mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 02:59:34 +00:00 
			
		
		
		
	 4ee0a60392
			
		
	
	
		4ee0a60392
		
	
	
	
	
		
			
			Using ACCESS_ONCE() to observe the jiffies_stall/rnp->qsmask value due to the caller didn't hold the root_rcu/rnp node's lock. Although use without ACCESS_ONCE() is safe due to the value loaded being used but once, the ACCESS_ONCE() is a good documentation aid -- the variables are being loaded without the services of a lock. Signed-off-by: Dongdong Deng <dongdong.deng@windriver.com> CC: Dipankar Sarma <dipankar@in.ibm.com> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
		
			
				
	
	
		
			1991 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1991 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  *
 | |
|  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 | |
|  *	    Manfred Spraul <manfred@colorfullife.com>
 | |
|  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 | |
|  *
 | |
|  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 | |
|  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 | |
|  *
 | |
|  * For detailed explanation of Read-Copy Update mechanism see -
 | |
|  *	Documentation/RCU
 | |
|  */
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <asm/atomic.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| 
 | |
| #include "rcutree.h"
 | |
| 
 | |
| /* Data structures. */
 | |
| 
 | |
| static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
 | |
| 
 | |
| #define RCU_STATE_INITIALIZER(structname) { \
 | |
| 	.level = { &structname.node[0] }, \
 | |
| 	.levelcnt = { \
 | |
| 		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
 | |
| 		NUM_RCU_LVL_1, \
 | |
| 		NUM_RCU_LVL_2, \
 | |
| 		NUM_RCU_LVL_3, \
 | |
| 		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
 | |
| 	}, \
 | |
| 	.signaled = RCU_GP_IDLE, \
 | |
| 	.gpnum = -300, \
 | |
| 	.completed = -300, \
 | |
| 	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
 | |
| 	.orphan_cbs_list = NULL, \
 | |
| 	.orphan_cbs_tail = &structname.orphan_cbs_list, \
 | |
| 	.orphan_qlen = 0, \
 | |
| 	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
 | |
| 	.n_force_qs = 0, \
 | |
| 	.n_force_qs_ngp = 0, \
 | |
| 	.name = #structname, \
 | |
| }
 | |
| 
 | |
| struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
 | |
| DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
 | |
| 
 | |
| struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
 | |
| DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
 | |
| 
 | |
| int rcu_scheduler_active __read_mostly;
 | |
| EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 | |
| 
 | |
| /*
 | |
|  * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 | |
|  * permit this function to be invoked without holding the root rcu_node
 | |
|  * structure's ->lock, but of course results can be subject to change.
 | |
|  */
 | |
| static int rcu_gp_in_progress(struct rcu_state *rsp)
 | |
| {
 | |
| 	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note a quiescent state.  Because we do not need to know
 | |
|  * how many quiescent states passed, just if there was at least
 | |
|  * one since the start of the grace period, this just sets a flag.
 | |
|  */
 | |
| void rcu_sched_qs(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 | |
| 
 | |
| 	rdp->passed_quiesc_completed = rdp->gpnum - 1;
 | |
| 	barrier();
 | |
| 	rdp->passed_quiesc = 1;
 | |
| }
 | |
| 
 | |
| void rcu_bh_qs(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 | |
| 
 | |
| 	rdp->passed_quiesc_completed = rdp->gpnum - 1;
 | |
| 	barrier();
 | |
| 	rdp->passed_quiesc = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note a context switch.  This is a quiescent state for RCU-sched,
 | |
|  * and requires special handling for preemptible RCU.
 | |
|  */
 | |
| void rcu_note_context_switch(int cpu)
 | |
| {
 | |
| 	rcu_sched_qs(cpu);
 | |
| 	rcu_preempt_note_context_switch(cpu);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 | |
| 	.dynticks_nesting = 1,
 | |
| 	.dynticks = 1,
 | |
| };
 | |
| #endif /* #ifdef CONFIG_NO_HZ */
 | |
| 
 | |
| static int blimit = 10;		/* Maximum callbacks per softirq. */
 | |
| static int qhimark = 10000;	/* If this many pending, ignore blimit. */
 | |
| static int qlowmark = 100;	/* Once only this many pending, use blimit. */
 | |
| 
 | |
| module_param(blimit, int, 0);
 | |
| module_param(qhimark, int, 0);
 | |
| module_param(qlowmark, int, 0);
 | |
| 
 | |
| #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 | |
| int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
 | |
| module_param(rcu_cpu_stall_suppress, int, 0644);
 | |
| #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 | |
| 
 | |
| static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
 | |
| static int rcu_pending(int cpu);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU-sched batches processed thus far for debug & stats.
 | |
|  */
 | |
| long rcu_batches_completed_sched(void)
 | |
| {
 | |
| 	return rcu_sched_state.completed;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 | |
| 
 | |
| /*
 | |
|  * Return the number of RCU BH batches processed thus far for debug & stats.
 | |
|  */
 | |
| long rcu_batches_completed_bh(void)
 | |
| {
 | |
| 	return rcu_bh_state.completed;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for RCU BH.
 | |
|  */
 | |
| void rcu_bh_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(&rcu_bh_state, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Force a quiescent state for RCU-sched.
 | |
|  */
 | |
| void rcu_sched_force_quiescent_state(void)
 | |
| {
 | |
| 	force_quiescent_state(&rcu_sched_state, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 | |
| 
 | |
| /*
 | |
|  * Does the CPU have callbacks ready to be invoked?
 | |
|  */
 | |
| static int
 | |
| cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 | |
| {
 | |
| 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does the current CPU require a yet-as-unscheduled grace period?
 | |
|  */
 | |
| static int
 | |
| cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the root node of the specified rcu_state structure.
 | |
|  */
 | |
| static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 | |
| {
 | |
| 	return &rsp->node[0];
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * If the specified CPU is offline, tell the caller that it is in
 | |
|  * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 | |
|  * Grace periods can end up waiting on an offline CPU when that
 | |
|  * CPU is in the process of coming online -- it will be added to the
 | |
|  * rcu_node bitmasks before it actually makes it online.  The same thing
 | |
|  * can happen while a CPU is in the process of coming online.  Because this
 | |
|  * race is quite rare, we check for it after detecting that the grace
 | |
|  * period has been delayed rather than checking each and every CPU
 | |
|  * each and every time we start a new grace period.
 | |
|  */
 | |
| static int rcu_implicit_offline_qs(struct rcu_data *rdp)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the CPU is offline, it is in a quiescent state.  We can
 | |
| 	 * trust its state not to change because interrupts are disabled.
 | |
| 	 */
 | |
| 	if (cpu_is_offline(rdp->cpu)) {
 | |
| 		rdp->offline_fqs++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* If preemptable RCU, no point in sending reschedule IPI. */
 | |
| 	if (rdp->preemptable)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* The CPU is online, so send it a reschedule IPI. */
 | |
| 	if (rdp->cpu != smp_processor_id())
 | |
| 		smp_send_reschedule(rdp->cpu);
 | |
| 	else
 | |
| 		set_need_resched();
 | |
| 	rdp->resched_ipi++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 
 | |
| /**
 | |
|  * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 | |
|  *
 | |
|  * Enter nohz mode, in other words, -leave- the mode in which RCU
 | |
|  * read-side critical sections can occur.  (Though RCU read-side
 | |
|  * critical sections can occur in irq handlers in nohz mode, a possibility
 | |
|  * handled by rcu_irq_enter() and rcu_irq_exit()).
 | |
|  */
 | |
| void rcu_enter_nohz(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_dynticks *rdtp;
 | |
| 
 | |
| 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 | |
| 	local_irq_save(flags);
 | |
| 	rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 	rdtp->dynticks++;
 | |
| 	rdtp->dynticks_nesting--;
 | |
| 	WARN_ON_ONCE(rdtp->dynticks & 0x1);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 | |
|  *
 | |
|  * Exit nohz mode, in other words, -enter- the mode in which RCU
 | |
|  * read-side critical sections normally occur.
 | |
|  */
 | |
| void rcu_exit_nohz(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_dynticks *rdtp;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 	rdtp->dynticks++;
 | |
| 	rdtp->dynticks_nesting++;
 | |
| 	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
 | |
| 	local_irq_restore(flags);
 | |
| 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_nmi_enter - inform RCU of entry to NMI context
 | |
|  *
 | |
|  * If the CPU was idle with dynamic ticks active, and there is no
 | |
|  * irq handler running, this updates rdtp->dynticks_nmi to let the
 | |
|  * RCU grace-period handling know that the CPU is active.
 | |
|  */
 | |
| void rcu_nmi_enter(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 
 | |
| 	if (rdtp->dynticks & 0x1)
 | |
| 		return;
 | |
| 	rdtp->dynticks_nmi++;
 | |
| 	WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
 | |
| 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_nmi_exit - inform RCU of exit from NMI context
 | |
|  *
 | |
|  * If the CPU was idle with dynamic ticks active, and there is no
 | |
|  * irq handler running, this updates rdtp->dynticks_nmi to let the
 | |
|  * RCU grace-period handling know that the CPU is no longer active.
 | |
|  */
 | |
| void rcu_nmi_exit(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 
 | |
| 	if (rdtp->dynticks & 0x1)
 | |
| 		return;
 | |
| 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 | |
| 	rdtp->dynticks_nmi++;
 | |
| 	WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_irq_enter - inform RCU of entry to hard irq context
 | |
|  *
 | |
|  * If the CPU was idle with dynamic ticks active, this updates the
 | |
|  * rdtp->dynticks to let the RCU handling know that the CPU is active.
 | |
|  */
 | |
| void rcu_irq_enter(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 
 | |
| 	if (rdtp->dynticks_nesting++)
 | |
| 		return;
 | |
| 	rdtp->dynticks++;
 | |
| 	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
 | |
| 	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_irq_exit - inform RCU of exit from hard irq context
 | |
|  *
 | |
|  * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 | |
|  * to put let the RCU handling be aware that the CPU is going back to idle
 | |
|  * with no ticks.
 | |
|  */
 | |
| void rcu_irq_exit(void)
 | |
| {
 | |
| 	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
 | |
| 
 | |
| 	if (--rdtp->dynticks_nesting)
 | |
| 		return;
 | |
| 	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
 | |
| 	rdtp->dynticks++;
 | |
| 	WARN_ON_ONCE(rdtp->dynticks & 0x1);
 | |
| 
 | |
| 	/* If the interrupt queued a callback, get out of dyntick mode. */
 | |
| 	if (__get_cpu_var(rcu_sched_data).nxtlist ||
 | |
| 	    __get_cpu_var(rcu_bh_data).nxtlist)
 | |
| 		set_need_resched();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * Snapshot the specified CPU's dynticks counter so that we can later
 | |
|  * credit them with an implicit quiescent state.  Return 1 if this CPU
 | |
|  * is in dynticks idle mode, which is an extended quiescent state.
 | |
|  */
 | |
| static int dyntick_save_progress_counter(struct rcu_data *rdp)
 | |
| {
 | |
| 	int ret;
 | |
| 	int snap;
 | |
| 	int snap_nmi;
 | |
| 
 | |
| 	snap = rdp->dynticks->dynticks;
 | |
| 	snap_nmi = rdp->dynticks->dynticks_nmi;
 | |
| 	smp_mb();	/* Order sampling of snap with end of grace period. */
 | |
| 	rdp->dynticks_snap = snap;
 | |
| 	rdp->dynticks_nmi_snap = snap_nmi;
 | |
| 	ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
 | |
| 	if (ret)
 | |
| 		rdp->dynticks_fqs++;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the specified CPU has passed through a quiescent
 | |
|  * state by virtue of being in or having passed through an dynticks
 | |
|  * idle state since the last call to dyntick_save_progress_counter()
 | |
|  * for this same CPU.
 | |
|  */
 | |
| static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 | |
| {
 | |
| 	long curr;
 | |
| 	long curr_nmi;
 | |
| 	long snap;
 | |
| 	long snap_nmi;
 | |
| 
 | |
| 	curr = rdp->dynticks->dynticks;
 | |
| 	snap = rdp->dynticks_snap;
 | |
| 	curr_nmi = rdp->dynticks->dynticks_nmi;
 | |
| 	snap_nmi = rdp->dynticks_nmi_snap;
 | |
| 	smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the CPU passed through or entered a dynticks idle phase with
 | |
| 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 | |
| 	 * already acknowledged the request to pass through a quiescent
 | |
| 	 * state.  Either way, that CPU cannot possibly be in an RCU
 | |
| 	 * read-side critical section that started before the beginning
 | |
| 	 * of the current RCU grace period.
 | |
| 	 */
 | |
| 	if ((curr != snap || (curr & 0x1) == 0) &&
 | |
| 	    (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
 | |
| 		rdp->dynticks_fqs++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Go check for the CPU being offline. */
 | |
| 	return rcu_implicit_offline_qs(rdp);
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_SMP */
 | |
| 
 | |
| #else /* #ifdef CONFIG_NO_HZ */
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static int dyntick_save_progress_counter(struct rcu_data *rdp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 | |
| {
 | |
| 	return rcu_implicit_offline_qs(rdp);
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_SMP */
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_NO_HZ */
 | |
| 
 | |
| #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 | |
| 
 | |
| int rcu_cpu_stall_suppress __read_mostly;
 | |
| 
 | |
| static void record_gp_stall_check_time(struct rcu_state *rsp)
 | |
| {
 | |
| 	rsp->gp_start = jiffies;
 | |
| 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
 | |
| }
 | |
| 
 | |
| static void print_other_cpu_stall(struct rcu_state *rsp)
 | |
| {
 | |
| 	int cpu;
 | |
| 	long delta;
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/* Only let one CPU complain about others per time interval. */
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	delta = jiffies - rsp->jiffies_stall;
 | |
| 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now rat on any tasks that got kicked up to the root rcu_node
 | |
| 	 * due to CPU offlining.
 | |
| 	 */
 | |
| 	rcu_print_task_stall(rnp);
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, time to rat on our buddy...
 | |
| 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | |
| 	 * RCU CPU stall warnings.
 | |
| 	 */
 | |
| 	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
 | |
| 	       rsp->name);
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 		rcu_print_task_stall(rnp);
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		if (rnp->qsmask == 0)
 | |
| 			continue;
 | |
| 		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 | |
| 			if (rnp->qsmask & (1UL << cpu))
 | |
| 				printk(" %d", rnp->grplo + cpu);
 | |
| 	}
 | |
| 	printk("} (detected by %d, t=%ld jiffies)\n",
 | |
| 	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
 | |
| 	trigger_all_cpu_backtrace();
 | |
| 
 | |
| 	/* If so configured, complain about tasks blocking the grace period. */
 | |
| 
 | |
| 	rcu_print_detail_task_stall(rsp);
 | |
| 
 | |
| 	force_quiescent_state(rsp, 0);  /* Kick them all. */
 | |
| }
 | |
| 
 | |
| static void print_cpu_stall(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, time to rat on ourselves...
 | |
| 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 | |
| 	 * RCU CPU stall warnings.
 | |
| 	 */
 | |
| 	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
 | |
| 	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
 | |
| 	trigger_all_cpu_backtrace();
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 | |
| 		rsp->jiffies_stall =
 | |
| 			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 
 | |
| 	set_need_resched();  /* kick ourselves to get things going. */
 | |
| }
 | |
| 
 | |
| static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	long delta;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	if (rcu_cpu_stall_suppress)
 | |
| 		return;
 | |
| 	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
 | |
| 	rnp = rdp->mynode;
 | |
| 	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
 | |
| 
 | |
| 		/* We haven't checked in, so go dump stack. */
 | |
| 		print_cpu_stall(rsp);
 | |
| 
 | |
| 	} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
 | |
| 
 | |
| 		/* They had two time units to dump stack, so complain. */
 | |
| 		print_other_cpu_stall(rsp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
 | |
| {
 | |
| 	rcu_cpu_stall_suppress = 1;
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 | |
|  *
 | |
|  * Set the stall-warning timeout way off into the future, thus preventing
 | |
|  * any RCU CPU stall-warning messages from appearing in the current set of
 | |
|  * RCU grace periods.
 | |
|  *
 | |
|  * The caller must disable hard irqs.
 | |
|  */
 | |
| void rcu_cpu_stall_reset(void)
 | |
| {
 | |
| 	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 | |
| 	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
 | |
| 	rcu_preempt_stall_reset();
 | |
| }
 | |
| 
 | |
| static struct notifier_block rcu_panic_block = {
 | |
| 	.notifier_call = rcu_panic,
 | |
| };
 | |
| 
 | |
| static void __init check_cpu_stall_init(void)
 | |
| {
 | |
| 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 | |
| 
 | |
| static void record_gp_stall_check_time(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| void rcu_cpu_stall_reset(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void __init check_cpu_stall_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 | |
| 
 | |
| /*
 | |
|  * Update CPU-local rcu_data state to record the newly noticed grace period.
 | |
|  * This is used both when we started the grace period and when we notice
 | |
|  * that someone else started the grace period.  The caller must hold the
 | |
|  * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 | |
|  *  and must have irqs disabled.
 | |
|  */
 | |
| static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 | |
| {
 | |
| 	if (rdp->gpnum != rnp->gpnum) {
 | |
| 		rdp->qs_pending = 1;
 | |
| 		rdp->passed_quiesc = 0;
 | |
| 		rdp->gpnum = rnp->gpnum;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rnp = rdp->mynode;
 | |
| 	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
 | |
| 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	__note_new_gpnum(rsp, rnp, rdp);
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Did someone else start a new RCU grace period start since we last
 | |
|  * checked?  Update local state appropriately if so.  Must be called
 | |
|  * on the CPU corresponding to rdp.
 | |
|  */
 | |
| static int
 | |
| check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (rdp->gpnum != rsp->gpnum) {
 | |
| 		note_new_gpnum(rsp, rdp);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance this CPU's callbacks, but only if the current grace period
 | |
|  * has ended.  This may be called only from the CPU to whom the rdp
 | |
|  * belongs.  In addition, the corresponding leaf rcu_node structure's
 | |
|  * ->lock must be held by the caller, with irqs disabled.
 | |
|  */
 | |
| static void
 | |
| __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 | |
| {
 | |
| 	/* Did another grace period end? */
 | |
| 	if (rdp->completed != rnp->completed) {
 | |
| 
 | |
| 		/* Advance callbacks.  No harm if list empty. */
 | |
| 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
 | |
| 		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
 | |
| 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 | |
| 
 | |
| 		/* Remember that we saw this grace-period completion. */
 | |
| 		rdp->completed = rnp->completed;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Advance this CPU's callbacks, but only if the current grace period
 | |
|  * has ended.  This may be called only from the CPU to whom the rdp
 | |
|  * belongs.
 | |
|  */
 | |
| static void
 | |
| rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rnp = rdp->mynode;
 | |
| 	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
 | |
| 	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	__rcu_process_gp_end(rsp, rnp, rdp);
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do per-CPU grace-period initialization for running CPU.  The caller
 | |
|  * must hold the lock of the leaf rcu_node structure corresponding to
 | |
|  * this CPU.
 | |
|  */
 | |
| static void
 | |
| rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 | |
| {
 | |
| 	/* Prior grace period ended, so advance callbacks for current CPU. */
 | |
| 	__rcu_process_gp_end(rsp, rnp, rdp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because this CPU just now started the new grace period, we know
 | |
| 	 * that all of its callbacks will be covered by this upcoming grace
 | |
| 	 * period, even the ones that were registered arbitrarily recently.
 | |
| 	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
 | |
| 	 *
 | |
| 	 * Other CPUs cannot be sure exactly when the grace period started.
 | |
| 	 * Therefore, their recently registered callbacks must pass through
 | |
| 	 * an additional RCU_NEXT_READY stage, so that they will be handled
 | |
| 	 * by the next RCU grace period.
 | |
| 	 */
 | |
| 	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 | |
| 	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 | |
| 
 | |
| 	/* Set state so that this CPU will detect the next quiescent state. */
 | |
| 	__note_new_gpnum(rsp, rnp, rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start a new RCU grace period if warranted, re-initializing the hierarchy
 | |
|  * in preparation for detecting the next grace period.  The caller must hold
 | |
|  * the root node's ->lock, which is released before return.  Hard irqs must
 | |
|  * be disabled.
 | |
|  */
 | |
| static void
 | |
| rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
 | |
| 	__releases(rcu_get_root(rsp)->lock)
 | |
| {
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
 | |
| 		if (cpu_needs_another_gp(rsp, rdp))
 | |
| 			rsp->fqs_need_gp = 1;
 | |
| 		if (rnp->completed == rsp->completed) {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
 | |
| 
 | |
| 		/*
 | |
| 		 * Propagate new ->completed value to rcu_node structures
 | |
| 		 * so that other CPUs don't have to wait until the start
 | |
| 		 * of the next grace period to process their callbacks.
 | |
| 		 */
 | |
| 		rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
 | |
| 			rnp->completed = rsp->completed;
 | |
| 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 | |
| 		}
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Advance to a new grace period and initialize state. */
 | |
| 	rsp->gpnum++;
 | |
| 	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
 | |
| 	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
 | |
| 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
 | |
| 	record_gp_stall_check_time(rsp);
 | |
| 
 | |
| 	/* Special-case the common single-level case. */
 | |
| 	if (NUM_RCU_NODES == 1) {
 | |
| 		rcu_preempt_check_blocked_tasks(rnp);
 | |
| 		rnp->qsmask = rnp->qsmaskinit;
 | |
| 		rnp->gpnum = rsp->gpnum;
 | |
| 		rnp->completed = rsp->completed;
 | |
| 		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
 | |
| 		rcu_start_gp_per_cpu(rsp, rnp, rdp);
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
 | |
| 
 | |
| 
 | |
| 	/* Exclude any concurrent CPU-hotplug operations. */
 | |
| 	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the quiescent-state-needed bits in all the rcu_node
 | |
| 	 * structures for all currently online CPUs in breadth-first
 | |
| 	 * order, starting from the root rcu_node structure.  This
 | |
| 	 * operation relies on the layout of the hierarchy within the
 | |
| 	 * rsp->node[] array.  Note that other CPUs will access only
 | |
| 	 * the leaves of the hierarchy, which still indicate that no
 | |
| 	 * grace period is in progress, at least until the corresponding
 | |
| 	 * leaf node has been initialized.  In addition, we have excluded
 | |
| 	 * CPU-hotplug operations.
 | |
| 	 *
 | |
| 	 * Note that the grace period cannot complete until we finish
 | |
| 	 * the initialization process, as there will be at least one
 | |
| 	 * qsmask bit set in the root node until that time, namely the
 | |
| 	 * one corresponding to this CPU, due to the fact that we have
 | |
| 	 * irqs disabled.
 | |
| 	 */
 | |
| 	rcu_for_each_node_breadth_first(rsp, rnp) {
 | |
| 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
 | |
| 		rcu_preempt_check_blocked_tasks(rnp);
 | |
| 		rnp->qsmask = rnp->qsmaskinit;
 | |
| 		rnp->gpnum = rsp->gpnum;
 | |
| 		rnp->completed = rsp->completed;
 | |
| 		if (rnp == rdp->mynode)
 | |
| 			rcu_start_gp_per_cpu(rsp, rnp, rdp);
 | |
| 		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
 | |
| 	}
 | |
| 
 | |
| 	rnp = rcu_get_root(rsp);
 | |
| 	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
 | |
| 	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
 | |
| 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
 | |
| 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Report a full set of quiescent states to the specified rcu_state
 | |
|  * data structure.  This involves cleaning up after the prior grace
 | |
|  * period and letting rcu_start_gp() start up the next grace period
 | |
|  * if one is needed.  Note that the caller must hold rnp->lock, as
 | |
|  * required by rcu_start_gp(), which will release it.
 | |
|  */
 | |
| static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
 | |
| 	__releases(rcu_get_root(rsp)->lock)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
 | |
| 	rsp->completed = rsp->gpnum;
 | |
| 	rsp->signaled = RCU_GP_IDLE;
 | |
| 	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 | |
|  * Allows quiescent states for a group of CPUs to be reported at one go
 | |
|  * to the specified rcu_node structure, though all the CPUs in the group
 | |
|  * must be represented by the same rcu_node structure (which need not be
 | |
|  * a leaf rcu_node structure, though it often will be).  That structure's
 | |
|  * lock must be held upon entry, and it is released before return.
 | |
|  */
 | |
| static void
 | |
| rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
 | |
| 		  struct rcu_node *rnp, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	struct rcu_node *rnp_c;
 | |
| 
 | |
| 	/* Walk up the rcu_node hierarchy. */
 | |
| 	for (;;) {
 | |
| 		if (!(rnp->qsmask & mask)) {
 | |
| 
 | |
| 			/* Our bit has already been cleared, so done. */
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		rnp->qsmask &= ~mask;
 | |
| 		if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
 | |
| 
 | |
| 			/* Other bits still set at this level, so done. */
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		mask = rnp->grpmask;
 | |
| 		if (rnp->parent == NULL) {
 | |
| 
 | |
| 			/* No more levels.  Exit loop holding root lock. */
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		rnp_c = rnp;
 | |
| 		rnp = rnp->parent;
 | |
| 		raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 		WARN_ON_ONCE(rnp_c->qsmask);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get here if we are the last CPU to pass through a quiescent
 | |
| 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
 | |
| 	 * to clean up and start the next grace period if one is needed.
 | |
| 	 */
 | |
| 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record a quiescent state for the specified CPU to that CPU's rcu_data
 | |
|  * structure.  This must be either called from the specified CPU, or
 | |
|  * called when the specified CPU is known to be offline (and when it is
 | |
|  * also known that no other CPU is concurrently trying to help the offline
 | |
|  * CPU).  The lastcomp argument is used to make sure we are still in the
 | |
|  * grace period of interest.  We don't want to end the current grace period
 | |
|  * based on quiescent states detected in an earlier grace period!
 | |
|  */
 | |
| static void
 | |
| rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rnp = rdp->mynode;
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	if (lastcomp != rnp->completed) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Someone beat us to it for this grace period, so leave.
 | |
| 		 * The race with GP start is resolved by the fact that we
 | |
| 		 * hold the leaf rcu_node lock, so that the per-CPU bits
 | |
| 		 * cannot yet be initialized -- so we would simply find our
 | |
| 		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
 | |
| 		 * race occurred.
 | |
| 		 */
 | |
| 		rdp->passed_quiesc = 0;	/* try again later! */
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	mask = rdp->grpmask;
 | |
| 	if ((rnp->qsmask & mask) == 0) {
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	} else {
 | |
| 		rdp->qs_pending = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * This GP can't end until cpu checks in, so all of our
 | |
| 		 * callbacks can be processed during the next GP.
 | |
| 		 */
 | |
| 		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
 | |
| 
 | |
| 		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is a new grace period of which this CPU
 | |
|  * is not yet aware, and if so, set up local rcu_data state for it.
 | |
|  * Otherwise, see if this CPU has just passed through its first
 | |
|  * quiescent state for this grace period, and record that fact if so.
 | |
|  */
 | |
| static void
 | |
| rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	/* If there is now a new grace period, record and return. */
 | |
| 	if (check_for_new_grace_period(rsp, rdp))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Does this CPU still need to do its part for current grace period?
 | |
| 	 * If no, return and let the other CPUs do their part as well.
 | |
| 	 */
 | |
| 	if (!rdp->qs_pending)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Was there a quiescent state since the beginning of the grace
 | |
| 	 * period? If no, then exit and wait for the next call.
 | |
| 	 */
 | |
| 	if (!rdp->passed_quiesc)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
 | |
| 	 * judge of that).
 | |
| 	 */
 | |
| 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| /*
 | |
|  * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
 | |
|  * specified flavor of RCU.  The callbacks will be adopted by the next
 | |
|  * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
 | |
|  * comes first.  Because this is invoked from the CPU_DYING notifier,
 | |
|  * irqs are already disabled.
 | |
|  */
 | |
| static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
 | |
| {
 | |
| 	int i;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
 | |
| 
 | |
| 	if (rdp->nxtlist == NULL)
 | |
| 		return;  /* irqs disabled, so comparison is stable. */
 | |
| 	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
 | |
| 	*rsp->orphan_cbs_tail = rdp->nxtlist;
 | |
| 	rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
 | |
| 	rdp->nxtlist = NULL;
 | |
| 	for (i = 0; i < RCU_NEXT_SIZE; i++)
 | |
| 		rdp->nxttail[i] = &rdp->nxtlist;
 | |
| 	rsp->orphan_qlen += rdp->qlen;
 | |
| 	rdp->n_cbs_orphaned += rdp->qlen;
 | |
| 	rdp->qlen = 0;
 | |
| 	raw_spin_unlock(&rsp->onofflock);  /* irqs remain disabled. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adopt previously orphaned RCU callbacks.
 | |
|  */
 | |
| static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rsp->onofflock, flags);
 | |
| 	rdp = this_cpu_ptr(rsp->rda);
 | |
| 	if (rsp->orphan_cbs_list == NULL) {
 | |
| 		raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
 | |
| 	rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
 | |
| 	rdp->qlen += rsp->orphan_qlen;
 | |
| 	rdp->n_cbs_adopted += rsp->orphan_qlen;
 | |
| 	rsp->orphan_cbs_list = NULL;
 | |
| 	rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
 | |
| 	rsp->orphan_qlen = 0;
 | |
| 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 | |
|  * and move all callbacks from the outgoing CPU to the current one.
 | |
|  */
 | |
| static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	int need_report = 0;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	/* Exclude any attempts to start a new grace period. */
 | |
| 	raw_spin_lock_irqsave(&rsp->onofflock, flags);
 | |
| 
 | |
| 	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
 | |
| 	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
 | |
| 	mask = rdp->grpmask;	/* rnp->grplo is constant. */
 | |
| 	do {
 | |
| 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
 | |
| 		rnp->qsmaskinit &= ~mask;
 | |
| 		if (rnp->qsmaskinit != 0) {
 | |
| 			if (rnp != rdp->mynode)
 | |
| 				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 | |
| 			break;
 | |
| 		}
 | |
| 		if (rnp == rdp->mynode)
 | |
| 			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
 | |
| 		else
 | |
| 			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
 | |
| 		mask = rnp->grpmask;
 | |
| 		rnp = rnp->parent;
 | |
| 	} while (rnp != NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * We still hold the leaf rcu_node structure lock here, and
 | |
| 	 * irqs are still disabled.  The reason for this subterfuge is
 | |
| 	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
 | |
| 	 * held leads to deadlock.
 | |
| 	 */
 | |
| 	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
 | |
| 	rnp = rdp->mynode;
 | |
| 	if (need_report & RCU_OFL_TASKS_NORM_GP)
 | |
| 		rcu_report_unblock_qs_rnp(rnp, flags);
 | |
| 	else
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	if (need_report & RCU_OFL_TASKS_EXP_GP)
 | |
| 		rcu_report_exp_rnp(rsp, rnp);
 | |
| 
 | |
| 	rcu_adopt_orphan_cbs(rsp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove the specified CPU from the RCU hierarchy and move any pending
 | |
|  * callbacks that it might have to the current CPU.  This code assumes
 | |
|  * that at least one CPU in the system will remain running at all times.
 | |
|  * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 | |
|  */
 | |
| static void rcu_offline_cpu(int cpu)
 | |
| {
 | |
| 	__rcu_offline_cpu(cpu, &rcu_sched_state);
 | |
| 	__rcu_offline_cpu(cpu, &rcu_bh_state);
 | |
| 	rcu_preempt_offline_cpu(cpu);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_offline_cpu(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /*
 | |
|  * Invoke any RCU callbacks that have made it to the end of their grace
 | |
|  * period.  Thottle as specified by rdp->blimit.
 | |
|  */
 | |
| static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_head *next, *list, **tail;
 | |
| 	int count;
 | |
| 
 | |
| 	/* If no callbacks are ready, just return.*/
 | |
| 	if (!cpu_has_callbacks_ready_to_invoke(rdp))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Extract the list of ready callbacks, disabling to prevent
 | |
| 	 * races with call_rcu() from interrupt handlers.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	list = rdp->nxtlist;
 | |
| 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
 | |
| 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
 | |
| 	tail = rdp->nxttail[RCU_DONE_TAIL];
 | |
| 	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
 | |
| 		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
 | |
| 			rdp->nxttail[count] = &rdp->nxtlist;
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* Invoke callbacks. */
 | |
| 	count = 0;
 | |
| 	while (list) {
 | |
| 		next = list->next;
 | |
| 		prefetch(next);
 | |
| 		debug_rcu_head_unqueue(list);
 | |
| 		list->func(list);
 | |
| 		list = next;
 | |
| 		if (++count >= rdp->blimit)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/* Update count, and requeue any remaining callbacks. */
 | |
| 	rdp->qlen -= count;
 | |
| 	rdp->n_cbs_invoked += count;
 | |
| 	if (list != NULL) {
 | |
| 		*tail = rdp->nxtlist;
 | |
| 		rdp->nxtlist = list;
 | |
| 		for (count = 0; count < RCU_NEXT_SIZE; count++)
 | |
| 			if (&rdp->nxtlist == rdp->nxttail[count])
 | |
| 				rdp->nxttail[count] = tail;
 | |
| 			else
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	/* Reinstate batch limit if we have worked down the excess. */
 | |
| 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
 | |
| 		rdp->blimit = blimit;
 | |
| 
 | |
| 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
 | |
| 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
 | |
| 		rdp->qlen_last_fqs_check = 0;
 | |
| 		rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
 | |
| 		rdp->qlen_last_fqs_check = rdp->qlen;
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* Re-raise the RCU softirq if there are callbacks remaining. */
 | |
| 	if (cpu_has_callbacks_ready_to_invoke(rdp))
 | |
| 		raise_softirq(RCU_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if this CPU is in a non-context-switch quiescent state
 | |
|  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 | |
|  * Also schedule the RCU softirq handler.
 | |
|  *
 | |
|  * This function must be called with hardirqs disabled.  It is normally
 | |
|  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 | |
|  * false, there is no point in invoking rcu_check_callbacks().
 | |
|  */
 | |
| void rcu_check_callbacks(int cpu, int user)
 | |
| {
 | |
| 	if (user ||
 | |
| 	    (idle_cpu(cpu) && rcu_scheduler_active &&
 | |
| 	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Get here if this CPU took its interrupt from user
 | |
| 		 * mode or from the idle loop, and if this is not a
 | |
| 		 * nested interrupt.  In this case, the CPU is in
 | |
| 		 * a quiescent state, so note it.
 | |
| 		 *
 | |
| 		 * No memory barrier is required here because both
 | |
| 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
 | |
| 		 * variables that other CPUs neither access nor modify,
 | |
| 		 * at least not while the corresponding CPU is online.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_sched_qs(cpu);
 | |
| 		rcu_bh_qs(cpu);
 | |
| 
 | |
| 	} else if (!in_softirq()) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Get here if this CPU did not take its interrupt from
 | |
| 		 * softirq, in other words, if it is not interrupting
 | |
| 		 * a rcu_bh read-side critical section.  This is an _bh
 | |
| 		 * critical section, so note it.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_bh_qs(cpu);
 | |
| 	}
 | |
| 	rcu_preempt_check_callbacks(cpu);
 | |
| 	if (rcu_pending(cpu))
 | |
| 		raise_softirq(RCU_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * Scan the leaf rcu_node structures, processing dyntick state for any that
 | |
|  * have not yet encountered a quiescent state, using the function specified.
 | |
|  * The caller must have suppressed start of new grace periods.
 | |
|  */
 | |
| static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
 | |
| {
 | |
| 	unsigned long bit;
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rcu_for_each_leaf_node(rsp, rnp) {
 | |
| 		mask = 0;
 | |
| 		raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 		if (!rcu_gp_in_progress(rsp)) {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (rnp->qsmask == 0) {
 | |
| 			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		cpu = rnp->grplo;
 | |
| 		bit = 1;
 | |
| 		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
 | |
| 			if ((rnp->qsmask & bit) != 0 &&
 | |
| 			    f(per_cpu_ptr(rsp->rda, cpu)))
 | |
| 				mask |= bit;
 | |
| 		}
 | |
| 		if (mask != 0) {
 | |
| 
 | |
| 			/* rcu_report_qs_rnp() releases rnp->lock. */
 | |
| 			rcu_report_qs_rnp(mask, rsp, rnp, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force quiescent states on reluctant CPUs, and also detect which
 | |
|  * CPUs are in dyntick-idle mode.
 | |
|  */
 | |
| static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	if (!rcu_gp_in_progress(rsp))
 | |
| 		return;  /* No grace period in progress, nothing to force. */
 | |
| 	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
 | |
| 		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
 | |
| 		return;	/* Someone else is already on the job. */
 | |
| 	}
 | |
| 	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
 | |
| 		goto unlock_fqs_ret; /* no emergency and done recently. */
 | |
| 	rsp->n_force_qs++;
 | |
| 	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
 | |
| 	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
 | |
| 	if(!rcu_gp_in_progress(rsp)) {
 | |
| 		rsp->n_force_qs_ngp++;
 | |
| 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
 | |
| 		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
 | |
| 	}
 | |
| 	rsp->fqs_active = 1;
 | |
| 	switch (rsp->signaled) {
 | |
| 	case RCU_GP_IDLE:
 | |
| 	case RCU_GP_INIT:
 | |
| 
 | |
| 		break; /* grace period idle or initializing, ignore. */
 | |
| 
 | |
| 	case RCU_SAVE_DYNTICK:
 | |
| 		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
 | |
| 			break; /* So gcc recognizes the dead code. */
 | |
| 
 | |
| 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
 | |
| 
 | |
| 		/* Record dyntick-idle state. */
 | |
| 		force_qs_rnp(rsp, dyntick_save_progress_counter);
 | |
| 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
 | |
| 		if (rcu_gp_in_progress(rsp))
 | |
| 			rsp->signaled = RCU_FORCE_QS;
 | |
| 		break;
 | |
| 
 | |
| 	case RCU_FORCE_QS:
 | |
| 
 | |
| 		/* Check dyntick-idle state, send IPI to laggarts. */
 | |
| 		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
 | |
| 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
 | |
| 
 | |
| 		/* Leave state in case more forcing is required. */
 | |
| 
 | |
| 		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
 | |
| 		break;
 | |
| 	}
 | |
| 	rsp->fqs_active = 0;
 | |
| 	if (rsp->fqs_need_gp) {
 | |
| 		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
 | |
| 		rsp->fqs_need_gp = 0;
 | |
| 		rcu_start_gp(rsp, flags); /* releases rnp->lock */
 | |
| 		return;
 | |
| 	}
 | |
| 	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
 | |
| unlock_fqs_ret:
 | |
| 	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_SMP */
 | |
| 
 | |
| static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
 | |
| {
 | |
| 	set_need_resched();
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * This does the RCU processing work from softirq context for the
 | |
|  * specified rcu_state and rcu_data structures.  This may be called
 | |
|  * only from the CPU to whom the rdp belongs.
 | |
|  */
 | |
| static void
 | |
| __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	WARN_ON_ONCE(rdp->beenonline == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If an RCU GP has gone long enough, go check for dyntick
 | |
| 	 * idle CPUs and, if needed, send resched IPIs.
 | |
| 	 */
 | |
| 	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
 | |
| 		force_quiescent_state(rsp, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Advance callbacks in response to end of earlier grace
 | |
| 	 * period that some other CPU ended.
 | |
| 	 */
 | |
| 	rcu_process_gp_end(rsp, rdp);
 | |
| 
 | |
| 	/* Update RCU state based on any recent quiescent states. */
 | |
| 	rcu_check_quiescent_state(rsp, rdp);
 | |
| 
 | |
| 	/* Does this CPU require a not-yet-started grace period? */
 | |
| 	if (cpu_needs_another_gp(rsp, rdp)) {
 | |
| 		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
 | |
| 		rcu_start_gp(rsp, flags);  /* releases above lock */
 | |
| 	}
 | |
| 
 | |
| 	/* If there are callbacks ready, invoke them. */
 | |
| 	rcu_do_batch(rsp, rdp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do softirq processing for the current CPU.
 | |
|  */
 | |
| static void rcu_process_callbacks(struct softirq_action *unused)
 | |
| {
 | |
| 	/*
 | |
| 	 * Memory references from any prior RCU read-side critical sections
 | |
| 	 * executed by the interrupted code must be seen before any RCU
 | |
| 	 * grace-period manipulations below.
 | |
| 	 */
 | |
| 	smp_mb(); /* See above block comment. */
 | |
| 
 | |
| 	__rcu_process_callbacks(&rcu_sched_state,
 | |
| 				&__get_cpu_var(rcu_sched_data));
 | |
| 	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
 | |
| 	rcu_preempt_process_callbacks();
 | |
| 
 | |
| 	/*
 | |
| 	 * Memory references from any later RCU read-side critical sections
 | |
| 	 * executed by the interrupted code must be seen after any RCU
 | |
| 	 * grace-period manipulations above.
 | |
| 	 */
 | |
| 	smp_mb(); /* See above block comment. */
 | |
| 
 | |
| 	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
 | |
| 	rcu_needs_cpu_flush();
 | |
| }
 | |
| 
 | |
| static void
 | |
| __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
 | |
| 	   struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	debug_rcu_head_queue(head);
 | |
| 	head->func = func;
 | |
| 	head->next = NULL;
 | |
| 
 | |
| 	smp_mb(); /* Ensure RCU update seen before callback registry. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Opportunistically note grace-period endings and beginnings.
 | |
| 	 * Note that we might see a beginning right after we see an
 | |
| 	 * end, but never vice versa, since this CPU has to pass through
 | |
| 	 * a quiescent state betweentimes.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	rdp = this_cpu_ptr(rsp->rda);
 | |
| 	rcu_process_gp_end(rsp, rdp);
 | |
| 	check_for_new_grace_period(rsp, rdp);
 | |
| 
 | |
| 	/* Add the callback to our list. */
 | |
| 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
 | |
| 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
 | |
| 
 | |
| 	/* Start a new grace period if one not already started. */
 | |
| 	if (!rcu_gp_in_progress(rsp)) {
 | |
| 		unsigned long nestflag;
 | |
| 		struct rcu_node *rnp_root = rcu_get_root(rsp);
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
 | |
| 		rcu_start_gp(rsp, nestflag);  /* releases rnp_root->lock. */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Force the grace period if too many callbacks or too long waiting.
 | |
| 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
 | |
| 	 * if some other CPU has recently done so.  Also, don't bother
 | |
| 	 * invoking force_quiescent_state() if the newly enqueued callback
 | |
| 	 * is the only one waiting for a grace period to complete.
 | |
| 	 */
 | |
| 	if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
 | |
| 		rdp->blimit = LONG_MAX;
 | |
| 		if (rsp->n_force_qs == rdp->n_force_qs_snap &&
 | |
| 		    *rdp->nxttail[RCU_DONE_TAIL] != head)
 | |
| 			force_quiescent_state(rsp, 0);
 | |
| 		rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 		rdp->qlen_last_fqs_check = rdp->qlen;
 | |
| 	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
 | |
| 		force_quiescent_state(rsp, 1);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue an RCU-sched callback for invocation after a grace period.
 | |
|  */
 | |
| void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_sched_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu_sched);
 | |
| 
 | |
| /*
 | |
|  * Queue an RCU for invocation after a quicker grace period.
 | |
|  */
 | |
| void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 | |
| {
 | |
| 	__call_rcu(head, func, &rcu_bh_state);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(call_rcu_bh);
 | |
| 
 | |
| /**
 | |
|  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full rcu-sched
 | |
|  * grace period has elapsed, in other words after all currently executing
 | |
|  * rcu-sched read-side critical sections have completed.   These read-side
 | |
|  * critical sections are delimited by rcu_read_lock_sched() and
 | |
|  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 | |
|  * local_irq_disable(), and so on may be used in place of
 | |
|  * rcu_read_lock_sched().
 | |
|  *
 | |
|  * This means that all preempt_disable code sequences, including NMI and
 | |
|  * hardware-interrupt handlers, in progress on entry will have completed
 | |
|  * before this primitive returns.  However, this does not guarantee that
 | |
|  * softirq handlers will have completed, since in some kernels, these
 | |
|  * handlers can run in process context, and can block.
 | |
|  *
 | |
|  * This primitive provides the guarantees made by the (now removed)
 | |
|  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 | |
|  * guarantees that rcu_read_lock() sections will have completed.
 | |
|  * In "classic RCU", these two guarantees happen to be one and
 | |
|  * the same, but can differ in realtime RCU implementations.
 | |
|  */
 | |
| void synchronize_sched(void)
 | |
| {
 | |
| 	struct rcu_synchronize rcu;
 | |
| 
 | |
| 	if (rcu_blocking_is_gp())
 | |
| 		return;
 | |
| 
 | |
| 	init_rcu_head_on_stack(&rcu.head);
 | |
| 	init_completion(&rcu.completion);
 | |
| 	/* Will wake me after RCU finished. */
 | |
| 	call_rcu_sched(&rcu.head, wakeme_after_rcu);
 | |
| 	/* Wait for it. */
 | |
| 	wait_for_completion(&rcu.completion);
 | |
| 	destroy_rcu_head_on_stack(&rcu.head);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_sched);
 | |
| 
 | |
| /**
 | |
|  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 | |
|  *
 | |
|  * Control will return to the caller some time after a full rcu_bh grace
 | |
|  * period has elapsed, in other words after all currently executing rcu_bh
 | |
|  * read-side critical sections have completed.  RCU read-side critical
 | |
|  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 | |
|  * and may be nested.
 | |
|  */
 | |
| void synchronize_rcu_bh(void)
 | |
| {
 | |
| 	struct rcu_synchronize rcu;
 | |
| 
 | |
| 	if (rcu_blocking_is_gp())
 | |
| 		return;
 | |
| 
 | |
| 	init_rcu_head_on_stack(&rcu.head);
 | |
| 	init_completion(&rcu.completion);
 | |
| 	/* Will wake me after RCU finished. */
 | |
| 	call_rcu_bh(&rcu.head, wakeme_after_rcu);
 | |
| 	/* Wait for it. */
 | |
| 	wait_for_completion(&rcu.completion);
 | |
| 	destroy_rcu_head_on_stack(&rcu.head);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is any immediate RCU-related work to be done
 | |
|  * by the current CPU, for the specified type of RCU, returning 1 if so.
 | |
|  * The checks are in order of increasing expense: checks that can be
 | |
|  * carried out against CPU-local state are performed first.  However,
 | |
|  * we must check for CPU stalls first, else we might not get a chance.
 | |
|  */
 | |
| static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	rdp->n_rcu_pending++;
 | |
| 
 | |
| 	/* Check for CPU stalls, if enabled. */
 | |
| 	check_cpu_stall(rsp, rdp);
 | |
| 
 | |
| 	/* Is the RCU core waiting for a quiescent state from this CPU? */
 | |
| 	if (rdp->qs_pending && !rdp->passed_quiesc) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If force_quiescent_state() coming soon and this CPU
 | |
| 		 * needs a quiescent state, and this is either RCU-sched
 | |
| 		 * or RCU-bh, force a local reschedule.
 | |
| 		 */
 | |
| 		rdp->n_rp_qs_pending++;
 | |
| 		if (!rdp->preemptable &&
 | |
| 		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
 | |
| 				 jiffies))
 | |
| 			set_need_resched();
 | |
| 	} else if (rdp->qs_pending && rdp->passed_quiesc) {
 | |
| 		rdp->n_rp_report_qs++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Does this CPU have callbacks ready to invoke? */
 | |
| 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
 | |
| 		rdp->n_rp_cb_ready++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Has RCU gone idle with this CPU needing another grace period? */
 | |
| 	if (cpu_needs_another_gp(rsp, rdp)) {
 | |
| 		rdp->n_rp_cpu_needs_gp++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Has another RCU grace period completed?  */
 | |
| 	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
 | |
| 		rdp->n_rp_gp_completed++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Has a new RCU grace period started? */
 | |
| 	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
 | |
| 		rdp->n_rp_gp_started++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Has an RCU GP gone long enough to send resched IPIs &c? */
 | |
| 	if (rcu_gp_in_progress(rsp) &&
 | |
| 	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
 | |
| 		rdp->n_rp_need_fqs++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* nothing to do */
 | |
| 	rdp->n_rp_need_nothing++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if there is any immediate RCU-related work to be done
 | |
|  * by the current CPU, returning 1 if so.  This function is part of the
 | |
|  * RCU implementation; it is -not- an exported member of the RCU API.
 | |
|  */
 | |
| static int rcu_pending(int cpu)
 | |
| {
 | |
| 	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
 | |
| 	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
 | |
| 	       rcu_preempt_pending(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if any future RCU-related work will need to be done
 | |
|  * by the current CPU, even if none need be done immediately, returning
 | |
|  * 1 if so.
 | |
|  */
 | |
| static int rcu_needs_cpu_quick_check(int cpu)
 | |
| {
 | |
| 	/* RCU callbacks either ready or pending? */
 | |
| 	return per_cpu(rcu_sched_data, cpu).nxtlist ||
 | |
| 	       per_cpu(rcu_bh_data, cpu).nxtlist ||
 | |
| 	       rcu_preempt_needs_cpu(cpu);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
 | |
| static atomic_t rcu_barrier_cpu_count;
 | |
| static DEFINE_MUTEX(rcu_barrier_mutex);
 | |
| static struct completion rcu_barrier_completion;
 | |
| 
 | |
| static void rcu_barrier_callback(struct rcu_head *notused)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
 | |
| 		complete(&rcu_barrier_completion);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with preemption disabled, and from cross-cpu IRQ context.
 | |
|  */
 | |
| static void rcu_barrier_func(void *type)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
 | |
| 	void (*call_rcu_func)(struct rcu_head *head,
 | |
| 			      void (*func)(struct rcu_head *head));
 | |
| 
 | |
| 	atomic_inc(&rcu_barrier_cpu_count);
 | |
| 	call_rcu_func = type;
 | |
| 	call_rcu_func(head, rcu_barrier_callback);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Orchestrate the specified type of RCU barrier, waiting for all
 | |
|  * RCU callbacks of the specified type to complete.
 | |
|  */
 | |
| static void _rcu_barrier(struct rcu_state *rsp,
 | |
| 			 void (*call_rcu_func)(struct rcu_head *head,
 | |
| 					       void (*func)(struct rcu_head *head)))
 | |
| {
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
 | |
| 	mutex_lock(&rcu_barrier_mutex);
 | |
| 	init_completion(&rcu_barrier_completion);
 | |
| 	/*
 | |
| 	 * Initialize rcu_barrier_cpu_count to 1, then invoke
 | |
| 	 * rcu_barrier_func() on each CPU, so that each CPU also has
 | |
| 	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
 | |
| 	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
 | |
| 	 * might complete its grace period before all of the other CPUs
 | |
| 	 * did their increment, causing this function to return too
 | |
| 	 * early.
 | |
| 	 */
 | |
| 	atomic_set(&rcu_barrier_cpu_count, 1);
 | |
| 	preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
 | |
| 	rcu_adopt_orphan_cbs(rsp);
 | |
| 	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
 | |
| 	preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
 | |
| 	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
 | |
| 		complete(&rcu_barrier_completion);
 | |
| 	wait_for_completion(&rcu_barrier_completion);
 | |
| 	mutex_unlock(&rcu_barrier_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 | |
|  */
 | |
| void rcu_barrier_bh(void)
 | |
| {
 | |
| 	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier_bh);
 | |
| 
 | |
| /**
 | |
|  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 | |
|  */
 | |
| void rcu_barrier_sched(void)
 | |
| {
 | |
| 	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_barrier_sched);
 | |
| 
 | |
| /*
 | |
|  * Do boot-time initialization of a CPU's per-CPU RCU data.
 | |
|  */
 | |
| static void __init
 | |
| rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/* Set up local state, ensuring consistent view of global state. */
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
 | |
| 	rdp->nxtlist = NULL;
 | |
| 	for (i = 0; i < RCU_NEXT_SIZE; i++)
 | |
| 		rdp->nxttail[i] = &rdp->nxtlist;
 | |
| 	rdp->qlen = 0;
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
 | |
| #endif /* #ifdef CONFIG_NO_HZ */
 | |
| 	rdp->cpu = cpu;
 | |
| 	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 | |
|  * offline event can be happening at a given time.  Note also that we
 | |
|  * can accept some slop in the rsp->completed access due to the fact
 | |
|  * that this CPU cannot possibly have any RCU callbacks in flight yet.
 | |
|  */
 | |
| static void __cpuinit
 | |
| rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long mask;
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 | |
| 	struct rcu_node *rnp = rcu_get_root(rsp);
 | |
| 
 | |
| 	/* Set up local state, ensuring consistent view of global state. */
 | |
| 	raw_spin_lock_irqsave(&rnp->lock, flags);
 | |
| 	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
 | |
| 	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
 | |
| 	rdp->beenonline = 1;	 /* We have now been online. */
 | |
| 	rdp->preemptable = preemptable;
 | |
| 	rdp->qlen_last_fqs_check = 0;
 | |
| 	rdp->n_force_qs_snap = rsp->n_force_qs;
 | |
| 	rdp->blimit = blimit;
 | |
| 	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
 | |
| 
 | |
| 	/*
 | |
| 	 * A new grace period might start here.  If so, we won't be part
 | |
| 	 * of it, but that is OK, as we are currently in a quiescent state.
 | |
| 	 */
 | |
| 
 | |
| 	/* Exclude any attempts to start a new GP on large systems. */
 | |
| 	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
 | |
| 
 | |
| 	/* Add CPU to rcu_node bitmasks. */
 | |
| 	rnp = rdp->mynode;
 | |
| 	mask = rdp->grpmask;
 | |
| 	do {
 | |
| 		/* Exclude any attempts to start a new GP on small systems. */
 | |
| 		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
 | |
| 		rnp->qsmaskinit |= mask;
 | |
| 		mask = rnp->grpmask;
 | |
| 		if (rnp == rdp->mynode) {
 | |
| 			rdp->gpnum = rnp->completed; /* if GP in progress... */
 | |
| 			rdp->completed = rnp->completed;
 | |
| 			rdp->passed_quiesc_completed = rnp->completed - 1;
 | |
| 		}
 | |
| 		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
 | |
| 		rnp = rnp->parent;
 | |
| 	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
 | |
| }
 | |
| 
 | |
| static void __cpuinit rcu_online_cpu(int cpu)
 | |
| {
 | |
| 	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
 | |
| 	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
 | |
| 	rcu_preempt_init_percpu_data(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle CPU online/offline notification events.
 | |
|  */
 | |
| static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
 | |
| 				    unsigned long action, void *hcpu)
 | |
| {
 | |
| 	long cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		rcu_online_cpu(cpu);
 | |
| 		break;
 | |
| 	case CPU_DYING:
 | |
| 	case CPU_DYING_FROZEN:
 | |
| 		/*
 | |
| 		 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
 | |
| 		 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
 | |
| 		 * returns, all online cpus have queued rcu_barrier_func().
 | |
| 		 * The dying CPU clears its cpu_online_mask bit and
 | |
| 		 * moves all of its RCU callbacks to ->orphan_cbs_list
 | |
| 		 * in the context of stop_machine(), so subsequent calls
 | |
| 		 * to _rcu_barrier() will adopt these callbacks and only
 | |
| 		 * then queue rcu_barrier_func() on all remaining CPUs.
 | |
| 		 */
 | |
| 		rcu_send_cbs_to_orphanage(&rcu_bh_state);
 | |
| 		rcu_send_cbs_to_orphanage(&rcu_sched_state);
 | |
| 		rcu_preempt_send_cbs_to_orphanage();
 | |
| 		break;
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 		rcu_offline_cpu(cpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is invoked towards the end of the scheduler's initialization
 | |
|  * process.  Before this is called, the idle task might contain
 | |
|  * RCU read-side critical sections (during which time, this idle
 | |
|  * task is booting the system).  After this function is called, the
 | |
|  * idle tasks are prohibited from containing RCU read-side critical
 | |
|  * sections.  This function also enables RCU lockdep checking.
 | |
|  */
 | |
| void rcu_scheduler_starting(void)
 | |
| {
 | |
| 	WARN_ON(num_online_cpus() != 1);
 | |
| 	WARN_ON(nr_context_switches() > 0);
 | |
| 	rcu_scheduler_active = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the per-level fanout, either using the exact fanout specified
 | |
|  * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 | |
|  */
 | |
| #ifdef CONFIG_RCU_FANOUT_EXACT
 | |
| static void __init rcu_init_levelspread(struct rcu_state *rsp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
 | |
| 		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
 | |
| }
 | |
| #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
 | |
| static void __init rcu_init_levelspread(struct rcu_state *rsp)
 | |
| {
 | |
| 	int ccur;
 | |
| 	int cprv;
 | |
| 	int i;
 | |
| 
 | |
| 	cprv = NR_CPUS;
 | |
| 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
 | |
| 		ccur = rsp->levelcnt[i];
 | |
| 		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
 | |
| 		cprv = ccur;
 | |
| 	}
 | |
| }
 | |
| #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
 | |
| 
 | |
| /*
 | |
|  * Helper function for rcu_init() that initializes one rcu_state structure.
 | |
|  */
 | |
| static void __init rcu_init_one(struct rcu_state *rsp,
 | |
| 		struct rcu_data __percpu *rda)
 | |
| {
 | |
| 	static char *buf[] = { "rcu_node_level_0",
 | |
| 			       "rcu_node_level_1",
 | |
| 			       "rcu_node_level_2",
 | |
| 			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
 | |
| 	int cpustride = 1;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
 | |
| 
 | |
| 	/* Initialize the level-tracking arrays. */
 | |
| 
 | |
| 	for (i = 1; i < NUM_RCU_LVLS; i++)
 | |
| 		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
 | |
| 	rcu_init_levelspread(rsp);
 | |
| 
 | |
| 	/* Initialize the elements themselves, starting from the leaves. */
 | |
| 
 | |
| 	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
 | |
| 		cpustride *= rsp->levelspread[i];
 | |
| 		rnp = rsp->level[i];
 | |
| 		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
 | |
| 			raw_spin_lock_init(&rnp->lock);
 | |
| 			lockdep_set_class_and_name(&rnp->lock,
 | |
| 						   &rcu_node_class[i], buf[i]);
 | |
| 			rnp->gpnum = 0;
 | |
| 			rnp->qsmask = 0;
 | |
| 			rnp->qsmaskinit = 0;
 | |
| 			rnp->grplo = j * cpustride;
 | |
| 			rnp->grphi = (j + 1) * cpustride - 1;
 | |
| 			if (rnp->grphi >= NR_CPUS)
 | |
| 				rnp->grphi = NR_CPUS - 1;
 | |
| 			if (i == 0) {
 | |
| 				rnp->grpnum = 0;
 | |
| 				rnp->grpmask = 0;
 | |
| 				rnp->parent = NULL;
 | |
| 			} else {
 | |
| 				rnp->grpnum = j % rsp->levelspread[i - 1];
 | |
| 				rnp->grpmask = 1UL << rnp->grpnum;
 | |
| 				rnp->parent = rsp->level[i - 1] +
 | |
| 					      j / rsp->levelspread[i - 1];
 | |
| 			}
 | |
| 			rnp->level = i;
 | |
| 			INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
 | |
| 			INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
 | |
| 			INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
 | |
| 			INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rsp->rda = rda;
 | |
| 	rnp = rsp->level[NUM_RCU_LVLS - 1];
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		while (i > rnp->grphi)
 | |
| 			rnp++;
 | |
| 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
 | |
| 		rcu_boot_init_percpu_data(i, rsp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init rcu_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	rcu_bootup_announce();
 | |
| 	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
 | |
| 	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
 | |
| 	__rcu_init_preempt();
 | |
| 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need protection against CPU-hotplug here because
 | |
| 	 * this is called early in boot, before either interrupts
 | |
| 	 * or the scheduler are operational.
 | |
| 	 */
 | |
| 	cpu_notifier(rcu_cpu_notify, 0);
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
 | |
| 	check_cpu_stall_init();
 | |
| }
 | |
| 
 | |
| #include "rcutree_plugin.h"
 |