to sleep to get it
 | |
|  * @page: the page to lock
 | |
|  *
 | |
|  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 | |
|  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 | |
|  * chances are that on the second loop, the block layer's plug list is empty,
 | |
|  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 | |
|  */
 | |
| void __lock_page(struct page *page)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 | |
| 
 | |
| 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
 | |
| 							TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL(__lock_page);
 | |
| 
 | |
| int __lock_page_killable(struct page *page)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 | |
| 
 | |
| 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 | |
| 					sync_page_killable, TASK_KILLABLE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__lock_page_killable);
 | |
| 
 | |
| /**
 | |
|  * __lock_page_nosync - get a lock on the page, without calling sync_page()
 | |
|  * @page: the page to lock
 | |
|  *
 | |
|  * Variant of lock_page that does not require the caller to hold a reference
 | |
|  * on the page's mapping.
 | |
|  */
 | |
| void __lock_page_nosync(struct page *page)
 | |
| {
 | |
| 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 | |
| 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
 | |
| 							TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 | |
| 			 unsigned int flags)
 | |
| {
 | |
| 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
 | |
| 		__lock_page(page);
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 		wait_on_page_locked(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_get_page - find and get a page reference
 | |
|  * @mapping: the address_space to search
 | |
|  * @offset: the page index
 | |
|  *
 | |
|  * Is there a pagecache struct page at the given (mapping, offset) tuple?
 | |
|  * If yes, increment its refcount and return it; if no, return NULL.
 | |
|  */
 | |
| struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 | |
| {
 | |
| 	void **pagep;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| repeat:
 | |
| 	page = NULL;
 | |
| 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 | |
| 	if (pagep) {
 | |
| 		page = radix_tree_deref_slot(pagep);
 | |
| 		if (unlikely(!page || page == RADIX_TREE_RETRY))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/*
 | |
| 		 * Has the page moved?
 | |
| 		 * This is part of the lockless pagecache protocol. See
 | |
| 		 * include/linux/pagemap.h for details.
 | |
| 		 */
 | |
| 		if (unlikely(page != *pagep)) {
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(find_get_page);
 | |
| 
 | |
| /**
 | |
|  * find_lock_page - locate, pin and lock a pagecache page
 | |
|  * @mapping: the address_space to search
 | |
|  * @offset: the page index
 | |
|  *
 | |
|  * Locates the desired pagecache page, locks it, increments its reference
 | |
|  * count and returns its address.
 | |
|  *
 | |
|  * Returns zero if the page was not present. find_lock_page() may sleep.
 | |
|  */
 | |
| struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| repeat:
 | |
| 	page = find_get_page(mapping, offset);
 | |
| 	if (page) {
 | |
| 		lock_page(page);
 | |
| 		/* Has the page been truncated? */
 | |
| 		if (unlikely(page->mapping != mapping)) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		VM_BUG_ON(page->index != offset);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(find_lock_page);
 | |
| 
 | |
| /**
 | |
|  * find_or_create_page - locate or add a pagecache page
 | |
|  * @mapping: the page's address_space
 | |
|  * @index: the page's index into the mapping
 | |
|  * @gfp_mask: page allocation mode
 | |
|  *
 | |
|  * Locates a page in the pagecache.  If the page is not present, a new page
 | |
|  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 | |
|  * LRU list.  The returned page is locked and has its reference count
 | |
|  * incremented.
 | |
|  *
 | |
|  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 | |
|  * allocation!
 | |
|  *
 | |
|  * find_or_create_page() returns the desired page's address, or zero on
 | |
|  * memory exhaustion.
 | |
|  */
 | |
| struct page *find_or_create_page(struct address_space *mapping,
 | |
| 		pgoff_t index, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = find_lock_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		page = __page_cache_alloc(gfp_mask);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		/*
 | |
| 		 * We want a regular kernel memory (not highmem or DMA etc)
 | |
| 		 * allocation for the radix tree nodes, but we need to honour
 | |
| 		 * the context-specific requirements the caller has asked for.
 | |
| 		 * GFP_RECLAIM_MASK collects those requirements.
 | |
| 		 */
 | |
| 		err = add_to_page_cache_lru(page, mapping, index,
 | |
| 			(gfp_mask & GFP_RECLAIM_MASK));
 | |
| 		if (unlikely(err)) {
 | |
| 			page_cache_release(page);
 | |
| 			page = NULL;
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(find_or_create_page);
 | |
| 
 | |
| /**
 | |
|  * find_get_pages - gang pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  * @pages:	Where the resulting pages are placed
 | |
|  *
 | |
|  * find_get_pages() will search for and return a group of up to
 | |
|  * @nr_pages pages in the mapping.  The pages are placed at @pages.
 | |
|  * find_get_pages() takes a reference against the returned pages.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous pages with ascending
 | |
|  * indexes.  There may be holes in the indices due to not-present pages.
 | |
|  *
 | |
|  * find_get_pages() returns the number of pages which were found.
 | |
|  */
 | |
| unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 | |
| 			    unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int ret;
 | |
| 	unsigned int nr_found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| restart:
 | |
| 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 | |
| 				(void ***)pages, start, nr_pages);
 | |
| 	ret = 0;
 | |
| 	for (i = 0; i < nr_found; i++) {
 | |
| 		struct page *page;
 | |
| repeat:
 | |
| 		page = radix_tree_deref_slot((void **)pages[i]);
 | |
| 		if (unlikely(!page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * this can only trigger if nr_found == 1, making livelock
 | |
| 		 * a non issue.
 | |
| 		 */
 | |
| 		if (unlikely(page == RADIX_TREE_RETRY))
 | |
| 			goto restart;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/* Has the page moved? */
 | |
| 		if (unlikely(page != *((void **)pages[i]))) {
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		pages[ret] = page;
 | |
| 		ret++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_get_pages_contig - gang contiguous pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @index:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  * @pages:	Where the resulting pages are placed
 | |
|  *
 | |
|  * find_get_pages_contig() works exactly like find_get_pages(), except
 | |
|  * that the returned number of pages are guaranteed to be contiguous.
 | |
|  *
 | |
|  * find_get_pages_contig() returns the number of pages which were found.
 | |
|  */
 | |
| unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 | |
| 			       unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int ret;
 | |
| 	unsigned int nr_found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| restart:
 | |
| 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
 | |
| 				(void ***)pages, index, nr_pages);
 | |
| 	ret = 0;
 | |
| 	for (i = 0; i < nr_found; i++) {
 | |
| 		struct page *page;
 | |
| repeat:
 | |
| 		page = radix_tree_deref_slot((void **)pages[i]);
 | |
| 		if (unlikely(!page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * this can only trigger if nr_found == 1, making livelock
 | |
| 		 * a non issue.
 | |
| 		 */
 | |
| 		if (unlikely(page == RADIX_TREE_RETRY))
 | |
| 			goto restart;
 | |
| 
 | |
| 		if (page->mapping == NULL || page->index != index)
 | |
| 			break;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/* Has the page moved? */
 | |
| 		if (unlikely(page != *((void **)pages[i]))) {
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		pages[ret] = page;
 | |
| 		ret++;
 | |
| 		index++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(find_get_pages_contig);
 | |
| 
 | |
| /**
 | |
|  * find_get_pages_tag - find and return pages that match @tag
 | |
|  * @mapping:	the address_space to search
 | |
|  * @index:	the starting page index
 | |
|  * @tag:	the tag index
 | |
|  * @nr_pages:	the maximum number of pages
 | |
|  * @pages:	where the resulting pages are placed
 | |
|  *
 | |
|  * Like find_get_pages, except we only return pages which are tagged with
 | |
|  * @tag.   We update @index to index the next page for the traversal.
 | |
|  */
 | |
| unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 | |
| 			int tag, unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int ret;
 | |
| 	unsigned int nr_found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| restart:
 | |
| 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
 | |
| 				(void ***)pages, *index, nr_pages, tag);
 | |
| 	ret = 0;
 | |
| 	for (i = 0; i < nr_found; i++) {
 | |
| 		struct page *page;
 | |
| repeat:
 | |
| 		page = radix_tree_deref_slot((void **)pages[i]);
 | |
| 		if (unlikely(!page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * this can only trigger if nr_found == 1, making livelock
 | |
| 		 * a non issue.
 | |
| 		 */
 | |
| 		if (unlikely(page == RADIX_TREE_RETRY))
 | |
| 			goto restart;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		/* Has the page moved? */
 | |
| 		if (unlikely(page != *((void **)pages[i]))) {
 | |
| 			page_cache_release(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		pages[ret] = page;
 | |
| 		ret++;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (ret)
 | |
| 		*index = pages[ret - 1]->index + 1;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(find_get_pages_tag);
 | |
| 
 | |
| /**
 | |
|  * grab_cache_page_nowait - returns locked page at given index in given cache
 | |
|  * @mapping: target address_space
 | |
|  * @index: the page index
 | |
|  *
 | |
|  * Same as grab_cache_page(), but do not wait if the page is unavailable.
 | |
|  * This is intended for speculative data generators, where the data can
 | |
|  * be regenerated if the page couldn't be grabbed.  This routine should
 | |
|  * be safe to call while holding the lock for another page.
 | |
|  *
 | |
|  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 | |
|  * and deadlock against the caller's locked page.
 | |
|  */
 | |
| struct page *
 | |
| grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	struct page *page = find_get_page(mapping, index);
 | |
| 
 | |
| 	if (page) {
 | |
| 		if (trylock_page(page))
 | |
| 			return page;
 | |
| 		page_cache_release(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
 | |
| 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
 | |
| 		page_cache_release(page);
 | |
| 		page = NULL;
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(grab_cache_page_nowait);
 | |
| 
 | |
| /*
 | |
|  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 | |
|  * a _large_ part of the i/o request. Imagine the worst scenario:
 | |
|  *
 | |
|  *      ---R__________________________________________B__________
 | |
|  *         ^ reading here                             ^ bad block(assume 4k)
 | |
|  *
 | |
|  * read(R) => miss => readahead(R...B) => media error => frustrating retries
 | |
|  * => failing the whole request => read(R) => read(R+1) =>
 | |
|  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 | |
|  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 | |
|  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 | |
|  *
 | |
|  * It is going insane. Fix it by quickly scaling down the readahead size.
 | |
|  */
 | |
| static void shrink_readahead_size_eio(struct file *filp,
 | |
| 					struct file_ra_state *ra)
 | |
| {
 | |
| 	ra->ra_pages /= 4;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_generic_file_read - generic file read routine
 | |
|  * @filp:	the file to read
 | |
|  * @ppos:	current file position
 | |
|  * @desc:	read_descriptor
 | |
|  * @actor:	read method
 | |
|  *
 | |
|  * This is a generic file read routine, and uses the
 | |
|  * mapping->a_ops->readpage() function for the actual low-level stuff.
 | |
|  *
 | |
|  * This is really ugly. But the goto's actually try to clarify some
 | |
|  * of the logic when it comes to error handling etc.
 | |
|  */
 | |
| static void do_generic_file_read(struct file *filp, loff_t *ppos,
 | |
| 		read_descriptor_t *desc, read_actor_t actor)
 | |
| {
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t last_index;
 | |
| 	pgoff_t prev_index;
 | |
| 	unsigned long offset;      /* offset into pagecache page */
 | |
| 	unsigned int prev_offset;
 | |
| 	int error;
 | |
| 
 | |
| 	index = *ppos >> PAGE_CACHE_SHIFT;
 | |
| 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
 | |
| 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
 | |
| 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 | |
| 	offset = *ppos & ~PAGE_CACHE_MASK;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct page *page;
 | |
| 		pgoff_t end_index;
 | |
| 		loff_t isize;
 | |
| 		unsigned long nr, ret;
 | |
| 
 | |
| 		cond_resched();
 | |
| find_page:
 | |
| 		page = find_get_page(mapping, index);
 | |
| 		if (!page) {
 | |
| 			page_cache_sync_readahead(mapping,
 | |
| 					ra, filp,
 | |
| 					index, last_index - index);
 | |
| 			page = find_get_page(mapping, index);
 | |
| 			if (unlikely(page == NULL))
 | |
| 				goto no_cached_page;
 | |
| 		}
 | |
| 		if (PageReadahead(page)) {
 | |
| 			page_cache_async_readahead(mapping,
 | |
| 					ra, filp, page,
 | |
| 					index, last_index - index);
 | |
| 		}
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
 | |
| 					!mapping->a_ops->is_partially_uptodate)
 | |
| 				goto page_not_up_to_date;
 | |
| 			if (!trylock_page(page))
 | |
| 				goto page_not_up_to_date;
 | |
| 			if (!mapping->a_ops->is_partially_uptodate(page,
 | |
| 								desc, offset))
 | |
| 				goto page_not_up_to_date_locked;
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| page_ok:
 | |
| 		/*
 | |
| 		 * i_size must be checked after we know the page is Uptodate.
 | |
| 		 *
 | |
| 		 * Checking i_size after the check allows us to calculate
 | |
| 		 * the correct value for "nr", which means the zero-filled
 | |
| 		 * part of the page is not copied back to userspace (unless
 | |
| 		 * another truncate extends the file - this is desired though).
 | |
| 		 */
 | |
| 
 | |
| 		isize = i_size_read(inode);
 | |
| 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 | |
| 		if (unlikely(!isize || index > end_index)) {
 | |
| 			page_cache_release(page);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* nr is the maximum number of bytes to copy from this page */
 | |
| 		nr = PAGE_CACHE_SIZE;
 | |
| 		if (index == end_index) {
 | |
| 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 | |
| 			if (nr <= offset) {
 | |
| 				page_cache_release(page);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		nr = nr - offset;
 | |
| 
 | |
| 		/* If users can be writing to this page using arbitrary
 | |
| 		 * virtual addresses, take care about potential aliasing
 | |
| 		 * before reading the page on the kernel side.
 | |
| 		 */
 | |
| 		if (mapping_writably_mapped(mapping))
 | |
| 			flush_dcache_page(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * When a sequential read accesses a page several times,
 | |
| 		 * only mark it as accessed the first time.
 | |
| 		 */
 | |
| 		if (prev_index != index || offset != prev_offset)
 | |
| 			mark_page_accessed(page);
 | |
| 		prev_index = index;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have the page, and it's up-to-date, so
 | |
| 		 * now we can copy it to user space...
 | |
| 		 *
 | |
| 		 * The actor routine returns how many bytes were actually used..
 | |
| 		 * NOTE! This may not be the same as how much of a user buffer
 | |
| 		 * we filled up (we may be padding etc), so we can only update
 | |
| 		 * "pos" here (the actor routine has to update the user buffer
 | |
| 		 * pointers and the remaining count).
 | |
| 		 */
 | |
| 		ret = actor(desc, page, offset, nr);
 | |
| 		offset += ret;
 | |
| 		index += offset >> PAGE_CACHE_SHIFT;
 | |
| 		offset &= ~PAGE_CACHE_MASK;
 | |
| 		prev_offset = offset;
 | |
| 
 | |
| 		page_cache_release(page);
 | |
| 		if (ret == nr && desc->count)
 | |
| 			continue;
 | |
| 		goto out;
 | |
| 
 | |
| page_not_up_to_date:
 | |
| 		/* Get exclusive access to the page ... */
 | |
| 		error = lock_page_killable(page);
 | |
| 		if (unlikely(error))
 | |
| 			goto readpage_error;
 | |
| 
 | |
| page_not_up_to_date_locked:
 | |
| 		/* Did it get truncated before we got the lock? */
 | |
| 		if (!page->mapping) {
 | |
| 			unlock_page(page);
 | |
| 			page_cache_release(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Did somebody else fill it already? */
 | |
| 		if (PageUptodate(page)) {
 | |
| 			unlock_page(page);
 | |
| 			goto page_ok;
 | |
| 		}
 | |
| 
 | |
| readpage:
 | |
| 		/*
 | |
| 		 * A previous I/O error may have been due to temporary
 | |
| 		 * failures, eg. multipath errors.
 | |
| 		 * PG_error will be set again if readpage fails.
 | |
| 		 */
 | |
| 		ClearPageError(page);
 | |
| 		/* Start the actual read. The read will unlock the page. */
 | |
| 		error = mapping->a_ops->readpage(filp, page);
 | |
| 
 | |
| 		if (unlikely(error)) {
 | |
| 			if (error == AOP_TRUNCATED_PAGE) {
 | |
| 				page_cache_release(page);
 | |
| 				goto find_page;
 | |
| 			}
 | |
| 			goto readpage_error;
 | |
| 		}
 | |
| 
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			error = lock_page_killable(page);
 | |
| 			if (unlikely(error))
 | |
| 				goto readpage_error;
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				if (page->mapping == NULL) {
 | |
| 					/*
 | |
| 					 * invalidate_mapping_pages got it
 | |
| 					 */
 | |
| 					unlock_page(page);
 | |
| 					page_cache_release(page);
 | |
| 					goto find_page;
 | |
| 				}
 | |
| 				unlock_page(page);
 | |
| 				shrink_readahead_size_eio(filp, ra);
 | |
| 				error = -EIO;
 | |
| 				goto readpage_error;
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 
 | |
| 		goto page_ok;
 | |
| 
 | |
| readpage_error:
 | |
| 		/* UHHUH! A synchronous read error occurred. Report it */
 | |
| 		desc->error = error;
 | |
| 		page_cache_release(page);
 | |
| 		goto out;
 | |
| 
 | |
| no_cached_page:
 | |
| 		/*
 | |
| 		 * Ok, it wasn't cached, so we need to create a new
 | |
| 		 * page..
 | |
| 		 */
 | |
| 		page = page_cache_alloc_cold(mapping);
 | |
| 		if (!page) {
 | |
| 			desc->error = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		error = add_to_page_cache_lru(page, mapping,
 | |
| 						index, GFP_KERNEL);
 | |
| 		if (error) {
 | |
| 			page_cache_release(page);
 | |
| 			if (error == -EEXIST)
 | |
| 				goto find_page;
 | |
| 			desc->error = error;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		goto readpage;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	ra->prev_pos = prev_index;
 | |
| 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
 | |
| 	ra->prev_pos |= prev_offset;
 | |
| 
 | |
| 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
 | |
| 	file_accessed(filp);
 | |
| }
 | |
| 
 | |
| int file_read_actor(read_descriptor_t *desc, struct page *page,
 | |
| 			unsigned long offset, unsigned long size)
 | |
| {
 | |
| 	char *kaddr;
 | |
| 	unsigned long left, count = desc->count;
 | |
| 
 | |
| 	if (size > count)
 | |
| 		size = count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Faults on the destination of a read are common, so do it before
 | |
| 	 * taking the kmap.
 | |
| 	 */
 | |
| 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		left = __copy_to_user_inatomic(desc->arg.buf,
 | |
| 						kaddr + offset, size);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 		if (left == 0)
 | |
| 			goto success;
 | |
| 	}
 | |
| 
 | |
| 	/* Do it the slow way */
 | |
| 	kaddr = kmap(page);
 | |
| 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
 | |
| 	kunmap(page);
 | |
| 
 | |
| 	if (left) {
 | |
| 		size -= left;
 | |
| 		desc->error = -EFAULT;
 | |
| 	}
 | |
| success:
 | |
| 	desc->count = count - size;
 | |
| 	desc->written += size;
 | |
| 	desc->arg.buf += size;
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Performs necessary checks before doing a write
 | |
|  * @iov:	io vector request
 | |
|  * @nr_segs:	number of segments in the iovec
 | |
|  * @count:	number of bytes to write
 | |
|  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
 | |
|  *
 | |
|  * Adjust number of segments and amount of bytes to write (nr_segs should be
 | |
|  * properly initialized first). Returns appropriate error code that caller
 | |
|  * should return or zero in case that write should be allowed.
 | |
|  */
 | |
| int generic_segment_checks(const struct iovec *iov,
 | |
| 			unsigned long *nr_segs, size_t *count, int access_flags)
 | |
| {
 | |
| 	unsigned long   seg;
 | |
| 	size_t cnt = 0;
 | |
| 	for (seg = 0; seg < *nr_segs; seg++) {
 | |
| 		const struct iovec *iv = &iov[seg];
 | |
| 
 | |
| 		/*
 | |
| 		 * If any segment has a negative length, or the cumulative
 | |
| 		 * length ever wraps negative then return -EINVAL.
 | |
| 		 */
 | |
| 		cnt += iv->iov_len;
 | |
| 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
 | |
| 			return -EINVAL;
 | |
| 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
 | |
| 			continue;
 | |
| 		if (seg == 0)
 | |
| 			return -EFAULT;
 | |
| 		*nr_segs = seg;
 | |
| 		cnt -= iv->iov_len;	/* This segment is no good */
 | |
| 		break;
 | |
| 	}
 | |
| 	*count = cnt;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_segment_checks);
 | |
| 
 | |
| /**
 | |
|  * generic_file_aio_read - generic filesystem read routine
 | |
|  * @iocb:	kernel I/O control block
 | |
|  * @iov:	io vector request
 | |
|  * @nr_segs:	number of segments in the iovec
 | |
|  * @pos:	current file position
 | |
|  *
 | |
|  * This is the "read()" routine for all filesystems
 | |
|  * that can use the page cache directly.
 | |
|  */
 | |
| ssize_t
 | |
| generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long nr_segs, loff_t pos)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	ssize_t retval;
 | |
| 	unsigned long seg = 0;
 | |
| 	size_t count;
 | |
| 	loff_t *ppos = &iocb->ki_pos;
 | |
| 
 | |
| 	count = 0;
 | |
| 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 | |
| 	if (filp->f_flags & O_DIRECT) {
 | |
| 		loff_t size;
 | |
| 		struct address_space *mapping;
 | |
| 		struct inode *inode;
 | |
| 
 | |
| 		mapping = filp->f_mapping;
 | |
| 		inode = mapping->host;
 | |
| 		if (!count)
 | |
| 			goto out; /* skip atime */
 | |
| 		size = i_size_read(inode);
 | |
| 		if (pos < size) {
 | |
| 			retval = filemap_write_and_wait_range(mapping, pos,
 | |
| 					pos + iov_length(iov, nr_segs) - 1);
 | |
| 			if (!retval) {
 | |
| 				retval = mapping->a_ops->direct_IO(READ, iocb,
 | |
| 							iov, pos, nr_segs);
 | |
| 			}
 | |
| 			if (retval > 0) {
 | |
| 				*ppos = pos + retval;
 | |
| 				count -= retval;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Btrfs can have a short DIO read if we encounter
 | |
| 			 * compressed extents, so if there was an error, or if
 | |
| 			 * we've already read everything we wanted to, or if
 | |
| 			 * there was a short read because we hit EOF, go ahead
 | |
| 			 * and return.  Otherwise fallthrough to buffered io for
 | |
| 			 * the rest of the read.
 | |
| 			 */
 | |
| 			if (retval < 0 || !count || *ppos >= size) {
 | |
| 				file_accessed(filp);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	count = retval;
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		read_descriptor_t desc;
 | |
| 		loff_t offset = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we did a short DIO read we need to skip the section of the
 | |
| 		 * iov that we've already read data into.
 | |
| 		 */
 | |
| 		if (count) {
 | |
| 			if (count > iov[seg].iov_len) {
 | |
| 				count -= iov[seg].iov_len;
 | |
| 				continue;
 | |
| 			}
 | |
| 			offset = count;
 | |
| 			count = 0;
 | |
| 		}
 | |
| 
 | |
| 		desc.written = 0;
 | |
| 		desc.arg.buf = iov[seg].iov_base + offset;
 | |
| 		desc.count = iov[seg].iov_len - offset;
 | |
| 		if (desc.count == 0)
 | |
| 			continue;
 | |
| 		desc.error = 0;
 | |
| 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
 | |
| 		retval += desc.written;
 | |
| 		if (desc.error) {
 | |
| 			retval = retval ?: desc.error;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (desc.count > 0)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_aio_read);
 | |
| 
 | |
| static ssize_t
 | |
| do_readahead(struct address_space *mapping, struct file *filp,
 | |
| 	     pgoff_t index, unsigned long nr)
 | |
| {
 | |
| 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	force_page_cache_readahead(mapping, filp, index, nr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	ret = -EBADF;
 | |
| 	file = fget(fd);
 | |
| 	if (file) {
 | |
| 		if (file->f_mode & FMODE_READ) {
 | |
| 			struct address_space *mapping = file->f_mapping;
 | |
| 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
 | |
| 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
 | |
| 			unsigned long len = end - start + 1;
 | |
| 			ret = do_readahead(mapping, file, start, len);
 | |
| 		}
 | |
| 		fput(file);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
 | |
| asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
 | |
| {
 | |
| 	return SYSC_readahead((int) fd, offset, (size_t) count);
 | |
| }
 | |
| SYSCALL_ALIAS(sys_readahead, SyS_readahead);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /**
 | |
|  * page_cache_read - adds requested page to the page cache if not already there
 | |
|  * @file:	file to read
 | |
|  * @offset:	page index
 | |
|  *
 | |
|  * This adds the requested page to the page cache if it isn't already there,
 | |
|  * and schedules an I/O to read in its contents from disk.
 | |
|  */
 | |
| static int page_cache_read(struct file *file, pgoff_t offset)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct page *page; 
 | |
| 	int ret;
 | |
| 
 | |
| 	do {
 | |
| 		page = page_cache_alloc_cold(mapping);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
 | |
| 		if (ret == 0)
 | |
| 			ret = mapping->a_ops->readpage(file, page);
 | |
| 		else if (ret == -EEXIST)
 | |
| 			ret = 0; /* losing race to add is OK */
 | |
| 
 | |
| 		page_cache_release(page);
 | |
| 
 | |
| 	} while (ret == AOP_TRUNCATED_PAGE);
 | |
| 		
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define MMAP_LOTSAMISS  (100)
 | |
| 
 | |
| /*
 | |
|  * Synchronous readahead happens when we don't even find
 | |
|  * a page in the page cache at all.
 | |
|  */
 | |
| static void do_sync_mmap_readahead(struct vm_area_struct *vma,
 | |
| 				   struct file_ra_state *ra,
 | |
| 				   struct file *file,
 | |
| 				   pgoff_t offset)
 | |
| {
 | |
| 	unsigned long ra_pages;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (VM_RandomReadHint(vma))
 | |
| 		return;
 | |
| 
 | |
| 	if (VM_SequentialReadHint(vma) ||
 | |
| 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
 | |
| 		page_cache_sync_readahead(mapping, ra, file, offset,
 | |
| 					  ra->ra_pages);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ra->mmap_miss < INT_MAX)
 | |
| 		ra->mmap_miss++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we miss much more than hit in this file? If so,
 | |
| 	 * stop bothering with read-ahead. It will only hurt.
 | |
| 	 */
 | |
| 	if (ra->mmap_miss > MMAP_LOTSAMISS)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * mmap read-around
 | |
| 	 */
 | |
| 	ra_pages = max_sane_readahead(ra->ra_pages);
 | |
| 	if (ra_pages) {
 | |
| 		ra->start = max_t(long, 0, offset - ra_pages/2);
 | |
| 		ra->size = ra_pages;
 | |
| 		ra->async_size = 0;
 | |
| 		ra_submit(ra, mapping, file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Asynchronous readahead happens when we find the page and PG_readahead,
 | |
|  * so we want to possibly extend the readahead further..
 | |
|  */
 | |
| static void do_async_mmap_readahead(struct vm_area_struct *vma,
 | |
| 				    struct file_ra_state *ra,
 | |
| 				    struct file *file,
 | |
| 				    struct page *page,
 | |
| 				    pgoff_t offset)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (VM_RandomReadHint(vma))
 | |
| 		return;
 | |
| 	if (ra->mmap_miss > 0)
 | |
| 		ra->mmap_miss--;
 | |
| 	if (PageReadahead(page))
 | |
| 		page_cache_async_readahead(mapping, ra, file,
 | |
| 					   page, offset, ra->ra_pages);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fault - read in file data for page fault handling
 | |
|  * @vma:	vma in which the fault was taken
 | |
|  * @vmf:	struct vm_fault containing details of the fault
 | |
|  *
 | |
|  * filemap_fault() is invoked via the vma operations vector for a
 | |
|  * mapped memory region to read in file data during a page fault.
 | |
|  *
 | |
|  * The goto's are kind of ugly, but this streamlines the normal case of having
 | |
|  * it in the page cache, and handles the special cases reasonably without
 | |
|  * having a lot of duplicated code.
 | |
|  */
 | |
| int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	int error;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t offset = vmf->pgoff;
 | |
| 	struct page *page;
 | |
| 	pgoff_t size;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (offset >= size)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we have something in the page cache already?
 | |
| 	 */
 | |
| 	page = find_get_page(mapping, offset);
 | |
| 	if (likely(page)) {
 | |
| 		/*
 | |
| 		 * We found the page, so try async readahead before
 | |
| 		 * waiting for the lock.
 | |
| 		 */
 | |
| 		do_async_mmap_readahead(vma, ra, file, page, offset);
 | |
| 	} else {
 | |
| 		/* No page in the page cache at all */
 | |
| 		do_sync_mmap_readahead(vma, ra, file, offset);
 | |
| 		count_vm_event(PGMAJFAULT);
 | |
| 		ret = VM_FAULT_MAJOR;
 | |
| retry_find:
 | |
| 		page = find_get_page(mapping, offset);
 | |
| 		if (!page)
 | |
| 			goto no_cached_page;
 | |
| 	}
 | |
| 
 | |
| 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
 | |
| 		return ret | VM_FAULT_RETRY;
 | |
| 
 | |
| 	/* Did it get truncated? */
 | |
| 	if (unlikely(page->mapping != mapping)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		goto retry_find;
 | |
| 	}
 | |
| 	VM_BUG_ON(page->index != offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a locked page in the page cache, now we need to check
 | |
| 	 * that it's up-to-date. If not, it is going to be due to an error.
 | |
| 	 */
 | |
| 	if (unlikely(!PageUptodate(page)))
 | |
| 		goto page_not_uptodate;
 | |
| 
 | |
| 	/*
 | |
| 	 * Found the page and have a reference on it.
 | |
| 	 * We must recheck i_size under page lock.
 | |
| 	 */
 | |
| 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (unlikely(offset >= size)) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
 | |
| 	vmf->page = page;
 | |
| 	return ret | VM_FAULT_LOCKED;
 | |
| 
 | |
| no_cached_page:
 | |
| 	/*
 | |
| 	 * We're only likely to ever get here if MADV_RANDOM is in
 | |
| 	 * effect.
 | |
| 	 */
 | |
| 	error = page_cache_read(file, offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * The page we want has now been added to the page cache.
 | |
| 	 * In the unlikely event that someone removed it in the
 | |
| 	 * meantime, we'll just come back here and read it again.
 | |
| 	 */
 | |
| 	if (error >= 0)
 | |
| 		goto retry_find;
 | |
| 
 | |
| 	/*
 | |
| 	 * An error return from page_cache_read can result if the
 | |
| 	 * system is low on memory, or a problem occurs while trying
 | |
| 	 * to schedule I/O.
 | |
| 	 */
 | |
| 	if (error == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| 
 | |
| page_not_uptodate:
 | |
| 	/*
 | |
| 	 * Umm, take care of errors if the page isn't up-to-date.
 | |
| 	 * Try to re-read it _once_. We do this synchronously,
 | |
| 	 * because there really aren't any performance issues here
 | |
| 	 * and we need to check for errors.
 | |
| 	 */
 | |
| 	ClearPageError(page);
 | |
| 	error = mapping->a_ops->readpage(file, page);
 | |
| 	if (!error) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page))
 | |
| 			error = -EIO;
 | |
| 	}
 | |
| 	page_cache_release(page);
 | |
| 
 | |
| 	if (!error || error == AOP_TRUNCATED_PAGE)
 | |
| 		goto retry_find;
 | |
| 
 | |
| 	/* Things didn't work out. Return zero to tell the mm layer so. */
 | |
| 	shrink_readahead_size_eio(file, ra);
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fault);
 | |
| 
 | |
| const struct vm_operations_struct generic_file_vm_ops = {
 | |
| 	.fault		= filemap_fault,
 | |
| };
 | |
| 
 | |
| /* This is used for a general mmap of a disk file */
 | |
| 
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage)
 | |
| 		return -ENOEXEC;
 | |
| 	file_accessed(file);
 | |
| 	vma->vm_ops = &generic_file_vm_ops;
 | |
| 	vma->vm_flags |= VM_CAN_NONLINEAR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for filesystems which do not implement ->writepage.
 | |
|  */
 | |
| int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 | |
| 		return -EINVAL;
 | |
| 	return generic_file_mmap(file, vma);
 | |
| }
 | |
| #else
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| EXPORT_SYMBOL(generic_file_mmap);
 | |
| EXPORT_SYMBOL(generic_file_readonly_mmap);
 | |
| 
 | |
| static struct page *__read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = find_get_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		page = __page_cache_alloc(gfp | __GFP_COLD);
 | |
| 		if (!page)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
 | |
| 		if (unlikely(err)) {
 | |
| 			page_cache_release(page);
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 			/* Presumably ENOMEM for radix tree node */
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 		err = filler(data, page);
 | |
| 		if (err < 0) {
 | |
| 			page_cache_release(page);
 | |
| 			page = ERR_PTR(err);
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *do_read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data,
 | |
| 				gfp_t gfp)
 | |
| 
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| 
 | |
| retry:
 | |
| 	page = __read_cache_page(mapping, index, filler, data, gfp);
 | |
| 	if (IS_ERR(page))
 | |
| 		return page;
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		page_cache_release(page);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	err = filler(data, page);
 | |
| 	if (err < 0) {
 | |
| 		page_cache_release(page);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| out:
 | |
| 	mark_page_accessed(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_cache_page_async - read into page cache, fill it if needed
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @filler:	function to perform the read
 | |
|  * @data:	destination for read data
 | |
|  *
 | |
|  * Same as read_cache_page, but don't wait for page to become unlocked
 | |
|  * after submitting it to the filler.
 | |
|  *
 | |
|  * Read into the page cache. If a page already exists, and PageUptodate() is
 | |
|  * not set, try to fill the page but don't wait for it to become unlocked.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  */
 | |
| struct page *read_cache_page_async(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data)
 | |
| {
 | |
| 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page_async);
 | |
| 
 | |
| static struct page *wait_on_page_read(struct page *page)
 | |
| {
 | |
| 	if (!IS_ERR(page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			page_cache_release(page);
 | |
| 			page = ERR_PTR(-EIO);
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @gfp:	the page allocator flags to use if allocating
 | |
|  *
 | |
|  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
 | |
|  * any new page allocations done using the specified allocation flags. Note
 | |
|  * that the Radix tree operations will still use GFP_KERNEL, so you can't
 | |
|  * expect to do this atomically or anything like that - but you can pass in
 | |
|  * other page requirements.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  */
 | |
| struct page *read_cache_page_gfp(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 | |
| 
 | |
| 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page_gfp);
 | |
| 
 | |
| /**
 | |
|  * read_cache_page - read into page cache, fill it if needed
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @filler:	function to perform the read
 | |
|  * @data:	destination for read data
 | |
|  *
 | |
|  * Read into the page cache. If a page already exists, and PageUptodate() is
 | |
|  * not set, try to fill the page then wait for it to become unlocked.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  */
 | |
| struct page *read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *,struct page*),
 | |
| 				void *data)
 | |
| {
 | |
| 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page);
 | |
| 
 | |
| /*
 | |
|  * The logic we want is
 | |
|  *
 | |
|  *	if suid or (sgid and xgrp)
 | |
|  *		remove privs
 | |
|  */
 | |
| int should_remove_suid(struct dentry *dentry)
 | |
| {
 | |
| 	mode_t mode = dentry->d_inode->i_mode;
 | |
| 	int kill = 0;
 | |
| 
 | |
| 	/* suid always must be killed */
 | |
| 	if (unlikely(mode & S_ISUID))
 | |
| 		kill = ATTR_KILL_SUID;
 | |
| 
 | |
| 	/*
 | |
| 	 * sgid without any exec bits is just a mandatory locking mark; leave
 | |
| 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
 | |
| 	 */
 | |
| 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
 | |
| 		kill |= ATTR_KILL_SGID;
 | |
| 
 | |
| 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
 | |
| 		return kill;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(should_remove_suid);
 | |
| 
 | |
| static int __remove_suid(struct dentry *dentry, int kill)
 | |
| {
 | |
| 	struct iattr newattrs;
 | |
| 
 | |
| 	newattrs.ia_valid = ATTR_FORCE | kill;
 | |
| 	return notify_change(dentry, &newattrs);
 | |
| }
 | |
| 
 | |
| int file_remove_suid(struct file *file)
 | |
| {
 | |
| 	struct dentry *dentry = file->f_path.dentry;
 | |
| 	int killsuid = should_remove_suid(dentry);
 | |
| 	int killpriv = security_inode_need_killpriv(dentry);
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (killpriv < 0)
 | |
| 		return killpriv;
 | |
| 	if (killpriv)
 | |
| 		error = security_inode_killpriv(dentry);
 | |
| 	if (!error && killsuid)
 | |
| 		error = __remove_suid(dentry, killsuid);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(file_remove_suid);
 | |
| 
 | |
| static size_t __iovec_copy_from_user_inatomic(char *vaddr,
 | |
| 			const struct iovec *iov, size_t base, size_t bytes)
 | |
| {
 | |
| 	size_t copied = 0, left = 0;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		char __user *buf = iov->iov_base + base;
 | |
| 		int copy = min(bytes, iov->iov_len - base);
 | |
| 
 | |
| 		base = 0;
 | |
| 		left = __copy_from_user_inatomic(vaddr, buf, copy);
 | |
| 		copied += copy;
 | |
| 		bytes -= copy;
 | |
| 		vaddr += copy;
 | |
| 		iov++;
 | |
| 
 | |
| 		if (unlikely(left))
 | |
| 			break;
 | |
| 	}
 | |
| 	return copied - left;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy as much as we can into the page and return the number of bytes which
 | |
|  * were successfully copied.  If a fault is encountered then return the number of
 | |
|  * bytes which were copied.
 | |
|  */
 | |
| size_t iov_iter_copy_from_user_atomic(struct page *page,
 | |
| 		struct iov_iter *i, unsigned long offset, size_t bytes)
 | |
| {
 | |
| 	char *kaddr;
 | |
| 	size_t copied;
 | |
| 
 | |
| 	BUG_ON(!in_atomic());
 | |
| 	kaddr = kmap_atomic(page, KM_USER0);
 | |
| 	if (likely(i->nr_segs == 1)) {
 | |
| 		int left;
 | |
| 		char __user *buf = i->iov->iov_base + i->iov_offset;
 | |
| 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
 | |
| 		copied = bytes - left;
 | |
| 	} else {
 | |
| 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
 | |
| 						i->iov, i->iov_offset, bytes);
 | |
| 	}
 | |
| 	kunmap_atomic(kaddr, KM_USER0);
 | |
| 
 | |
| 	return copied;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
 | |
| 
 | |
| /*
 | |
|  * This has the same sideeffects and return value as
 | |
|  * iov_iter_copy_from_user_atomic().
 | |
|  * The difference is that it attempts to resolve faults.
 | |
|  * Page must not be locked.
 | |
|  */
 | |
| size_t iov_iter_copy_from_user(struct page *page,
 | |
| 		struct iov_iter *i, unsigned long offset, size_t bytes)
 | |
| {
 | |
| 	char *kaddr;
 | |
| 	size_t copied;
 | |
| 
 | |
| 	kaddr = kmap(page);
 | |
| 	if (likely(i->nr_segs == 1)) {
 | |
| 		int left;
 | |
| 		char __user *buf = i->iov->iov_base + i->iov_offset;
 | |
| 		left = __copy_from_user(kaddr + offset, buf, bytes);
 | |
| 		copied = bytes - left;
 | |
| 	} else {
 | |
| 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
 | |
| 						i->iov, i->iov_offset, bytes);
 | |
| 	}
 | |
| 	kunmap(page);
 | |
| 	return copied;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_copy_from_user);
 | |
| 
 | |
| void iov_iter_advance(struct iov_iter *i, size_t bytes)
 | |
| {
 | |
| 	BUG_ON(i->count < bytes);
 | |
| 
 | |
| 	if (likely(i->nr_segs == 1)) {
 | |
| 		i->iov_offset += bytes;
 | |
| 		i->count -= bytes;
 | |
| 	} else {
 | |
| 		const struct iovec *iov = i->iov;
 | |
| 		size_t base = i->iov_offset;
 | |
| 
 | |
| 		/*
 | |
| 		 * The !iov->iov_len check ensures we skip over unlikely
 | |
| 		 * zero-length segments (without overruning the iovec).
 | |
| 		 */
 | |
| 		while (bytes || unlikely(i->count && !iov->iov_len)) {
 | |
| 			int copy;
 | |
| 
 | |
| 			copy = min(bytes, iov->iov_len - base);
 | |
| 			BUG_ON(!i->count || i->count < copy);
 | |
| 			i->count -= copy;
 | |
| 			bytes -= copy;
 | |
| 			base += copy;
 | |
| 			if (iov->iov_len == base) {
 | |
| 				iov++;
 | |
| 				base = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		i->iov = iov;
 | |
| 		i->iov_offset = base;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_advance);
 | |
| 
 | |
| /*
 | |
|  * Fault in the first iovec of the given iov_iter, to a maximum length
 | |
|  * of bytes. Returns 0 on success, or non-zero if the memory could not be
 | |
|  * accessed (ie. because it is an invalid address).
 | |
|  *
 | |
|  * writev-intensive code may want this to prefault several iovecs -- that
 | |
|  * would be possible (callers must not rely on the fact that _only_ the
 | |
|  * first iovec will be faulted with the current implementation).
 | |
|  */
 | |
| int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
 | |
| {
 | |
| 	char __user *buf = i->iov->iov_base + i->iov_offset;
 | |
| 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
 | |
| 	return fault_in_pages_readable(buf, bytes);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_fault_in_readable);
 | |
| 
 | |
| /*
 | |
|  * Return the count of just the current iov_iter segment.
 | |
|  */
 | |
| size_t iov_iter_single_seg_count(struct iov_iter *i)
 | |
| {
 | |
| 	const struct iovec *iov = i->iov;
 | |
| 	if (i->nr_segs == 1)
 | |
| 		return i->count;
 | |
| 	else
 | |
| 		return min(i->count, iov->iov_len - i->iov_offset);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_single_seg_count);
 | |
| 
 | |
| /*
 | |
|  * Performs necessary checks before doing a write
 | |
|  *
 | |
|  * Can adjust writing position or amount of bytes to write.
 | |
|  * Returns appropriate error code that caller should return or
 | |
|  * zero in case that write should be allowed.
 | |
|  */
 | |
| inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
 | |
| {
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	unsigned long limit = rlimit(RLIMIT_FSIZE);
 | |
| 
 | |
|         if (unlikely(*pos < 0))
 | |
|                 return -EINVAL;
 | |
| 
 | |
| 	if (!isblk) {
 | |
| 		/* FIXME: this is for backwards compatibility with 2.4 */
 | |
| 		if (file->f_flags & O_APPEND)
 | |
|                         *pos = i_size_read(inode);
 | |
| 
 | |
| 		if (limit != RLIM_INFINITY) {
 | |
| 			if (*pos >= limit) {
 | |
| 				send_sig(SIGXFSZ, current, 0);
 | |
| 				return -EFBIG;
 | |
| 			}
 | |
| 			if (*count > limit - (typeof(limit))*pos) {
 | |
| 				*count = limit - (typeof(limit))*pos;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * LFS rule
 | |
| 	 */
 | |
| 	if (unlikely(*pos + *count > MAX_NON_LFS &&
 | |
| 				!(file->f_flags & O_LARGEFILE))) {
 | |
| 		if (*pos >= MAX_NON_LFS) {
 | |
| 			return -EFBIG;
 | |
| 		}
 | |
| 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
 | |
| 			*count = MAX_NON_LFS - (unsigned long)*pos;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we about to exceed the fs block limit ?
 | |
| 	 *
 | |
| 	 * If we have written data it becomes a short write.  If we have
 | |
| 	 * exceeded without writing data we send a signal and return EFBIG.
 | |
| 	 * Linus frestrict idea will clean these up nicely..
 | |
| 	 */
 | |
| 	if (likely(!isblk)) {
 | |
| 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
 | |
| 			if (*count || *pos > inode->i_sb->s_maxbytes) {
 | |
| 				return -EFBIG;
 | |
| 			}
 | |
| 			/* zero-length writes at ->s_maxbytes are OK */
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
 | |
| 			*count = inode->i_sb->s_maxbytes - *pos;
 | |
| 	} else {
 | |
| #ifdef CONFIG_BLOCK
 | |
| 		loff_t isize;
 | |
| 		if (bdev_read_only(I_BDEV(inode)))
 | |
| 			return -EPERM;
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (*pos >= isize) {
 | |
| 			if (*count || *pos > isize)
 | |
| 				return -ENOSPC;
 | |
| 		}
 | |
| 
 | |
| 		if (*pos + *count > isize)
 | |
| 			*count = isize - *pos;
 | |
| #else
 | |
| 		return -EPERM;
 | |
| #endif
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_write_checks);
 | |
| 
 | |
| int pagecache_write_begin(struct file *file, struct address_space *mapping,
 | |
| 				loff_t pos, unsigned len, unsigned flags,
 | |
| 				struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	const struct address_space_operations *aops = mapping->a_ops;
 | |
| 
 | |
| 	return aops->write_begin(file, mapping, pos, len, flags,
 | |
| 							pagep, fsdata);
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_write_begin);
 | |
| 
 | |
| int pagecache_write_end(struct file *file, struct address_space *mapping,
 | |
| 				loff_t pos, unsigned len, unsigned copied,
 | |
| 				struct page *page, void *fsdata)
 | |
| {
 | |
| 	const struct address_space_operations *aops = mapping->a_ops;
 | |
| 
 | |
| 	mark_page_accessed(page);
 | |
| 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_write_end);
 | |
| 
 | |
| ssize_t
 | |
| generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
 | |
| 		size_t count, size_t ocount)
 | |
| {
 | |
| 	struct file	*file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode	*inode = mapping->host;
 | |
| 	ssize_t		written;
 | |
| 	size_t		write_len;
 | |
| 	pgoff_t		end;
 | |
| 
 | |
| 	if (count != ocount)
 | |
| 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
 | |
| 
 | |
| 	write_len = iov_length(iov, *nr_segs);
 | |
| 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
 | |
| 	if (written)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * After a write we want buffered reads to be sure to go to disk to get
 | |
| 	 * the new data.  We invalidate clean cached page from the region we're
 | |
| 	 * about to write.  We do this *before* the write so that we can return
 | |
| 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
 | |
| 	 */
 | |
| 	if (mapping->nrpages) {
 | |
| 		written = invalidate_inode_pages2_range(mapping,
 | |
| 					pos >> PAGE_CACHE_SHIFT, end);
 | |
| 		/*
 | |
| 		 * If a page can not be invalidated, return 0 to fall back
 | |
| 		 * to buffered write.
 | |
| 		 */
 | |
| 		if (written) {
 | |
| 			if (written == -EBUSY)
 | |
| 				return 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, try again to invalidate clean pages which might have been
 | |
| 	 * cached by non-direct readahead, or faulted in by get_user_pages()
 | |
| 	 * if the source of the write was an mmap'ed region of the file
 | |
| 	 * we're writing.  Either one is a pretty crazy thing to do,
 | |
| 	 * so we don't support it 100%.  If this invalidation
 | |
| 	 * fails, tough, the write still worked...
 | |
| 	 */
 | |
| 	if (mapping->nrpages) {
 | |
| 		invalidate_inode_pages2_range(mapping,
 | |
| 					      pos >> PAGE_CACHE_SHIFT, end);
 | |
| 	}
 | |
| 
 | |
| 	if (written > 0) {
 | |
| 		pos += written;
 | |
| 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 | |
| 			i_size_write(inode, pos);
 | |
| 			mark_inode_dirty(inode);
 | |
| 		}
 | |
| 		*ppos = pos;
 | |
| 	}
 | |
| out:
 | |
| 	return written;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_direct_write);
 | |
| 
 | |
| /*
 | |
|  * Find or create a page at the given pagecache position. Return the locked
 | |
|  * page. This function is specifically for buffered writes.
 | |
|  */
 | |
| struct page *grab_cache_page_write_begin(struct address_space *mapping,
 | |
| 					pgoff_t index, unsigned flags)
 | |
| {
 | |
| 	int status;
 | |
| 	struct page *page;
 | |
| 	gfp_t gfp_notmask = 0;
 | |
| 	if (flags & AOP_FLAG_NOFS)
 | |
| 		gfp_notmask = __GFP_FS;
 | |
| repeat:
 | |
| 	page = find_lock_page(mapping, index);
 | |
| 	if (likely(page))
 | |
| 		return page;
 | |
| 
 | |
| 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	status = add_to_page_cache_lru(page, mapping, index,
 | |
| 						GFP_KERNEL & ~gfp_notmask);
 | |
| 	if (unlikely(status)) {
 | |
| 		page_cache_release(page);
 | |
| 		if (status == -EEXIST)
 | |
| 			goto repeat;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(grab_cache_page_write_begin);
 | |
| 
 | |
| static ssize_t generic_perform_write(struct file *file,
 | |
| 				struct iov_iter *i, loff_t pos)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	const struct address_space_operations *a_ops = mapping->a_ops;
 | |
| 	long status = 0;
 | |
| 	ssize_t written = 0;
 | |
| 	unsigned int flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copies from kernel address space cannot fail (NFSD is a big user).
 | |
| 	 */
 | |
| 	if (segment_eq(get_fs(), KERNEL_DS))
 | |
| 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		unsigned long offset;	/* Offset into pagecache page */
 | |
| 		unsigned long bytes;	/* Bytes to write to page */
 | |
| 		size_t copied;		/* Bytes copied from user */
 | |
| 		void *fsdata;
 | |
| 
 | |
| 		offset = (pos & (PAGE_CACHE_SIZE - 1));
 | |
| 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
 | |
| 						iov_iter_count(i));
 | |
| 
 | |
| again:
 | |
| 
 | |
| 		/*
 | |
| 		 * Bring in the user page that we will copy from _first_.
 | |
| 		 * Otherwise there's a nasty deadlock on copying from the
 | |
| 		 * same page as we're writing to, without it being marked
 | |
| 		 * up-to-date.
 | |
| 		 *
 | |
| 		 * Not only is this an optimisation, but it is also required
 | |
| 		 * to check that the address is actually valid, when atomic
 | |
| 		 * usercopies are used, below.
 | |
| 		 */
 | |
| 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 | |
| 			status = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
 | |
| 						&page, &fsdata);
 | |
| 		if (unlikely(status))
 | |
| 			break;
 | |
| 
 | |
| 		if (mapping_writably_mapped(mapping))
 | |
| 			flush_dcache_page(page);
 | |
| 
 | |
| 		pagefault_disable();
 | |
| 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 | |
| 		pagefault_enable();
 | |
| 		flush_dcache_page(page);
 | |
| 
 | |
| 		mark_page_accessed(page);
 | |
| 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
 | |
| 						page, fsdata);
 | |
| 		if (unlikely(status < 0))
 | |
| 			break;
 | |
| 		copied = status;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		iov_iter_advance(i, copied);
 | |
| 		if (unlikely(copied == 0)) {
 | |
| 			/*
 | |
| 			 * If we were unable to copy any data at all, we must
 | |
| 			 * fall back to a single segment length write.
 | |
| 			 *
 | |
| 			 * If we didn't fallback here, we could livelock
 | |
| 			 * because not all segments in the iov can be copied at
 | |
| 			 * once without a pagefault.
 | |
| 			 */
 | |
| 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
 | |
| 						iov_iter_single_seg_count(i));
 | |
| 			goto again;
 | |
| 		}
 | |
| 		pos += copied;
 | |
| 		written += copied;
 | |
| 
 | |
| 		balance_dirty_pages_ratelimited(mapping);
 | |
| 
 | |
| 	} while (iov_iter_count(i));
 | |
| 
 | |
| 	return written ? written : status;
 | |
| }
 | |
| 
 | |
| ssize_t
 | |
| generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
 | |
| 		size_t count, ssize_t written)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	ssize_t status;
 | |
| 	struct iov_iter i;
 | |
| 
 | |
| 	iov_iter_init(&i, iov, nr_segs, count, written);
 | |
| 	status = generic_perform_write(file, &i, pos);
 | |
| 
 | |
| 	if (likely(status >= 0)) {
 | |
| 		written += status;
 | |
| 		*ppos = pos + status;
 | |
|   	}
 | |
| 	
 | |
| 	return written ? written : status;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_buffered_write);
 | |
| 
 | |
| /**
 | |
|  * __generic_file_aio_write - write data to a file
 | |
|  * @iocb:	IO state structure (file, offset, etc.)
 | |
|  * @iov:	vector with data to write
 | |
|  * @nr_segs:	number of segments in the vector
 | |
|  * @ppos:	position where to write
 | |
|  *
 | |
|  * This function does all the work needed for actually writing data to a
 | |
|  * file. It does all basic checks, removes SUID from the file, updates
 | |
|  * modification times and calls proper subroutines depending on whether we
 | |
|  * do direct IO or a standard buffered write.
 | |
|  *
 | |
|  * It expects i_mutex to be grabbed unless we work on a block device or similar
 | |
|  * object which does not need locking at all.
 | |
|  *
 | |
|  * This function does *not* take care of syncing data in case of O_SYNC write.
 | |
|  * A caller has to handle it. This is mainly due to the fact that we want to
 | |
|  * avoid syncing under i_mutex.
 | |
|  */
 | |
| ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 				 unsigned long nr_segs, loff_t *ppos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space * mapping = file->f_mapping;
 | |
| 	size_t ocount;		/* original count */
 | |
| 	size_t count;		/* after file limit checks */
 | |
| 	struct inode 	*inode = mapping->host;
 | |
| 	loff_t		pos;
 | |
| 	ssize_t		written;
 | |
| 	ssize_t		err;
 | |
| 
 | |
| 	ocount = 0;
 | |
| 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	count = ocount;
 | |
| 	pos = *ppos;
 | |
| 
 | |
| 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
 | |
| 
 | |
| 	/* We can write back this queue in page reclaim */
 | |
| 	current->backing_dev_info = mapping->backing_dev_info;
 | |
| 	written = 0;
 | |
| 
 | |
| 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = file_remove_suid(file);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	file_update_time(file);
 | |
| 
 | |
| 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
 | |
| 	if (unlikely(file->f_flags & O_DIRECT)) {
 | |
| 		loff_t endbyte;
 | |
| 		ssize_t written_buffered;
 | |
| 
 | |
| 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
 | |
| 							ppos, count, ocount);
 | |
| 		if (written < 0 || written == count)
 | |
| 			goto out;
 | |
| 		/*
 | |
| 		 * direct-io write to a hole: fall through to buffered I/O
 | |
| 		 * for completing the rest of the request.
 | |
| 		 */
 | |
| 		pos += written;
 | |
| 		count -= written;
 | |
| 		written_buffered = generic_file_buffered_write(iocb, iov,
 | |
| 						nr_segs, pos, ppos, count,
 | |
| 						written);
 | |
| 		/*
 | |
| 		 * If generic_file_buffered_write() retuned a synchronous error
 | |
| 		 * then we want to return the number of bytes which were
 | |
| 		 * direct-written, or the error code if that was zero.  Note
 | |
| 		 * that this differs from normal direct-io semantics, which
 | |
| 		 * will return -EFOO even if some bytes were written.
 | |
| 		 */
 | |
| 		if (written_buffered < 0) {
 | |
| 			err = written_buffered;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to ensure that the page cache pages are written to
 | |
| 		 * disk and invalidated to preserve the expected O_DIRECT
 | |
| 		 * semantics.
 | |
| 		 */
 | |
| 		endbyte = pos + written_buffered - written - 1;
 | |
| 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
 | |
| 		if (err == 0) {
 | |
| 			written = written_buffered;
 | |
| 			invalidate_mapping_pages(mapping,
 | |
| 						 pos >> PAGE_CACHE_SHIFT,
 | |
| 						 endbyte >> PAGE_CACHE_SHIFT);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We don't know how much we wrote, so just return
 | |
| 			 * the number of bytes which were direct-written
 | |
| 			 */
 | |
| 		}
 | |
| 	} else {
 | |
| 		written = generic_file_buffered_write(iocb, iov, nr_segs,
 | |
| 				pos, ppos, count, written);
 | |
| 	}
 | |
| out:
 | |
| 	current->backing_dev_info = NULL;
 | |
| 	return written ? written : err;
 | |
| }
 | |
| EXPORT_SYMBOL(__generic_file_aio_write);
 | |
| 
 | |
| /**
 | |
|  * generic_file_aio_write - write data to a file
 | |
|  * @iocb:	IO state structure
 | |
|  * @iov:	vector with data to write
 | |
|  * @nr_segs:	number of segments in the vector
 | |
|  * @pos:	position in file where to write
 | |
|  *
 | |
|  * This is a wrapper around __generic_file_aio_write() to be used by most
 | |
|  * filesystems. It takes care of syncing the file in case of O_SYNC file
 | |
|  * and acquires i_mutex as needed.
 | |
|  */
 | |
| ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 | |
| 		unsigned long nr_segs, loff_t pos)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	BUG_ON(iocb->ki_pos != pos);
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	if (ret > 0 || ret == -EIOCBQUEUED) {
 | |
| 		ssize_t err;
 | |
| 
 | |
| 		err = generic_write_sync(file, pos, ret);
 | |
| 		if (err < 0 && ret > 0)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_aio_write);
 | |
| 
 | |
| /**
 | |
|  * try_to_release_page() - release old fs-specific metadata on a page
 | |
|  *
 | |
|  * @page: the page which the kernel is trying to free
 | |
|  * @gfp_mask: memory allocation flags (and I/O mode)
 | |
|  *
 | |
|  * The address_space is to try to release any data against the page
 | |
|  * (presumably at page->private).  If the release was successful, return `1'.
 | |
|  * Otherwise return zero.
 | |
|  *
 | |
|  * This may also be called if PG_fscache is set on a page, indicating that the
 | |
|  * page is known to the local caching routines.
 | |
|  *
 | |
|  * The @gfp_mask argument specifies whether I/O may be performed to release
 | |
|  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
 | |
|  *
 | |
|  */
 | |
| int try_to_release_page(struct page *page, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct address_space * const mapping = page->mapping;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mapping && mapping->a_ops->releasepage)
 | |
| 		return mapping->a_ops->releasepage(page, gfp_mask);
 | |
| 	return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(try_to_release_page);
 |