mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:53:24 +00:00 
			
		
		
		
	 d7842da470
			
		
	
	
		d7842da470
		
	
	
	
	
		
			
			This new version (see commit 8e5fc1a) is much simpler and ensures that
in case of error in group_sched_in() during event_sched_in(), the
events up to the failed event go through regular event_sched_out().
But the failed event and the remaining events in the group have their
timings adjusted as if they had also gone through event_sched_in() and
event_sched_out(). This ensures timing uniformity across all events in
a group. This also takes care of the tstamp_stopped problem in case
the group could never be scheduled. The tstamp_stopped is updated as
if the event had actually run.
With this patch, the following now reports correct time_enabled,
in case the NMI watchdog is active:
$ task -e unhalted_core_cycles,instructions_retired,baclears,baclears
noploop 1
noploop for 1 seconds
0 unhalted_core_cycles (100.00% scaling, ena=997,552,872, run=0)
0 instructions_retired (100.00% scaling, ena=997,552,872, run=0)
0 baclears (100.00% scaling, ena=997,552,872, run=0)
0 baclears (100.00% scaling, ena=997,552,872, run=0)
And the older test case also works:
$ task -einstructions_retired,baclears,baclears -e
unhalted_core_cycles,baclears,baclears sleep 5
1680885 instructions_retired (69.39% scaling, ena=950756, run=291006)
  10735 baclears (69.39% scaling, ena=950756, run=291006)
  10735 baclears (69.39% scaling, ena=950756, run=291006)
      0 unhalted_core_cycles (100.00% scaling, ena=817932, run=0)
      0 baclears (100.00% scaling, ena=817932, run=0)
      0 baclears (100.00% scaling, ena=817932, run=0)
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4cbeeebc.8ee7d80a.5a28.0d5f@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
		
	
			
		
			
				
	
	
		
			6306 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6306 lines
		
	
	
		
			142 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance events core code:
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 | |
|  *
 | |
|  * For licensing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/dcache.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/ftrace_event.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| atomic_t perf_task_events __read_mostly;
 | |
| static atomic_t nr_mmap_events __read_mostly;
 | |
| static atomic_t nr_comm_events __read_mostly;
 | |
| static atomic_t nr_task_events __read_mostly;
 | |
| 
 | |
| static LIST_HEAD(pmus);
 | |
| static DEFINE_MUTEX(pmus_lock);
 | |
| static struct srcu_struct pmus_srcu;
 | |
| 
 | |
| /*
 | |
|  * perf event paranoia level:
 | |
|  *  -1 - not paranoid at all
 | |
|  *   0 - disallow raw tracepoint access for unpriv
 | |
|  *   1 - disallow cpu events for unpriv
 | |
|  *   2 - disallow kernel profiling for unpriv
 | |
|  */
 | |
| int sysctl_perf_event_paranoid __read_mostly = 1;
 | |
| 
 | |
| int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
 | |
| 
 | |
| /*
 | |
|  * max perf event sample rate
 | |
|  */
 | |
| int sysctl_perf_event_sample_rate __read_mostly = 100000;
 | |
| 
 | |
| static atomic64_t perf_event_id;
 | |
| 
 | |
| void __weak perf_event_print_debug(void)	{ }
 | |
| 
 | |
| extern __weak const char *perf_pmu_name(void)
 | |
| {
 | |
| 	return "pmu";
 | |
| }
 | |
| 
 | |
| void perf_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!(*count)++)
 | |
| 		pmu->pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| void perf_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
 | |
| 	if (!--(*count))
 | |
| 		pmu->pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct list_head, rotation_list);
 | |
| 
 | |
| /*
 | |
|  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 | |
|  * because they're strictly cpu affine and rotate_start is called with IRQs
 | |
|  * disabled, while rotate_context is called from IRQ context.
 | |
|  */
 | |
| static void perf_pmu_rotate_start(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	struct list_head *head = &__get_cpu_var(rotation_list);
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (list_empty(&cpuctx->rotation_list))
 | |
| 		list_add(&cpuctx->rotation_list, head);
 | |
| }
 | |
| 
 | |
| static void get_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 | |
| }
 | |
| 
 | |
| static void free_ctx(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = container_of(head, struct perf_event_context, rcu_head);
 | |
| 	kfree(ctx);
 | |
| }
 | |
| 
 | |
| static void put_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ctx->refcount)) {
 | |
| 		if (ctx->parent_ctx)
 | |
| 			put_ctx(ctx->parent_ctx);
 | |
| 		if (ctx->task)
 | |
| 			put_task_struct(ctx->task);
 | |
| 		call_rcu(&ctx->rcu_head, free_ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unclone_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (ctx->parent_ctx) {
 | |
| 		put_ctx(ctx->parent_ctx);
 | |
| 		ctx->parent_ctx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we inherit events we want to return the parent event id
 | |
|  * to userspace.
 | |
|  */
 | |
| static u64 primary_event_id(struct perf_event *event)
 | |
| {
 | |
| 	u64 id = event->id;
 | |
| 
 | |
| 	if (event->parent)
 | |
| 		id = event->parent->id;
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the perf_event_context for a task and lock it.
 | |
|  * This has to cope with with the fact that until it is locked,
 | |
|  * the context could get moved to another task.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| retry:
 | |
| 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 | |
| 	if (ctx) {
 | |
| 		/*
 | |
| 		 * If this context is a clone of another, it might
 | |
| 		 * get swapped for another underneath us by
 | |
| 		 * perf_event_task_sched_out, though the
 | |
| 		 * rcu_read_lock() protects us from any context
 | |
| 		 * getting freed.  Lock the context and check if it
 | |
| 		 * got swapped before we could get the lock, and retry
 | |
| 		 * if so.  If we locked the right context, then it
 | |
| 		 * can't get swapped on us any more.
 | |
| 		 */
 | |
| 		raw_spin_lock_irqsave(&ctx->lock, *flags);
 | |
| 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 | |
| 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		if (!atomic_inc_not_zero(&ctx->refcount)) {
 | |
| 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 | |
| 			ctx = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the context for a task and increment its pin_count so it
 | |
|  * can't get swapped to another task.  This also increments its
 | |
|  * reference count so that the context can't get freed.
 | |
|  */
 | |
| static struct perf_event_context *
 | |
| perf_pin_task_context(struct task_struct *task, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		++ctx->pin_count;
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static void perf_unpin_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 	--ctx->pin_count;
 | |
| 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	put_ctx(ctx);
 | |
| }
 | |
| 
 | |
| static inline u64 perf_clock(void)
 | |
| {
 | |
| 	return local_clock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the record of the current time in a context.
 | |
|  */
 | |
| static void update_context_time(struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 now = perf_clock();
 | |
| 
 | |
| 	ctx->time += now - ctx->timestamp;
 | |
| 	ctx->timestamp = now;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the total_time_enabled and total_time_running fields for a event.
 | |
|  */
 | |
| static void update_event_times(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	u64 run_end;
 | |
| 
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->is_active)
 | |
| 		run_end = ctx->time;
 | |
| 	else
 | |
| 		run_end = event->tstamp_stopped;
 | |
| 
 | |
| 	event->total_time_enabled = run_end - event->tstamp_enabled;
 | |
| 
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE)
 | |
| 		run_end = event->tstamp_stopped;
 | |
| 	else
 | |
| 		run_end = ctx->time;
 | |
| 
 | |
| 	event->total_time_running = run_end - event->tstamp_running;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update total_time_enabled and total_time_running for all events in a group.
 | |
|  */
 | |
| static void update_group_times(struct perf_event *leader)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	update_event_times(leader);
 | |
| 	list_for_each_entry(event, &leader->sibling_list, group_entry)
 | |
| 		update_event_times(event);
 | |
| }
 | |
| 
 | |
| static struct list_head *
 | |
| ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (event->attr.pinned)
 | |
| 		return &ctx->pinned_groups;
 | |
| 	else
 | |
| 		return &ctx->flexible_groups;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
 | |
| 	event->attach_state |= PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're a stand alone event or group leader, we go to the context
 | |
| 	 * list, group events are kept attached to the group so that
 | |
| 	 * perf_group_detach can, at all times, locate all siblings.
 | |
| 	 */
 | |
| 	if (event->group_leader == event) {
 | |
| 		struct list_head *list;
 | |
| 
 | |
| 		if (is_software_event(event))
 | |
| 			event->group_flags |= PERF_GROUP_SOFTWARE;
 | |
| 
 | |
| 		list = ctx_group_list(event, ctx);
 | |
| 		list_add_tail(&event->group_entry, list);
 | |
| 	}
 | |
| 
 | |
| 	list_add_rcu(&event->event_entry, &ctx->event_list);
 | |
| 	if (!ctx->nr_events)
 | |
| 		perf_pmu_rotate_start(ctx->pmu);
 | |
| 	ctx->nr_events++;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat++;
 | |
| }
 | |
| 
 | |
| static void perf_group_attach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *group_leader = event->group_leader;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double attach due to group movement in perf_event_open.
 | |
| 	 */
 | |
| 	if (event->attach_state & PERF_ATTACH_GROUP)
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state |= PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	if (group_leader == event)
 | |
| 		return;
 | |
| 
 | |
| 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
 | |
| 			!is_software_event(event))
 | |
| 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
 | |
| 
 | |
| 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
 | |
| 	group_leader->nr_siblings++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a event from the lists for its context.
 | |
|  * Must be called with ctx->mutex and ctx->lock held.
 | |
|  */
 | |
| static void
 | |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
 | |
| 
 | |
| 	ctx->nr_events--;
 | |
| 	if (event->attr.inherit_stat)
 | |
| 		ctx->nr_stat--;
 | |
| 
 | |
| 	list_del_rcu(&event->event_entry);
 | |
| 
 | |
| 	if (event->group_leader == event)
 | |
| 		list_del_init(&event->group_entry);
 | |
| 
 | |
| 	update_group_times(event);
 | |
| 
 | |
| 	/*
 | |
| 	 * If event was in error state, then keep it
 | |
| 	 * that way, otherwise bogus counts will be
 | |
| 	 * returned on read(). The only way to get out
 | |
| 	 * of error state is by explicit re-enabling
 | |
| 	 * of the event
 | |
| 	 */
 | |
| 	if (event->state > PERF_EVENT_STATE_OFF)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| }
 | |
| 
 | |
| static void perf_group_detach(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sibling, *tmp;
 | |
| 	struct list_head *list = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can have double detach due to exit/hot-unplug + close.
 | |
| 	 */
 | |
| 	if (!(event->attach_state & PERF_ATTACH_GROUP))
 | |
| 		return;
 | |
| 
 | |
| 	event->attach_state &= ~PERF_ATTACH_GROUP;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a sibling, remove it from its group.
 | |
| 	 */
 | |
| 	if (event->group_leader != event) {
 | |
| 		list_del_init(&event->group_entry);
 | |
| 		event->group_leader->nr_siblings--;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&event->group_entry))
 | |
| 		list = &event->group_entry;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this was a group event with sibling events then
 | |
| 	 * upgrade the siblings to singleton events by adding them
 | |
| 	 * to whatever list we are on.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
 | |
| 		if (list)
 | |
| 			list_move_tail(&sibling->group_entry, list);
 | |
| 		sibling->group_leader = sibling;
 | |
| 
 | |
| 		/* Inherit group flags from the previous leader */
 | |
| 		sibling->group_flags = event->group_flags;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| event_filter_match(struct perf_event *event)
 | |
| {
 | |
| 	return event->cpu == -1 || event->cpu == smp_processor_id();
 | |
| }
 | |
| 
 | |
| static void
 | |
| event_sched_out(struct perf_event *event,
 | |
| 		  struct perf_cpu_context *cpuctx,
 | |
| 		  struct perf_event_context *ctx)
 | |
| {
 | |
| 	u64 delta;
 | |
| 	/*
 | |
| 	 * An event which could not be activated because of
 | |
| 	 * filter mismatch still needs to have its timings
 | |
| 	 * maintained, otherwise bogus information is return
 | |
| 	 * via read() for time_enabled, time_running:
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE
 | |
| 	    && !event_filter_match(event)) {
 | |
| 		delta = ctx->time - event->tstamp_stopped;
 | |
| 		event->tstamp_running += delta;
 | |
| 		event->tstamp_stopped = ctx->time;
 | |
| 	}
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 	event->tstamp_stopped = ctx->time;
 | |
| 	event->pmu->del(event, 0);
 | |
| 	event->oncpu = -1;
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu--;
 | |
| 	ctx->nr_active--;
 | |
| 	if (event->attr.exclusive || !cpuctx->active_oncpu)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| group_sched_out(struct perf_event *group_event,
 | |
| 		struct perf_cpu_context *cpuctx,
 | |
| 		struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int state = group_event->state;
 | |
| 
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule out siblings (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
 | |
| 		event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 0;
 | |
| }
 | |
| 
 | |
| static inline struct perf_cpu_context *
 | |
| __get_cpu_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to remove a performance event
 | |
|  *
 | |
|  * We disable the event on the hardware level first. After that we
 | |
|  * remove it from the context list.
 | |
|  */
 | |
| static void __perf_event_remove_from_context(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu. If not it has been
 | |
| 	 * scheduled out before the smp call arrived.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 
 | |
| 	event_sched_out(event, cpuctx, ctx);
 | |
| 
 | |
| 	list_del_event(event, ctx);
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Remove the event from a task's (or a CPU's) list of events.
 | |
|  *
 | |
|  * Must be called with ctx->mutex held.
 | |
|  *
 | |
|  * CPU events are removed with a smp call. For task events we only
 | |
|  * call when the task is on a CPU.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This is OK when called from perf_release since
 | |
|  * that only calls us on the top-level context, which can't be a clone.
 | |
|  * When called from perf_event_exit_task, it's OK because the
 | |
|  * context has been detached from its task.
 | |
|  */
 | |
| static void perf_event_remove_from_context(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are removed via an smp call and
 | |
| 		 * the removal is always successful.
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu,
 | |
| 					 __perf_event_remove_from_context,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	task_oncpu_function_call(task, __perf_event_remove_from_context,
 | |
| 				 event);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If the context is active we need to retry the smp call.
 | |
| 	 */
 | |
| 	if (ctx->nr_active && !list_empty(&event->group_entry)) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The lock prevents that this context is scheduled in so we
 | |
| 	 * can remove the event safely, if the call above did not
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	if (!list_empty(&event->group_entry))
 | |
| 		list_del_event(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to disable a performance event
 | |
|  */
 | |
| static void __perf_event_disable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, need to check whether this
 | |
| 	 * event's task is the current task on this cpu.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is on, turn it off.
 | |
| 	 * If it is in error state, leave it in error state.
 | |
| 	 */
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_context_time(ctx);
 | |
| 		update_group_times(event);
 | |
| 		if (event == event->group_leader)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 		else
 | |
| 			event_sched_out(event, cpuctx, ctx);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisifed when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each because they
 | |
|  * hold the top-level event's child_mutex, so any descendant that
 | |
|  * goes to exit will block in sync_child_event.
 | |
|  * When called from perf_pending_event it's OK because event->ctx
 | |
|  * is the current context on this CPU and preemption is disabled,
 | |
|  * hence we can't get into perf_event_task_sched_out for this context.
 | |
|  */
 | |
| void perf_event_disable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Disable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu, __perf_event_disable,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	task_oncpu_function_call(task, __perf_event_disable, event);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * If the event is still active, we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we have the lock this context can't be scheduled
 | |
| 	 * in, so we can change the state safely.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		update_group_times(event);
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static int
 | |
| event_sched_in(struct perf_event *event,
 | |
| 		 struct perf_cpu_context *cpuctx,
 | |
| 		 struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_ACTIVE;
 | |
| 	event->oncpu = smp_processor_id();
 | |
| 	/*
 | |
| 	 * The new state must be visible before we turn it on in the hardware:
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	if (event->pmu->add(event, PERF_EF_START)) {
 | |
| 		event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 		event->oncpu = -1;
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	event->tstamp_running += ctx->time - event->tstamp_stopped;
 | |
| 
 | |
| 	if (!is_software_event(event))
 | |
| 		cpuctx->active_oncpu++;
 | |
| 	ctx->nr_active++;
 | |
| 
 | |
| 	if (event->attr.exclusive)
 | |
| 		cpuctx->exclusive = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| group_sched_in(struct perf_event *group_event,
 | |
| 	       struct perf_cpu_context *cpuctx,
 | |
| 	       struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event, *partial_group = NULL;
 | |
| 	struct pmu *pmu = group_event->pmu;
 | |
| 	u64 now = ctx->time;
 | |
| 	bool simulate = false;
 | |
| 
 | |
| 	if (group_event->state == PERF_EVENT_STATE_OFF)
 | |
| 		return 0;
 | |
| 
 | |
| 	pmu->start_txn(pmu);
 | |
| 
 | |
| 	if (event_sched_in(group_event, cpuctx, ctx)) {
 | |
| 		pmu->cancel_txn(pmu);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Schedule in siblings as one group (if any):
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event_sched_in(event, cpuctx, ctx)) {
 | |
| 			partial_group = event;
 | |
| 			goto group_error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->commit_txn(pmu))
 | |
| 		return 0;
 | |
| 
 | |
| group_error:
 | |
| 	/*
 | |
| 	 * Groups can be scheduled in as one unit only, so undo any
 | |
| 	 * partial group before returning:
 | |
| 	 * The events up to the failed event are scheduled out normally,
 | |
| 	 * tstamp_stopped will be updated.
 | |
| 	 *
 | |
| 	 * The failed events and the remaining siblings need to have
 | |
| 	 * their timings updated as if they had gone thru event_sched_in()
 | |
| 	 * and event_sched_out(). This is required to get consistent timings
 | |
| 	 * across the group. This also takes care of the case where the group
 | |
| 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
 | |
| 	 * the time the event was actually stopped, such that time delta
 | |
| 	 * calculation in update_event_times() is correct.
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
 | |
| 		if (event == partial_group)
 | |
| 			simulate = true;
 | |
| 
 | |
| 		if (simulate) {
 | |
| 			event->tstamp_running += now - event->tstamp_stopped;
 | |
| 			event->tstamp_stopped = now;
 | |
| 		} else {
 | |
| 			event_sched_out(event, cpuctx, ctx);
 | |
| 		}
 | |
| 	}
 | |
| 	event_sched_out(group_event, cpuctx, ctx);
 | |
| 
 | |
| 	pmu->cancel_txn(pmu);
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work out whether we can put this event group on the CPU now.
 | |
|  */
 | |
| static int group_can_go_on(struct perf_event *event,
 | |
| 			   struct perf_cpu_context *cpuctx,
 | |
| 			   int can_add_hw)
 | |
| {
 | |
| 	/*
 | |
| 	 * Groups consisting entirely of software events can always go on.
 | |
| 	 */
 | |
| 	if (event->group_flags & PERF_GROUP_SOFTWARE)
 | |
| 		return 1;
 | |
| 	/*
 | |
| 	 * If an exclusive group is already on, no other hardware
 | |
| 	 * events can go on.
 | |
| 	 */
 | |
| 	if (cpuctx->exclusive)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If this group is exclusive and there are already
 | |
| 	 * events on the CPU, it can't go on.
 | |
| 	 */
 | |
| 	if (event->attr.exclusive && cpuctx->active_oncpu)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Otherwise, try to add it if all previous groups were able
 | |
| 	 * to go on.
 | |
| 	 */
 | |
| 	return can_add_hw;
 | |
| }
 | |
| 
 | |
| static void add_event_to_ctx(struct perf_event *event,
 | |
| 			       struct perf_event_context *ctx)
 | |
| {
 | |
| 	list_add_event(event, ctx);
 | |
| 	perf_group_attach(event);
 | |
| 	event->tstamp_enabled = ctx->time;
 | |
| 	event->tstamp_running = ctx->time;
 | |
| 	event->tstamp_stopped = ctx->time;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to install and enable a performance event
 | |
|  *
 | |
|  * Must be called with ctx->mutex held
 | |
|  */
 | |
| static void __perf_install_in_context(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu. If not it has been
 | |
| 	 * scheduled out before the smp call arrived.
 | |
| 	 * Or possibly this is the right context but it isn't
 | |
| 	 * on this cpu because it had no events.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx) {
 | |
| 		if (cpuctx->task_ctx || ctx->task != current)
 | |
| 			return;
 | |
| 		cpuctx->task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	add_event_to_ctx(event, ctx);
 | |
| 
 | |
| 	if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't put the event on if it is disabled or if
 | |
| 	 * it is in a group and the group isn't on.
 | |
| 	 */
 | |
| 	if (event->state != PERF_EVENT_STATE_INACTIVE ||
 | |
| 	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * An exclusive event can't go on if there are already active
 | |
| 	 * hardware events, and no hardware event can go on if there
 | |
| 	 * is already an exclusive event on.
 | |
| 	 */
 | |
| 	if (!group_can_go_on(event, cpuctx, 1))
 | |
| 		err = -EEXIST;
 | |
| 	else
 | |
| 		err = event_sched_in(event, cpuctx, ctx);
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * This event couldn't go on.  If it is in a group
 | |
| 		 * then we have to pull the whole group off.
 | |
| 		 * If the event group is pinned then put it in error state.
 | |
| 		 */
 | |
| 		if (leader != event)
 | |
| 			group_sched_out(leader, cpuctx, ctx);
 | |
| 		if (leader->attr.pinned) {
 | |
| 			update_group_times(leader);
 | |
| 			leader->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach a performance event to a context
 | |
|  *
 | |
|  * First we add the event to the list with the hardware enable bit
 | |
|  * in event->hw_config cleared.
 | |
|  *
 | |
|  * If the event is attached to a task which is on a CPU we use a smp
 | |
|  * call to enable it in the task context. The task might have been
 | |
|  * scheduled away, but we check this in the smp call again.
 | |
|  *
 | |
|  * Must be called with ctx->mutex held.
 | |
|  */
 | |
| static void
 | |
| perf_install_in_context(struct perf_event_context *ctx,
 | |
| 			struct perf_event *event,
 | |
| 			int cpu)
 | |
| {
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	event->ctx = ctx;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Per cpu events are installed via an smp call and
 | |
| 		 * the install is always successful.
 | |
| 		 */
 | |
| 		smp_call_function_single(cpu, __perf_install_in_context,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	task_oncpu_function_call(task, __perf_install_in_context,
 | |
| 				 event);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	/*
 | |
| 	 * we need to retry the smp call.
 | |
| 	 */
 | |
| 	if (ctx->is_active && list_empty(&event->group_entry)) {
 | |
| 		raw_spin_unlock_irq(&ctx->lock);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The lock prevents that this context is scheduled in so we
 | |
| 	 * can add the event safely, if it the call above did not
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	if (list_empty(&event->group_entry))
 | |
| 		add_event_to_ctx(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put a event into inactive state and update time fields.
 | |
|  * Enabling the leader of a group effectively enables all
 | |
|  * the group members that aren't explicitly disabled, so we
 | |
|  * have to update their ->tstamp_enabled also.
 | |
|  * Note: this works for group members as well as group leaders
 | |
|  * since the non-leader members' sibling_lists will be empty.
 | |
|  */
 | |
| static void __perf_event_mark_enabled(struct perf_event *event,
 | |
| 					struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *sub;
 | |
| 
 | |
| 	event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	event->tstamp_enabled = ctx->time - event->total_time_enabled;
 | |
| 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
 | |
| 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 | |
| 			sub->tstamp_enabled =
 | |
| 				ctx->time - sub->total_time_enabled;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to enable a performance event
 | |
|  */
 | |
| static void __perf_event_enable(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a per-task event, need to check whether this
 | |
| 	 * event's task is the current task on this cpu.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx) {
 | |
| 		if (cpuctx->task_ctx || ctx->task != current)
 | |
| 			return;
 | |
| 		cpuctx->task_ctx = ctx;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto unlock;
 | |
| 	__perf_event_mark_enabled(event, ctx);
 | |
| 
 | |
| 	if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in a group and isn't the group leader,
 | |
| 	 * then don't put it on unless the group is on.
 | |
| 	 */
 | |
| 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (!group_can_go_on(event, cpuctx, 1)) {
 | |
| 		err = -EEXIST;
 | |
| 	} else {
 | |
| 		if (event == leader)
 | |
| 			err = group_sched_in(event, cpuctx, ctx);
 | |
| 		else
 | |
| 			err = event_sched_in(event, cpuctx, ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * If this event can't go on and it's part of a
 | |
| 		 * group, then the whole group has to come off.
 | |
| 		 */
 | |
| 		if (leader != event)
 | |
| 			group_sched_out(leader, cpuctx, ctx);
 | |
| 		if (leader->attr.pinned) {
 | |
| 			update_group_times(leader);
 | |
| 			leader->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable a event.
 | |
|  *
 | |
|  * If event->ctx is a cloned context, callers must make sure that
 | |
|  * every task struct that event->ctx->task could possibly point to
 | |
|  * remains valid.  This condition is satisfied when called through
 | |
|  * perf_event_for_each_child or perf_event_for_each as described
 | |
|  * for perf_event_disable.
 | |
|  */
 | |
| void perf_event_enable(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct task_struct *task = ctx->task;
 | |
| 
 | |
| 	if (!task) {
 | |
| 		/*
 | |
| 		 * Enable the event on the cpu that it's on
 | |
| 		 */
 | |
| 		smp_call_function_single(event->cpu, __perf_event_enable,
 | |
| 					 event, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the event is in error state, clear that first.
 | |
| 	 * That way, if we see the event in error state below, we
 | |
| 	 * know that it has gone back into error state, as distinct
 | |
| 	 * from the task having been scheduled away before the
 | |
| 	 * cross-call arrived.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| retry:
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 	task_oncpu_function_call(task, __perf_event_enable, event);
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the context is active and the event is still off,
 | |
| 	 * we need to retry the cross-call.
 | |
| 	 */
 | |
| 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
 | |
| 		goto retry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we have the lock this context can't be scheduled
 | |
| 	 * in, so we can change the state safely.
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_OFF)
 | |
| 		__perf_event_mark_enabled(event, ctx);
 | |
| 
 | |
| out:
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static int perf_event_refresh(struct perf_event *event, int refresh)
 | |
| {
 | |
| 	/*
 | |
| 	 * not supported on inherited events
 | |
| 	 */
 | |
| 	if (event->attr.inherit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	atomic_add(refresh, &event->event_limit);
 | |
| 	perf_event_enable(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum event_type_t {
 | |
| 	EVENT_FLEXIBLE = 0x1,
 | |
| 	EVENT_PINNED = 0x2,
 | |
| 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 | |
| };
 | |
| 
 | |
| static void ctx_sched_out(struct perf_event_context *ctx,
 | |
| 			  struct perf_cpu_context *cpuctx,
 | |
| 			  enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	ctx->is_active = 0;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		goto out;
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	if (!ctx->nr_active)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (event_type & EVENT_PINNED) {
 | |
| 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (event_type & EVENT_FLEXIBLE) {
 | |
| 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
 | |
| 			group_sched_out(event, cpuctx, ctx);
 | |
| 	}
 | |
| out:
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test whether two contexts are equivalent, i.e. whether they
 | |
|  * have both been cloned from the same version of the same context
 | |
|  * and they both have the same number of enabled events.
 | |
|  * If the number of enabled events is the same, then the set
 | |
|  * of enabled events should be the same, because these are both
 | |
|  * inherited contexts, therefore we can't access individual events
 | |
|  * in them directly with an fd; we can only enable/disable all
 | |
|  * events via prctl, or enable/disable all events in a family
 | |
|  * via ioctl, which will have the same effect on both contexts.
 | |
|  */
 | |
| static int context_equiv(struct perf_event_context *ctx1,
 | |
| 			 struct perf_event_context *ctx2)
 | |
| {
 | |
| 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
 | |
| 		&& ctx1->parent_gen == ctx2->parent_gen
 | |
| 		&& !ctx1->pin_count && !ctx2->pin_count;
 | |
| }
 | |
| 
 | |
| static void __perf_event_sync_stat(struct perf_event *event,
 | |
| 				     struct perf_event *next_event)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.inherit_stat)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the event value, we cannot use perf_event_read()
 | |
| 	 * because we're in the middle of a context switch and have IRQs
 | |
| 	 * disabled, which upsets smp_call_function_single(), however
 | |
| 	 * we know the event must be on the current CPU, therefore we
 | |
| 	 * don't need to use it.
 | |
| 	 */
 | |
| 	switch (event->state) {
 | |
| 	case PERF_EVENT_STATE_ACTIVE:
 | |
| 		event->pmu->read(event);
 | |
| 		/* fall-through */
 | |
| 
 | |
| 	case PERF_EVENT_STATE_INACTIVE:
 | |
| 		update_event_times(event);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to keep per-task stats reliable we need to flip the event
 | |
| 	 * values when we flip the contexts.
 | |
| 	 */
 | |
| 	value = local64_read(&next_event->count);
 | |
| 	value = local64_xchg(&event->count, value);
 | |
| 	local64_set(&next_event->count, value);
 | |
| 
 | |
| 	swap(event->total_time_enabled, next_event->total_time_enabled);
 | |
| 	swap(event->total_time_running, next_event->total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we swizzled the values, update the user visible data too.
 | |
| 	 */
 | |
| 	perf_event_update_userpage(event);
 | |
| 	perf_event_update_userpage(next_event);
 | |
| }
 | |
| 
 | |
| #define list_next_entry(pos, member) \
 | |
| 	list_entry(pos->member.next, typeof(*pos), member)
 | |
| 
 | |
| static void perf_event_sync_stat(struct perf_event_context *ctx,
 | |
| 				   struct perf_event_context *next_ctx)
 | |
| {
 | |
| 	struct perf_event *event, *next_event;
 | |
| 
 | |
| 	if (!ctx->nr_stat)
 | |
| 		return;
 | |
| 
 | |
| 	update_context_time(ctx);
 | |
| 
 | |
| 	event = list_first_entry(&ctx->event_list,
 | |
| 				   struct perf_event, event_entry);
 | |
| 
 | |
| 	next_event = list_first_entry(&next_ctx->event_list,
 | |
| 					struct perf_event, event_entry);
 | |
| 
 | |
| 	while (&event->event_entry != &ctx->event_list &&
 | |
| 	       &next_event->event_entry != &next_ctx->event_list) {
 | |
| 
 | |
| 		__perf_event_sync_stat(event, next_event);
 | |
| 
 | |
| 		event = list_next_entry(event, event_entry);
 | |
| 		next_event = list_next_entry(next_event, event_entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_context_sched_out(struct task_struct *task, int ctxn,
 | |
| 				  struct task_struct *next)
 | |
| {
 | |
| 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
 | |
| 	struct perf_event_context *next_ctx;
 | |
| 	struct perf_event_context *parent;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	int do_switch = 1;
 | |
| 
 | |
| 	if (likely(!ctx))
 | |
| 		return;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	parent = rcu_dereference(ctx->parent_ctx);
 | |
| 	next_ctx = next->perf_event_ctxp[ctxn];
 | |
| 	if (parent && next_ctx &&
 | |
| 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
 | |
| 		/*
 | |
| 		 * Looks like the two contexts are clones, so we might be
 | |
| 		 * able to optimize the context switch.  We lock both
 | |
| 		 * contexts and check that they are clones under the
 | |
| 		 * lock (including re-checking that neither has been
 | |
| 		 * uncloned in the meantime).  It doesn't matter which
 | |
| 		 * order we take the locks because no other cpu could
 | |
| 		 * be trying to lock both of these tasks.
 | |
| 		 */
 | |
| 		raw_spin_lock(&ctx->lock);
 | |
| 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
 | |
| 		if (context_equiv(ctx, next_ctx)) {
 | |
| 			/*
 | |
| 			 * XXX do we need a memory barrier of sorts
 | |
| 			 * wrt to rcu_dereference() of perf_event_ctxp
 | |
| 			 */
 | |
| 			task->perf_event_ctxp[ctxn] = next_ctx;
 | |
| 			next->perf_event_ctxp[ctxn] = ctx;
 | |
| 			ctx->task = next;
 | |
| 			next_ctx->task = task;
 | |
| 			do_switch = 0;
 | |
| 
 | |
| 			perf_event_sync_stat(ctx, next_ctx);
 | |
| 		}
 | |
| 		raw_spin_unlock(&next_ctx->lock);
 | |
| 		raw_spin_unlock(&ctx->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (do_switch) {
 | |
| 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
 | |
| 		cpuctx->task_ctx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define for_each_task_context_nr(ctxn)					\
 | |
| 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to remove the events of the current task,
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We stop each event and update the event value in event->count.
 | |
|  *
 | |
|  * This does not protect us against NMI, but disable()
 | |
|  * sets the disabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * not restart the event.
 | |
|  */
 | |
| void __perf_event_task_sched_out(struct task_struct *task,
 | |
| 				 struct task_struct *next)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_context_sched_out(task, ctxn, next);
 | |
| }
 | |
| 
 | |
| static void task_ctx_sched_out(struct perf_event_context *ctx,
 | |
| 			       enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	if (!cpuctx->task_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	ctx_sched_out(ctx, cpuctx, event_type);
 | |
| 	cpuctx->task_ctx = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled
 | |
|  */
 | |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 | |
| 			      enum event_type_t event_type)
 | |
| {
 | |
| 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_pinned_sched_in(struct perf_event_context *ctx,
 | |
| 		    struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 			continue;
 | |
| 		if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, 1))
 | |
| 			group_sched_in(event, cpuctx, ctx);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this pinned group hasn't been scheduled,
 | |
| 		 * put it in error state.
 | |
| 		 */
 | |
| 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 			update_group_times(event);
 | |
| 			event->state = PERF_EVENT_STATE_ERROR;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_flexible_sched_in(struct perf_event_context *ctx,
 | |
| 		      struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int can_add_hw = 1;
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
 | |
| 		/* Ignore events in OFF or ERROR state */
 | |
| 		if (event->state <= PERF_EVENT_STATE_OFF)
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Listen to the 'cpu' scheduling filter constraint
 | |
| 		 * of events:
 | |
| 		 */
 | |
| 		if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
 | |
| 			if (group_sched_in(event, cpuctx, ctx))
 | |
| 				can_add_hw = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| ctx_sched_in(struct perf_event_context *ctx,
 | |
| 	     struct perf_cpu_context *cpuctx,
 | |
| 	     enum event_type_t event_type)
 | |
| {
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	ctx->is_active = 1;
 | |
| 	if (likely(!ctx->nr_events))
 | |
| 		goto out;
 | |
| 
 | |
| 	ctx->timestamp = perf_clock();
 | |
| 
 | |
| 	/*
 | |
| 	 * First go through the list and put on any pinned groups
 | |
| 	 * in order to give them the best chance of going on.
 | |
| 	 */
 | |
| 	if (event_type & EVENT_PINNED)
 | |
| 		ctx_pinned_sched_in(ctx, cpuctx);
 | |
| 
 | |
| 	/* Then walk through the lower prio flexible groups */
 | |
| 	if (event_type & EVENT_FLEXIBLE)
 | |
| 		ctx_flexible_sched_in(ctx, cpuctx);
 | |
| 
 | |
| out:
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 | |
| 			     enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_event_context *ctx = &cpuctx->ctx;
 | |
| 
 | |
| 	ctx_sched_in(ctx, cpuctx, event_type);
 | |
| }
 | |
| 
 | |
| static void task_ctx_sched_in(struct perf_event_context *ctx,
 | |
| 			      enum event_type_t event_type)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
|        	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (cpuctx->task_ctx == ctx)
 | |
| 		return;
 | |
| 
 | |
| 	ctx_sched_in(ctx, cpuctx, event_type);
 | |
| 	cpuctx->task_ctx = ctx;
 | |
| }
 | |
| 
 | |
| void perf_event_context_sched_in(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 	cpuctx = __get_cpu_context(ctx);
 | |
| 	if (cpuctx->task_ctx == ctx)
 | |
| 		return;
 | |
| 
 | |
| 	perf_pmu_disable(ctx->pmu);
 | |
| 	/*
 | |
| 	 * We want to keep the following priority order:
 | |
| 	 * cpu pinned (that don't need to move), task pinned,
 | |
| 	 * cpu flexible, task flexible.
 | |
| 	 */
 | |
| 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
 | |
| 	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	cpuctx->task_ctx = ctx;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since these rotations are per-cpu, we need to ensure the
 | |
| 	 * cpu-context we got scheduled on is actually rotating.
 | |
| 	 */
 | |
| 	perf_pmu_rotate_start(ctx->pmu);
 | |
| 	perf_pmu_enable(ctx->pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from scheduler to add the events of the current task
 | |
|  * with interrupts disabled.
 | |
|  *
 | |
|  * We restore the event value and then enable it.
 | |
|  *
 | |
|  * This does not protect us against NMI, but enable()
 | |
|  * sets the enabled bit in the control field of event _before_
 | |
|  * accessing the event control register. If a NMI hits, then it will
 | |
|  * keep the event running.
 | |
|  */
 | |
| void __perf_event_task_sched_in(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (likely(!ctx))
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_context_sched_in(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define MAX_INTERRUPTS (~0ULL)
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable);
 | |
| 
 | |
| static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
 | |
| {
 | |
| 	u64 frequency = event->attr.sample_freq;
 | |
| 	u64 sec = NSEC_PER_SEC;
 | |
| 	u64 divisor, dividend;
 | |
| 
 | |
| 	int count_fls, nsec_fls, frequency_fls, sec_fls;
 | |
| 
 | |
| 	count_fls = fls64(count);
 | |
| 	nsec_fls = fls64(nsec);
 | |
| 	frequency_fls = fls64(frequency);
 | |
| 	sec_fls = 30;
 | |
| 
 | |
| 	/*
 | |
| 	 * We got @count in @nsec, with a target of sample_freq HZ
 | |
| 	 * the target period becomes:
 | |
| 	 *
 | |
| 	 *             @count * 10^9
 | |
| 	 * period = -------------------
 | |
| 	 *          @nsec * sample_freq
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy by one bit such that @a and @b converge
 | |
| 	 * to a similar magnitude.
 | |
| 	 */
 | |
| #define REDUCE_FLS(a, b) 		\
 | |
| do {					\
 | |
| 	if (a##_fls > b##_fls) {	\
 | |
| 		a >>= 1;		\
 | |
| 		a##_fls--;		\
 | |
| 	} else {			\
 | |
| 		b >>= 1;		\
 | |
| 		b##_fls--;		\
 | |
| 	}				\
 | |
| } while (0)
 | |
| 
 | |
| 	/*
 | |
| 	 * Reduce accuracy until either term fits in a u64, then proceed with
 | |
| 	 * the other, so that finally we can do a u64/u64 division.
 | |
| 	 */
 | |
| 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
 | |
| 		REDUCE_FLS(nsec, frequency);
 | |
| 		REDUCE_FLS(sec, count);
 | |
| 	}
 | |
| 
 | |
| 	if (count_fls + sec_fls > 64) {
 | |
| 		divisor = nsec * frequency;
 | |
| 
 | |
| 		while (count_fls + sec_fls > 64) {
 | |
| 			REDUCE_FLS(count, sec);
 | |
| 			divisor >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		dividend = count * sec;
 | |
| 	} else {
 | |
| 		dividend = count * sec;
 | |
| 
 | |
| 		while (nsec_fls + frequency_fls > 64) {
 | |
| 			REDUCE_FLS(nsec, frequency);
 | |
| 			dividend >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		divisor = nsec * frequency;
 | |
| 	}
 | |
| 
 | |
| 	if (!divisor)
 | |
| 		return dividend;
 | |
| 
 | |
| 	return div64_u64(dividend, divisor);
 | |
| }
 | |
| 
 | |
| static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 period, sample_period;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	period = perf_calculate_period(event, nsec, count);
 | |
| 
 | |
| 	delta = (s64)(period - hwc->sample_period);
 | |
| 	delta = (delta + 7) / 8; /* low pass filter */
 | |
| 
 | |
| 	sample_period = hwc->sample_period + delta;
 | |
| 
 | |
| 	if (!sample_period)
 | |
| 		sample_period = 1;
 | |
| 
 | |
| 	hwc->sample_period = sample_period;
 | |
| 
 | |
| 	if (local64_read(&hwc->period_left) > 8*sample_period) {
 | |
| 		event->pmu->stop(event, PERF_EF_UPDATE);
 | |
| 		local64_set(&hwc->period_left, 0);
 | |
| 		event->pmu->start(event, PERF_EF_RELOAD);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	u64 interrupts, now;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 			continue;
 | |
| 
 | |
| 		hwc = &event->hw;
 | |
| 
 | |
| 		interrupts = hwc->interrupts;
 | |
| 		hwc->interrupts = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * unthrottle events on the tick
 | |
| 		 */
 | |
| 		if (interrupts == MAX_INTERRUPTS) {
 | |
| 			perf_log_throttle(event, 1);
 | |
| 			event->pmu->start(event, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (!event->attr.freq || !event->attr.sample_freq)
 | |
| 			continue;
 | |
| 
 | |
| 		event->pmu->read(event);
 | |
| 		now = local64_read(&event->count);
 | |
| 		delta = now - hwc->freq_count_stamp;
 | |
| 		hwc->freq_count_stamp = now;
 | |
| 
 | |
| 		if (delta > 0)
 | |
| 			perf_adjust_period(event, period, delta);
 | |
| 	}
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Round-robin a context's events:
 | |
|  */
 | |
| static void rotate_ctx(struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 
 | |
| 	/* Rotate the first entry last of non-pinned groups */
 | |
| 	list_rotate_left(&ctx->flexible_groups);
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 | |
|  * because they're strictly cpu affine and rotate_start is called with IRQs
 | |
|  * disabled, while rotate_context is called from IRQ context.
 | |
|  */
 | |
| static void perf_rotate_context(struct perf_cpu_context *cpuctx)
 | |
| {
 | |
| 	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
 | |
| 	struct perf_event_context *ctx = NULL;
 | |
| 	int rotate = 0, remove = 1;
 | |
| 
 | |
| 	if (cpuctx->ctx.nr_events) {
 | |
| 		remove = 0;
 | |
| 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
 | |
| 			rotate = 1;
 | |
| 	}
 | |
| 
 | |
| 	ctx = cpuctx->task_ctx;
 | |
| 	if (ctx && ctx->nr_events) {
 | |
| 		remove = 0;
 | |
| 		if (ctx->nr_events != ctx->nr_active)
 | |
| 			rotate = 1;
 | |
| 	}
 | |
| 
 | |
| 	perf_pmu_disable(cpuctx->ctx.pmu);
 | |
| 	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
 | |
| 	if (ctx)
 | |
| 		perf_ctx_adjust_freq(ctx, interval);
 | |
| 
 | |
| 	if (!rotate)
 | |
| 		goto done;
 | |
| 
 | |
| 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
 | |
| 	if (ctx)
 | |
| 		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| 	rotate_ctx(&cpuctx->ctx);
 | |
| 	if (ctx)
 | |
| 		rotate_ctx(ctx);
 | |
| 
 | |
| 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
 | |
| 	if (ctx)
 | |
| 		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
 | |
| 
 | |
| done:
 | |
| 	if (remove)
 | |
| 		list_del_init(&cpuctx->rotation_list);
 | |
| 
 | |
| 	perf_pmu_enable(cpuctx->ctx.pmu);
 | |
| }
 | |
| 
 | |
| void perf_event_task_tick(void)
 | |
| {
 | |
| 	struct list_head *head = &__get_cpu_var(rotation_list);
 | |
| 	struct perf_cpu_context *cpuctx, *tmp;
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
 | |
| 		if (cpuctx->jiffies_interval == 1 ||
 | |
| 				!(jiffies % cpuctx->jiffies_interval))
 | |
| 			perf_rotate_context(cpuctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int event_enable_on_exec(struct perf_event *event,
 | |
| 				struct perf_event_context *ctx)
 | |
| {
 | |
| 	if (!event->attr.enable_on_exec)
 | |
| 		return 0;
 | |
| 
 | |
| 	event->attr.enable_on_exec = 0;
 | |
| 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	__perf_event_mark_enabled(event, ctx);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable all of a task's events that have been marked enable-on-exec.
 | |
|  * This expects task == current.
 | |
|  */
 | |
| static void perf_event_enable_on_exec(struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	unsigned long flags;
 | |
| 	int enabled = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	if (!ctx || !ctx->nr_events)
 | |
| 		goto out;
 | |
| 
 | |
| 	task_ctx_sched_out(ctx, EVENT_ALL);
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
 | |
| 		ret = event_enable_on_exec(event, ctx);
 | |
| 		if (ret)
 | |
| 			enabled = 1;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
 | |
| 		ret = event_enable_on_exec(event, ctx);
 | |
| 		if (ret)
 | |
| 			enabled = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unclone this context if we enabled any event.
 | |
| 	 */
 | |
| 	if (enabled)
 | |
| 		unclone_ctx(ctx);
 | |
| 
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	perf_event_context_sched_in(ctx);
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cross CPU call to read the hardware event
 | |
|  */
 | |
| static void __perf_event_read(void *info)
 | |
| {
 | |
| 	struct perf_event *event = info;
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a task context, we need to check whether it is
 | |
| 	 * the current task context of this cpu.  If not it has been
 | |
| 	 * scheduled out before the smp call arrived.  In that case
 | |
| 	 * event->count would have been updated to a recent sample
 | |
| 	 * when the event was scheduled out.
 | |
| 	 */
 | |
| 	if (ctx->task && cpuctx->task_ctx != ctx)
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock(&ctx->lock);
 | |
| 	update_context_time(ctx);
 | |
| 	update_event_times(event);
 | |
| 	raw_spin_unlock(&ctx->lock);
 | |
| 
 | |
| 	event->pmu->read(event);
 | |
| }
 | |
| 
 | |
| static inline u64 perf_event_count(struct perf_event *event)
 | |
| {
 | |
| 	return local64_read(&event->count) + atomic64_read(&event->child_count);
 | |
| }
 | |
| 
 | |
| static u64 perf_event_read(struct perf_event *event)
 | |
| {
 | |
| 	/*
 | |
| 	 * If event is enabled and currently active on a CPU, update the
 | |
| 	 * value in the event structure:
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
 | |
| 		smp_call_function_single(event->oncpu,
 | |
| 					 __perf_event_read, event, 1);
 | |
| 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
 | |
| 		struct perf_event_context *ctx = event->ctx;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&ctx->lock, flags);
 | |
| 		/*
 | |
| 		 * may read while context is not active
 | |
| 		 * (e.g., thread is blocked), in that case
 | |
| 		 * we cannot update context time
 | |
| 		 */
 | |
| 		if (ctx->is_active)
 | |
| 			update_context_time(ctx);
 | |
| 		update_event_times(event);
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	return perf_event_count(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callchain support
 | |
|  */
 | |
| 
 | |
| struct callchain_cpus_entries {
 | |
| 	struct rcu_head			rcu_head;
 | |
| 	struct perf_callchain_entry	*cpu_entries[0];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
 | |
| static atomic_t nr_callchain_events;
 | |
| static DEFINE_MUTEX(callchain_mutex);
 | |
| struct callchain_cpus_entries *callchain_cpus_entries;
 | |
| 
 | |
| 
 | |
| __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
 | |
| 				  struct pt_regs *regs)
 | |
| {
 | |
| }
 | |
| 
 | |
| __weak void perf_callchain_user(struct perf_callchain_entry *entry,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void release_callchain_buffers_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct callchain_cpus_entries *entries;
 | |
| 	int cpu;
 | |
| 
 | |
| 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		kfree(entries->cpu_entries[cpu]);
 | |
| 
 | |
| 	kfree(entries);
 | |
| }
 | |
| 
 | |
| static void release_callchain_buffers(void)
 | |
| {
 | |
| 	struct callchain_cpus_entries *entries;
 | |
| 
 | |
| 	entries = callchain_cpus_entries;
 | |
| 	rcu_assign_pointer(callchain_cpus_entries, NULL);
 | |
| 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
 | |
| }
 | |
| 
 | |
| static int alloc_callchain_buffers(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int size;
 | |
| 	struct callchain_cpus_entries *entries;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't use the percpu allocation API for data that can be
 | |
| 	 * accessed from NMI. Use a temporary manual per cpu allocation
 | |
| 	 * until that gets sorted out.
 | |
| 	 */
 | |
| 	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
 | |
| 		num_possible_cpus();
 | |
| 
 | |
| 	entries = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
 | |
| 							 cpu_to_node(cpu));
 | |
| 		if (!entries->cpu_entries[cpu])
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	rcu_assign_pointer(callchain_cpus_entries, entries);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		kfree(entries->cpu_entries[cpu]);
 | |
| 	kfree(entries);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int get_callchain_buffers(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	int count;
 | |
| 
 | |
| 	mutex_lock(&callchain_mutex);
 | |
| 
 | |
| 	count = atomic_inc_return(&nr_callchain_events);
 | |
| 	if (WARN_ON_ONCE(count < 1)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	if (count > 1) {
 | |
| 		/* If the allocation failed, give up */
 | |
| 		if (!callchain_cpus_entries)
 | |
| 			err = -ENOMEM;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	err = alloc_callchain_buffers();
 | |
| 	if (err)
 | |
| 		release_callchain_buffers();
 | |
| exit:
 | |
| 	mutex_unlock(&callchain_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void put_callchain_buffers(void)
 | |
| {
 | |
| 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
 | |
| 		release_callchain_buffers();
 | |
| 		mutex_unlock(&callchain_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int get_recursion_context(int *recursion)
 | |
| {
 | |
| 	int rctx;
 | |
| 
 | |
| 	if (in_nmi())
 | |
| 		rctx = 3;
 | |
| 	else if (in_irq())
 | |
| 		rctx = 2;
 | |
| 	else if (in_softirq())
 | |
| 		rctx = 1;
 | |
| 	else
 | |
| 		rctx = 0;
 | |
| 
 | |
| 	if (recursion[rctx])
 | |
| 		return -1;
 | |
| 
 | |
| 	recursion[rctx]++;
 | |
| 	barrier();
 | |
| 
 | |
| 	return rctx;
 | |
| }
 | |
| 
 | |
| static inline void put_recursion_context(int *recursion, int rctx)
 | |
| {
 | |
| 	barrier();
 | |
| 	recursion[rctx]--;
 | |
| }
 | |
| 
 | |
| static struct perf_callchain_entry *get_callchain_entry(int *rctx)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct callchain_cpus_entries *entries;
 | |
| 
 | |
| 	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
 | |
| 	if (*rctx == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	entries = rcu_dereference(callchain_cpus_entries);
 | |
| 	if (!entries)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	return &entries->cpu_entries[cpu][*rctx];
 | |
| }
 | |
| 
 | |
| static void
 | |
| put_callchain_entry(int rctx)
 | |
| {
 | |
| 	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
 | |
| }
 | |
| 
 | |
| static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
 | |
| {
 | |
| 	int rctx;
 | |
| 	struct perf_callchain_entry *entry;
 | |
| 
 | |
| 
 | |
| 	entry = get_callchain_entry(&rctx);
 | |
| 	if (rctx == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!entry)
 | |
| 		goto exit_put;
 | |
| 
 | |
| 	entry->nr = 0;
 | |
| 
 | |
| 	if (!user_mode(regs)) {
 | |
| 		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
 | |
| 		perf_callchain_kernel(entry, regs);
 | |
| 		if (current->mm)
 | |
| 			regs = task_pt_regs(current);
 | |
| 		else
 | |
| 			regs = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (regs) {
 | |
| 		perf_callchain_store(entry, PERF_CONTEXT_USER);
 | |
| 		perf_callchain_user(entry, regs);
 | |
| 	}
 | |
| 
 | |
| exit_put:
 | |
| 	put_callchain_entry(rctx);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in a task_struct:
 | |
|  */
 | |
| static void __perf_event_init_context(struct perf_event_context *ctx)
 | |
| {
 | |
| 	raw_spin_lock_init(&ctx->lock);
 | |
| 	mutex_init(&ctx->mutex);
 | |
| 	INIT_LIST_HEAD(&ctx->pinned_groups);
 | |
| 	INIT_LIST_HEAD(&ctx->flexible_groups);
 | |
| 	INIT_LIST_HEAD(&ctx->event_list);
 | |
| 	atomic_set(&ctx->refcount, 1);
 | |
| }
 | |
| 
 | |
| static struct perf_event_context *
 | |
| alloc_perf_context(struct pmu *pmu, struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__perf_event_init_context(ctx);
 | |
| 	if (task) {
 | |
| 		ctx->task = task;
 | |
| 		get_task_struct(task);
 | |
| 	}
 | |
| 	ctx->pmu = pmu;
 | |
| 
 | |
| 	return ctx;
 | |
| }
 | |
| 
 | |
| static struct task_struct *
 | |
| find_lively_task_by_vpid(pid_t vpid)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	int err;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!vpid)
 | |
| 		task = current;
 | |
| 	else
 | |
| 		task = find_task_by_vpid(vpid);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!task)
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't attach events to a dying task.
 | |
| 	 */
 | |
| 	err = -ESRCH;
 | |
| 	if (task->flags & PF_EXITING)
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* Reuse ptrace permission checks for now. */
 | |
| 	err = -EACCES;
 | |
| 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
 | |
| 		goto errout;
 | |
| 
 | |
| 	return task;
 | |
| errout:
 | |
| 	put_task_struct(task);
 | |
| 	return ERR_PTR(err);
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct perf_event_context *
 | |
| find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	unsigned long flags;
 | |
| 	int ctxn, err;
 | |
| 
 | |
| 	if (!task && cpu != -1) {
 | |
| 		/* Must be root to operate on a CPU event: */
 | |
| 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
 | |
| 			return ERR_PTR(-EACCES);
 | |
| 
 | |
| 		if (cpu < 0 || cpu >= nr_cpumask_bits)
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		/*
 | |
| 		 * We could be clever and allow to attach a event to an
 | |
| 		 * offline CPU and activate it when the CPU comes up, but
 | |
| 		 * that's for later.
 | |
| 		 */
 | |
| 		if (!cpu_online(cpu))
 | |
| 			return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		ctx = &cpuctx->ctx;
 | |
| 		get_ctx(ctx);
 | |
| 
 | |
| 		return ctx;
 | |
| 	}
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	ctxn = pmu->task_ctx_nr;
 | |
| 	if (ctxn < 0)
 | |
| 		goto errout;
 | |
| 
 | |
| retry:
 | |
| 	ctx = perf_lock_task_context(task, ctxn, &flags);
 | |
| 	if (ctx) {
 | |
| 		unclone_ctx(ctx);
 | |
| 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!ctx) {
 | |
| 		ctx = alloc_perf_context(pmu, task);
 | |
| 		err = -ENOMEM;
 | |
| 		if (!ctx)
 | |
| 			goto errout;
 | |
| 
 | |
| 		get_ctx(ctx);
 | |
| 
 | |
| 		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
 | |
| 			/*
 | |
| 			 * We raced with some other task; use
 | |
| 			 * the context they set.
 | |
| 			 */
 | |
| 			put_task_struct(task);
 | |
| 			kfree(ctx);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ctx;
 | |
| 
 | |
| errout:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event);
 | |
| 
 | |
| static void free_event_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	event = container_of(head, struct perf_event, rcu_head);
 | |
| 	if (event->ns)
 | |
| 		put_pid_ns(event->ns);
 | |
| 	perf_event_free_filter(event);
 | |
| 	kfree(event);
 | |
| }
 | |
| 
 | |
| static void perf_buffer_put(struct perf_buffer *buffer);
 | |
| 
 | |
| static void free_event(struct perf_event *event)
 | |
| {
 | |
| 	irq_work_sync(&event->pending);
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 			jump_label_dec(&perf_task_events);
 | |
| 		if (event->attr.mmap || event->attr.mmap_data)
 | |
| 			atomic_dec(&nr_mmap_events);
 | |
| 		if (event->attr.comm)
 | |
| 			atomic_dec(&nr_comm_events);
 | |
| 		if (event->attr.task)
 | |
| 			atomic_dec(&nr_task_events);
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
 | |
| 			put_callchain_buffers();
 | |
| 	}
 | |
| 
 | |
| 	if (event->buffer) {
 | |
| 		perf_buffer_put(event->buffer);
 | |
| 		event->buffer = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (event->destroy)
 | |
| 		event->destroy(event);
 | |
| 
 | |
| 	if (event->ctx)
 | |
| 		put_ctx(event->ctx);
 | |
| 
 | |
| 	call_rcu(&event->rcu_head, free_event_rcu);
 | |
| }
 | |
| 
 | |
| int perf_event_release_kernel(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove from the PMU, can't get re-enabled since we got
 | |
| 	 * here because the last ref went.
 | |
| 	 */
 | |
| 	perf_event_disable(event);
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	/*
 | |
| 	 * There are two ways this annotation is useful:
 | |
| 	 *
 | |
| 	 *  1) there is a lock recursion from perf_event_exit_task
 | |
| 	 *     see the comment there.
 | |
| 	 *
 | |
| 	 *  2) there is a lock-inversion with mmap_sem through
 | |
| 	 *     perf_event_read_group(), which takes faults while
 | |
| 	 *     holding ctx->mutex, however this is called after
 | |
| 	 *     the last filedesc died, so there is no possibility
 | |
| 	 *     to trigger the AB-BA case.
 | |
| 	 */
 | |
| 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	mutex_lock(&event->owner->perf_event_mutex);
 | |
| 	list_del_init(&event->owner_entry);
 | |
| 	mutex_unlock(&event->owner->perf_event_mutex);
 | |
| 	put_task_struct(event->owner);
 | |
| 
 | |
| 	free_event(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_release_kernel);
 | |
| 
 | |
| /*
 | |
|  * Called when the last reference to the file is gone.
 | |
|  */
 | |
| static int perf_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 
 | |
| 	file->private_data = NULL;
 | |
| 
 | |
| 	return perf_event_release_kernel(event);
 | |
| }
 | |
| 
 | |
| static int perf_event_read_size(struct perf_event *event)
 | |
| {
 | |
| 	int entry = sizeof(u64); /* value */
 | |
| 	int size = 0;
 | |
| 	int nr = 1;
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		size += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_ID)
 | |
| 		entry += sizeof(u64);
 | |
| 
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
 | |
| 		nr += event->group_leader->nr_siblings;
 | |
| 		size += sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	size += entry * nr;
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	*enabled = 0;
 | |
| 	*running = 0;
 | |
| 
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	total += perf_event_read(event);
 | |
| 	*enabled += event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	*running += event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	list_for_each_entry(child, &event->child_list, child_list) {
 | |
| 		total += perf_event_read(child);
 | |
| 		*enabled += child->total_time_enabled;
 | |
| 		*running += child->total_time_running;
 | |
| 	}
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_read_value);
 | |
| 
 | |
| static int perf_event_read_group(struct perf_event *event,
 | |
| 				   u64 read_format, char __user *buf)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	int n = 0, size = 0, ret = -EFAULT;
 | |
| 	struct perf_event_context *ctx = leader->ctx;
 | |
| 	u64 values[5];
 | |
| 	u64 count, enabled, running;
 | |
| 
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	count = perf_event_read_value(leader, &enabled, &running);
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 	values[n++] = count;
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	size = n * sizeof(u64);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, size))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = size;
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		values[n++] = perf_event_read_value(sub, &enabled, &running);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		size = n * sizeof(u64);
 | |
| 
 | |
| 		if (copy_to_user(buf + ret, values, size)) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		ret += size;
 | |
| 	}
 | |
| unlock:
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_event_read_one(struct perf_event *event,
 | |
| 				 u64 read_format, char __user *buf)
 | |
| {
 | |
| 	u64 enabled, running;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_read_value(event, &enabled, &running);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = enabled;
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = running;
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	if (copy_to_user(buf, values, n * sizeof(u64)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return n * sizeof(u64);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the performance event - simple non blocking version for now
 | |
|  */
 | |
| static ssize_t
 | |
| perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Return end-of-file for a read on a event that is in
 | |
| 	 * error state (i.e. because it was pinned but it couldn't be
 | |
| 	 * scheduled on to the CPU at some point).
 | |
| 	 */
 | |
| 	if (event->state == PERF_EVENT_STATE_ERROR)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (count < perf_event_read_size(event))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	if (read_format & PERF_FORMAT_GROUP)
 | |
| 		ret = perf_event_read_group(event, read_format, buf);
 | |
| 	else
 | |
| 		ret = perf_event_read_one(event, read_format, buf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 
 | |
| 	return perf_read_hw(event, buf, count);
 | |
| }
 | |
| 
 | |
| static unsigned int perf_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	struct perf_buffer *buffer;
 | |
| 	unsigned int events = POLL_HUP;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	buffer = rcu_dereference(event->buffer);
 | |
| 	if (buffer)
 | |
| 		events = atomic_xchg(&buffer->poll, 0);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	poll_wait(file, &event->waitq, wait);
 | |
| 
 | |
| 	return events;
 | |
| }
 | |
| 
 | |
| static void perf_event_reset(struct perf_event *event)
 | |
| {
 | |
| 	(void)perf_event_read(event);
 | |
| 	local64_set(&event->count, 0);
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Holding the top-level event's child_mutex means that any
 | |
|  * descendant process that has inherited this event will block
 | |
|  * in sync_child_event if it goes to exit, thus satisfying the
 | |
|  * task existence requirements of perf_event_enable/disable.
 | |
|  */
 | |
| static void perf_event_for_each_child(struct perf_event *event,
 | |
| 					void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event *child;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->child_mutex);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(child, &event->child_list, child_list)
 | |
| 		func(child);
 | |
| 	mutex_unlock(&event->child_mutex);
 | |
| }
 | |
| 
 | |
| static void perf_event_for_each(struct perf_event *event,
 | |
| 				  void (*func)(struct perf_event *))
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	struct perf_event *sibling;
 | |
| 
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	event = event->group_leader;
 | |
| 
 | |
| 	perf_event_for_each_child(event, func);
 | |
| 	func(event);
 | |
| 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| }
 | |
| 
 | |
| static int perf_event_period(struct perf_event *event, u64 __user *arg)
 | |
| {
 | |
| 	struct perf_event_context *ctx = event->ctx;
 | |
| 	int ret = 0;
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!event->attr.sample_period)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(&value, arg, sizeof(value)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!value)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw_spin_lock_irq(&ctx->lock);
 | |
| 	if (event->attr.freq) {
 | |
| 		if (value > sysctl_perf_event_sample_rate) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		event->attr.sample_freq = value;
 | |
| 	} else {
 | |
| 		event->attr.sample_period = value;
 | |
| 		event->hw.sample_period = value;
 | |
| 	}
 | |
| unlock:
 | |
| 	raw_spin_unlock_irq(&ctx->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops;
 | |
| 
 | |
| static struct perf_event *perf_fget_light(int fd, int *fput_needed)
 | |
| {
 | |
| 	struct file *file;
 | |
| 
 | |
| 	file = fget_light(fd, fput_needed);
 | |
| 	if (!file)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	if (file->f_op != &perf_fops) {
 | |
| 		fput_light(file, *fput_needed);
 | |
| 		*fput_needed = 0;
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 	}
 | |
| 
 | |
| 	return file->private_data;
 | |
| }
 | |
| 
 | |
| static int perf_event_set_output(struct perf_event *event,
 | |
| 				 struct perf_event *output_event);
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg);
 | |
| 
 | |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	void (*func)(struct perf_event *);
 | |
| 	u32 flags = arg;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case PERF_EVENT_IOC_ENABLE:
 | |
| 		func = perf_event_enable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_DISABLE:
 | |
| 		func = perf_event_disable;
 | |
| 		break;
 | |
| 	case PERF_EVENT_IOC_RESET:
 | |
| 		func = perf_event_reset;
 | |
| 		break;
 | |
| 
 | |
| 	case PERF_EVENT_IOC_REFRESH:
 | |
| 		return perf_event_refresh(event, arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_PERIOD:
 | |
| 		return perf_event_period(event, (u64 __user *)arg);
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_OUTPUT:
 | |
| 	{
 | |
| 		struct perf_event *output_event = NULL;
 | |
| 		int fput_needed = 0;
 | |
| 		int ret;
 | |
| 
 | |
| 		if (arg != -1) {
 | |
| 			output_event = perf_fget_light(arg, &fput_needed);
 | |
| 			if (IS_ERR(output_event))
 | |
| 				return PTR_ERR(output_event);
 | |
| 		}
 | |
| 
 | |
| 		ret = perf_event_set_output(event, output_event);
 | |
| 		if (output_event)
 | |
| 			fput_light(output_event->filp, fput_needed);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	case PERF_EVENT_IOC_SET_FILTER:
 | |
| 		return perf_event_set_filter(event, (void __user *)arg);
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOTTY;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & PERF_IOC_FLAG_GROUP)
 | |
| 		perf_event_for_each(event, func);
 | |
| 	else
 | |
| 		perf_event_for_each_child(event, func);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_enable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_enable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int perf_event_task_disable(void)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
 | |
| 		perf_event_for_each_child(event, perf_event_disable);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef PERF_EVENT_INDEX_OFFSET
 | |
| # define PERF_EVENT_INDEX_OFFSET 0
 | |
| #endif
 | |
| 
 | |
| static int perf_event_index(struct perf_event *event)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->state != PERF_EVENT_STATE_ACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers need to ensure there can be no nesting of this function, otherwise
 | |
|  * the seqlock logic goes bad. We can not serialize this because the arch
 | |
|  * code calls this from NMI context.
 | |
|  */
 | |
| void perf_event_update_userpage(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_mmap_page *userpg;
 | |
| 	struct perf_buffer *buffer;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	buffer = rcu_dereference(event->buffer);
 | |
| 	if (!buffer)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	userpg = buffer->user_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable preemption so as to not let the corresponding user-space
 | |
| 	 * spin too long if we get preempted.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	++userpg->lock;
 | |
| 	barrier();
 | |
| 	userpg->index = perf_event_index(event);
 | |
| 	userpg->offset = perf_event_count(event);
 | |
| 	if (event->state == PERF_EVENT_STATE_ACTIVE)
 | |
| 		userpg->offset -= local64_read(&event->hw.prev_count);
 | |
| 
 | |
| 	userpg->time_enabled = event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 
 | |
| 	userpg->time_running = event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 
 | |
| 	barrier();
 | |
| 	++userpg->lock;
 | |
| 	preempt_enable();
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static unsigned long perf_data_size(struct perf_buffer *buffer);
 | |
| 
 | |
| static void
 | |
| perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
 | |
| {
 | |
| 	long max_size = perf_data_size(buffer);
 | |
| 
 | |
| 	if (watermark)
 | |
| 		buffer->watermark = min(max_size, watermark);
 | |
| 
 | |
| 	if (!buffer->watermark)
 | |
| 		buffer->watermark = max_size / 2;
 | |
| 
 | |
| 	if (flags & PERF_BUFFER_WRITABLE)
 | |
| 		buffer->writable = 1;
 | |
| 
 | |
| 	atomic_set(&buffer->refcount, 1);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_PERF_USE_VMALLOC
 | |
| 
 | |
| /*
 | |
|  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 | |
|  */
 | |
| 
 | |
| static struct page *
 | |
| perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
 | |
| {
 | |
| 	if (pgoff > buffer->nr_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pgoff == 0)
 | |
| 		return virt_to_page(buffer->user_page);
 | |
| 
 | |
| 	return virt_to_page(buffer->data_pages[pgoff - 1]);
 | |
| }
 | |
| 
 | |
| static void *perf_mmap_alloc_page(int cpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int node;
 | |
| 
 | |
| 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
 | |
| 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return page_address(page);
 | |
| }
 | |
| 
 | |
| static struct perf_buffer *
 | |
| perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 	unsigned long size;
 | |
| 	int i;
 | |
| 
 | |
| 	size = sizeof(struct perf_buffer);
 | |
| 	size += nr_pages * sizeof(void *);
 | |
| 
 | |
| 	buffer = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!buffer)
 | |
| 		goto fail;
 | |
| 
 | |
| 	buffer->user_page = perf_mmap_alloc_page(cpu);
 | |
| 	if (!buffer->user_page)
 | |
| 		goto fail_user_page;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
 | |
| 		if (!buffer->data_pages[i])
 | |
| 			goto fail_data_pages;
 | |
| 	}
 | |
| 
 | |
| 	buffer->nr_pages = nr_pages;
 | |
| 
 | |
| 	perf_buffer_init(buffer, watermark, flags);
 | |
| 
 | |
| 	return buffer;
 | |
| 
 | |
| fail_data_pages:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		free_page((unsigned long)buffer->data_pages[i]);
 | |
| 
 | |
| 	free_page((unsigned long)buffer->user_page);
 | |
| 
 | |
| fail_user_page:
 | |
| 	kfree(buffer);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void perf_mmap_free_page(unsigned long addr)
 | |
| {
 | |
| 	struct page *page = virt_to_page((void *)addr);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| static void perf_buffer_free(struct perf_buffer *buffer)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	perf_mmap_free_page((unsigned long)buffer->user_page);
 | |
| 	for (i = 0; i < buffer->nr_pages; i++)
 | |
| 		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
 | |
| 	kfree(buffer);
 | |
| }
 | |
| 
 | |
| static inline int page_order(struct perf_buffer *buffer)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Back perf_mmap() with vmalloc memory.
 | |
|  *
 | |
|  * Required for architectures that have d-cache aliasing issues.
 | |
|  */
 | |
| 
 | |
| static inline int page_order(struct perf_buffer *buffer)
 | |
| {
 | |
| 	return buffer->page_order;
 | |
| }
 | |
| 
 | |
| static struct page *
 | |
| perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
 | |
| {
 | |
| 	if (pgoff > (1UL << page_order(buffer)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_unmark_page(void *addr)
 | |
| {
 | |
| 	struct page *page = vmalloc_to_page(addr);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| }
 | |
| 
 | |
| static void perf_buffer_free_work(struct work_struct *work)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 	void *base;
 | |
| 	int i, nr;
 | |
| 
 | |
| 	buffer = container_of(work, struct perf_buffer, work);
 | |
| 	nr = 1 << page_order(buffer);
 | |
| 
 | |
| 	base = buffer->user_page;
 | |
| 	for (i = 0; i < nr + 1; i++)
 | |
| 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
 | |
| 
 | |
| 	vfree(base);
 | |
| 	kfree(buffer);
 | |
| }
 | |
| 
 | |
| static void perf_buffer_free(struct perf_buffer *buffer)
 | |
| {
 | |
| 	schedule_work(&buffer->work);
 | |
| }
 | |
| 
 | |
| static struct perf_buffer *
 | |
| perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 	unsigned long size;
 | |
| 	void *all_buf;
 | |
| 
 | |
| 	size = sizeof(struct perf_buffer);
 | |
| 	size += sizeof(void *);
 | |
| 
 | |
| 	buffer = kzalloc(size, GFP_KERNEL);
 | |
| 	if (!buffer)
 | |
| 		goto fail;
 | |
| 
 | |
| 	INIT_WORK(&buffer->work, perf_buffer_free_work);
 | |
| 
 | |
| 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
 | |
| 	if (!all_buf)
 | |
| 		goto fail_all_buf;
 | |
| 
 | |
| 	buffer->user_page = all_buf;
 | |
| 	buffer->data_pages[0] = all_buf + PAGE_SIZE;
 | |
| 	buffer->page_order = ilog2(nr_pages);
 | |
| 	buffer->nr_pages = 1;
 | |
| 
 | |
| 	perf_buffer_init(buffer, watermark, flags);
 | |
| 
 | |
| 	return buffer;
 | |
| 
 | |
| fail_all_buf:
 | |
| 	kfree(buffer);
 | |
| 
 | |
| fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static unsigned long perf_data_size(struct perf_buffer *buffer)
 | |
| {
 | |
| 	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
 | |
| }
 | |
| 
 | |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 	struct perf_buffer *buffer;
 | |
| 	int ret = VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
 | |
| 		if (vmf->pgoff == 0)
 | |
| 			ret = 0;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	buffer = rcu_dereference(event->buffer);
 | |
| 	if (!buffer)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
 | |
| 	if (!vmf->page)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	get_page(vmf->page);
 | |
| 	vmf->page->mapping = vma->vm_file->f_mapping;
 | |
| 	vmf->page->index   = vmf->pgoff;
 | |
| 
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 
 | |
| 	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
 | |
| 	perf_buffer_free(buffer);
 | |
| }
 | |
| 
 | |
| static struct perf_buffer *perf_buffer_get(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	buffer = rcu_dereference(event->buffer);
 | |
| 	if (buffer) {
 | |
| 		if (!atomic_inc_not_zero(&buffer->refcount))
 | |
| 			buffer = NULL;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return buffer;
 | |
| }
 | |
| 
 | |
| static void perf_buffer_put(struct perf_buffer *buffer)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&buffer->refcount))
 | |
| 		return;
 | |
| 
 | |
| 	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_open(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	atomic_inc(&event->mmap_count);
 | |
| }
 | |
| 
 | |
| static void perf_mmap_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = vma->vm_file->private_data;
 | |
| 
 | |
| 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
 | |
| 		unsigned long size = perf_data_size(event->buffer);
 | |
| 		struct user_struct *user = event->mmap_user;
 | |
| 		struct perf_buffer *buffer = event->buffer;
 | |
| 
 | |
| 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
 | |
| 		vma->vm_mm->locked_vm -= event->mmap_locked;
 | |
| 		rcu_assign_pointer(event->buffer, NULL);
 | |
| 		mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 		perf_buffer_put(buffer);
 | |
| 		free_uid(user);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct perf_mmap_vmops = {
 | |
| 	.open		= perf_mmap_open,
 | |
| 	.close		= perf_mmap_close,
 | |
| 	.fault		= perf_mmap_fault,
 | |
| 	.page_mkwrite	= perf_mmap_fault,
 | |
| };
 | |
| 
 | |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_event *event = file->private_data;
 | |
| 	unsigned long user_locked, user_lock_limit;
 | |
| 	struct user_struct *user = current_user();
 | |
| 	unsigned long locked, lock_limit;
 | |
| 	struct perf_buffer *buffer;
 | |
| 	unsigned long vma_size;
 | |
| 	unsigned long nr_pages;
 | |
| 	long user_extra, extra;
 | |
| 	int ret = 0, flags = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow mmap() of inherited per-task counters. This would
 | |
| 	 * create a performance issue due to all children writing to the
 | |
| 	 * same buffer.
 | |
| 	 */
 | |
| 	if (event->cpu == -1 && event->attr.inherit)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_SHARED))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vma_size = vma->vm_end - vma->vm_start;
 | |
| 	nr_pages = (vma_size / PAGE_SIZE) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have buffer pages ensure they're a power-of-two number, so we
 | |
| 	 * can do bitmasks instead of modulo.
 | |
| 	 */
 | |
| 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vma->vm_pgoff != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	WARN_ON_ONCE(event->ctx->parent_ctx);
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	if (event->buffer) {
 | |
| 		if (event->buffer->nr_pages == nr_pages)
 | |
| 			atomic_inc(&event->buffer->refcount);
 | |
| 		else
 | |
| 			ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	user_extra = nr_pages + 1;
 | |
| 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Increase the limit linearly with more CPUs:
 | |
| 	 */
 | |
| 	user_lock_limit *= num_online_cpus();
 | |
| 
 | |
| 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
 | |
| 
 | |
| 	extra = 0;
 | |
| 	if (user_locked > user_lock_limit)
 | |
| 		extra = user_locked - user_lock_limit;
 | |
| 
 | |
| 	lock_limit = rlimit(RLIMIT_MEMLOCK);
 | |
| 	lock_limit >>= PAGE_SHIFT;
 | |
| 	locked = vma->vm_mm->locked_vm + extra;
 | |
| 
 | |
| 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
 | |
| 		!capable(CAP_IPC_LOCK)) {
 | |
| 		ret = -EPERM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(event->buffer);
 | |
| 
 | |
| 	if (vma->vm_flags & VM_WRITE)
 | |
| 		flags |= PERF_BUFFER_WRITABLE;
 | |
| 
 | |
| 	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
 | |
| 				   event->cpu, flags);
 | |
| 	if (!buffer) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	rcu_assign_pointer(event->buffer, buffer);
 | |
| 
 | |
| 	atomic_long_add(user_extra, &user->locked_vm);
 | |
| 	event->mmap_locked = extra;
 | |
| 	event->mmap_user = get_current_user();
 | |
| 	vma->vm_mm->locked_vm += event->mmap_locked;
 | |
| 
 | |
| unlock:
 | |
| 	if (!ret)
 | |
| 		atomic_inc(&event->mmap_count);
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	vma->vm_flags |= VM_RESERVED;
 | |
| 	vma->vm_ops = &perf_mmap_vmops;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int perf_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	struct inode *inode = filp->f_path.dentry->d_inode;
 | |
| 	struct perf_event *event = filp->private_data;
 | |
| 	int retval;
 | |
| 
 | |
| 	mutex_lock(&inode->i_mutex);
 | |
| 	retval = fasync_helper(fd, filp, on, &event->fasync);
 | |
| 	mutex_unlock(&inode->i_mutex);
 | |
| 
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations perf_fops = {
 | |
| 	.llseek			= no_llseek,
 | |
| 	.release		= perf_release,
 | |
| 	.read			= perf_read,
 | |
| 	.poll			= perf_poll,
 | |
| 	.unlocked_ioctl		= perf_ioctl,
 | |
| 	.compat_ioctl		= perf_ioctl,
 | |
| 	.mmap			= perf_mmap,
 | |
| 	.fasync			= perf_fasync,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Perf event wakeup
 | |
|  *
 | |
|  * If there's data, ensure we set the poll() state and publish everything
 | |
|  * to user-space before waking everybody up.
 | |
|  */
 | |
| 
 | |
| void perf_event_wakeup(struct perf_event *event)
 | |
| {
 | |
| 	wake_up_all(&event->waitq);
 | |
| 
 | |
| 	if (event->pending_kill) {
 | |
| 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
 | |
| 		event->pending_kill = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_pending_event(struct irq_work *entry)
 | |
| {
 | |
| 	struct perf_event *event = container_of(entry,
 | |
| 			struct perf_event, pending);
 | |
| 
 | |
| 	if (event->pending_disable) {
 | |
| 		event->pending_disable = 0;
 | |
| 		__perf_event_disable(event);
 | |
| 	}
 | |
| 
 | |
| 	if (event->pending_wakeup) {
 | |
| 		event->pending_wakeup = 0;
 | |
| 		perf_event_wakeup(event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We assume there is only KVM supporting the callbacks.
 | |
|  * Later on, we might change it to a list if there is
 | |
|  * another virtualization implementation supporting the callbacks.
 | |
|  */
 | |
| struct perf_guest_info_callbacks *perf_guest_cbs;
 | |
| 
 | |
| int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = cbs;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
 | |
| 
 | |
| int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
 | |
| {
 | |
| 	perf_guest_cbs = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
 | |
| 
 | |
| /*
 | |
|  * Output
 | |
|  */
 | |
| static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
 | |
| 			      unsigned long offset, unsigned long head)
 | |
| {
 | |
| 	unsigned long mask;
 | |
| 
 | |
| 	if (!buffer->writable)
 | |
| 		return true;
 | |
| 
 | |
| 	mask = perf_data_size(buffer) - 1;
 | |
| 
 | |
| 	offset = (offset - tail) & mask;
 | |
| 	head   = (head   - tail) & mask;
 | |
| 
 | |
| 	if ((int)(head - offset) < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void perf_output_wakeup(struct perf_output_handle *handle)
 | |
| {
 | |
| 	atomic_set(&handle->buffer->poll, POLL_IN);
 | |
| 
 | |
| 	if (handle->nmi) {
 | |
| 		handle->event->pending_wakeup = 1;
 | |
| 		irq_work_queue(&handle->event->pending);
 | |
| 	} else
 | |
| 		perf_event_wakeup(handle->event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to ensure a later event_id doesn't publish a head when a former
 | |
|  * event isn't done writing. However since we need to deal with NMIs we
 | |
|  * cannot fully serialize things.
 | |
|  *
 | |
|  * We only publish the head (and generate a wakeup) when the outer-most
 | |
|  * event completes.
 | |
|  */
 | |
| static void perf_output_get_handle(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_buffer *buffer = handle->buffer;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	local_inc(&buffer->nest);
 | |
| 	handle->wakeup = local_read(&buffer->wakeup);
 | |
| }
 | |
| 
 | |
| static void perf_output_put_handle(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_buffer *buffer = handle->buffer;
 | |
| 	unsigned long head;
 | |
| 
 | |
| again:
 | |
| 	head = local_read(&buffer->head);
 | |
| 
 | |
| 	/*
 | |
| 	 * IRQ/NMI can happen here, which means we can miss a head update.
 | |
| 	 */
 | |
| 
 | |
| 	if (!local_dec_and_test(&buffer->nest))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Publish the known good head. Rely on the full barrier implied
 | |
| 	 * by atomic_dec_and_test() order the buffer->head read and this
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	buffer->user_page->data_head = head;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now check if we missed an update, rely on the (compiler)
 | |
| 	 * barrier in atomic_dec_and_test() to re-read buffer->head.
 | |
| 	 */
 | |
| 	if (unlikely(head != local_read(&buffer->head))) {
 | |
| 		local_inc(&buffer->nest);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	if (handle->wakeup != local_read(&buffer->wakeup))
 | |
| 		perf_output_wakeup(handle);
 | |
| 
 | |
| out:
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| __always_inline void perf_output_copy(struct perf_output_handle *handle,
 | |
| 		      const void *buf, unsigned int len)
 | |
| {
 | |
| 	do {
 | |
| 		unsigned long size = min_t(unsigned long, handle->size, len);
 | |
| 
 | |
| 		memcpy(handle->addr, buf, size);
 | |
| 
 | |
| 		len -= size;
 | |
| 		handle->addr += size;
 | |
| 		buf += size;
 | |
| 		handle->size -= size;
 | |
| 		if (!handle->size) {
 | |
| 			struct perf_buffer *buffer = handle->buffer;
 | |
| 
 | |
| 			handle->page++;
 | |
| 			handle->page &= buffer->nr_pages - 1;
 | |
| 			handle->addr = buffer->data_pages[handle->page];
 | |
| 			handle->size = PAGE_SIZE << page_order(buffer);
 | |
| 		}
 | |
| 	} while (len);
 | |
| }
 | |
| 
 | |
| int perf_output_begin(struct perf_output_handle *handle,
 | |
| 		      struct perf_event *event, unsigned int size,
 | |
| 		      int nmi, int sample)
 | |
| {
 | |
| 	struct perf_buffer *buffer;
 | |
| 	unsigned long tail, offset, head;
 | |
| 	int have_lost;
 | |
| 	struct {
 | |
| 		struct perf_event_header header;
 | |
| 		u64			 id;
 | |
| 		u64			 lost;
 | |
| 	} lost_event;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * For inherited events we send all the output towards the parent.
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	buffer = rcu_dereference(event->buffer);
 | |
| 	if (!buffer)
 | |
| 		goto out;
 | |
| 
 | |
| 	handle->buffer	= buffer;
 | |
| 	handle->event	= event;
 | |
| 	handle->nmi	= nmi;
 | |
| 	handle->sample	= sample;
 | |
| 
 | |
| 	if (!buffer->nr_pages)
 | |
| 		goto out;
 | |
| 
 | |
| 	have_lost = local_read(&buffer->lost);
 | |
| 	if (have_lost)
 | |
| 		size += sizeof(lost_event);
 | |
| 
 | |
| 	perf_output_get_handle(handle);
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Userspace could choose to issue a mb() before updating the
 | |
| 		 * tail pointer. So that all reads will be completed before the
 | |
| 		 * write is issued.
 | |
| 		 */
 | |
| 		tail = ACCESS_ONCE(buffer->user_page->data_tail);
 | |
| 		smp_rmb();
 | |
| 		offset = head = local_read(&buffer->head);
 | |
| 		head += size;
 | |
| 		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
 | |
| 			goto fail;
 | |
| 	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
 | |
| 
 | |
| 	if (head - local_read(&buffer->wakeup) > buffer->watermark)
 | |
| 		local_add(buffer->watermark, &buffer->wakeup);
 | |
| 
 | |
| 	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
 | |
| 	handle->page &= buffer->nr_pages - 1;
 | |
| 	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
 | |
| 	handle->addr = buffer->data_pages[handle->page];
 | |
| 	handle->addr += handle->size;
 | |
| 	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
 | |
| 
 | |
| 	if (have_lost) {
 | |
| 		lost_event.header.type = PERF_RECORD_LOST;
 | |
| 		lost_event.header.misc = 0;
 | |
| 		lost_event.header.size = sizeof(lost_event);
 | |
| 		lost_event.id          = event->id;
 | |
| 		lost_event.lost        = local_xchg(&buffer->lost, 0);
 | |
| 
 | |
| 		perf_output_put(handle, lost_event);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	local_inc(&buffer->lost);
 | |
| 	perf_output_put_handle(handle);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| void perf_output_end(struct perf_output_handle *handle)
 | |
| {
 | |
| 	struct perf_event *event = handle->event;
 | |
| 	struct perf_buffer *buffer = handle->buffer;
 | |
| 
 | |
| 	int wakeup_events = event->attr.wakeup_events;
 | |
| 
 | |
| 	if (handle->sample && wakeup_events) {
 | |
| 		int events = local_inc_return(&buffer->events);
 | |
| 		if (events >= wakeup_events) {
 | |
| 			local_sub(wakeup_events, &buffer->events);
 | |
| 			local_inc(&buffer->wakeup);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_output_put_handle(handle);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_tgid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 | |
| {
 | |
| 	/*
 | |
| 	 * only top level events have the pid namespace they were created in
 | |
| 	 */
 | |
| 	if (event->parent)
 | |
| 		event = event->parent;
 | |
| 
 | |
| 	return task_pid_nr_ns(p, event->ns);
 | |
| }
 | |
| 
 | |
| static void perf_output_read_one(struct perf_output_handle *handle,
 | |
| 				 struct perf_event *event)
 | |
| {
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[4];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = perf_event_count(event);
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
 | |
| 		values[n++] = event->total_time_enabled +
 | |
| 			atomic64_read(&event->child_total_time_enabled);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
 | |
| 		values[n++] = event->total_time_running +
 | |
| 			atomic64_read(&event->child_total_time_running);
 | |
| 	}
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(event);
 | |
| 
 | |
| 	perf_output_copy(handle, values, n * sizeof(u64));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
 | |
|  */
 | |
| static void perf_output_read_group(struct perf_output_handle *handle,
 | |
| 			    struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader, *sub;
 | |
| 	u64 read_format = event->attr.read_format;
 | |
| 	u64 values[5];
 | |
| 	int n = 0;
 | |
| 
 | |
| 	values[n++] = 1 + leader->nr_siblings;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
 | |
| 		values[n++] = leader->total_time_enabled;
 | |
| 
 | |
| 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
 | |
| 		values[n++] = leader->total_time_running;
 | |
| 
 | |
| 	if (leader != event)
 | |
| 		leader->pmu->read(leader);
 | |
| 
 | |
| 	values[n++] = perf_event_count(leader);
 | |
| 	if (read_format & PERF_FORMAT_ID)
 | |
| 		values[n++] = primary_event_id(leader);
 | |
| 
 | |
| 	perf_output_copy(handle, values, n * sizeof(u64));
 | |
| 
 | |
| 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
 | |
| 		n = 0;
 | |
| 
 | |
| 		if (sub != event)
 | |
| 			sub->pmu->read(sub);
 | |
| 
 | |
| 		values[n++] = perf_event_count(sub);
 | |
| 		if (read_format & PERF_FORMAT_ID)
 | |
| 			values[n++] = primary_event_id(sub);
 | |
| 
 | |
| 		perf_output_copy(handle, values, n * sizeof(u64));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_output_read(struct perf_output_handle *handle,
 | |
| 			     struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.read_format & PERF_FORMAT_GROUP)
 | |
| 		perf_output_read_group(handle, event);
 | |
| 	else
 | |
| 		perf_output_read_one(handle, event);
 | |
| }
 | |
| 
 | |
| void perf_output_sample(struct perf_output_handle *handle,
 | |
| 			struct perf_event_header *header,
 | |
| 			struct perf_sample_data *data,
 | |
| 			struct perf_event *event)
 | |
| {
 | |
| 	u64 sample_type = data->type;
 | |
| 
 | |
| 	perf_output_put(handle, *header);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP)
 | |
| 		perf_output_put(handle, data->ip);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID)
 | |
| 		perf_output_put(handle, data->tid_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME)
 | |
| 		perf_output_put(handle, data->time);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		perf_output_put(handle, data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID)
 | |
| 		perf_output_put(handle, data->id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID)
 | |
| 		perf_output_put(handle, data->stream_id);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU)
 | |
| 		perf_output_put(handle, data->cpu_entry);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		perf_output_put(handle, data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		perf_output_read(handle, event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		if (data->callchain) {
 | |
| 			int size = 1;
 | |
| 
 | |
| 			if (data->callchain)
 | |
| 				size += data->callchain->nr;
 | |
| 
 | |
| 			size *= sizeof(u64);
 | |
| 
 | |
| 			perf_output_copy(handle, data->callchain, size);
 | |
| 		} else {
 | |
| 			u64 nr = 0;
 | |
| 			perf_output_put(handle, nr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		if (data->raw) {
 | |
| 			perf_output_put(handle, data->raw->size);
 | |
| 			perf_output_copy(handle, data->raw->data,
 | |
| 					 data->raw->size);
 | |
| 		} else {
 | |
| 			struct {
 | |
| 				u32	size;
 | |
| 				u32	data;
 | |
| 			} raw = {
 | |
| 				.size = sizeof(u32),
 | |
| 				.data = 0,
 | |
| 			};
 | |
| 			perf_output_put(handle, raw);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_prepare_sample(struct perf_event_header *header,
 | |
| 			 struct perf_sample_data *data,
 | |
| 			 struct perf_event *event,
 | |
| 			 struct pt_regs *regs)
 | |
| {
 | |
| 	u64 sample_type = event->attr.sample_type;
 | |
| 
 | |
| 	data->type = sample_type;
 | |
| 
 | |
| 	header->type = PERF_RECORD_SAMPLE;
 | |
| 	header->size = sizeof(*header);
 | |
| 
 | |
| 	header->misc = 0;
 | |
| 	header->misc |= perf_misc_flags(regs);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_IP) {
 | |
| 		data->ip = perf_instruction_pointer(regs);
 | |
| 
 | |
| 		header->size += sizeof(data->ip);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TID) {
 | |
| 		/* namespace issues */
 | |
| 		data->tid_entry.pid = perf_event_pid(event, current);
 | |
| 		data->tid_entry.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 		header->size += sizeof(data->tid_entry);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_TIME) {
 | |
| 		data->time = perf_clock();
 | |
| 
 | |
| 		header->size += sizeof(data->time);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ADDR)
 | |
| 		header->size += sizeof(data->addr);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_ID) {
 | |
| 		data->id = primary_event_id(event);
 | |
| 
 | |
| 		header->size += sizeof(data->id);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_STREAM_ID) {
 | |
| 		data->stream_id = event->id;
 | |
| 
 | |
| 		header->size += sizeof(data->stream_id);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CPU) {
 | |
| 		data->cpu_entry.cpu		= raw_smp_processor_id();
 | |
| 		data->cpu_entry.reserved	= 0;
 | |
| 
 | |
| 		header->size += sizeof(data->cpu_entry);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_PERIOD)
 | |
| 		header->size += sizeof(data->period);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_READ)
 | |
| 		header->size += perf_event_read_size(event);
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 		int size = 1;
 | |
| 
 | |
| 		data->callchain = perf_callchain(regs);
 | |
| 
 | |
| 		if (data->callchain)
 | |
| 			size += data->callchain->nr;
 | |
| 
 | |
| 		header->size += size * sizeof(u64);
 | |
| 	}
 | |
| 
 | |
| 	if (sample_type & PERF_SAMPLE_RAW) {
 | |
| 		int size = sizeof(u32);
 | |
| 
 | |
| 		if (data->raw)
 | |
| 			size += data->raw->size;
 | |
| 		else
 | |
| 			size += sizeof(u32);
 | |
| 
 | |
| 		WARN_ON_ONCE(size & (sizeof(u64)-1));
 | |
| 		header->size += size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_output(struct perf_event *event, int nmi,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_event_header header;
 | |
| 
 | |
| 	/* protect the callchain buffers */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	perf_prepare_sample(&header, data, event, regs);
 | |
| 
 | |
| 	if (perf_output_begin(&handle, event, header.size, nmi, 1))
 | |
| 		goto exit;
 | |
| 
 | |
| 	perf_output_sample(&handle, &header, data, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| 
 | |
| exit:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read event_id
 | |
|  */
 | |
| 
 | |
| struct perf_read_event {
 | |
| 	struct perf_event_header	header;
 | |
| 
 | |
| 	u32				pid;
 | |
| 	u32				tid;
 | |
| };
 | |
| 
 | |
| static void
 | |
| perf_event_read_event(struct perf_event *event,
 | |
| 			struct task_struct *task)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct perf_read_event read_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_READ,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(read_event) + perf_event_read_size(event),
 | |
| 		},
 | |
| 		.pid = perf_event_pid(event, task),
 | |
| 		.tid = perf_event_tid(event, task),
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, read_event);
 | |
| 	perf_output_read(&handle, event);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * task tracking -- fork/exit
 | |
|  *
 | |
|  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
 | |
|  */
 | |
| 
 | |
| struct perf_task_event {
 | |
| 	struct task_struct		*task;
 | |
| 	struct perf_event_context	*task_ctx;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				ppid;
 | |
| 		u32				tid;
 | |
| 		u32				ptid;
 | |
| 		u64				time;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_task_output(struct perf_event *event,
 | |
| 				     struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	struct task_struct *task = task_event->task;
 | |
| 	int size, ret;
 | |
| 
 | |
| 	size  = task_event->event_id.header.size;
 | |
| 	ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	task_event->event_id.pid = perf_event_pid(event, task);
 | |
| 	task_event->event_id.ppid = perf_event_pid(event, current);
 | |
| 
 | |
| 	task_event->event_id.tid = perf_event_tid(event, task);
 | |
| 	task_event->event_id.ptid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, task_event->event_id);
 | |
| 
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_task_match(struct perf_event *event)
 | |
| {
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.comm || event->attr.mmap ||
 | |
| 	    event->attr.mmap_data || event->attr.task)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_task_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_task_match(event))
 | |
| 			perf_event_task_output(event, task_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_task_event(struct perf_task_event *task_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 		perf_event_task_ctx(&cpuctx->ctx, task_event);
 | |
| 
 | |
| 		ctx = task_event->task_ctx;
 | |
| 		if (!ctx) {
 | |
| 			ctxn = pmu->task_ctx_nr;
 | |
| 			if (ctxn < 0)
 | |
| 				goto next;
 | |
| 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		}
 | |
| 		if (ctx)
 | |
| 			perf_event_task_ctx(ctx, task_event);
 | |
| next:
 | |
| 		put_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void perf_event_task(struct task_struct *task,
 | |
| 			      struct perf_event_context *task_ctx,
 | |
| 			      int new)
 | |
| {
 | |
| 	struct perf_task_event task_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events) &&
 | |
| 	    !atomic_read(&nr_mmap_events) &&
 | |
| 	    !atomic_read(&nr_task_events))
 | |
| 		return;
 | |
| 
 | |
| 	task_event = (struct perf_task_event){
 | |
| 		.task	  = task,
 | |
| 		.task_ctx = task_ctx,
 | |
| 		.event_id    = {
 | |
| 			.header = {
 | |
| 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
 | |
| 				.misc = 0,
 | |
| 				.size = sizeof(task_event.event_id),
 | |
| 			},
 | |
| 			/* .pid  */
 | |
| 			/* .ppid */
 | |
| 			/* .tid  */
 | |
| 			/* .ptid */
 | |
| 			.time = perf_clock(),
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_task_event(&task_event);
 | |
| }
 | |
| 
 | |
| void perf_event_fork(struct task_struct *task)
 | |
| {
 | |
| 	perf_event_task(task, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * comm tracking
 | |
|  */
 | |
| 
 | |
| struct perf_comm_event {
 | |
| 	struct task_struct	*task;
 | |
| 	char			*comm;
 | |
| 	int			comm_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_comm_output(struct perf_event *event,
 | |
| 				     struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int size = comm_event->event_id.header.size;
 | |
| 	int ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
 | |
| 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
 | |
| 
 | |
| 	perf_output_put(&handle, comm_event->event_id);
 | |
| 	perf_output_copy(&handle, comm_event->comm,
 | |
| 				   comm_event->comm_size);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_comm_match(struct perf_event *event)
 | |
| {
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.comm)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_comm_match(event))
 | |
| 			perf_event_comm_output(event, comm_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_comm_event(struct perf_comm_event *comm_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	char comm[TASK_COMM_LEN];
 | |
| 	unsigned int size;
 | |
| 	struct pmu *pmu;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	memset(comm, 0, sizeof(comm));
 | |
| 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
 | |
| 	size = ALIGN(strlen(comm)+1, sizeof(u64));
 | |
| 
 | |
| 	comm_event->comm = comm;
 | |
| 	comm_event->comm_size = size;
 | |
| 
 | |
| 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
 | |
| 
 | |
| 		ctxn = pmu->task_ctx_nr;
 | |
| 		if (ctxn < 0)
 | |
| 			goto next;
 | |
| 
 | |
| 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		if (ctx)
 | |
| 			perf_event_comm_ctx(ctx, comm_event);
 | |
| next:
 | |
| 		put_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void perf_event_comm(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_comm_event comm_event;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		perf_event_enable_on_exec(ctx);
 | |
| 	}
 | |
| 
 | |
| 	if (!atomic_read(&nr_comm_events))
 | |
| 		return;
 | |
| 
 | |
| 	comm_event = (struct perf_comm_event){
 | |
| 		.task	= task,
 | |
| 		/* .comm      */
 | |
| 		/* .comm_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_COMM,
 | |
| 				.misc = 0,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_comm_event(&comm_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mmap tracking
 | |
|  */
 | |
| 
 | |
| struct perf_mmap_event {
 | |
| 	struct vm_area_struct	*vma;
 | |
| 
 | |
| 	const char		*file_name;
 | |
| 	int			file_size;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 
 | |
| 		u32				pid;
 | |
| 		u32				tid;
 | |
| 		u64				start;
 | |
| 		u64				len;
 | |
| 		u64				pgoff;
 | |
| 	} event_id;
 | |
| };
 | |
| 
 | |
| static void perf_event_mmap_output(struct perf_event *event,
 | |
| 				     struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int size = mmap_event->event_id.header.size;
 | |
| 	int ret = perf_output_begin(&handle, event, size, 0, 0);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event->event_id.pid = perf_event_pid(event, current);
 | |
| 	mmap_event->event_id.tid = perf_event_tid(event, current);
 | |
| 
 | |
| 	perf_output_put(&handle, mmap_event->event_id);
 | |
| 	perf_output_copy(&handle, mmap_event->file_name,
 | |
| 				   mmap_event->file_size);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| static int perf_event_mmap_match(struct perf_event *event,
 | |
| 				   struct perf_mmap_event *mmap_event,
 | |
| 				   int executable)
 | |
| {
 | |
| 	if (event->state < PERF_EVENT_STATE_INACTIVE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->cpu != -1 && event->cpu != smp_processor_id())
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((!executable && event->attr.mmap_data) ||
 | |
| 	    (executable && event->attr.mmap))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_ctx(struct perf_event_context *ctx,
 | |
| 				  struct perf_mmap_event *mmap_event,
 | |
| 				  int executable)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 
 | |
| 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
 | |
| 		if (perf_event_mmap_match(event, mmap_event, executable))
 | |
| 			perf_event_mmap_output(event, mmap_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct vm_area_struct *vma = mmap_event->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	unsigned int size;
 | |
| 	char tmp[16];
 | |
| 	char *buf = NULL;
 | |
| 	const char *name;
 | |
| 	struct pmu *pmu;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	memset(tmp, 0, sizeof(tmp));
 | |
| 
 | |
| 	if (file) {
 | |
| 		/*
 | |
| 		 * d_path works from the end of the buffer backwards, so we
 | |
| 		 * need to add enough zero bytes after the string to handle
 | |
| 		 * the 64bit alignment we do later.
 | |
| 		 */
 | |
| 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			name = strncpy(tmp, "//enomem", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 		name = d_path(&file->f_path, buf, PATH_MAX);
 | |
| 		if (IS_ERR(name)) {
 | |
| 			name = strncpy(tmp, "//toolong", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (arch_vma_name(mmap_event->vma)) {
 | |
| 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
 | |
| 				       sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 
 | |
| 		if (!vma->vm_mm) {
 | |
| 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
 | |
| 				vma->vm_end >= vma->vm_mm->brk) {
 | |
| 			name = strncpy(tmp, "[heap]", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
 | |
| 				vma->vm_end >= vma->vm_mm->start_stack) {
 | |
| 			name = strncpy(tmp, "[stack]", sizeof(tmp));
 | |
| 			goto got_name;
 | |
| 		}
 | |
| 
 | |
| 		name = strncpy(tmp, "//anon", sizeof(tmp));
 | |
| 		goto got_name;
 | |
| 	}
 | |
| 
 | |
| got_name:
 | |
| 	size = ALIGN(strlen(name)+1, sizeof(u64));
 | |
| 
 | |
| 	mmap_event->file_name = name;
 | |
| 	mmap_event->file_size = size;
 | |
| 
 | |
| 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
 | |
| 					vma->vm_flags & VM_EXEC);
 | |
| 
 | |
| 		ctxn = pmu->task_ctx_nr;
 | |
| 		if (ctxn < 0)
 | |
| 			goto next;
 | |
| 
 | |
| 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
 | |
| 		if (ctx) {
 | |
| 			perf_event_mmap_ctx(ctx, mmap_event,
 | |
| 					vma->vm_flags & VM_EXEC);
 | |
| 		}
 | |
| next:
 | |
| 		put_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| void perf_event_mmap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct perf_mmap_event mmap_event;
 | |
| 
 | |
| 	if (!atomic_read(&nr_mmap_events))
 | |
| 		return;
 | |
| 
 | |
| 	mmap_event = (struct perf_mmap_event){
 | |
| 		.vma	= vma,
 | |
| 		/* .file_name */
 | |
| 		/* .file_size */
 | |
| 		.event_id  = {
 | |
| 			.header = {
 | |
| 				.type = PERF_RECORD_MMAP,
 | |
| 				.misc = PERF_RECORD_MISC_USER,
 | |
| 				/* .size */
 | |
| 			},
 | |
| 			/* .pid */
 | |
| 			/* .tid */
 | |
| 			.start  = vma->vm_start,
 | |
| 			.len    = vma->vm_end - vma->vm_start,
 | |
| 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	perf_event_mmap_event(&mmap_event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IRQ throttle logging
 | |
|  */
 | |
| 
 | |
| static void perf_log_throttle(struct perf_event *event, int enable)
 | |
| {
 | |
| 	struct perf_output_handle handle;
 | |
| 	int ret;
 | |
| 
 | |
| 	struct {
 | |
| 		struct perf_event_header	header;
 | |
| 		u64				time;
 | |
| 		u64				id;
 | |
| 		u64				stream_id;
 | |
| 	} throttle_event = {
 | |
| 		.header = {
 | |
| 			.type = PERF_RECORD_THROTTLE,
 | |
| 			.misc = 0,
 | |
| 			.size = sizeof(throttle_event),
 | |
| 		},
 | |
| 		.time		= perf_clock(),
 | |
| 		.id		= primary_event_id(event),
 | |
| 		.stream_id	= event->id,
 | |
| 	};
 | |
| 
 | |
| 	if (enable)
 | |
| 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
 | |
| 
 | |
| 	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	perf_output_put(&handle, throttle_event);
 | |
| 	perf_output_end(&handle);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic event overflow handling, sampling.
 | |
|  */
 | |
| 
 | |
| static int __perf_event_overflow(struct perf_event *event, int nmi,
 | |
| 				   int throttle, struct perf_sample_data *data,
 | |
| 				   struct pt_regs *regs)
 | |
| {
 | |
| 	int events = atomic_read(&event->event_limit);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!throttle) {
 | |
| 		hwc->interrupts++;
 | |
| 	} else {
 | |
| 		if (hwc->interrupts != MAX_INTERRUPTS) {
 | |
| 			hwc->interrupts++;
 | |
| 			if (HZ * hwc->interrupts >
 | |
| 					(u64)sysctl_perf_event_sample_rate) {
 | |
| 				hwc->interrupts = MAX_INTERRUPTS;
 | |
| 				perf_log_throttle(event, 0);
 | |
| 				ret = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Keep re-disabling events even though on the previous
 | |
| 			 * pass we disabled it - just in case we raced with a
 | |
| 			 * sched-in and the event got enabled again:
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (event->attr.freq) {
 | |
| 		u64 now = perf_clock();
 | |
| 		s64 delta = now - hwc->freq_time_stamp;
 | |
| 
 | |
| 		hwc->freq_time_stamp = now;
 | |
| 
 | |
| 		if (delta > 0 && delta < 2*TICK_NSEC)
 | |
| 			perf_adjust_period(event, delta, hwc->last_period);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX event_limit might not quite work as expected on inherited
 | |
| 	 * events
 | |
| 	 */
 | |
| 
 | |
| 	event->pending_kill = POLL_IN;
 | |
| 	if (events && atomic_dec_and_test(&event->event_limit)) {
 | |
| 		ret = 1;
 | |
| 		event->pending_kill = POLL_HUP;
 | |
| 		if (nmi) {
 | |
| 			event->pending_disable = 1;
 | |
| 			irq_work_queue(&event->pending);
 | |
| 		} else
 | |
| 			perf_event_disable(event);
 | |
| 	}
 | |
| 
 | |
| 	if (event->overflow_handler)
 | |
| 		event->overflow_handler(event, nmi, data, regs);
 | |
| 	else
 | |
| 		perf_event_output(event, nmi, data, regs);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int perf_event_overflow(struct perf_event *event, int nmi,
 | |
| 			  struct perf_sample_data *data,
 | |
| 			  struct pt_regs *regs)
 | |
| {
 | |
| 	return __perf_event_overflow(event, nmi, 1, data, regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic software event infrastructure
 | |
|  */
 | |
| 
 | |
| struct swevent_htable {
 | |
| 	struct swevent_hlist		*swevent_hlist;
 | |
| 	struct mutex			hlist_mutex;
 | |
| 	int				hlist_refcount;
 | |
| 
 | |
| 	/* Recursion avoidance in each contexts */
 | |
| 	int				recursion[PERF_NR_CONTEXTS];
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
 | |
| 
 | |
| /*
 | |
|  * We directly increment event->count and keep a second value in
 | |
|  * event->hw.period_left to count intervals. This period event
 | |
|  * is kept in the range [-sample_period, 0] so that we can use the
 | |
|  * sign as trigger.
 | |
|  */
 | |
| 
 | |
| static u64 perf_swevent_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 period = hwc->last_period;
 | |
| 	u64 nr, offset;
 | |
| 	s64 old, val;
 | |
| 
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| again:
 | |
| 	old = val = local64_read(&hwc->period_left);
 | |
| 	if (val < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	nr = div64_u64(period + val, period);
 | |
| 	offset = nr * period;
 | |
| 	val -= offset;
 | |
| 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
 | |
| 		goto again;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
 | |
| 				    int nmi, struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int throttle = 0;
 | |
| 
 | |
| 	data->period = event->hw.last_period;
 | |
| 	if (!overflow)
 | |
| 		overflow = perf_swevent_set_period(event);
 | |
| 
 | |
| 	if (hwc->interrupts == MAX_INTERRUPTS)
 | |
| 		return;
 | |
| 
 | |
| 	for (; overflow; overflow--) {
 | |
| 		if (__perf_event_overflow(event, nmi, throttle,
 | |
| 					    data, regs)) {
 | |
| 			/*
 | |
| 			 * We inhibit the overflow from happening when
 | |
| 			 * hwc->interrupts == MAX_INTERRUPTS.
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 		throttle = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_event(struct perf_event *event, u64 nr,
 | |
| 			       int nmi, struct perf_sample_data *data,
 | |
| 			       struct pt_regs *regs)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	local64_add(nr, &event->count);
 | |
| 
 | |
| 	if (!regs)
 | |
| 		return;
 | |
| 
 | |
| 	if (!hwc->sample_period)
 | |
| 		return;
 | |
| 
 | |
| 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
 | |
| 		return perf_swevent_overflow(event, 1, nmi, data, regs);
 | |
| 
 | |
| 	if (local64_add_negative(nr, &hwc->period_left))
 | |
| 		return;
 | |
| 
 | |
| 	perf_swevent_overflow(event, 0, nmi, data, regs);
 | |
| }
 | |
| 
 | |
| static int perf_exclude_event(struct perf_event *event,
 | |
| 			      struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->hw.state & PERF_HES_STOPPED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (regs) {
 | |
| 		if (event->attr.exclude_user && user_mode(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (event->attr.exclude_kernel && !user_mode(regs))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_swevent_match(struct perf_event *event,
 | |
| 				enum perf_type_id type,
 | |
| 				u32 event_id,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	if (event->attr.type != type)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->attr.config != event_id)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (perf_exclude_event(event, regs))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline u64 swevent_hash(u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 val = event_id | (type << 32);
 | |
| 
 | |
| 	return hash_64(val, SWEVENT_HLIST_BITS);
 | |
| }
 | |
| 
 | |
| static inline struct hlist_head *
 | |
| __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
 | |
| {
 | |
| 	u64 hash = swevent_hash(type, event_id);
 | |
| 
 | |
| 	return &hlist->heads[hash];
 | |
| }
 | |
| 
 | |
| /* For the read side: events when they trigger */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 
 | |
| 	hlist = rcu_dereference(swhash->swevent_hlist);
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| /* For the event head insertion and removal in the hlist */
 | |
| static inline struct hlist_head *
 | |
| find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 	u32 event_id = event->attr.config;
 | |
| 	u64 type = event->attr.type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Event scheduling is always serialized against hlist allocation
 | |
| 	 * and release. Which makes the protected version suitable here.
 | |
| 	 * The context lock guarantees that.
 | |
| 	 */
 | |
| 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					  lockdep_is_held(&event->ctx->lock));
 | |
| 	if (!hlist)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __find_swevent_head(hlist, type, event_id);
 | |
| }
 | |
| 
 | |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
 | |
| 				    u64 nr, int nmi,
 | |
| 				    struct perf_sample_data *data,
 | |
| 				    struct pt_regs *regs)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
 | |
| 	struct perf_event *event;
 | |
| 	struct hlist_node *node;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	head = find_swevent_head_rcu(swhash, type, event_id);
 | |
| 	if (!head)
 | |
| 		goto end;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
 | |
| 		if (perf_swevent_match(event, type, event_id, data, regs))
 | |
| 			perf_swevent_event(event, nr, nmi, data, regs);
 | |
| 	}
 | |
| end:
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| int perf_swevent_get_recursion_context(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
 | |
| 
 | |
| 	return get_recursion_context(swhash->recursion);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
 | |
| 
 | |
| void inline perf_swevent_put_recursion_context(int rctx)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
 | |
| 
 | |
| 	put_recursion_context(swhash->recursion, rctx);
 | |
| }
 | |
| 
 | |
| void __perf_sw_event(u32 event_id, u64 nr, int nmi,
 | |
| 			    struct pt_regs *regs, u64 addr)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	int rctx;
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	rctx = perf_swevent_get_recursion_context();
 | |
| 	if (rctx < 0)
 | |
| 		return;
 | |
| 
 | |
| 	perf_sample_data_init(&data, addr);
 | |
| 
 | |
| 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| 	preempt_enable_notrace();
 | |
| }
 | |
| 
 | |
| static void perf_swevent_read(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_swevent_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	struct hlist_head *head;
 | |
| 
 | |
| 	if (hwc->sample_period) {
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		perf_swevent_set_period(event);
 | |
| 	}
 | |
| 
 | |
| 	hwc->state = !(flags & PERF_EF_START);
 | |
| 
 | |
| 	head = find_swevent_head(swhash, event);
 | |
| 	if (WARN_ON_ONCE(!head))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hlist_add_head_rcu(&event->hlist_entry, head);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	hlist_del_rcu(&event->hlist_entry);
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = 0;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	event->hw.state = PERF_HES_STOPPED;
 | |
| }
 | |
| 
 | |
| /* Deref the hlist from the update side */
 | |
| static inline struct swevent_hlist *
 | |
| swevent_hlist_deref(struct swevent_htable *swhash)
 | |
| {
 | |
| 	return rcu_dereference_protected(swhash->swevent_hlist,
 | |
| 					 lockdep_is_held(&swhash->hlist_mutex));
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
 | |
| {
 | |
| 	struct swevent_hlist *hlist;
 | |
| 
 | |
| 	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
 | |
| 	kfree(hlist);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_release(struct swevent_htable *swhash)
 | |
| {
 | |
| 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
 | |
| 
 | |
| 	if (!hlist)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
 | |
| 	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	if (!--swhash->hlist_refcount)
 | |
| 		swevent_hlist_release(swhash);
 | |
| 
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| static void swevent_hlist_put(struct perf_event *event)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (event->cpu != -1) {
 | |
| 		swevent_hlist_put_cpu(event, event->cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		swevent_hlist_put_cpu(event, cpu);
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
 | |
| 		if (!hlist) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto exit;
 | |
| 		}
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	swhash->hlist_refcount++;
 | |
| exit:
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int swevent_hlist_get(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 	int cpu, failed_cpu;
 | |
| 
 | |
| 	if (event->cpu != -1)
 | |
| 		return swevent_hlist_get_cpu(event, event->cpu);
 | |
| 
 | |
| 	get_online_cpus();
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		err = swevent_hlist_get_cpu(event, cpu);
 | |
| 		if (err) {
 | |
| 			failed_cpu = cpu;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	put_online_cpus();
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (cpu == failed_cpu)
 | |
| 			break;
 | |
| 		swevent_hlist_put_cpu(event, cpu);
 | |
| 	}
 | |
| 
 | |
| 	put_online_cpus();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
 | |
| 
 | |
| static void sw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	u64 event_id = event->attr.config;
 | |
| 
 | |
| 	WARN_ON(event->parent);
 | |
| 
 | |
| 	jump_label_dec(&perf_swevent_enabled[event_id]);
 | |
| 	swevent_hlist_put(event);
 | |
| }
 | |
| 
 | |
| static int perf_swevent_init(struct perf_event *event)
 | |
| {
 | |
| 	int event_id = event->attr.config;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (event_id) {
 | |
| 	case PERF_COUNT_SW_CPU_CLOCK:
 | |
| 	case PERF_COUNT_SW_TASK_CLOCK:
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (event_id > PERF_COUNT_SW_MAX)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = swevent_hlist_get(event);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		jump_label_inc(&perf_swevent_enabled[event_id]);
 | |
| 		event->destroy = sw_perf_event_destroy;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_swevent = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= perf_swevent_init,
 | |
| 	.add		= perf_swevent_add,
 | |
| 	.del		= perf_swevent_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_EVENT_TRACING
 | |
| 
 | |
| static int perf_tp_filter_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data)
 | |
| {
 | |
| 	void *record = data->raw->data;
 | |
| 
 | |
| 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_match(struct perf_event *event,
 | |
| 				struct perf_sample_data *data,
 | |
| 				struct pt_regs *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * All tracepoints are from kernel-space.
 | |
| 	 */
 | |
| 	if (event->attr.exclude_kernel)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!perf_tp_filter_match(event, data))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
 | |
| 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	struct perf_event *event;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	struct perf_raw_record raw = {
 | |
| 		.size = entry_size,
 | |
| 		.data = record,
 | |
| 	};
 | |
| 
 | |
| 	perf_sample_data_init(&data, addr);
 | |
| 	data.raw = &raw;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
 | |
| 		if (perf_tp_event_match(event, &data, regs))
 | |
| 			perf_swevent_event(event, count, 1, &data, regs);
 | |
| 	}
 | |
| 
 | |
| 	perf_swevent_put_recursion_context(rctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_tp_event);
 | |
| 
 | |
| static void tp_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	perf_trace_destroy(event);
 | |
| }
 | |
| 
 | |
| static int perf_tp_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Raw tracepoint data is a severe data leak, only allow root to
 | |
| 	 * have these.
 | |
| 	 */
 | |
| 	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
 | |
| 			perf_paranoid_tracepoint_raw() &&
 | |
| 			!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	err = perf_trace_init(event);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = tp_perf_event_destroy;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_tracepoint = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= perf_tp_event_init,
 | |
| 	.add		= perf_trace_add,
 | |
| 	.del		= perf_trace_del,
 | |
| 	.start		= perf_swevent_start,
 | |
| 	.stop		= perf_swevent_stop,
 | |
| 	.read		= perf_swevent_read,
 | |
| };
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| 	perf_pmu_register(&perf_tracepoint);
 | |
| }
 | |
| 
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 | |
| {
 | |
| 	char *filter_str;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	filter_str = strndup_user(arg, PAGE_SIZE);
 | |
| 	if (IS_ERR(filter_str))
 | |
| 		return PTR_ERR(filter_str);
 | |
| 
 | |
| 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
 | |
| 
 | |
| 	kfree(filter_str);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| 	ftrace_profile_free_filter(event);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void perf_tp_register(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg)
 | |
| {
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void perf_event_free_filter(struct perf_event *event)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_EVENT_TRACING */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| void perf_bp_event(struct perf_event *bp, void *data)
 | |
| {
 | |
| 	struct perf_sample_data sample;
 | |
| 	struct pt_regs *regs = data;
 | |
| 
 | |
| 	perf_sample_data_init(&sample, bp->attr.bp_addr);
 | |
| 
 | |
| 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
 | |
| 		perf_swevent_event(bp, 1, 1, &sample, regs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * hrtimer based swevent callback
 | |
|  */
 | |
| 
 | |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
 | |
| {
 | |
| 	enum hrtimer_restart ret = HRTIMER_RESTART;
 | |
| 	struct perf_sample_data data;
 | |
| 	struct pt_regs *regs;
 | |
| 	struct perf_event *event;
 | |
| 	u64 period;
 | |
| 
 | |
| 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
 | |
| 	event->pmu->read(event);
 | |
| 
 | |
| 	perf_sample_data_init(&data, 0);
 | |
| 	data.period = event->hw.last_period;
 | |
| 	regs = get_irq_regs();
 | |
| 
 | |
| 	if (regs && !perf_exclude_event(event, regs)) {
 | |
| 		if (!(event->attr.exclude_idle && current->pid == 0))
 | |
| 			if (perf_event_overflow(event, 0, &data, regs))
 | |
| 				ret = HRTIMER_NORESTART;
 | |
| 	}
 | |
| 
 | |
| 	period = max_t(u64, 10000, event->hw.sample_period);
 | |
| 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void perf_swevent_start_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 | |
| 	hwc->hrtimer.function = perf_swevent_hrtimer;
 | |
| 	if (hwc->sample_period) {
 | |
| 		s64 period = local64_read(&hwc->period_left);
 | |
| 
 | |
| 		if (period) {
 | |
| 			if (period < 0)
 | |
| 				period = 10000;
 | |
| 
 | |
| 			local64_set(&hwc->period_left, 0);
 | |
| 		} else {
 | |
| 			period = max_t(u64, 10000, hwc->sample_period);
 | |
| 		}
 | |
| 		__hrtimer_start_range_ns(&hwc->hrtimer,
 | |
| 				ns_to_ktime(period), 0,
 | |
| 				HRTIMER_MODE_REL_PINNED, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (hwc->sample_period) {
 | |
| 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
 | |
| 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
 | |
| 
 | |
| 		hrtimer_cancel(&hwc->hrtimer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Software event: cpu wall time clock
 | |
|  */
 | |
| 
 | |
| static void cpu_clock_event_update(struct perf_event *event)
 | |
| {
 | |
| 	s64 prev;
 | |
| 	u64 now;
 | |
| 
 | |
| 	now = local_clock();
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	local64_add(now - prev, &event->count);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, local_clock());
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		cpu_clock_event_start(event, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	cpu_clock_event_stop(event, flags);
 | |
| }
 | |
| 
 | |
| static void cpu_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	cpu_clock_event_update(event);
 | |
| }
 | |
| 
 | |
| static int cpu_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_cpu_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= cpu_clock_event_init,
 | |
| 	.add		= cpu_clock_event_add,
 | |
| 	.del		= cpu_clock_event_del,
 | |
| 	.start		= cpu_clock_event_start,
 | |
| 	.stop		= cpu_clock_event_stop,
 | |
| 	.read		= cpu_clock_event_read,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Software event: task time clock
 | |
|  */
 | |
| 
 | |
| static void task_clock_event_update(struct perf_event *event, u64 now)
 | |
| {
 | |
| 	u64 prev;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	prev = local64_xchg(&event->hw.prev_count, now);
 | |
| 	delta = now - prev;
 | |
| 	local64_add(delta, &event->count);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	local64_set(&event->hw.prev_count, event->ctx->time);
 | |
| 	perf_swevent_start_hrtimer(event);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	perf_swevent_cancel_hrtimer(event);
 | |
| 	task_clock_event_update(event, event->ctx->time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		task_clock_event_start(event, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void task_clock_event_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	task_clock_event_stop(event, PERF_EF_UPDATE);
 | |
| }
 | |
| 
 | |
| static void task_clock_event_read(struct perf_event *event)
 | |
| {
 | |
| 	u64 time;
 | |
| 
 | |
| 	if (!in_nmi()) {
 | |
| 		update_context_time(event->ctx);
 | |
| 		time = event->ctx->time;
 | |
| 	} else {
 | |
| 		u64 now = perf_clock();
 | |
| 		u64 delta = now - event->ctx->timestamp;
 | |
| 		time = event->ctx->time + delta;
 | |
| 	}
 | |
| 
 | |
| 	task_clock_event_update(event, time);
 | |
| }
 | |
| 
 | |
| static int task_clock_event_init(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.type != PERF_TYPE_SOFTWARE)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct pmu perf_task_clock = {
 | |
| 	.task_ctx_nr	= perf_sw_context,
 | |
| 
 | |
| 	.event_init	= task_clock_event_init,
 | |
| 	.add		= task_clock_event_add,
 | |
| 	.del		= task_clock_event_del,
 | |
| 	.start		= task_clock_event_start,
 | |
| 	.stop		= task_clock_event_stop,
 | |
| 	.read		= task_clock_event_read,
 | |
| };
 | |
| 
 | |
| static void perf_pmu_nop_void(struct pmu *pmu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int perf_pmu_nop_int(struct pmu *pmu)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_start_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_disable(pmu);
 | |
| }
 | |
| 
 | |
| static int perf_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void perf_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensures all contexts with the same task_ctx_nr have the same
 | |
|  * pmu_cpu_context too.
 | |
|  */
 | |
| static void *find_pmu_context(int ctxn)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	if (ctxn < 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (pmu->task_ctx_nr == ctxn)
 | |
| 			return pmu->pmu_cpu_context;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void free_pmu_context(void * __percpu cpu_context)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	/*
 | |
| 	 * Like a real lame refcount.
 | |
| 	 */
 | |
| 	list_for_each_entry(pmu, &pmus, entry) {
 | |
| 		if (pmu->pmu_cpu_context == cpu_context)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(cpu_context);
 | |
| out:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| }
 | |
| 
 | |
| int perf_pmu_register(struct pmu *pmu)
 | |
| {
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	ret = -ENOMEM;
 | |
| 	pmu->pmu_disable_count = alloc_percpu(int);
 | |
| 	if (!pmu->pmu_disable_count)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
 | |
| 	if (pmu->pmu_cpu_context)
 | |
| 		goto got_cpu_context;
 | |
| 
 | |
| 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
 | |
| 	if (!pmu->pmu_cpu_context)
 | |
| 		goto free_pdc;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct perf_cpu_context *cpuctx;
 | |
| 
 | |
| 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
 | |
| 		__perf_event_init_context(&cpuctx->ctx);
 | |
| 		cpuctx->ctx.type = cpu_context;
 | |
| 		cpuctx->ctx.pmu = pmu;
 | |
| 		cpuctx->jiffies_interval = 1;
 | |
| 		INIT_LIST_HEAD(&cpuctx->rotation_list);
 | |
| 	}
 | |
| 
 | |
| got_cpu_context:
 | |
| 	if (!pmu->start_txn) {
 | |
| 		if (pmu->pmu_enable) {
 | |
| 			/*
 | |
| 			 * If we have pmu_enable/pmu_disable calls, install
 | |
| 			 * transaction stubs that use that to try and batch
 | |
| 			 * hardware accesses.
 | |
| 			 */
 | |
| 			pmu->start_txn  = perf_pmu_start_txn;
 | |
| 			pmu->commit_txn = perf_pmu_commit_txn;
 | |
| 			pmu->cancel_txn = perf_pmu_cancel_txn;
 | |
| 		} else {
 | |
| 			pmu->start_txn  = perf_pmu_nop_void;
 | |
| 			pmu->commit_txn = perf_pmu_nop_int;
 | |
| 			pmu->cancel_txn = perf_pmu_nop_void;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!pmu->pmu_enable) {
 | |
| 		pmu->pmu_enable  = perf_pmu_nop_void;
 | |
| 		pmu->pmu_disable = perf_pmu_nop_void;
 | |
| 	}
 | |
| 
 | |
| 	list_add_rcu(&pmu->entry, &pmus);
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| free_pdc:
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	goto unlock;
 | |
| }
 | |
| 
 | |
| void perf_pmu_unregister(struct pmu *pmu)
 | |
| {
 | |
| 	mutex_lock(&pmus_lock);
 | |
| 	list_del_rcu(&pmu->entry);
 | |
| 	mutex_unlock(&pmus_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dereference the pmu list under both SRCU and regular RCU, so
 | |
| 	 * synchronize against both of those.
 | |
| 	 */
 | |
| 	synchronize_srcu(&pmus_srcu);
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	free_percpu(pmu->pmu_disable_count);
 | |
| 	free_pmu_context(pmu->pmu_cpu_context);
 | |
| }
 | |
| 
 | |
| struct pmu *perf_init_event(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *pmu = NULL;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&pmus_srcu);
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		int ret = pmu->event_init(event);
 | |
| 		if (!ret)
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (ret != -ENOENT) {
 | |
| 			pmu = ERR_PTR(ret);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 	}
 | |
| 	pmu = ERR_PTR(-ENOENT);
 | |
| unlock:
 | |
| 	srcu_read_unlock(&pmus_srcu, idx);
 | |
| 
 | |
| 	return pmu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize a event structure
 | |
|  */
 | |
| static struct perf_event *
 | |
| perf_event_alloc(struct perf_event_attr *attr, int cpu,
 | |
| 		 struct task_struct *task,
 | |
| 		 struct perf_event *group_leader,
 | |
| 		 struct perf_event *parent_event,
 | |
| 		 perf_overflow_handler_t overflow_handler)
 | |
| {
 | |
| 	struct pmu *pmu;
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	long err;
 | |
| 
 | |
| 	event = kzalloc(sizeof(*event), GFP_KERNEL);
 | |
| 	if (!event)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Single events are their own group leaders, with an
 | |
| 	 * empty sibling list:
 | |
| 	 */
 | |
| 	if (!group_leader)
 | |
| 		group_leader = event;
 | |
| 
 | |
| 	mutex_init(&event->child_mutex);
 | |
| 	INIT_LIST_HEAD(&event->child_list);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&event->group_entry);
 | |
| 	INIT_LIST_HEAD(&event->event_entry);
 | |
| 	INIT_LIST_HEAD(&event->sibling_list);
 | |
| 	init_waitqueue_head(&event->waitq);
 | |
| 	init_irq_work(&event->pending, perf_pending_event);
 | |
| 
 | |
| 	mutex_init(&event->mmap_mutex);
 | |
| 
 | |
| 	event->cpu		= cpu;
 | |
| 	event->attr		= *attr;
 | |
| 	event->group_leader	= group_leader;
 | |
| 	event->pmu		= NULL;
 | |
| 	event->oncpu		= -1;
 | |
| 
 | |
| 	event->parent		= parent_event;
 | |
| 
 | |
| 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
 | |
| 	event->id		= atomic64_inc_return(&perf_event_id);
 | |
| 
 | |
| 	event->state		= PERF_EVENT_STATE_INACTIVE;
 | |
| 
 | |
| 	if (task) {
 | |
| 		event->attach_state = PERF_ATTACH_TASK;
 | |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT
 | |
| 		/*
 | |
| 		 * hw_breakpoint is a bit difficult here..
 | |
| 		 */
 | |
| 		if (attr->type == PERF_TYPE_BREAKPOINT)
 | |
| 			event->hw.bp_target = task;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (!overflow_handler && parent_event)
 | |
| 		overflow_handler = parent_event->overflow_handler;
 | |
| 	
 | |
| 	event->overflow_handler	= overflow_handler;
 | |
| 
 | |
| 	if (attr->disabled)
 | |
| 		event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	pmu = NULL;
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 	hwc->sample_period = attr->sample_period;
 | |
| 	if (attr->freq && attr->sample_freq)
 | |
| 		hwc->sample_period = 1;
 | |
| 	hwc->last_period = hwc->sample_period;
 | |
| 
 | |
| 	local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 
 | |
| 	/*
 | |
| 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
 | |
| 	 */
 | |
| 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
 | |
| 		goto done;
 | |
| 
 | |
| 	pmu = perf_init_event(event);
 | |
| 
 | |
| done:
 | |
| 	err = 0;
 | |
| 	if (!pmu)
 | |
| 		err = -EINVAL;
 | |
| 	else if (IS_ERR(pmu))
 | |
| 		err = PTR_ERR(pmu);
 | |
| 
 | |
| 	if (err) {
 | |
| 		if (event->ns)
 | |
| 			put_pid_ns(event->ns);
 | |
| 		kfree(event);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	event->pmu = pmu;
 | |
| 
 | |
| 	if (!event->parent) {
 | |
| 		if (event->attach_state & PERF_ATTACH_TASK)
 | |
| 			jump_label_inc(&perf_task_events);
 | |
| 		if (event->attr.mmap || event->attr.mmap_data)
 | |
| 			atomic_inc(&nr_mmap_events);
 | |
| 		if (event->attr.comm)
 | |
| 			atomic_inc(&nr_comm_events);
 | |
| 		if (event->attr.task)
 | |
| 			atomic_inc(&nr_task_events);
 | |
| 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
 | |
| 			err = get_callchain_buffers();
 | |
| 			if (err) {
 | |
| 				free_event(event);
 | |
| 				return ERR_PTR(err);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return event;
 | |
| }
 | |
| 
 | |
| static int perf_copy_attr(struct perf_event_attr __user *uattr,
 | |
| 			  struct perf_event_attr *attr)
 | |
| {
 | |
| 	u32 size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * zero the full structure, so that a short copy will be nice.
 | |
| 	 */
 | |
| 	memset(attr, 0, sizeof(*attr));
 | |
| 
 | |
| 	ret = get_user(size, &uattr->size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (size > PAGE_SIZE)	/* silly large */
 | |
| 		goto err_size;
 | |
| 
 | |
| 	if (!size)		/* abi compat */
 | |
| 		size = PERF_ATTR_SIZE_VER0;
 | |
| 
 | |
| 	if (size < PERF_ATTR_SIZE_VER0)
 | |
| 		goto err_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're handed a bigger struct than we know of,
 | |
| 	 * ensure all the unknown bits are 0 - i.e. new
 | |
| 	 * user-space does not rely on any kernel feature
 | |
| 	 * extensions we dont know about yet.
 | |
| 	 */
 | |
| 	if (size > sizeof(*attr)) {
 | |
| 		unsigned char __user *addr;
 | |
| 		unsigned char __user *end;
 | |
| 		unsigned char val;
 | |
| 
 | |
| 		addr = (void __user *)uattr + sizeof(*attr);
 | |
| 		end  = (void __user *)uattr + size;
 | |
| 
 | |
| 		for (; addr < end; addr++) {
 | |
| 			ret = get_user(val, addr);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			if (val)
 | |
| 				goto err_size;
 | |
| 		}
 | |
| 		size = sizeof(*attr);
 | |
| 	}
 | |
| 
 | |
| 	ret = copy_from_user(attr, uattr, size);
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the type exists, the corresponding creation will verify
 | |
| 	 * the attr->config.
 | |
| 	 */
 | |
| 	if (attr->type >= PERF_TYPE_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->__reserved_1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| err_size:
 | |
| 	put_user(sizeof(*attr), &uattr->size);
 | |
| 	ret = -E2BIG;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
 | |
| {
 | |
| 	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	if (!output_event)
 | |
| 		goto set;
 | |
| 
 | |
| 	/* don't allow circular references */
 | |
| 	if (event == output_event)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow cross-cpu buffers
 | |
| 	 */
 | |
| 	if (output_event->cpu != event->cpu)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If its not a per-cpu buffer, it must be the same task.
 | |
| 	 */
 | |
| 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
 | |
| 		goto out;
 | |
| 
 | |
| set:
 | |
| 	mutex_lock(&event->mmap_mutex);
 | |
| 	/* Can't redirect output if we've got an active mmap() */
 | |
| 	if (atomic_read(&event->mmap_count))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		/* get the buffer we want to redirect to */
 | |
| 		buffer = perf_buffer_get(output_event);
 | |
| 		if (!buffer)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	old_buffer = event->buffer;
 | |
| 	rcu_assign_pointer(event->buffer, buffer);
 | |
| 	ret = 0;
 | |
| unlock:
 | |
| 	mutex_unlock(&event->mmap_mutex);
 | |
| 
 | |
| 	if (old_buffer)
 | |
| 		perf_buffer_put(old_buffer);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_perf_event_open - open a performance event, associate it to a task/cpu
 | |
|  *
 | |
|  * @attr_uptr:	event_id type attributes for monitoring/sampling
 | |
|  * @pid:		target pid
 | |
|  * @cpu:		target cpu
 | |
|  * @group_fd:		group leader event fd
 | |
|  */
 | |
| SYSCALL_DEFINE5(perf_event_open,
 | |
| 		struct perf_event_attr __user *, attr_uptr,
 | |
| 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
 | |
| {
 | |
| 	struct perf_event *group_leader = NULL, *output_event = NULL;
 | |
| 	struct perf_event *event, *sibling;
 | |
| 	struct perf_event_attr attr;
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct file *event_file = NULL;
 | |
| 	struct file *group_file = NULL;
 | |
| 	struct task_struct *task = NULL;
 | |
| 	struct pmu *pmu;
 | |
| 	int event_fd;
 | |
| 	int move_group = 0;
 | |
| 	int fput_needed = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	/* for future expandability... */
 | |
| 	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = perf_copy_attr(attr_uptr, &attr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!attr.exclude_kernel) {
 | |
| 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
 | |
| 			return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	if (attr.freq) {
 | |
| 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	event_fd = get_unused_fd_flags(O_RDWR);
 | |
| 	if (event_fd < 0)
 | |
| 		return event_fd;
 | |
| 
 | |
| 	if (group_fd != -1) {
 | |
| 		group_leader = perf_fget_light(group_fd, &fput_needed);
 | |
| 		if (IS_ERR(group_leader)) {
 | |
| 			err = PTR_ERR(group_leader);
 | |
| 			goto err_fd;
 | |
| 		}
 | |
| 		group_file = group_leader->filp;
 | |
| 		if (flags & PERF_FLAG_FD_OUTPUT)
 | |
| 			output_event = group_leader;
 | |
| 		if (flags & PERF_FLAG_FD_NO_GROUP)
 | |
| 			group_leader = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (pid != -1) {
 | |
| 		task = find_lively_task_by_vpid(pid);
 | |
| 		if (IS_ERR(task)) {
 | |
| 			err = PTR_ERR(task);
 | |
| 			goto err_group_fd;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err_task;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case software events and allow them to be part of
 | |
| 	 * any hardware group.
 | |
| 	 */
 | |
| 	pmu = event->pmu;
 | |
| 
 | |
| 	if (group_leader &&
 | |
| 	    (is_software_event(event) != is_software_event(group_leader))) {
 | |
| 		if (is_software_event(event)) {
 | |
| 			/*
 | |
| 			 * If event and group_leader are not both a software
 | |
| 			 * event, and event is, then group leader is not.
 | |
| 			 *
 | |
| 			 * Allow the addition of software events to !software
 | |
| 			 * groups, this is safe because software events never
 | |
| 			 * fail to schedule.
 | |
| 			 */
 | |
| 			pmu = group_leader->pmu;
 | |
| 		} else if (is_software_event(group_leader) &&
 | |
| 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
 | |
| 			/*
 | |
| 			 * In case the group is a pure software group, and we
 | |
| 			 * try to add a hardware event, move the whole group to
 | |
| 			 * the hardware context.
 | |
| 			 */
 | |
| 			move_group = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 	ctx = find_get_context(pmu, task, cpu);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_alloc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Look up the group leader (we will attach this event to it):
 | |
| 	 */
 | |
| 	if (group_leader) {
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do not allow a recursive hierarchy (this new sibling
 | |
| 		 * becoming part of another group-sibling):
 | |
| 		 */
 | |
| 		if (group_leader->group_leader != group_leader)
 | |
| 			goto err_context;
 | |
| 		/*
 | |
| 		 * Do not allow to attach to a group in a different
 | |
| 		 * task or CPU context:
 | |
| 		 */
 | |
| 		if (move_group) {
 | |
| 			if (group_leader->ctx->type != ctx->type)
 | |
| 				goto err_context;
 | |
| 		} else {
 | |
| 			if (group_leader->ctx != ctx)
 | |
| 				goto err_context;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Only a group leader can be exclusive or pinned
 | |
| 		 */
 | |
| 		if (attr.exclusive || attr.pinned)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (output_event) {
 | |
| 		err = perf_event_set_output(event, output_event);
 | |
| 		if (err)
 | |
| 			goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
 | |
| 	if (IS_ERR(event_file)) {
 | |
| 		err = PTR_ERR(event_file);
 | |
| 		goto err_context;
 | |
| 	}
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		struct perf_event_context *gctx = group_leader->ctx;
 | |
| 
 | |
| 		mutex_lock(&gctx->mutex);
 | |
| 		perf_event_remove_from_context(group_leader);
 | |
| 		list_for_each_entry(sibling, &group_leader->sibling_list,
 | |
| 				    group_entry) {
 | |
| 			perf_event_remove_from_context(sibling);
 | |
| 			put_ctx(gctx);
 | |
| 		}
 | |
| 		mutex_unlock(&gctx->mutex);
 | |
| 		put_ctx(gctx);
 | |
| 	}
 | |
| 
 | |
| 	event->filp = event_file;
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 
 | |
| 	if (move_group) {
 | |
| 		perf_install_in_context(ctx, group_leader, cpu);
 | |
| 		get_ctx(ctx);
 | |
| 		list_for_each_entry(sibling, &group_leader->sibling_list,
 | |
| 				    group_entry) {
 | |
| 			perf_install_in_context(ctx, sibling, cpu);
 | |
| 			get_ctx(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	perf_install_in_context(ctx, event, cpu);
 | |
| 	++ctx->generation;
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	event->owner = current;
 | |
| 	get_task_struct(current);
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_add_tail(&event->owner_entry, ¤t->perf_event_list);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the reference on the group_event after placing the
 | |
| 	 * new event on the sibling_list. This ensures destruction
 | |
| 	 * of the group leader will find the pointer to itself in
 | |
| 	 * perf_group_detach().
 | |
| 	 */
 | |
| 	fput_light(group_file, fput_needed);
 | |
| 	fd_install(event_fd, event_file);
 | |
| 	return event_fd;
 | |
| 
 | |
| err_context:
 | |
| 	put_ctx(ctx);
 | |
| err_alloc:
 | |
| 	free_event(event);
 | |
| err_task:
 | |
| 	if (task)
 | |
| 		put_task_struct(task);
 | |
| err_group_fd:
 | |
| 	fput_light(group_file, fput_needed);
 | |
| err_fd:
 | |
| 	put_unused_fd(event_fd);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * perf_event_create_kernel_counter
 | |
|  *
 | |
|  * @attr: attributes of the counter to create
 | |
|  * @cpu: cpu in which the counter is bound
 | |
|  * @task: task to profile (NULL for percpu)
 | |
|  */
 | |
| struct perf_event *
 | |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
 | |
| 				 struct task_struct *task,
 | |
| 				 perf_overflow_handler_t overflow_handler)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target context (task or percpu):
 | |
| 	 */
 | |
| 
 | |
| 	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
 | |
| 	if (IS_ERR(event)) {
 | |
| 		err = PTR_ERR(event);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ctx = find_get_context(event->pmu, task, cpu);
 | |
| 	if (IS_ERR(ctx)) {
 | |
| 		err = PTR_ERR(ctx);
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	event->filp = NULL;
 | |
| 	WARN_ON_ONCE(ctx->parent_ctx);
 | |
| 	mutex_lock(&ctx->mutex);
 | |
| 	perf_install_in_context(ctx, event, cpu);
 | |
| 	++ctx->generation;
 | |
| 	mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 	event->owner = current;
 | |
| 	get_task_struct(current);
 | |
| 	mutex_lock(¤t->perf_event_mutex);
 | |
| 	list_add_tail(&event->owner_entry, ¤t->perf_event_list);
 | |
| 	mutex_unlock(¤t->perf_event_mutex);
 | |
| 
 | |
| 	return event;
 | |
| 
 | |
| err_free:
 | |
| 	free_event(event);
 | |
| err:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
 | |
| 
 | |
| static void sync_child_event(struct perf_event *child_event,
 | |
| 			       struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event = child_event->parent;
 | |
| 	u64 child_val;
 | |
| 
 | |
| 	if (child_event->attr.inherit_stat)
 | |
| 		perf_event_read_event(child_event, child);
 | |
| 
 | |
| 	child_val = perf_event_count(child_event);
 | |
| 
 | |
| 	/*
 | |
| 	 * Add back the child's count to the parent's count:
 | |
| 	 */
 | |
| 	atomic64_add(child_val, &parent_event->child_count);
 | |
| 	atomic64_add(child_event->total_time_enabled,
 | |
| 		     &parent_event->child_total_time_enabled);
 | |
| 	atomic64_add(child_event->total_time_running,
 | |
| 		     &parent_event->child_total_time_running);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove this event from the parent's list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_del_init(&child_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the parent event, if this was the last
 | |
| 	 * reference to it.
 | |
| 	 */
 | |
| 	fput(parent_event->filp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __perf_event_exit_task(struct perf_event *child_event,
 | |
| 			 struct perf_event_context *child_ctx,
 | |
| 			 struct task_struct *child)
 | |
| {
 | |
| 	struct perf_event *parent_event;
 | |
| 
 | |
| 	perf_event_remove_from_context(child_event);
 | |
| 
 | |
| 	parent_event = child_event->parent;
 | |
| 	/*
 | |
| 	 * It can happen that parent exits first, and has events
 | |
| 	 * that are still around due to the child reference. These
 | |
| 	 * events need to be zapped - but otherwise linger.
 | |
| 	 */
 | |
| 	if (parent_event) {
 | |
| 		sync_child_event(child_event, child);
 | |
| 		free_event(child_event);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event *child_event, *tmp;
 | |
| 	struct perf_event_context *child_ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (likely(!child->perf_event_ctxp[ctxn])) {
 | |
| 		perf_event_task(child, NULL, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	/*
 | |
| 	 * We can't reschedule here because interrupts are disabled,
 | |
| 	 * and either child is current or it is a task that can't be
 | |
| 	 * scheduled, so we are now safe from rescheduling changing
 | |
| 	 * our context.
 | |
| 	 */
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 	task_ctx_sched_out(child_ctx, EVENT_ALL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the context lock here so that if find_get_context is
 | |
| 	 * reading child->perf_event_ctxp, we wait until it has
 | |
| 	 * incremented the context's refcount before we do put_ctx below.
 | |
| 	 */
 | |
| 	raw_spin_lock(&child_ctx->lock);
 | |
| 	child->perf_event_ctxp[ctxn] = NULL;
 | |
| 	/*
 | |
| 	 * If this context is a clone; unclone it so it can't get
 | |
| 	 * swapped to another process while we're removing all
 | |
| 	 * the events from it.
 | |
| 	 */
 | |
| 	unclone_ctx(child_ctx);
 | |
| 	update_context_time(child_ctx);
 | |
| 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Report the task dead after unscheduling the events so that we
 | |
| 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
 | |
| 	 * get a few PERF_RECORD_READ events.
 | |
| 	 */
 | |
| 	perf_event_task(child, child_ctx, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can recurse on the same lock type through:
 | |
| 	 *
 | |
| 	 *   __perf_event_exit_task()
 | |
| 	 *     sync_child_event()
 | |
| 	 *       fput(parent_event->filp)
 | |
| 	 *         perf_release()
 | |
| 	 *           mutex_lock(&ctx->mutex)
 | |
| 	 *
 | |
| 	 * But since its the parent context it won't be the same instance.
 | |
| 	 */
 | |
| 	mutex_lock(&child_ctx->mutex);
 | |
| 
 | |
| again:
 | |
| 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
 | |
| 				 group_entry)
 | |
| 		__perf_event_exit_task(child_event, child_ctx, child);
 | |
| 
 | |
| 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
 | |
| 				 group_entry)
 | |
| 		__perf_event_exit_task(child_event, child_ctx, child);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the last event was a group event, it will have appended all
 | |
| 	 * its siblings to the list, but we obtained 'tmp' before that which
 | |
| 	 * will still point to the list head terminating the iteration.
 | |
| 	 */
 | |
| 	if (!list_empty(&child_ctx->pinned_groups) ||
 | |
| 	    !list_empty(&child_ctx->flexible_groups))
 | |
| 		goto again;
 | |
| 
 | |
| 	mutex_unlock(&child_ctx->mutex);
 | |
| 
 | |
| 	put_ctx(child_ctx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a child task exits, feed back event values to parent events.
 | |
|  */
 | |
| void perf_event_exit_task(struct task_struct *child)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		perf_event_exit_task_context(child, ctxn);
 | |
| }
 | |
| 
 | |
| static void perf_free_event(struct perf_event *event,
 | |
| 			    struct perf_event_context *ctx)
 | |
| {
 | |
| 	struct perf_event *parent = event->parent;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!parent))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&parent->child_mutex);
 | |
| 	list_del_init(&event->child_list);
 | |
| 	mutex_unlock(&parent->child_mutex);
 | |
| 
 | |
| 	fput(parent->filp);
 | |
| 
 | |
| 	perf_group_detach(event);
 | |
| 	list_del_event(event, ctx);
 | |
| 	free_event(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free an unexposed, unused context as created by inheritance by
 | |
|  * perf_event_init_task below, used by fork() in case of fail.
 | |
|  */
 | |
| void perf_event_free_task(struct task_struct *task)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ctx = task->perf_event_ctxp[ctxn];
 | |
| 		if (!ctx)
 | |
| 			continue;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| again:
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
 | |
| 				group_entry)
 | |
| 			perf_free_event(event, ctx);
 | |
| 
 | |
| 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
 | |
| 				group_entry)
 | |
| 			perf_free_event(event, ctx);
 | |
| 
 | |
| 		if (!list_empty(&ctx->pinned_groups) ||
 | |
| 				!list_empty(&ctx->flexible_groups))
 | |
| 			goto again;
 | |
| 
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 
 | |
| 		put_ctx(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void perf_event_delayed_put(struct task_struct *task)
 | |
| {
 | |
| 	int ctxn;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn)
 | |
| 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * inherit a event from parent task to child task:
 | |
|  */
 | |
| static struct perf_event *
 | |
| inherit_event(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event *group_leader,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *child_event;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of creating recursive hierarchies of events,
 | |
| 	 * we link inherited events back to the original parent,
 | |
| 	 * which has a filp for sure, which we use as the reference
 | |
| 	 * count:
 | |
| 	 */
 | |
| 	if (parent_event->parent)
 | |
| 		parent_event = parent_event->parent;
 | |
| 
 | |
| 	child_event = perf_event_alloc(&parent_event->attr,
 | |
| 					   parent_event->cpu,
 | |
| 					   child,
 | |
| 					   group_leader, parent_event,
 | |
| 					   NULL);
 | |
| 	if (IS_ERR(child_event))
 | |
| 		return child_event;
 | |
| 	get_ctx(child_ctx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the child state follow the state of the parent event,
 | |
| 	 * not its attr.disabled bit.  We hold the parent's mutex,
 | |
| 	 * so we won't race with perf_event_{en, dis}able_family.
 | |
| 	 */
 | |
| 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
 | |
| 		child_event->state = PERF_EVENT_STATE_INACTIVE;
 | |
| 	else
 | |
| 		child_event->state = PERF_EVENT_STATE_OFF;
 | |
| 
 | |
| 	if (parent_event->attr.freq) {
 | |
| 		u64 sample_period = parent_event->hw.sample_period;
 | |
| 		struct hw_perf_event *hwc = &child_event->hw;
 | |
| 
 | |
| 		hwc->sample_period = sample_period;
 | |
| 		hwc->last_period   = sample_period;
 | |
| 
 | |
| 		local64_set(&hwc->period_left, sample_period);
 | |
| 	}
 | |
| 
 | |
| 	child_event->ctx = child_ctx;
 | |
| 	child_event->overflow_handler = parent_event->overflow_handler;
 | |
| 
 | |
| 	/*
 | |
| 	 * Link it up in the child's context:
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
 | |
| 	add_event_to_ctx(child_event, child_ctx);
 | |
| 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get a reference to the parent filp - we will fput it
 | |
| 	 * when the child event exits. This is safe to do because
 | |
| 	 * we are in the parent and we know that the filp still
 | |
| 	 * exists and has a nonzero count:
 | |
| 	 */
 | |
| 	atomic_long_inc(&parent_event->filp->f_count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link this into the parent event's child list
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
 | |
| 	mutex_lock(&parent_event->child_mutex);
 | |
| 	list_add_tail(&child_event->child_list, &parent_event->child_list);
 | |
| 	mutex_unlock(&parent_event->child_mutex);
 | |
| 
 | |
| 	return child_event;
 | |
| }
 | |
| 
 | |
| static int inherit_group(struct perf_event *parent_event,
 | |
| 	      struct task_struct *parent,
 | |
| 	      struct perf_event_context *parent_ctx,
 | |
| 	      struct task_struct *child,
 | |
| 	      struct perf_event_context *child_ctx)
 | |
| {
 | |
| 	struct perf_event *leader;
 | |
| 	struct perf_event *sub;
 | |
| 	struct perf_event *child_ctr;
 | |
| 
 | |
| 	leader = inherit_event(parent_event, parent, parent_ctx,
 | |
| 				 child, NULL, child_ctx);
 | |
| 	if (IS_ERR(leader))
 | |
| 		return PTR_ERR(leader);
 | |
| 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
 | |
| 		child_ctr = inherit_event(sub, parent, parent_ctx,
 | |
| 					    child, leader, child_ctx);
 | |
| 		if (IS_ERR(child_ctr))
 | |
| 			return PTR_ERR(child_ctr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| inherit_task_group(struct perf_event *event, struct task_struct *parent,
 | |
| 		   struct perf_event_context *parent_ctx,
 | |
| 		   struct task_struct *child, int ctxn,
 | |
| 		   int *inherited_all)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct perf_event_context *child_ctx;
 | |
| 
 | |
| 	if (!event->attr.inherit) {
 | |
| 		*inherited_all = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
|        	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 	if (!child_ctx) {
 | |
| 		/*
 | |
| 		 * This is executed from the parent task context, so
 | |
| 		 * inherit events that have been marked for cloning.
 | |
| 		 * First allocate and initialize a context for the
 | |
| 		 * child.
 | |
| 		 */
 | |
| 
 | |
| 		child_ctx = alloc_perf_context(event->pmu, child);
 | |
| 		if (!child_ctx)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		child->perf_event_ctxp[ctxn] = child_ctx;
 | |
| 	}
 | |
| 
 | |
| 	ret = inherit_group(event, parent, parent_ctx,
 | |
| 			    child, child_ctx);
 | |
| 
 | |
| 	if (ret)
 | |
| 		*inherited_all = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| int perf_event_init_context(struct task_struct *child, int ctxn)
 | |
| {
 | |
| 	struct perf_event_context *child_ctx, *parent_ctx;
 | |
| 	struct perf_event_context *cloned_ctx;
 | |
| 	struct perf_event *event;
 | |
| 	struct task_struct *parent = current;
 | |
| 	int inherited_all = 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	child->perf_event_ctxp[ctxn] = NULL;
 | |
| 
 | |
| 	mutex_init(&child->perf_event_mutex);
 | |
| 	INIT_LIST_HEAD(&child->perf_event_list);
 | |
| 
 | |
| 	if (likely(!parent->perf_event_ctxp[ctxn]))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the parent's context is a clone, pin it so it won't get
 | |
| 	 * swapped under us.
 | |
| 	 */
 | |
| 	parent_ctx = perf_pin_task_context(parent, ctxn);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to check if parent_ctx != NULL here; since we saw
 | |
| 	 * it non-NULL earlier, the only reason for it to become NULL
 | |
| 	 * is if we exit, and since we're currently in the middle of
 | |
| 	 * a fork we can't be exiting at the same time.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock the parent list. No need to lock the child - not PID
 | |
| 	 * hashed yet and not running, so nobody can access it.
 | |
| 	 */
 | |
| 	mutex_lock(&parent_ctx->mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * We dont have to disable NMIs - we are only looking at
 | |
| 	 * the list, not manipulating it:
 | |
| 	 */
 | |
| 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
 | |
| 		ret = inherit_task_group(event, parent, parent_ctx,
 | |
| 					 child, ctxn, &inherited_all);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	child_ctx = child->perf_event_ctxp[ctxn];
 | |
| 
 | |
| 	if (child_ctx && inherited_all) {
 | |
| 		/*
 | |
| 		 * Mark the child context as a clone of the parent
 | |
| 		 * context, or of whatever the parent is a clone of.
 | |
| 		 * Note that if the parent is a clone, it could get
 | |
| 		 * uncloned at any point, but that doesn't matter
 | |
| 		 * because the list of events and the generation
 | |
| 		 * count can't have changed since we took the mutex.
 | |
| 		 */
 | |
| 		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
 | |
| 		if (cloned_ctx) {
 | |
| 			child_ctx->parent_ctx = cloned_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->parent_gen;
 | |
| 		} else {
 | |
| 			child_ctx->parent_ctx = parent_ctx;
 | |
| 			child_ctx->parent_gen = parent_ctx->generation;
 | |
| 		}
 | |
| 		get_ctx(child_ctx->parent_ctx);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&parent_ctx->mutex);
 | |
| 
 | |
| 	perf_unpin_context(parent_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the perf_event context in task_struct
 | |
|  */
 | |
| int perf_event_init_task(struct task_struct *child)
 | |
| {
 | |
| 	int ctxn, ret;
 | |
| 
 | |
| 	for_each_task_context_nr(ctxn) {
 | |
| 		ret = perf_event_init_context(child, ctxn);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init perf_event_init_all_cpus(void)
 | |
| {
 | |
| 	struct swevent_htable *swhash;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		swhash = &per_cpu(swevent_htable, cpu);
 | |
| 		mutex_init(&swhash->hlist_mutex);
 | |
| 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __cpuinit perf_event_init_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	if (swhash->hlist_refcount > 0) {
 | |
| 		struct swevent_hlist *hlist;
 | |
| 
 | |
| 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
 | |
| 		WARN_ON(!hlist);
 | |
| 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
 | |
| 	}
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void perf_pmu_rotate_stop(struct pmu *pmu)
 | |
| {
 | |
| 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	list_del_init(&cpuctx->rotation_list);
 | |
| }
 | |
| 
 | |
| static void __perf_event_exit_context(void *__info)
 | |
| {
 | |
| 	struct perf_event_context *ctx = __info;
 | |
| 	struct perf_event *event, *tmp;
 | |
| 
 | |
| 	perf_pmu_rotate_stop(ctx->pmu);
 | |
| 
 | |
| 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
 | |
| 		__perf_event_remove_from_context(event);
 | |
| 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
 | |
| 		__perf_event_remove_from_context(event);
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_cpu_context(int cpu)
 | |
| {
 | |
| 	struct perf_event_context *ctx;
 | |
| 	struct pmu *pmu;
 | |
| 	int idx;
 | |
| 
 | |
| 	idx = srcu_read_lock(&pmus_srcu);
 | |
| 	list_for_each_entry_rcu(pmu, &pmus, entry) {
 | |
| 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
 | |
| 
 | |
| 		mutex_lock(&ctx->mutex);
 | |
| 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
 | |
| 		mutex_unlock(&ctx->mutex);
 | |
| 	}
 | |
| 	srcu_read_unlock(&pmus_srcu, idx);
 | |
| }
 | |
| 
 | |
| static void perf_event_exit_cpu(int cpu)
 | |
| {
 | |
| 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
 | |
| 
 | |
| 	mutex_lock(&swhash->hlist_mutex);
 | |
| 	swevent_hlist_release(swhash);
 | |
| 	mutex_unlock(&swhash->hlist_mutex);
 | |
| 
 | |
| 	perf_event_exit_cpu_context(cpu);
 | |
| }
 | |
| #else
 | |
| static inline void perf_event_exit_cpu(int cpu) { }
 | |
| #endif
 | |
| 
 | |
| static int __cpuinit
 | |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_DOWN_FAILED:
 | |
| 		perf_event_init_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_DOWN_PREPARE:
 | |
| 		perf_event_exit_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| void __init perf_event_init(void)
 | |
| {
 | |
| 	perf_event_init_all_cpus();
 | |
| 	init_srcu_struct(&pmus_srcu);
 | |
| 	perf_pmu_register(&perf_swevent);
 | |
| 	perf_pmu_register(&perf_cpu_clock);
 | |
| 	perf_pmu_register(&perf_task_clock);
 | |
| 	perf_tp_register();
 | |
| 	perf_cpu_notifier(perf_cpu_notify);
 | |
| }
 |